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Effects of interparticle cohesion on the collapse of granular columns
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The presence of interparticle cohesion can drastically change the behavior of granular
materials. For instance, powders are challenging to handle, and one can make a sandcastle
using wet grains. In this study, we report experimental results for columns of model cohe-
sive grains collapsing under their own weight in air and spreading on a rough horizontal
surface. The effects of two different sources of interparticle cohesion on two collapse
geometries are compared and characterized in a common framework. Grains are made
cohesive by adding a small amount of water, such that they are in the pendular state, or by
applying a polymer coating. The effects of cohesion are reported for a cylindrical column
that spreads unconfined axisymmetrically and a confined rectangular column that flows in
a single direction. A dimensionless number, comparing macroscopic cohesive strength to
particle weight, is shown to capture the effects of cohesion on the final morphology. To
this end, a characterization of the cohesive strength of the granular materials is obtained,
independent of the physical source of cohesion at the particle scale. Such a framework
allows for a common description of cohesive granular materials with different sources of
cohesion.

DOI: 10.1103/PhysRevFluids.9.074301

I. INTRODUCTION

Cohesion, or adhesive forces between particles, is ubiquitous in natural systems and observed in
many industrial settings. In industry, the presence of cohesion can lead to problems in processing,
such as reduced flowability and caking of powders [1]. Cohesion also results in the agglomeration
of particles [2], which can be useful for some processes, such as powder coating [1]. Adhesive
forces between particles can be caused by various physical mechanisms. In dry granular materials,
interparticle adhesion can be induced by electrostatic forces dependent on the surface properties of
the particles or by van der Waals forces [1]. The presence of moisture can result in capillary bridges
between particles, where surface tension causes particles to attract [1,3,4]. These forces depend
on the distance between particles. For an arbitrary assembly of cohesive particles, it is not always
straightforward to discern what the primary source of cohesion may be. For instance, powders may
be sticky due to both van der Waals forces and capillary bridges [5].

In natural systems, such as soil, several sources of interparticle adhesion may be at play
simultaneously. Besides van der Waals and capillary forces, the presence of bacterial biofilms [6]
may cause adhesion. The presence of a wide variety of particle shapes can also modify bulk yield
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properties [7]. When cohesive soils are destabilized, for instance, as a result of rapid erosion due
to drop impacts during heavy rainfalls [8,9], large-scale mudflows, debris flows, or landslides can
be triggered, carrying massive amounts of material over large distances. Many features of these
complex geophysical flows are recovered when modeling them experimentally with granular media
[10–12]. This is one reason why considerable progress has been made in the last two decades
towards a description of granular media, especially by employing continuum approaches [13,14]
like the μ(I ) rheology for dry cohesionless granular flows [15]. However, the possible extension of
such approaches to cohesive granular materials remains elusive.

To obtain a better understanding of landslides at the laboratory scale, experiments of gravity-
driven collapses of columns of cohesionless grains were first performed by Lajeunesse et al. [16],
Lube et al. [17], and Balmforth and Kerswell [18]. Scaling laws based on these early studies were
successfully applied, for instance, to describe the runout of large landslides on Mars [10]. Hence,
for almost two decades, numerous studies have been dedicated to the collapse of dry cohesionless
granular columns [13,14,19–23]. In this model experiment, a granular column of initial height H0

and radius R0 (for a cylindrical column) or width L0 (for a rectangular column) is suddenly released
and collapses under the effect of gravity. The cylindrical column relaxes unconfined on a flat surface,
while the rectangular column spreads confined within a channel. When the final heap stabilizes, one
can characterize the resulting deposit by two typical lengths [17]: the final maximum height, H∞,
and the runout distance �R∞ (axisymmetric) or �L∞ [quasi-two-dimensional (2D)]. The runout
is defined as the total distance traveled in the spreading direction, i.e., �R∞ = R∞ − R0. The
initial aspect ratio of the column, defined as a = H0/R0 (respectively, a = H0/L0 for the rectangular
geometry), governs the final morphology of the deposit in both geometries by empirical piecewise
power laws [17,19].

In the axisymmetric case, the final height rescaled by the initial radius, H∞/R0, equals a for
small aspect ratios a and is roughly constant for larger a. For the quasi-2D geometry, the rescaled
final height H∞/L0 was similarly found to be equal to a for small a, but scaled with a1/3 for large
initial aspect ratio. In the small-a cases, and for both geometries, the column only collapses on
the edges, such that H∞ = H0. The rescaled runout in the axisymmetric case, �R∞/R0, was found
to scale with a for small a, and with a1/2 for large a, whereas for the 2D case �L∞/L0 was also
found to scale with a for small a, and to evolve with a2/3 for large initial a. The critical aspect
ratios that mark the transitions between the collapse regimes were also found to differ between the
two geometries [19]. The values for the scaling coefficients as well as the critical aspect ratios,
and thus the power laws themselves, are dependent on the material and frictional properties of the
grains [18,23], and may also be impacted by the presence of some finite-size effects [24]. Many
experimental studies [18,22–28] and numerical simulations [13,14,21,29–33] have since retrieved
similar scaling behavior for cohesionless collapses. However, various granular flows involved in
geophysical or industrial processes feature additional physical richness, which explains why the
behavior of the granular collapse was found to be significantly altered in cases where the medium
is fluidized [34], polydisperse [26,35], or if adhesive forces exist between the particles [36–40]. In
particular, cohesion is known to alter the rheological and mechanical properties of granular materials
[41–43]. In the context of granular collapse, the effects of a small amount of water on the stability
of a granular column has been of particular interest [44–47].

Modeling and controlling cohesion experimentally remains challenging. Following the common
experience of building sandcastles, one method consists of mixing a certain amount of liquid
with the grains to constitute an unsaturated wet granular medium [4,48,49]. Different mechanical
properties are bestowed to the material depending on the fraction of liquid added to it, W%, which
determines whether it belongs to the pendular, funicular, capillary, or slurry states (for increasing
amounts of added fluid, respectively) [4]. In the pendular regime, the added liquid is contained
within capillary bridges between particles, which holds them together and makes the material
cohesive. This approach has been used to investigate the collapse of rectangular cohesive columns in
both channelized [36–38] and unchannelized collapse geometries [39]. Artoni et al. [36] discussed
the influence of cohesion on the final morphology of the deposit in terms of two parameters: a
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dimensionless Bond number Bo, which compares the effects of gravity and surface tension, and
the relative mass of liquid added to the granular material, W%. Santomaso et al. [37] compared
the collapse of columns made of spherical beads to those made of natural polydisperse sand for
various water contents and evidenced significant differences between them. More recently, Li et al.
[38,39] varied the aspect ratio a, the particle diameter d , and the added water amount W% for the
channelized and unchannelized collapse of rectangular columns. These authors provide a phase
diagram of the different collapse regimes: the continuous collapse (in the absence or the presence of
a weak cohesion), the block collapse (cohesive case), and a stable region where no collapse occurs.
For the unchannelized collapse of a rectangular column, Li et al. [39] propose scaling laws for
the final morphology of the deposit, which capture the effects of W% and Bo and connect with the
cohesionless case.

Another recent approach developed to produce cohesive grains consists of coating glass beads
with a thin layer of polymers. Cohesion is controlled by tuning the coating thickness [50,51]. For
instance, this cohesion-controlled granular material (CCGM) has been used as a model material to
study the effects of cohesion on erosion induced by turbulent air jets [52] and on the discharge of
silos [53]. Compared to capillary bridges, this source of cohesion has the advantage of avoiding
drainage and evaporation of the menisci, which could play a significant role over time. Gans
et al. [40] have used such cohesive grains to study the stability and collapse of a confined
rectangular column in the quasi-2D geometry. In this work, the authors combine experiments
with numerical simulations based on a continuum model to discuss the stability and failure of
quasi-two-dimensional columns of cohesive grains. While not explicitly compared, the effects of
cohesion provided in this study appear, at first glance, to be qualitatively similar to the morphology
of deposits for wet grains in the pendular state, where �R∞ is reduced while H∞ becomes larger
when the interparticle cohesive force increases. Other kinds of apparent cohesion have been used in
geometries similar to collapsing columns. Sarate et al. [54], for instance, studied the deposition of
flexible granular chains, showing where such systems display stability rather than spreading. Several
studies have also demonstrated how the physical entanglement of dry particles can also display
cohesionlike stability using a similar collapse geometry [55–57]. Overall, various experimental
studies have investigated the influence of different sources of cohesion, but a common framework
accounting for the macroscopic observations remains elusive.

Numerical simulations have also been used to probe the role of cohesion in 2D collapses,
using contact models of cohesion [58–61]. Abramian et al. [58] compared discrete simulations
to a continuum model with cohesion and provided a framework to connect micro- and macroscale
effects for a rectangular channelized geometry. Furthermore, they also examined the correlation
between roughness on the surface of the deposit and cohesive forces between the grains [59]. Other
numerical simulations, for instance, by Langlois et al. [60] for dry brittle cohesive columns and by
Zhu et al. [61] for submerged ones, investigated the collapse process in the channelized rectangular
configurations. These studies provided, among other insights, details into the internal structure of
the collapsed pile and the trajectories and size of particle clusters.

Despite the recent research interest in the collapse of cohesive granular columns, several points
remain elusive. In particular, it is unclear whether a common framework can capture the macro-
scopic effects of cohesion on the collapses regardless of the source of cohesion at the particle
scale. The development of such a macroscopic framework is of great significance since cohesive
granular assemblies encountered in natural environments can typically have several sources of
cohesion acting simultaneously. In addition, most studies on cohesive collapses have focused on
quasi-2D rectangular columns in a confined channel, while natural situations typically occur in
a three-dimensional (3D) context. In this regard, it is relevant to better understand unconfined
situations and investigate whether the behavior observed in two-dimensional collapses applies to
more realistic geometries.

In the present study, we report experiments on collapsing granular columns for various ranges
of cohesion, grain size, and column geometries. We compare the effects of cohesion on the
final morphology of deposits across the 3D axisymmetric and 2D channelized geometries, with
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FIG. 1. (a) Schematic of the 3D axisymmetric experimental apparatus. A hollow cylinder is first filled
with a granular material, then the cylindrical shell is rapidly lifted, which allows the grains to spread
axisymmetrically on a horizontal surface under their own weight, as illustrated by the dashed lines. (b) Side
view of the 3D axisymmetric setup showing the initial dimensions of the cylindrical column, H0 and R0, and
the final height H∞ and runout R∞ of the relaxed pile. (c) Side view of the 2D channelized setup showing the
initial dimensions of the rectangular column, H0 and L0, and the final deposit of final height H∞ and runout
distance �L∞ = L∞ − L0. The horizontal bottom surfaces for both cases are coated with one layer of glued
grains.

a particular focus on the former. The initial aspect ratio a of the column and the cohesive forces
between the grains are systematically varied. Two different sources of cohesion are considered: wet
granular material in the pendular state, where water is the wetting liquid, and a polymer coating
applied to glass beads to obtain a CCGM. In Sec. II, we detail the experimental apparatus and
methods. We then characterize the macroscopic cohesion from the two sources into a common
framework in Sec. III. To this end, a dimensionless number, Co, comparing the bulk cohesion to
the particle weight, is constructed by performing yield strength measurements from independent
experiments using a shear cell. Results of collapsing axisymmetric and rectangular columns and the
morphology of the final deposits for both geometries are provided in Sec. IV. Finally, in Sec. V, the
effects of cohesion on the piecewise power laws are characterized using the macroscopic cohesion
number Co. An alternative interpretation of this dimensionless number as the ratio of the cohesive
length to the grain diameter is also discussed, which enables us to connect the microscopic and
macroscopic cohesion across the two collapse geometries.

II. EXPERIMENTAL METHODS

A. Experiment Setup

For the unconfined collapse of an axisymmetric column, a hollow polymethyl methacrylate
(PMMA) cylindrical shell is initially filled with grains of diameter d , as illustrated in Fig. 1(a).
We use two different cylinders with internal radii, R0 = 4.2 and 2.5 cm, respectively. By controlling
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the amount of grains filling each cylinder, we vary the initial height of the column, H0. An identical
loading procedure is used for both cohesionless and cohesive grains, even if the presence of cohesion
leads to a slightly smaller volume fraction [51]. Grains are poured in using a funnel and gently
flattened to resemble a cylindrical column without introducing any noticeable compaction. We use
the cylinder of internal radius R0 = 4.2 cm to make columns of aspect ratios a ≡ H0/R0 ∈ [0.25, 6]
and the cylinder of radius R0 = 2.5 cm to make columns with a ∈ [3, 10]. This approach allows
us to investigate a range of aspect ratios a ∈ [0.25, 10], which is similar to most previous studies
on the topic [16,17,19–21,23,24,62]. Even for the largest grains used and the narrowest cylinder,
R0/d ≈ 25, suggesting that the confinement effects remain negligible [63]. For each batch of grains
(cohesionless or cohesive), a trial was repeated using both the narrowest (R0 = 2.5 cm) and the
widest (R0 = 4.2 cm) cylinders for a between 3 and 6, to quantitatively ensure that no significant
finite-size effects were at play. The cylinder is connected to a pneumatic system, allowing for its
rapid vertical translation over its full length at a velocity of order 2 m s−1. At this velocity, the effect
of the release does not influence the collapse dynamics [28]. The whole system is placed on a rough
surface, made by gluing approximately one layer of grains of d = 0.7 mm on a large base. When the
cylinder is lifted, the initial column follows an unconstrained collapse and spreads radially on the
rough surface. Once the grains have come to rest, an axisymmetric deposit is observed, as illustrated
by the dashed lines in Fig. 1(a). A camera images the collapse from the side [Fig. 1(b)]. For this
geometry, the final height of the relaxed pile is denoted H∞ and is located at the center, and the
radial runout is denoted �R∞.

A PMMA tank is used for the channelized collapse of an initially rectangular column. A
removable gate is used on one side to enclose a rectangular section of grains for the entire spanwise
width of the tank (20 cm), and the bottom surface is coated with a layer of grains. A side view
as imaged by a camera is schematized in Fig. 1(c). We then vary the two dimensions of the initial
column, height H0 and length L0, defining an aspect ratio a ≡ H0/L0 similar to the unconfined
cylindrical geometry. For the experiments considered here, we use three initial lengths L0 = 1.6, 5,
and 10 cm. We use L0 = 10 cm to make columns of a ≡ H0/L0 ∈ [0.25, 1.5]; L0 = 5 cm to make
a ∈ [1.5, 4]; and L0 = 1.6 cm to make a ∈ [4, 12]. We repeat some aspect ratios for different L0 to
confirm that the confinement effects remain small. Altogether, the range a ∈ [0.25, 12] comprises a
similar range to the axisymmetric geometry. The relaxing column is channeled by the width of the
confining tank. The final height of the deposit is maximum at the back wall. The extensional runout
is also measured similarly to the axisymmetric case, i.e., �L∞ = L∞ − L0.

All columns are composed of glass spheres (Potters, Inc.) with density ρ = 2.5 g cm−3, which
can be made cohesive as discussed in the next section. In this study, we use four different grain
diameters: d = 1.1 mm (©), d = 0.7 mm (♦), d = 0.5 mm (�), and d = 0.3 mm (�). Marker
shapes shown in parentheses are used in all figures in the following to represent the corresponding
grain size.

B. Cohesion-controlled granular material

We first create interparticle cohesion through a polymer coating on the grains, following the
approach of Gans et al. [51]. The cohesion is induced by a polyborosiloxane (PBS) coating on the
glass beads, made of polydimethylsiloxane (PDMS) cross-linked with boric acid. More details on
the manufacturing can be found in Ref. [51]. Grains made using this method are dry, and separating
and reattaching them does not affect their stickiness. We prepare three batches of CCGM, two
corresponding to relatively small cohesions (made by coating b ≈ 100 nm on grains of diameter
d = 1.1 mm or d = 0.7 mm), and a third CCGM with moderate cohesion for which grains are made
of a thicker coating (b ≈ 300 nm and d = 0.7 mm). The physical properties of these grains can be
found in Table I. The magnitude of the cohesive force is controlled by tuning the average coating
thickness, b.

The precise physical origin of the cohesion observed for the CCGM is still not fully understood
[51]. Indeed, for a short contact duration, Gans et al. described the cohesive force using a capillary
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TABLE I. Physical details of the cohesive grains used in this study. The static properties (〈φ〉, μ, τy) are
determined using the inclined shear cell. Solid fraction φ = Vsolid/Vtot is measured for every trial and then
averaged for a given cohesive granular material. The coefficient of friction, μ, and the yield stress τy are
through the results of the shear cell using the Mohr-Coulomb failure criterion, as shown in Fig. 2.

d (mm) Source b (nm) W% 〈φ〉 μ τy (Pa) Co

0.34 ± 0.04 0 0 0.60 ± 0.01 0.35 ± 0.02 0 0
1.08 ± 0.10 0 0 0.55 ± 0.01 0.35 ± 0.03 0 0
1.08 ± 0.10 CCGM 116 0.60 ± 0.01 0.33 ± 0.05 35 ± 20 2.2 ± 1.3
0.70 ± 0.05 CCGM 106 0.56 ± 0.01 0.43 ± 0.04 28 ± 10 3.0 ± 1.0
1.08 ± 0.10 Wet 0.5% 0.55 ± 0.02 0.35 ± 0.05 111 ± 13 7.5 ± 0.9
0.70 ± 0.05 CCGM 310 0.57 ± 0.01 0.27 ± 0.07 79 ± 31 8.1 ± 3.2
0.49 ± 0.04 Wet 0.5% 0.51 ± 0.04 0.46 ± 0.16 133 ± 42 20 ± 6.1

model, from which one can infer that cohesion arises from the establishment of bridges between
the grains. In this case, if the coating thickness b is below a certain value (which depends on the
roughness of the grain), increasing it leads to an increase of the number of contact points and hence
the overall cohesion force. All our considered CCGMs for this study are in this regime. If b exceeds
a threshold, the roughness of the grains is screened by the coating, and additional complications
may also be noticed when such grains are kept in contact for a long time, which seems to be due
to an aging phenomenon such as the entanglement of PDMS polymer chains [51]. To ensure that
aging does not play a significant role in our experiments, the same collapse experiments were tested
by waiting a few seconds after preparing the initial column and another by waiting an hour. Both
experiments led quantitatively to the same results.

While Gans et al. [51] provided an ad hoc relationship between the cohesive force Fc and the
coating thickness b, this relationship was not straightforwardly applicable to describe our grains
with a Bond number. It is indeed possible to define a granular Bond number Bo as the ratio
between the weight of a particle and the cohesive force using the ad hoc expression of Ref. [51].
Nevertheless, in our experience, two manufactured CCGMs with supposedly similar Bond numbers
but with different diameters produced different levels of macroscopic cohesion. Thus, macroscopic
tests were performed to determine the actual forces or the yield stresses to characterize CCGM.
Section III discusses our tests to determine the yield stresses.

C. Wet grains in the pendular state

The second source of cohesion between the grains is induced by capillary bridges of deionized
(DI) water [3,4] with surface tension γ� = 72 mN m−1 at ambient temperature. When the liquid
bridges are small compared to the diameter of the grain, d , the capillary force between two spherical
particles is proportional to γ� d [4]. We define the mass liquid content in an unsaturated wet granular
material as W% = mwater/mparticles [36,38,39]. If all the liquid content in such a granular medium is
confined to liquid bridges, the material is said to be in the pendular state [4,48]. This situation also
corresponds to the state of mixture between phases where the material has the largest cohesion [64],
and maximum shear and elastic moduli [43].

To produce these grains, we first remove any moisture content by drying the grains in an oven.
Then water is weighed and added to the grains once they have cooled altogether in a closed
container, following Li et al. [38]. The closed container containing grains and water is placed on
a mixer for 5 min to ensure the water is homogeneously mixed with the grains before moving into
the column. In preliminary experiments, the grains are moved between containers to estimate the
water content lost in moving grains into the experimental apparatus by adhesion to the surface of
the container (approximately 2% by mass). Consequently, this much extra water mass is added to
prepare our cohesive grains [38,64].
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Artoni et al. [36] showed that the effects of such cohesion on the final morphology of the
2D channelized deposit can be rationalized by a group of dimensionless numbers, Bo−1 W%

2/3,
consisting of the granular Bond number Bo and the liquid content W%. The granular Bond number
is defined as [36]

Bo = Fw

Fc
= ρ gd2

γ�

, (1)

where ρ is the particle density and g is the acceleration due to gravity. Li et al. [39] also characterized
the final morphology of unchannelized collapse of rectangular columns using this dimensionless
group. For our study, we seek to minimize any viscous dissipation, and consequently, the attempt is
made to keep W% as small as possible while ensuring a homogeneous mixture of grains and fluid.
Altogether, for grains in the pendular state, we report experiments with two grain sizes (d = 0.5 or
1.1 mm) and for which W% = 0.5%. Increasing grain size corresponds to an increase in the Bond
number and, thus, to a less cohesive system.

III. CHARACTERIZATION OF COHESIVE STRENGTH

As we see later, our experiments suggest that the final deposits of some cohesive columns made
with grains using different sources of cohesion and grain sizes are very close. For instance, glass
beads of d = 1.1 mm and W% = 0.5% exhibit very similar behavior to that of a CCGM of diameter
d = 0.7 mm and b ≈ 300 nm. Independent measurements of cohesive yield stresses are carried out
using a shear cell to compare the macroscopic behavior of different materials. A similar approach
was considered by Santomaso et al. [37] to compare collapses of rectangular columns made of wet
spherical beads and calcium carbonate (coarse sand), where no straightforward expression could be
derived for the cohesion force to be used in the Bond number description.

The shear cell is used to evaluate the cohesion for each granular system based on the Mohr-
Coulomb failure criterion (the simpler model for granular plasticity) [42,65]. The yield stress
described through this criterion is a measure of internal failure within a granular bulk. At a point
of failure, the state of stresses on the failing plane must overcome the effects of friction, having
accounted for cohesion. Measurements of shear and normal stress configurations at failure are used
to estimate the yield locus. Within this framework, a cohesive material will yield when the applied
shear τ reaches

τ = μσ + τy, (2)

where σ is the normal stress, μ is the coefficient of internal friction, and τy is the cohesive yield
strength of the material. Richefeu et al. [64] use a rectangular shear cell to characterize the shear
strength of wet granular materials. Here, similar to Gans et al. [51], we use an inclined plane
apparatus.

We start with a cohesive granular bed placed in a cell of fixed basal surface S (length 20 cm,
width 10 cm), whose height h is varied between tests. The bottom surface of the cell is coated
with a layer of grains of the same diameter as the grains being tested [51]. Since the failure occurs
on this bottom plane, this coating ensures the grains do not slide. The cell is initially filled with
the cohesive material. The top plane remains open, and coincides with the cell’s height. The bed
is weighed before an experiment, and since the internal volume and weight of the empty cell are
known, we obtain the volume fraction φ of the tested material. The filled cell is placed on an inclined
plane, as illustrated by the schematic of the setup shown in the inset of Fig. 2(a). The downstream
side of the box is opened such that the grains are free to fall without any restriction as the system
is inclined at a continuous rate. As the angle θ increases, the magnitude of normal stresses on the
bottom surface of the cell decreases, while the shear stresses increase until the material yields at a
critical angle, θc. Since we measure the initial weight of the bulk of grains, W = φ ρ gh S, at the
point of failure, the normal stress on the bottom surface is σ = W cos θc/S and the shear stress
is τ = W sin θc/S. By changing the height h of the initial bed of grains, we change W and thus
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FIG. 2. (a) Inset: Schematic of the inclined plane setup. By changing the height h, the weight W can be
changed and controlled. Main panel: Shear and normal stresses τ and σ , respectively, corresponding to each
failure experiment for all the tested grains. The best fits of the yield curves, which are shown in solid lines, are
used to estimate the yield stress τy and the friction coefficient μ using the Mohr-Coulomb failure criterion from
Eq. (2). (b) Measured volume fraction φ from the shear cell experiments for our range of grains as a function
of Co [as defined in Eq. (3)]. φ is averaged from all the trials, and the standard deviation from this average is
the associated uncertainty. The evolution of the friction coefficient μ and the yield stress τy as a function of Co
are shown in (c) and (d), respectively. The uncertainties in both panels show the variation of fits.

the angle at which the avalanche is triggered. While local collapses do occur at the opening of the
downstream side, the plane used is large enough that the area affected is small compared with bulk.
For each set of grains, at least five different heights are used. The results are reported in Fig. 2(a),
with the best fits of the data using Eq. (2) also shown. The intercept is τy, and the slope is a measure
of the coefficient of internal friction, μ. The yield locus displays some nonlinearity when the normal
stresses are small, typically for σ < 200 Pa here. A similar behavior was reported by Richefeu et al.
[64], and following their approach, the fits do not include these points. Additionally, it should be
noted that this shear cell technique is ill suited to measure failure for cohesionless grains, as the free
surface always approximately exhibits the angle of repose. This explains the wide range of data for
our cohesionless points, and for simplicity, τy = 0 is enforced for this case.

The values of τy measured from these tests are used to classify our cohesive granular materials
on a common scale. Santomaso et al. [37] suggested that τy can be used to explain the effects
of cohesion on collapse. However, anticipating the discussion given in the next section, the cases
reported in Figs. 5(b) and 5(c) correspond to two different τy, despite producing quantitatively
similar final deposits for all aspect ratios. The yield loci for these two grains are marked in indigo
in Fig. 2(a) for the wet grains (©) and the CCGM (♦). It shows that the yield stress is not adequate
independently to describe the effects of cohesion on collapse. The additional effects of grain size
on the final morphology, which is demonstrated later in the present study, were likely unnoticed by
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Santomaso et al. [37] since coarse sand and glass beads of roughly equal size were used in their
experiments.

Rather than considering the effects of cohesion at the scale of an individual bond, τy measures
the cohesion within a static bulk of cohesive grains. Gans et al. [51] have shown for CCGM that the
cohesive force scales as Fc ∼ τy d2, where d is the grain diameter. In the case of wet grains, Pierrat
and Caram [66] derived a relation from Rumpf’s model for the tensile strength σt in terms of the
attractive force Fc between grains and their diameter and find Fc ∼ σt d2, which is further elucidated
by Richefeu et al. [64] for additional particle properties. σt is a measure of the tensile strength and
represents the resistance of individual bonds to traction [37]. The tensile strength scales as the
cohesive yield stress, with a numerical prefactor related to the internal angle of friction [42]. Most
importantly, this implies that one can use τy to estimate the average cohesion force at the scale of the
grain as 〈Fc〉 ∼ τy d2, independent of the source of cohesion for these two cases, and measured only
through its bulk failure. Consequently, we define a cohesion number using this average description
of forces:

Co ≡ 〈Fc〉
〈Fw〉

∼= τy d2

φ ρ gd3
= τy

φ ρ gd
. (3)

Here, we reversed the numerator and denominator compared to the definition of the Bond number,
such that a more cohesive granular bulk corresponds to a larger value of Co. Consequently, we
expect Co ∼ Bo−1. Since we are considering the average cohesion force in the bulk, we similarly
consider the bulk weight at the scale of the grain, 〈Fw〉 ∼ ρb gd3, where ρb = φ ρ is the bulk density.
Despite not knowing the numerical prefactors to resolve the forces individually, the expression here
is readily comparable for all our cohesive grains since τy and φ can be measured experimentally.
This description can also be interpreted as a balance of relevant length scales, as it is discussed later
in Sec. V.

The values of Co for all tested grains are compiled in Table I. Altogether, the cohesive effects
can be broadly categorized as the following: (i) cohesionless grains; (ii) small cohesion, CCGM;
(iii) moderate cohesion, our most cohesive CCGM, and the less cohesive wet grains; and (iv)
large cohesion, our most cohesive wet grains. Since the bulk cohesion description also accounts
for the change in grain size, we refer only to the cohesion number Co for brevity in what follows.
Figure 2(b) shows the average volume fraction 〈φ〉 measured per grain species from measurements
prior to the start of each test in the shear cell. Error bars on this plot are the standard deviations of
the measured φ for each kind of cohesion. For our range of Co and grain size, observed φ for all the
grains are similar, with an overall mean value 〈φ〉 = 0.56 ± 0.02, corresponding to loose packings.
A slightly lower 〈φ〉 is observed, however, for the largest cohesion considered here. In Figs. 2(c) and
2(d), the values of μ and τy are shown, respectively, as a function of Co. Error bars in these plots
show uncertainties from the fit. The friction coefficient μ is roughly constant (〈μ〉 = 0.36 ± 0.01)
for our range of experiments; however, a wider scatter of the data is noticed for larger cohesion. In
Fig. 2(d), the two grains with moderate cohesions (Co = 7.5 and 8.1) correspond to different yield
stresses, but have a similar overall Co. In addition, the two wet grains (for which Co = 7.5 and 20)
correspond to similar yield stresses but are quite different qualitatively. This difference is, again,
captured in the definition of the cohesion number Co since smaller d results in a larger Co.

IV. RESULTS

A. Dynamics: Phenomenology of 3D collapse

In what follows, we investigate the collapse of cohesive granular columns, by varying both
the initial aspect ratio a = H0/R0 and the value of the cohesion number Co. For all aspect ratios
considered in this study, once released, unstable columns spread unconfined for approximately 0.5 s
before coming to rest. To illustrate the collapsing column, a selection of the side profiles is shown
in Fig. 3. We show three cases, for which H0 < R0 (a = 0.5), H0 � R0 (a = 2.0), and H0 
 R0

(a = 10.0) in Figs. 3(a)–3(c), respectively. For each a, a cohesionless collapse (i.e., Co = 0.0), a
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FIG. 3. Side profiles of the cylindrical column collapsing axisymmetrically for various initial aspect ratios,
a, and cohesions, Co, taken every 0.03 s: (a) a = 0.5, (b) a = 2, and (c) a = 10. For each a, we report collapses
with cohesionless grains, i.e., Co = 0, a medium cohesion with Co = 8.1, and with our most cohesive grains
with Co = 20. The corresponding videos are available in the Supplemental Material [67].

moderate cohesion (Co = 8.1), and our most cohesive grains tested (Co = 20) are shown. Frames
captured every successive 1/30 s after the cylindrical shell begins lifting are presented. Complete
videos of these collapses are available in the Supplemental Material [67]. In the cohesionless case,
the removal of the cylinder causes the outermost layer of grains to be disturbed by friction on
the cylinder wall, which is highlighted by roughness of significant amplitude in some early profiles.
Still, as these grains collapse, the deposits exhibit a smooth final surface. However, roughness is seen
on the surface of the final deposits of cohesive grains at the end of the dynamics. Major roughness
is also present for small a in the cohesive cases, where agglomerates fall off from the sides of the
column. The collapsing column spreads less for more cohesive grains, as expected.
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FIG. 4. Time evolution of the spreading radius for the axisymmetric collapse of cylindrical columns after
triggering the withdrawal of the confining cylinder: (a) a = 0.5, (b) a = 2.0, and (c) a = 10 for our full range
of cohesion. These cases correspond to the evolutions shown in Fig. 3 with additional intermediate cohesion
values.

From the side profiles, we extract the time evolution of the granular front at the base of the
column, R(t ) − R0. In Figs. 4(a)–4(c), we show the radial evolution corresponding to a = 0.5, 2.0,
and 10, respectively, for all cohesion tested. Error bars indicate the difference between the left and
right profiles seen by the camera, the average of which is taken to be the radial front. In these plots,
t = 0 s is denoted as the time corresponding to the first frame where the cylindrical enclosure begins
to be lifted. Time on these axes thus shows the time since the grains are free to start moving. For
Fig. 4(a), where a = 0.5, the most cohesive case, Co = 20, shows no radial change at all, as the
column is stable [as illustrated, for instance, in Fig. 3(a)]. For Co = 8.1, the column initially holds
steady and then collapses after some delay. Particularly for the larger aspect ratios, as shown in
Figs. 4(b) and 4(c), the evolution of the radial front is well described by a straight line (i.e., a constant
velocity), with brief acceleration and deceleration phases. The acceleration and deceleration stages
at the start and the end of the spreading are even less pronounced for more cohesive grains. The
slope is used to determine the average velocity of the front, v f , as marked in Fig. 4(c), which
appears smaller for collapses with larger cohesion.

B. Morphology of final deposits

Examples of the axisymmetric deposit, once the granular collapse has finished, are shown in
Fig. 5 for a few cohesion numbers, Co, and initial aspect ratios, a. For each image, the initial
radius of the column is R0 = 4.2 cm, and all pictures share the same scale. Figure 5(a) shows
collapses of cohesionless grains, and the circumference of the confining cylinder is penciled in
to show its relative size. Figures 5(b)–5(d) show collapses of Co = 7.5, Co = 8.1, and Co = 20
grains, respectively. For aspect ratio a = 1, the final height H∞ = H0 for these cohesions, while
H∞ < H0 for Co = 0, suggesting cohesion affects the critical aspect ratio separating partially and
fully collapsing regimes, ac, H .

In the first regime, i.e., for a < ac, H , the presence of cohesion can lead to two different kinds
of collapse. In some combination of parameters, particularly large Co and small a, collapse does
not occur at all (e.g., a = 0.5 and 1 for Co = 20), akin to stable columns in sandcastles. When
cohesive grains do collapse in this regime, the collapse is irregular and often not symmetric:
agglomerates of different sizes fall off the column in blocks. These observations are reminiscent
of recent experiments for the unchannelized collapse of rectangular columns of wet grains in the
pendular state performed by Li et al. [39]. For large aspect ratios, where a > ac, H , the final deposits
display some memory of the initial cylinder on the top surface as a crownlike shape on the final
deposit (e.g., Co = 7.5 and 8.1 and a = 2.0). For large cohesion and aspect ratios (e.g., Co = 20
and a = 5.0), the final deposit displays clear cracklike striations, which appear during spreading.
The significant roughness, and sometimes cracks, visible on the morphology for the cohesive cases
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FIG. 5. A top view of the relaxed piles for a selection of aspect ratios a and cohesion numbers Co.
(a) Co = 0, with a trace of the initial cylindrical column of radius R0 = 4.2 cm shown. [(b) and (c)] Mod-
erate cohesions for wet grains (Co = 7.5) and CCGM (Co = 8.1), respectively, leading to similar results.
(d) Co = 20 corresponds to the most cohesive grains used in this study. A common scale bar is shown,
corresponding to 10 cm.

seems to be the consequence of the collapse dynamics, as it is more pronounced for higher aspect
ratios (i.e., for high inertia of the grains during collapse), and may depend on the source of cohesion.
Indeed, a closer inspection of Figs. 5(b) and 5(c) reveals that the spatial distribution of roughness
differs between wet grains and CCGM, and so does the coronalike shape on the final deposits for
a = 2: while it is almost continuous for wet grains (Co = 7.5), in the case of CCGM (Co = 8.1) its
consists of a ring of singular agglomerates. The investigation of these aspects is beyond the scope
of the present study as it would require finer measurements of the surface roughness.

In all cases, cohesion reduces the overall spread of a deposit compared to cohesionless columns
of the same initial dimensions. The final deposits also display some roughness on the free surface as
a consequence of these materials being able to sustain tensile stresses for some grain layers below
the free surface [42,59]. The effects of cohesion on the surface roughness on the final deposit of a
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FIG. 6. Final extent of the deposit for a 3D cylindrical column of grains collapsing axisymmetrically for
a range of initial aspect ratios a and cohesion numbers Co. (a) Final rescaled height H∞/R0 as a function of
a for all investigated values of Co. The critical aspect ratio ac, H separates the two trends as formulated in
Eq. (4). ac, H for cohesionless grains and for the most cohesive grains tested are both marked by dashed vertical
lines. The shaded region corresponds to H∞ > H0, which is not physically possible since the column cannot
stretch. (b) Evolution of the rescaled radial runout, �R∞/R0 = R∞/R0 − 1 as a function of a for the tested Co.
ac, � = 3 is shown by the dashed line separating the two power-law trends for the cohesionless grains. Stable
columns, i.e., columns for which R∞ = R0, do not appear on this plot.

2D collapse were recently studied using numerical simulations by Abramian et al. [59], where more
cohesive grains typically lead to a rougher final deposit.

The final height H∞ and the runout �R∞ = R∞ − R0 (for the axisymmetric case) or �L∞ =
L∞ − L0 (for the rectangular geometry) of the deposits are measured from the profiles once the
grains have stopped spreading. The pile reaches its relaxed state approximately 0.5 s after the
cylinder begins to be lifted and does not undergo any noticeable changes in the next few minutes.
Lube et al. [17], and Lajeunesse et al. [16] have shown these length scales of the final deposit to
depend on the initial aspect ratio a = H0/R0 (or H0/L0) of the column for both these geometries
in the case of cohesionless grains. The influence of a on H∞ and �R∞ (or �L∞), when those two
lengths are rescaled by the initial radius R0 (or width L0 in two dimensions), is shown to be captured
by empirical piecewise power laws of the form [19]

H∞
R0

=
{

a
α

for a � ac, H

for a � ac, H ,

�R∞
R0

=
{
βa
γ a1/2

for a � ac, �

for a � ac, �,
(4)

for the axisymmetric setup, and

H∞
L0

=
{

a
δa1/3

for a � ac, H

for a � ac, H ,

�L∞
L0

=
{
εa
ζa2/3

for a � ac,�

for a � ac,�,
(5)

for the rectangular case. Note that the critical aspect ratios ac, H and ac, � differ between the two
scalings (4) and (5) according to Lajeunesse et al. [19]. The values for the numerical prefactors α,
β, γ , δ, ε, and ζ , as well as those of the critical aspect ratios ac, H and ac, � marking the transitions
between the collapse regimes, are known to depend on the material and frictional properties of
the grains [18,23]. Figures 6 and 7 show the rescaled length scales H∞/R0 and �R∞/R0 (H∞/L0

and �L∞/L0) of the final deposits of all our experiments for the axisymmetric and rectangular
geometries, respectively. Special attention is brought to the trends of Co = 7.5 and 8.1, which
correspond to two granular systems having different sources of cohesion and grain sizes yet leading
to similar results for the entire range of tested a. This is further evidence for the relevance of using
an average cohesion description since this suggests a bulk description such as that the cohesion
number Co can capture the macroscopic effects of cohesion on collapse.
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FIG. 7. Final extent of the deposit for a 2D rectangular column of grains collapsing in a constrained channel
for a range of initial aspect ratios a and cohesion number Co. (a) Final rescaled height H∞/L0 as a function
of a for all Co tested here. The critical aspect ratio ac, H separates the two trends as formulated in Eq. (5).
ac, H for cohesionless grains and the most cohesive grains tested are both marked by dashed vertical lines.
The shaded region corresponds to H∞ > H0, which is not physically possible since the column cannot stretch.
(b) Evolution of the rescaled axial runout, �L∞/L0 = (L∞ − L0)/L0, as a function of a for the tested Co.
ac, � = 3 is shown by the dashed line separating the two power-law trends for the cohesionless grains. Stable
columns, i.e., columns for which L∞ = L0, do not appear on this plot.

In Figs. 6(a) and 6(b), we show measurements of the rescaled height and runout of the final
deposit of the axisymmetric collapse as a function of a for the range of cohesive grains considered.
In the case of the ratio H∞/R0 presented in Fig. 6(a), two regimes are clearly visible and are
separated by a critical aspect ratio ac, H . For a < ac, H , some central portion of the column does
not participate in the collapse, and consequently, H∞ = H0. We determine ac, H as the average
of the largest a for which H∞ = H0 and the smallest a for which H∞ < H0. Another method to
estimate ac, H would be to consider the intersect of a plateau with the line H∞/R0 = a. However,
this approach could lead to some discrepancies if the resulting values do not follow a plateau. For
cohesionless grains (i.e., Co = 0), experiments were done with grains of size d = 1.1 mm (©) and
d = 0.3 mm (�) and ac, H is found to be 0.71, in close agreement with Lajeunesse et al. [16] who
found ac, H = 0.74 with similar sized grains for the axisymmetric collapse. The transition between
the two regimes, ac, H , then increases for more cohesive grains; e.g., ac, H for Co = 20 is found to be
1.50, and is marked in Fig. 6(a) with a dashed line. The variation of ac, H for our range of cohesion
number Co is shown in Fig. 8(a). Since dry columns cannot stretch, H∞ = H0 demarcates a physical
limit on the final height: the corresponding nonphysical region H∞ > H0 is shaded in the figure. For
our largest cohesion (Co = 20), minor stretching is noted as cohesion allows the column to sustain
extensional stresses when the cylinder is removed. For a > ac, H , all the relaxed piles exhibit a
plateau value of H∞/R0, independent of the initial aspect ratio and larger for more cohesive grains.
The value of this plateau is denoted as α in the following and obtained by fitting H∞/R0 for all the
values of a > ac, H for each cohesive material. For Co = 0, α is found to be 0.66 ± 0.03 from the
fit, in reasonable agreement with Lajeunesse et al. [16] who found α = 0.74. A full list of ac, H and
α for all the tested cohesive grains is provided in Table II.

Similarly, �R∞/R0 displays two trends with the aspect ratio a, as shown in Fig. 6(b). The
separation between the two regimes defines a second critical aspect ratio ac, �. Following Lajeunesse
et al. [16], we use ac, � = 3 for our cases as well since the behavior is systematic beyond this
threshold for all our grains and because the effects of cohesion on ac, � are less obvious than for
the relative final height. For a � ac, �, a linear trend is observed such that �R∞/R0 = βa, where
β is a numerical prefactor, as has been suggested by Lube et al. [17] based on scaling arguments.
For a � ac, �, �R∞/R0 = γ a1/2, where γ is another numerical prefactor. Fitting our cohesionless
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FIG. 8. [(a) and (e)] Critical aspect ratio ac, H separating the two trends for the rescaled final height of
the relaxed pile, H∞/R0, for each cohesion in the 3D and 2D geometry, respectively. [(b)–(d)] The effects of
cohesion on the numerical prefactors α, β, and γ as defined in Eq. (4) for the 3D collapses, normalized by
their respective values for Co = 0. [(f)–(h)] The effects of cohesion on the numerical prefactors δ, ε, and ζ

as defined in Eq. (5) for the 2D channelized collapses, also normalized by their respective values for Co = 0.
Simple fits to capture the relative effects of cohesion on the final deposit are shown within each plot.

data to these power laws leads to comparable values of β and γ to those found in previous studies
[17,19,27]. The presence of cohesion reduces the radial spread of the pile in both regimes, analogous
to observations reported in other geometries [36,38–40]. A scattering of the data is observed for
small aspect ratios a < ac, �. Indeed, in these cases, we observe agglomerates of grains falling off
the column, resulting in some associated randomness with such collapses. However, it is observed
that, at first order, cohesion only shifts the curves, with no major modification of the followed trends
in the investigated range of Co, except for the most cohesive case where Co = 20. This suggests that,
overall, cohesion essentially affects the numerical prefactors of the scalings given by Eqs. (4). In
what follows, we thereby assume that this is effectively the case, so that even for cohesive grains we
will apply similar fits as those given by Eq. (4). The prefactor values of β and γ obtained by doing
so are provided in Table II for all our grains. This assumption, and its relevance, are discussed in
more detail in the Appendix.

In Figs. 7(a) and 7(b), the respective measurements of H∞/L0 and �L∞/L0 from the channelized
rectangular collapses are shown. For the rescaled final height in Fig. 7(a), the two pieces are again
clearly separated by a critical aspect ratio, ac, H . ac, H for Co = 0 is found to be 0.84, in close
agreement with previous experiments in this geometry [19]. Similar to the axisymmetric case, the
value of ac, H is larger for more cohesive grains, as shown in Fig. 8(e). For a > ac, H , the final
rescaled height was fitted by a power law of the form H∞/R0 = δ a1/3, where δ is a numerical

TABLE II. The numerical coefficients found for fitting each of the cohesive grains to the empirical power
laws from Lajeunesse et al. [19] as denoted in Eqs. (4). Uncertainties display the variation of fits.

Co d (mm) ac, H α β γ

0 0.3, 1.1 0.71 0.66 ± 0.03 1.34 ± 0.08 2.05 ± 0.18
2.2 1.1 0.88 0.71 ± 0.04 1.12 ± 0.10 1.81 ± 0.12
3.0 0.7 1.11 0.87 ± 0.05 1.05 ± 0.11 1.69 ± 0.11
7.5 1.1 1.44 0.95 ± 0.13 0.82 ± 0.09 1.45 ± 0.14
8.1 0.7 1.35 0.94 ± 0.04 0.91 ± 0.12 1.39 ± 0.06
20 0.5 1.50 1.17 ± 0.06 0.45 ± 0.13 1.03 ± 0.32
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prefactor [19]. The value of δ for Co = 0 is found from fitting to be δ0 = 0.91 ± 0.02, and increases
with Co. Likewise, for this geometry, we suggest that the effects of cohesion are mainly captured
by changes in the prefactors for the scaling laws of the rectangular collapse, a point that is also
discussed in the Appendix.

The rescaled channelized runout distances are shown in Fig. 7(b). Similar to the axisymmetric
case, ac, � is kept fixed at a value of ac, � = 3, following Lajeunesse et al. [19]. Fitting the piecewise
power law from Eqs. (5) for cohesionless grains, we obtain ε0 and ζ0 to be 1.71 ± 0.01 and 2.43 ±
0.07, respectively, in good agreement with literature on this geometry. In summary, cohesion reduces
the spreading of all columns. Table IV summarizes the details of the fits for the range of cohesive
grains tested.

V. DISCUSSION

A. Effects of cohesion on final morphology

Altogether, interparticle cohesion affects the velocity of the spreading grains, the overall spread,
the shape of the final deposit, and the roughness of the free surface. Effects of cohesion on the final
deposit across both collapse geometries are found to depend on the cohesion number, Co, which
relates the macroscopic cohesion to grain-scale properties. In this section, the effects of cohesion on
the final morphology are quantified and related to the value of Co.

The power laws of Eqs. (4) and (5), derived by Lajeunesse et al. [19], are used to describe the
final deposit. The corresponding numerical coefficients associated with each cohesion are listed in
Table II for the axisymmetric geometry and in Table IV for the rectangular case. Figures 8(a) and
8(e) show that, for both 3D and 2D geometries, larger cohesion leads to larger critical aspect ratios
ac, H . In Fig. 8(b), values of α for our cohesive grains are normalized by α0, where α0 = αCo=0,
and shown as a function of Co. A good collapse of the data is observed, which motivates the use
of a linear fit applied to the experimental points to capture the evolution of the plateau α with
Co. Similarly, for the 2D case presented in Fig. 8(f), the evolution of δ normalized by δ0 = δCo=0

as a function of Co is shown along with its corresponding best linear fit. Altogether, despite the
difference in the power laws, the effects of cohesion on the rescaled final height for a > ac, H are
found to be similar across both these geometries:

α = α0(1 + 0.04 Co), δ = δ0(1 + 0.02 Co). (6)

The effects are slightly more pronounced in the case of the axisymmetric collapse but overall they
remain of similar magnitude. This is likely due to the difference in H∞ between the geometries: In
three dimensions, the peak is supported only by grains below, while in two dimensions, the presence
of a confining boundary wall causes differences.

In the case of the runout distance, similar steps are used to explicitly determine the effects of
cohesion on numerical prefactors β and γ for the axisymmetric case, and ε and ζ for the rectangular
case, corresponding to the different collapse regimes. Since cohesion reduces the spread, these
numerical prefactors reduce with increased cohesion. The critical aspect ratio delineating the pieces
of the power laws is taken as ac, � = 3 for both geometries and all considered cohesions. For small
aspect ratios, i.e., in the linear regimes where a < ac, �, the effects of cohesion on the runout are
shown in Figs. 8(c) and 8(g) for the axisymmetric and rectangular geometries, respectively. In both
cases, prefactors β and ε from the fit are normalized by their cohesionless values β0 and ε0 and
shown for the range of investigated Co. A fit is shown in a solid line for both plots showing similar
effects of cohesion as for the final height, with the caveat that cohesion reduces the overall spread,
so that the fits now take the form

β = β0

1 + 0.08 Co
, ε = ε0

1 + 0.07 Co
. (7)

Using scaling arguments, Lube et al. [20] have shown that the rescaled spread is linearly related to
the initial aspect ratio a for a < ac, �, for both 2D and 3D geometries. Our results suggest that the
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effects of cohesion are also observed to be similar across both geometries in this regime, as β/β0 ≈
ε/ε0. Furthermore, even for a > ac, �, the effects of cohesion on the spreading are comparable
across the geometries. Indeed, while the difference in geometry results in different powers for the
dependence on a, the effects of cohesion are found to mainly affect the numerical prefactors in
a similar way. Figures 8(d) and 8(h) show the change in the fitted prefactors for the 3D and 2D
geometry, respectively, for the range of cohesion investigated. Similar to the small aspect ratio
cases, two fits are also reported in Figs. 8(d) and 8(h). These are found to be

γ = γ0

1 + 0.06 Co
, ζ = ζ0

1 + 0.06 Co
, (8)

for the axisymmetric and rectangular cases, respectively. Two conclusions can be drawn from these:
First, this confirms that the effects of cohesion on the final spread are comparable in two or three
dimensions for the range of cohesions tested in this study. This also shows that the influence of
cohesion does not vary much between the two pieces of the piecewise scaling for the rescaled
runout.

At first glance, the contribution of Co may seem small since the numerical coefficients of the
obtained scalings are small, but this is purely an artifact of how Co is defined. For instance, a
column of Co ≈ 15 would result in half the total spread of a cohesionless column of the same
initial dimensions. Co ≈ 30 would reduce the total runout by a factor of 3, etc. Using such fits,
we now have a quantitative estimate of the influence of cohesion for the final height and runout,
for the two geometries considered and the investigated range of cohesion. Our data are replotted in
Figs. 9(a)–9(d) and 9(e)–9(h), by removing the contribution of cohesion using the fits from Fig. 8. It
is observed that the data collapse onto the cohesionless case reasonably well, with cohesionless fits
marked explicitly in solid lines. Altogether, the primary effects of the tested cohesions on the final
spread of collapsed columns across geometries are captured by Eqs. (6)–(8). It should be emphasized
that these relations are independent of the source of cohesion, and can be characterized instead by
bulk measurements of yield stress, τy, bulk solid fraction, φ, average grain size, d , and density, ρ,
as discussed in Sec. III.

B. An alternative interpretation of the cohesion number

The bulk cohesion number Co has been defined in Eq. (3) at a macroscopic scale using inde-
pendent yield stress measurements τy for the considered cohesive granular material. τy is used to
estimate the average cohesive force at the scale of the grain as 〈Fc〉 ∼ τy d2. However, interparticle
cohesion is often also described in terms of a characteristic length scale, �c [42,51,58,68,69]. From
scaling arguments, �c ∼ τ (ρ g)−1, where τ is some characteristic stress scale. In this description
of cohesive granular materials, this length is analogous to the capillary length scale of fluids [68].
Following our earlier definitions, we choose here to include φ in the definition of �c, such that
�c ≡ τy (φ ρ g)−1. This decision is made in order to consider the bulk density ρb = φρ. The bulk
cohesion number from Eq. (3) can then be rewritten as

Co ≡ τy

φρgd
= �c

d
. (9)

Through this approach, the cohesive number can be interpreted as the ratio between the charac-
teristic length scale introduced by cohesion and the typical grain size. This last description was
also recently proposed by Abramian et al. [58] as a macroscopic description accounting for the
influence of interparticle cohesion during the collapse of rectangular columns of cohesive grains.
Further, their framework uses the force between particles for cohesive contact forces rather than
only capillary forces. This nuance is important here since the cohesions considered in this study are
not induced solely through capillary forces. Using the Rumpf-Richefeu model [64], the macroscopic
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FIG. 9. Data collapse for the final deposit for the full range of initial aspect ratios a and cohesions Co.
[(a)–(d)] Rescaled lengths of the final deposit for the 3D configuration, renormalized using the fits shown in
Figs. 8(b)–8(d), as a function of the aspect ratio. [(e)–(h)] Similarly, the rescaled lengths of the final deposit are
presented for the 2D channelized collapse, renormalized using the fits shown in Figs. 8(f)–8(h). In each piece
of the power law, the solid line marks the best fit for cohesionless collapses, onto which the rest of the data are
thereby collapsed.

description of cohesion can be related to the Bond number, as shown by [58]

�c

d
= μφZ

4
Bo−1, (10)

where μ is the coefficient of static friction, Z is the average number of contacts, and the Bond
number Bo ≡ Fw/Fc is the ratio of forces at the scale of an individual particle. In our case, since
φ is included within the definition of Co in Eq. (3), we get Co = (μZ/4)Bo−1. Since we do not
make explicit measurements of Z or the force required to break an individual cohesive bond Fc,
this expression cannot be verified here. However, with Co ∼ Bo−1, our results can be qualitatively
compared to the experiments of collapses using wet grains [36–38] or CCGM [40], where the Bo
is known. In the results from these previous studies for rectangular columns, cohesion leads to
larger final heights of the deposit and a lower axial runout, while these quantities are found to be
systematically related to Bo−1. This enforces the idea that the effects of cohesion described in this
study are indeed systematically related to a macroscopic definition of the cohesion number Co,
which has been shown here to be valid for two different geometries of cohesive granular collapse.

VI. CONCLUSION

In this study, the collapse of cohesive granular columns under the effect of gravity has been
considered for two geometries: unconfined (3D) and channelized (2D). Two different sources of
cohesion have been investigated: due to capillary bridges, or induced by a polymer coating. In
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TABLE III. The numerical coefficients and exponents found for fitting each of the cohesive grains to the
general power laws as denoted in Eqs. (A1). Uncertainties display the variation of fits.

Co d (mm) ᾱ A β̄ B γ̄ C

0 0.3, 1.1 0.68 ± 0.03 −0.05 ± 0.04 1.38 ± 0.08 0.88 ± 0.11 2.15 ± 1.21 0.48 ± 0.25
2.2 1.1 0.76 ± 0.07 −0.05 ± 0.05 1.08 ± 0.12 1.05 ± 0.08 1.69 ± 0.65 0.54 ± 0.20
3.0 0.7 0.93 ± 0.06 −0.06 ± 0.05 1.19 ± 0.09 0.78 ± 0.11 1.43 ± 0.22 0.59 ± 0.07
7.5 1.1 1.08 ± 0.41 −0.13 ± 0.02 0.81 ± 0.14 1.02 ± 0.24 1.38 ± 0.68 0.52 ± 0.24
8.1 0.7 1.04 ± 0.10 −0.08 ± 0.05 1.03 ± 0.10 0.75 ± 0.15 1.24 ± 0.27 0.56 ± 0.09
20 0.5 1.27 ± 0.17 −0.06 ± 0.05 0.31 ± 0.30 1.41 ± 1.40 0.59 ± 0.20 0.81 ± 0.19

general, the presence of larger cohesion results in a slower spread, a smaller runout, an overall
rougher final free surface, and a larger final height of the obtained deposits. For the range of cohesion
considered here, the typical dimensionless lengths associated with the final morphologies scale with
the initial aspect ratio with similar power laws as those established for cohesionless collapses. The
effects of cohesion on the final deposits are then characterized using the yield strength of a particular
cohesive system, altogether comparing an average cohesion force to the weight of a grain. Since the
measurements of the yield strength are done considering bulk failure, this method of characterizing
cohesion can be used to compare the two sources of cohesion, independent of the details regarding
forces at the scale of the individual bonds. This characterization of cohesion is used to explain the
effects of small cohesion on collapse, which at first order impacts only the numerical prefactors to
the established power laws. Finally, these experiments provide validation for the approach followed
by Abramian et al. [58] and the Rumpf-Richefeu model [64], relating bulk effects of cohesion to
particle-scale effects.

The influence of cohesion on the final deposit is explained in the form of first-order modifications
to the cohesionless scalings. For a full picture, a larger range of cohesions would need to be inves-
tigated, which could be achieved by connecting numerical simulations such as those performed by
Langlois et al. [60] to a macroscopic description such as the one provided here. While dimensional
analysis requires the inclusion of the density of the particles, ρ, in the macroscopic description, this
parameter was not varied in the present study and thus requires further experimental attention. The
two sources of cohesion considered here are capable of reforming after being broken; however, how
the present approach would have to be modified if cohesion was brittle remains to be investigated.
Finally, whether such a macroscopic description can be readily applied to systems where yield
strength results from entanglement and geometry of particles also remains to be explored.
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APPENDIX: ADDITIONAL DETAILS ON FITS

Table II summarizes the results of the final deposit for an axisymmetric deposit of a cylindrical
column for the range of tested cohesion. The critical aspect ratio between the two trends given by
Eqs. (4) is denoted ac, H and defined here as the mean a between the two trials corresponding to
the largest a for which H∞ = H0 and the smallest a for which H∞ < H0. Assuming the power laws
for the cohesionless grains from Lajeunesse et al. [19] as denoted in Eqs. (4) to remain valid in the
cohesive case, the coefficients α, β, and γ are fitted for each cohesion tested. Since the influence
of cohesion on the critical aspect ratio for the runout trends, ac,�, is not as apparent as for ac, H ,
ac, � = 3 is used following Lajeunesse et al. [19] for cohesionless grains.
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TABLE IV. The numerical coefficients found for fitting each of the cohesive grains to the empirical power
laws from Lajeunesse et al. [19] as denoted in Eqs. (5). Uncertainties display the variation of fits.

Co d (mm) ac, H δ ε ζ

0 0.3, 1.1 0.84 0.91 ± 0.01 1.71 ± 0.06 2.43 ± 0.08
2.2 1.1 0.93 ± 0.04 1.76 ± 0.09 2.42 ± 0.04
7.5 1.1 1.07 1.22 ± 0.11 0.98 ± 0.16 1.50 ± 0.17
8.1 0.7 1.06 1.03 ± 0.06 1.16 ± 0.03 1.62 ± 0.12
20 0.5 1.72 1.29 ± 0.11 0.68 ± 0.18 1.18 ± 0.15

This assumption that the effects of cohesion can be captured by modifying only the numerical
prefactors is tested here. For instance, the numerical simulations of rectangular submerged cohesive
collapses of Zhu et al. [61] show changes in the power-law exponents due to cohesion. At first
glance, the radial runout for Co = 20 appears to follow a power law different from the other data, as
illustrated in Fig. 6(b). Consequently, alternative fits are considered here. Instead of enforcing the
exponents of the power laws, we also presents fits in the form

H∞
R0

=
{

a
ᾱaA

for a � ac, H

for a � ac, H ,

�R∞
R0

=
{
β̄aB

γ̄ aC
for a � ac, �

for a � ac, �,
(A1)

where ᾱ, β̄, and γ̄ are numerical coefficients and A, B, and C are also allowed to change. Results
for all our grains are shown in Table III. In general, the powers proposed by Lajeunesse et al.
[19] with A, B, and C equal to 0, 1, and 1/2, respectively, work well for our small and moderate
cohesions. The case with Co = 20 deviates from these powers considerably. Since columns of this
cohesion are stable for a � 1.5, only four points in 1.5 < a < 3 are available to determine B,
showing large consequent variation. The best fitting power law for a > ac,� uses C ≈ 4/5. This
suggests that at large cohesion, the power laws may show differences. This is expected as the
material, when adequately cohesive, will likely go through brittle collapses, such as those considered
in the numerical simulations by Langlois et al. [60].

Similarly, for the 2D channelized collapses, Table IV summarizes the results for the range of
tested cohesions, assuming the presence of cohesion only changes the coefficients of the power
laws given by Eqs. (5). Instead of enforcing powers, again general exponents can be attempted to
find the best fit of the form

H∞
L0

=
{

a
δ̄aL

for a � ac, H

for a � ac, H ,

�L∞
L0

=
{
ε̄aM

ζ̄aN
for a � ac,�

for a � ac,�,
(A2)

where δ̄, ε̄, and ζ̄ are numerical coefficients, and L, M, and N are free exponents. Results with
these general power laws are tabulated in Table V. It should be recalled that, for the experiments
with cohesionless grains of Lajeunesse et al. [19], L, M, and N are 1/3, 1, and 2/3, respectively.
As can be seen in the table, these powers are generally within the error bars for all the cohesive

TABLE V. The numerical coefficients and powers found for fitting each of the cohesive grains to the general
power laws as denoted in Eqs. (A2). Uncertainties display the variation of fits.

Co d (mm) δ̄ L ε̄ M ζ̄ N

0 0.3, 1.1 0.84 ± 0.03 0.39 ± 0.02 1.77 ± 0.12 0.97 ± 0.09 2.09 ± 0.17 0.74 ± 0.08
2.2 1.1 0.99 ± 0.09 0.29 ± 0.06 1.77 ± 0.05 0.99 ± 0.31 2.50 ± 0.21 0.65 ± 0.04
7.5 1.1 0.94 ± 0.15 0.50 ± 0.09 0.83 ± 0.26 1.26 ± 0.36 1.16 ± 0.8 0.80 ± 0.35
8.1 0.7 1.17 ± 0.11 0.26 ± 0.06 1.15 ± 0.10 1.07 ± 0.10 1.48 ± 0.65 0.71 ± 0.22
20 0.5 1.37 ± 0.56 0.30 ± 0.22 0.51 ± 0.25 1.37 ± 0.61 0.98 ± 1.30 0.76 ± 0.71
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grains as well. Small variations are found with Co = 7.5 and 20, because these grains correspond
with the wet grains. Particularly in the large-a cases, the capillary bridges between the grains and the
confining walls seem to slightly change the behavior of such deposits. Meanwhile, experiments with
CCGM more closely resemble the power-law trends of the cohesionless grains since the coating
is nonreactive with the PMMA enclosure. Ultimately, across the two geometries, the power laws
describing the morphology of the final deposit for cohesionless grains also describe fairly well the
range of cohesion considered in this study. Therefore, this demonstrates that, at first order, cohesion
mainly affects the numerical prefactors of these scalings, which justifies the assumption adopted in
the main text.
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