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Newtonian fluid dynamics in a misaligned parallel-plate rheometer
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A parallel-plate rotational rheometer measures the viscosity of a fluid by rotating the
top plate relative to the bottom plate in order to induce a shear on the fluid and measuring
the torques and forces that result as a function of the induced rotation rate. Manufacturing
imperfections can often lead to unintentional misalignment of the plates of the rheometer,
where the top and bottom plates are not perfectly parallel, and this misalignment can affect
the fluid dynamics inside the rheometer. This study examines the effect that misalignment
has on the viscosity measurements of Newtonian fluids in the limit of small rheometer gap
heights. A theoretical model for the behavior of a general Newtonian fluid in a misaligned
rheometer with a small gap height is derived using perturbation expansions. The theoretical
results show that at small gap heights, misalignment can produce additional secondary
velocity components and pressures in the fluid, which affect the forces and moments in the
rheometer. In such cases at small Reynolds numbers, the dominant forces and moments
acting on the top plate of the rheometer are the viscous force in the direction parallel to the
tilt axis, the pressure moment in the direction perpendicular to the tilt axis and in the cross-
sectional plane, and the viscous moment in the direction along the height of the rheometer.
These forces and moments on the top plate were found to increase as the misalignment
tilt angle increased, leading to an increase in the error of viscosity measurement by the
rheometer. Three-dimensional numerical simulations validate the theoretical predictions.

DOI: 10.1103/PhysRevFluids.9.074103

I. INTRODUCTION

A rheometer is a scientific device used to measure the rheological properties of viscous fluids,
which are the properties that describe how fluids flow and deform in response to applied forces. The
rheometer applies a certain amount of force, stress, or strain to the fluid of interest and measures the
response of the fluid in order to understand and derive various fluid properties, including viscosity,
elasticity, and viscoelasticity [1]. Over the last several decades, rheometry has been used to charac-
terize the viscosities and dynamic reactions of various fluids found in everyday use, including those
in food, cosmetics, pharmaceuticals, construction materials, adhesives, and household products
[2–10]. Rheometry also has numerous applications in biology, such as in studying the dynamic
behavior of blood under different flow conditions [11], the rheological properties of cells [12], and
the rheological changes in proteins during alteration [13].

There are several different types of rheometers, including rotational rheometers, capillary
rheometers, vane rheometers, cone and plate rheometers, sliding plate rheometers, and more
[14–17]. Each type of rheometer is suited for different fluids and specific applications and has
its own unique mechanism by which it creates stress on a fluid and measures its response. The
parallel-plate rotational rheometer, which is among the most commonly used types of rheometers,
is a device in which a fluid is placed in between two parallel plates, and one of the plates
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rotates relative to the other in order to induce a shear on the fluid of interest. By measuring
the torques and forces applied on the plates by the fluid as a function of the rotation rate of
the moving plate, the viscosity of the fluid can be characterized [1]. The parallel-plate rheome-
ter is widely used in studies due to its flexibility in controlling the gap height in which the
fluid is placed, as well as the feature of being able to confine the fluid in a spatially uniform
manner [18].

Many studies and experiments are conducted under the assumption that the rheometer is man-
ufactured perfectly without any geometrical imperfections. However, mechanical uncertainties can
certainly be introduced through small errors in the manufacturing process. Previous literature has
shown that uncertainties in perfectly measuring the actual height of the gap [19], roughness on
the surfaces of the plates [20], and underfilling or overfilling of the fluid in the rheometer gap
[21,22] can lead to significant errors in the resulting measurements of viscosity by the rheometer.
Nonparallelism of the plates has also been investigated in several studies due to the significant error
it can contribute during experimental measurements, as in the work by Davies and Stokes [23], in
which the effect of misaligned plates was found to typically lead to a gap height variation error
of up to 50 μm across the rheometer. This variation is especially important because in the limit
of small gap heights, the reported viscosity of fluid samples typically decreases with gap height
[24–27]. When working with a rheometer with a small gap height, misalignment of the plates can
introduce significant gap height variations across the rheometer, which can result in an inaccurately
reported value for viscosity as evidenced by the gap-dependent nature of the apparent viscosity
measurements.

A recent paper by Ault et al. [18] further examined the phenomenon of inaccurate viscosity
readings due to misaligned plates of a rheometer in the limit of small gap heights. In their study,
Ault et al. [18] performed viscosity measurements of glycerol using a stress-controlled parallel-
plate rheometer. The hygroscopic nature of the glycerol allows for the absorption of water vapor
from the atmosphere, which was found to affect the transient viscosity measurements. However,
experimental results from Ault et al. [18] showed unexpected behavior in rapidly decreasing
viscosity at very small rheometer gap heights, which did not match the numerical simulations
nor the theoretical behavior derived for this setup based on the assumption of parallel plates. The
rate of decrease was dependent on the gap thickness of the rheometer setup, and this relationship
was observed to be nonmonotonic. Ault et al. [18] concluded that this phenomenon observed at
small rheometer gap heights for glycerol is due to unintentional misalignment of the rheometer
plates. In the regime of extremely small gap heights, slight misalignment can result in additional
secondary flows that affect the typical secondary radial recirculation in the rheometer, which
would affect the rate of water vapor absorption and thus influence the viscosity readings of the
glycerol.

Expanding upon the work done by Ault et al. [18], this study focuses on the fluid dynamics inside
a misaligned parallel-plate rheometer for general Newtonian fluids and the effect that misalignment
has on the resulting viscosity measurements. The effect of plate misalignment has been explored in
previous literature; for example, techniques to estimate the misalignment angle have been developed
using numerical calculations from torque and force measurements [28] and by monitoring ultra-
sound pulse time-of-flight echoes reflected by the misaligned plate [29]. Additionally, Clasen [30]
developed a design that uses hydrodynamic lubrication forces to self-align the plates of a rheometer
in a parallel manner. Also, a previous study by Andablo-Reyes et al. [31] derived a numerical
solution to the effect of misalignment on the forces applied by Newtonian fluids on a parallel-plate
rheometer using a finite-differences numerical method. However, none of the previous studies have
developed a full theoretical explanation of the Newtonian fluid dynamics within a misaligned
rheometer, nor have they derived a theoretical relationship between the degree of misalignment
and the resulting viscosity measurements. In this study, we develop a novel theoretical solution for
Newtonian fluid dynamics within a misaligned parallel-plate rheometer. In Sec. II, we solve for
the fluid field within the system from the governing equations and calculate the force and moment
acting on the top plate of the rheometer, from which we can predict the resulting viscosity of the
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FIG. 1. Geometry and coordinate system of the parallel-plate rheometer. The lower plate is stationary, and
the upper plate, which is misaligned by a small deflection angle φ, rotates at an angular speed �. The radius
of the plates and mean gap thickness between the plates are R and h0, respectively. (This figure is reused from
Ault et al. [18].)

fluid. In Sec. III, we use full three-dimensional numerical simulations to validate our theoretical
predictions and provide additional insight into the system. In Sec. IV, we analyze the theoretical and
numerical results to identify the dominant forces and moments in the rheometer, and characterize
the relationship between plate misalignment and the resulting viscosity measurements of Newtonian
fluids.

II. THEORETICAL DERIVATION

In this section, we model the fluid dynamics for a Newtonian fluid in a parallel-plate rheometer
with slightly misaligned plates. The parallel-plate rheometer has a radius R and a gap thickness
h(r, θ, φ) where (r, θ ) are the cylindrical coordinates. The rheometer’s upper plate is slightly tilted
by a small angle φ, and the upper plate rotates at a rotation speed � while the lower plate remains
stationary. The coordinate system and problem setup are shown in Fig. 1. In this paper, we only
consider the viscosity measurement of single-phase Newtonian fluids. The governing equations for
the fluid in the rheometer are the incompressible Navier-Stokes and continuity equations, which are
given by

∇∗ · u∗ = 0 and ρ
Du∗

Dt∗ = −∇∗ p∗ + μ∇∗2u∗. (1)

The asterisks denote dimensional variable quantities, and u, p, ρ, and μ are the fluid velocity vector,
pressure, density, and viscosity, respectively. The governing equations, which are represented in
cylindrical coordinates, can be nondimensionalized with

r = r∗

R
, z = z∗

h0
, ur = u∗

r

�R
, uθ = u∗

θ

�R
, uz = u∗

z

�h0
, p = p∗

μ�R2/h2
0

, (2)
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where h0 is the nominal gap height for φ = 0. With these nondimensional parameters, the nondi-
mensional Navier-Stokes equations in cylindrical coordinates become

1

r

∂

∂r
(rur ) + 1

r

∂uθ

∂θ
+ ∂uz

∂z
= 0, (3a)

Re

(
ur

∂ur

∂r
+ uθ

r

∂ur

∂θ
− u2

θ

r
+ uz

∂ur

∂z

)

= −∂ p

∂r
+ ε2

r

∂

∂r

(
r
∂ur

∂r

)
− ε2 ur

r2
+ ε2

r2

∂2ur

∂θ2
− 2ε2

r2

∂uθ

∂θ
+ ∂2ur

∂z2
, (3b)

Re

(
ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uruθ

r
+ uz

∂uθ

∂z

)

= −1

r

∂ p

∂r
+ ε2

r

∂

∂r

(
r
∂uθ

∂r

)
− ε2 uθ

r2
+ ε2

r2

∂2uθ

∂θ2
+ 2ε2

r2

∂ur

∂θ
+ ∂2uθ

∂z2
, (3c)

Reε2

(
ur

∂uz

∂r
+ uθ

r

∂uz

∂θ
+ uz

∂uz

∂z

)

= −∂ p

∂z
+ ε4

r

∂

∂r

(
r
∂uz

∂r

)
+ ε4

r2

∂2uz

∂θ2
+ ε2 ∂2uz

∂z2
, (3d)

where the Reynolds number is defined as Re = ρ�h2
0/μ, and the gap aspect ratio is ε = h0/R.

Note that the specific solution to the axisymmetric case with perfectly parallel plates where φ = 0
and small gap heights (i.e., ε � 1) has been derived by Savins and Metzner [32] and is given as
follows:

ur,axi(r, z) = − 1

12
rRez(z − 1)

(
−4

5
+ z + z2

)
+ O(ε4), (4a)

uθ,axi(r, z) = rz − r Re2z

6300
[8 + z3(35 − 63z + 20z3)] + O(ε4), (4b)

uz,axi(z) = 1

30
Rez2(z − 1)2(2 + z) + O(ε4), (4c)

paxi(r) = 3r2

20
Re + 1

30
Reε2z(4 − 9z + 5z3) + O(ε4). (4d)

This study is concerned with the limit of small gap heights, h0/R � 1, where the effect of mis-
alignment is most likely to be significant [18]. Thus, we consider the limit of ε � 1. Additionally,
typical rotation speeds used in rotational rheometers at small gap heights are less than 500 s−1 [21].
Together, these allow us to consider the limit Re � 1, and we neglect inertial effects. With these two
assumptions, the resulting leading-order solution for the axisymmetric case with perfectly parallel
plates reduces to uθ = rz.

To derive a theoretical solution for the misaligned case with a nonzero tilt angle φ, we can use the
above result in the limit of Re � 1 and consider a perturbation expansion in powers of φ/ε about
the axisymmetric solution. That is, we seek solutions according to

ur (r, θ, z) =
(

φ

ε

)
ur,1(r, θ, z) +

(
φ

ε

)2

ur,2(r, θ, z) + . . . , (5a)

uθ (r, θ, z) = rz +
(

φ

ε

)
uθ,1(r, θ, z) +

(
φ

ε

)2

uθ,2(r, θ, z) + . . . , (5b)
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uz(r, θ, z) =
(

φ

ε

)
uz,1(r, θ, z) +

(
φ

ε

)2

uz,2(r, θ, z) + . . . , (5c)

p(r, θ ) =
(

φ

ε

)
p1(r, θ ) +

(
φ

ε

)2

p2(r, θ ) + . . . . (5d)

Note that for small tilt angles, the tilt angle φ can range from 0 to a maximum of ε, so that φ/ε ranges
from 0 to 1. Small values of φ/ε correspond to small plate deflections, and φ/ε = 1 corresponds
to when the plates come in contact. In the limits ε � 1 and Re � 1, the nondimensional governing
equations (3) simplify to

0 = −∂ p

∂r
+ ∂2ur

∂z2
, (6a)

0 = −1

r

∂ p

∂θ
+ ∂2uθ

∂z2
, (6b)

0 = ∂ p

∂z
. (6c)

The boundary conditions for the system are given by u = 0 at z = 0 on the lower plate of the
rheometer, and

ur = r cos θ sin θ sin φ tan φ, (7a)

uθ = r(cos2 θ sec φ + cos φ sin2 θ ), (7b)

uz = −rε−1 sin θ sin φ (7c)

at z = h(r, θ, φ) = 1 + φε−1r cos θ on the upper plate of the rheometer.
For the generalized case of Newtonian, single-phase fluid dynamics in a rheometer with mis-

aligned plates, the perturbation expansion (5) can be substituted into the governing equations (6),
and the boundary condition equations (7) can be applied to yield solutions for the higher-order
velocity and pressure terms given by

ur,1(r, θ, z) = − 3
8 (−1 + 3r2)(−1 + z)z sin θ, (8a)

ur,2(r, θ, z) = 3
16 rz[4 − 5z + r2(−7 + 10z)] sin(2θ ), (8b)

uθ,1(r, θ, z) = − 1
8 z[3 − 3z + r2(5 + 3z)] cos θ, (8c)

uθ,2(r, θ, z) = 1
16 rz(−3 + 11r2 + [12 − 15z + r2(−4 + 15z)] cos(2θ )), (8d)

uz,1(r, θ, z) = r(−2 + z)z2 sin θ, (8e)

uz,2(r, θ, z) = 1
8 r2(19 − 15z)z2 sin(2θ ), (8f)

p1(r, θ ) = − 3
4 r(−1 + r2) sin θ, (8g)

p2(r, θ ) = 15
16 r2(r2 − 1) sin(2θ ). (8h)

With the theoretical solutions for pressure and velocity field, we can solve for the forces and mo-
ments acting on the top plate of the rheometer due to pressure and viscous effects. The dimensionless
vertical force (nondimensionalized by μ�R4/h2

0) due to pressure can be calculated by

Fpressure,z =
∫ 2π

0

∫ 1

0
pr dr dθ. (9)

The vertical pressure force that arises directly from the misalignment of the plates, when calculated
using the pressure solution of Eq. (8), yields a value of 0. This is because of the symmetry of the
misalignment pressure. The increased pressure on the converging side of the gap is balanced by
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reduced pressure on the diverging side of the gap. For completeness, inertial effects, which are
assumed to be small here, do give rise to a vertical pressure force. This value can be found by
considering the previous solution given in Eqs. (4), which was derived using the full governing
equations (3) and still retains the effects of inertia. Using the pressure equation from this solution,
the vertical force due to pressure can be calculated with Eq. (9), and is found to be Fpressure,z = 6π Re

80 .
As expected, in the limit of small Re, this pressure force is close to zero.

The force (nondimensionalized by μ�R3/h0) that arises due to viscous effects can be obtained
by

Fviscous =
∫ 2π

0

∫ 1

0

∂U
∂z

r dr dθ = 0i − π (φ/ε)

4
j + 0k. (10)

Here, we converted U from cylindrical coordinates to Cartesian coordinates by using ux =
ur cos θ − uθ sin θ and uy = ur sin θ + uθ cos θ . Next, the dominant pressure moment (nondimen-
sionalized by μ�R5/h2

0) due to the primary flow and misalignment can be calculated by integrating
dMx = dFy, where dF = pdA, and is found to be

Mpressure,x =
∫ 2π

0

∫ 1

0
pyr dr dθ =

∫ 2π

0

∫ 1

0
pr2 sin θ dr dθ = π (φ/ε)

16
. (11)

The dominant viscous moment (nondimensionalized by μ�R4/h0) due to misalignment, which acts
along the z direction, is found to be

Mviscous,z =
∫ 2π

0

∫ 1

0

∂uθ

∂z

∣∣∣
z=1

r2dr dθ = 1

96
π [48 + 13(φ/ε)2]. (12)

The theoretical solutions have shown that in the limit of Re � 1, the pressure force in the z direction
is very small, and the dominant force is the viscous force in the y direction. Additionally, the theoret-
ical solution also predicts the role of misalignment on the viscous moment in the z direction, which
is due to the rotation of the upper plate and the viscosity of the fluid. Using the theoretical results
of forces and moments, we can estimate the viscosity measurement of a misaligned rheometer, the
results of which will be shown in the following sections.

Using the viscous moment predicted by Eq. (12), we can estimate the error in viscosity measure-
ments in a misaligned parallel-plate rheometer. Thus, the true viscosity can be recovered from the
measured viscosity using the equation,

μmeasured

μtrue
= 48 + 13(φ/ε)2

48
. (13)

This relation shows that as we increase the misalignment in the rheometer, there is an increase in
error in the viscosity measurement by the rheometer. In the following sections, we will compare
theoretical predictions with numerical simulations.

III. NUMERICAL SIMULATIONS

To validate the theoretical derivation above, we performed numerical simulations for the parallel-
plate rheometer with misalignment. Three-dimensional numerical OpenFOAM simulations were
used to solve the Newtonian, single-phase fluid dynamics within the parallel-plate rheometer.
During the simulation, the bottom plate of the rheometer was flat and held stationary, while the
upper plate was tilted at an angle φ and was set to rotate at an angular velocity of �. We performed
simulations for tilt angles of φ/ε = 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, and 0.5, with ε fixed at 0.1
for all of the cases. The three-dimensional (3D) simulations fully resolved the velocity and pressure
field within the gap of the rheometer. The pressure force, viscous force, viscous moment, and
pressure moment acting on the top plate were calculated from the results of the simulations. The
computational setup and convergence study are detailed in the Appendix.
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FIG. 2. Secondary flow structure of the misaligned parallel-plate rheometer for the case of ε = 0.01, φ/ε =
0.1, and Re = 10−4. The cross-section plane shows the recirculation arises from the misalignment.

A typical result for the misaligned case of a parallel-plate rheometer is shown in Fig. 2, which
shows the pressure and velocity components due to misalignment. On the x-z plane, we observe
the primary azimuthal velocity (presented as uy) driven by the rotating upper plate. As we move
away from the center of the rheometer and move up in the z direction, we observe an increase in
velocity magnitude that is due to the azimuthal velocity of the rotating top plate. At x = −1, the gap
between the plates is at a minimum, resulting in a pressure gradient inside the rheometer. Larger
pressure is observed for y > 0 due to the fluid being squeezed by the gap. Finally, the resulting
nonaxisymmetric pressure drives the flow in the negative y direction along the center of the system,
which can be observed in the y-z plane velocity component.

To better visualize the secondary flow behaviors inside the misaligned rheometer, we present
the secondary flow patterns in the cross section on the z = 1/2 plane in Fig. 3. Here, the numerical
simulation was conducted for the case of ε = 0.01, φ/ε = 0.2, and Re = 10−4, and the x component
of velocity, the y component of velocity, and the pressure are plotted on the cross section.The
pressure is plotted along with the secondary flow streamlines on the cross section; the primary
flow uθ = rz is subtracted, and the streamlines are then calculated to give a representation of the
secondary flow patterns. The secondary streamlines all flow away from the high-pressure region on
top and towards the low-pressure region on the bottom. The order of magnitude of the secondary
velocities ranges up to around 0.1, which is the same order of magnitude as φ/ε. The O(Re)
secondary flow typically seen in a parallel-plate rheometer is negligible in this case.
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FIG. 3. Numerical simulation results for the secondary x and y velocity components and pressure, taken
across the cross section through the z = 1/2 plane in a misaligned rheometer with ε = 0.01, φ/ε = 0.2,
and Re = 10−4. The left panel shows the secondary velocity in the x direction, the middle panel shows the
secondary velocity in the y direction, and the right panel shows the pressure on the cross section along with
streamlines computed from the secondary velocity components.
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IV. RESULTS

Previously, we developed theoretical predictions for the velocity and pressure profiles in the
nonaxisymmetric parallel-plate rheometer with misaligned plates. We also performed 3D numerical
simulations of the Newtonian, single-phase Navier-Stokes equations to visualize and understand the
fluid dynamics in the system. In this section, we will compare the theoretical results with numerical
simulations and provide a more detailed analysis of the physics inside the misaligned rheometer.

Figure 4 shows plots of the theoretical predictions of the pressure profiles p and the velocity
components ur , uθ , and uz for φ/ε values of 0.05, 0.1, 0.2, and 0.5. The results are plotted on the
cross section of z = 1/2, with ε = 0.01 and Re = 10−4. The plots for the pressure profiles show
that the pressure varies like the sin θ function. The rotating upper plate drives the flow, and the
pressure results from the flow being forced into a narrowing or diverging gap. Near the center of
the rheometer, where the fluid has relatively low velocities, this emergent pressure gradient drives
a flow in the negative y direction, which can be seen in the results for ur . As φ/ε increases, the
symmetry about the y axis begins to break as the O(φ2/ε2) pressure correction grows, which has
a sin(2θ ) functional dependence. The plots for uθ show that velocity is the slowest near the center.
The uz plots show that the normal velocity inside the rheometer plates is symmetric along the
y axis. As φ/ε increases, the dominant pressure and velocity gradients shift to the left side of the
rheometer, where the distance between the upper and lower plates is the smallest. All of these results
support our previously proposed theory for the velocity and pressure profiles of the misaligned
rheometer.

In addition to the pressure and velocity profiles, the forces and moments acting on the upper
plate of the rheometer for each case were also calculated from the equations derived in Sec. II.
From the theoretical predictions, there is a pressure force acting in the z direction, a viscous force
acting in the y direction, a pressure moment acting in the x direction, and a viscous moment
acting in the z direction as previously stated, which we also calculated numerically. Figure 5 shows
both the theoretical predictions and the numerical simulation results of the nondimensional forces
and moments acting on the upper plate of the rheometer as functions of φ/ε, with ε = 0.01 and
Re = 10−4. The dashed lines are the theoretical predictions, and the solid points are the numerical
results. The numerical results agree well with the theoretical predictions.The pressure force shown
in Fig. 5(a) is small in magnitude due to the low Reynolds number and is independent of φ/ε,
in contrast to the viscous force. Here, inertia is negligible, and the viscous force is the dominant
force in the system, and increases with φ/ε. The viscous moment shown in Fig. 5(b) is smaller
than the pressure moment as seen in the same figure. As φ/ε increases, both moments increase, but
the viscous moment increases at a higher rate when φ/ε is large. From the theoretical predictions
and numerical simulations, we see that as the misalignment φ/ε increases, the effect on the force
and moment also increases. Since viscosity measurements are based on the measured forces and
moments acting on the rheometer by the fluid, misalignment in a parallel plate rheometer, especially
at large tilt angles φ/ε, can significantly impact the measurement of the viscosity of the fluid. Using
the theoretical prediction derived from Sec. II, we can predict the theoretical viscosity measured
when using a misaligned rheometer and compare it with the true viscosity as well as numerical
simulation results. Figure 6 shows the percentage error in viscosity prediction by a parallel-plate
rheometer with misalignment as a function of φ/ε. The solid line corresponds to the theoretical
estimate with misalignment derived using Eq. (12). The symbols correspond to the estimates from
numerical simulations. The percentage error is calculated by comparing the estimated viscosity with
the true viscosity of the fluid. As shown in Fig. 6, as the misalignment increases, the rheometer sees
an increase in error by a greater magnitude. The error approaches and exceeds 10% as φ/ε exceeds
0.5. In practice, to notice a misaligned rheometer, one should perform at least two rounds of viscosity
measurements of the same sample at different gap heights. Under low-Reynolds-number conditions,
if decreasing the gap height causes an increase in moments and forces as well as changes in viscosity
prediction, there is a possibility that the plates of the rheometer are misaligned sufficiently to impact
the measurements.
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FIG. 4. Numerical and theoretical velocity/pressure profiles in a parallel-plate rheometer with misalign-
ment for φ/ε values of 0.05, 0.1, 0.2, and 0.5. All results are plotted at z = 1/2, with ε = 0.01 and Re = 10−4.
A nonaxisymmetric pressure gradient builds in response to the fluid being forced into a narrowing and then
expanding gap. For small φ/ε, the velocities and pressures are symmetric about both the x and y axes, but the
symmetry about the y axis breaks for larger values of φ/ε.
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FIG. 5. Theoretical predictions and numerical simulations of the nondimensional forces and moments on
the upper plate of a parallel-plate rheometer with misalignment as a function of φ/ε with ε = 0.01. The
dashed lines correspond to the theoretical predictions, and the symbols correspond to the results from numerical
simulations.

V. CONCLUSIONS

In this study, we considered the Newtonian fluid dynamics in a misaligned parallel-plate rheome-
ter. This work was motivated by the recent paper [18] that considered the measurement of the
viscosity of glycerol, where it was found that the misalignment of the plates of the rheometer induces
higher absorption of water vapor from the atmosphere due to modified secondary flows and thus can
lead to inaccurate measurements of viscosity. Here, we derived the theoretical predictions for pres-
sure and velocity in the rheometer by modeling the fluid dynamics in the misaligned geometry. The
Navier-Stokes equations were solved using perturbation expansions, and the pressure and velocity

0 0.1 0.2 0.3 0.4 0.5 0.6

0

5

10

15

FIG. 6. Percentage error in prediction of viscosity by a parallel-plate rheometer with misalignment as a
function of φ/ε. The true viscosity is represented by the dashed line at 0%. The solid line corresponds to the
theoretical estimate with misalignment derived using Eq. (12). The symbols correspond to the results from
numerical simulations. As the misalignment increases, the error in the prediction of viscosity by the rheometer
increases.
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profiles of the system were obtained. We also solved for the forces and moments acting on the upper
plate of the parallel-plate rheometer. We predicted the viscosity measurement under misaligned
conditions from the theoretical force and moment calculations. Full 3D numerical simulations were
performed using OpenFOAM to validate our theoretical predictions, and the theoretical predictions
show good agreement with the numerical simulations. From both the theoretical predictions and
the numerical simulations, we observed that the dominant forces and moments in the misaligned
rheometer are the viscous force in the y direction, the pressure moment in the x direction, and
the viscous moment in the z direction. Based on these results, the misalignment of plates in a
parallel-plate rheometer can contribute to the inaccurate reading of viscosity measurements, as when
misalignment increases, the magnitudes of the forces and moments acting on the upper plate of the
rheometer increase, making an increase of error in the prediction of viscosity by the rheometer. This
work provides a simple approach to correct for misalignment errors in a parallel-plate rheometer
when working with small gap heights.

APPENDIX: NUMERICAL DETAILS

In this section, we will discuss the details of the numerical simulations performed, as well
as the numerical convergence tests performed. The numerical simulations were performed using
OpenFOAM with the simpleFoam solver [33], which uses the “semi-implicit method for pressure-
linked equations” (SIMPLE) algorithm [34]. The SIMPLE algorithm is specifically designed for
steady-state problems and does not need to fully resolve the pressure-velocity coupling. The
OpenFOAM simulations were second-order accurate spatially, and the relaxation factors for velocity
and pressure were set to 0.7 and 0.3, respectively. The solver was iterated until the tolerance of 10−10

was met for both pressure and velocity for each case, and the fluid dynamics within the rheometer
converged to the steady state.

The mesh grid in the simulation was constructed by using the BlockMesh utility in the Open-
FOAM library. The bottom plate was held stationary while an angular velocity was imposed on

FIG. 7. Sample simulation domain of a parallel-plate rheometer. (a) Top view of the simulation domain.
(b) Zoomed-in top view showing the local refinement near the edge of the rheometer. (c) Side view of the
rheometer simulation domain.
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FIG. 8. The relative error of forces and moments as functions of grid size with φ/ε = 0.01. The forces
and moments are calculated by both theoretical prediction and numerical simulations. The relative errors are
calculated by comparing numerical simulations with the theoretical predictions. As dx decreases, the relative
error decreases, and all are below 0.1% for the finest grid.

the upper plate of the rheometer. The upper plate was tilted at an angle φ in the misaligned case.
Figure 7 shows the simulation domain and mesh grid. Figure 7(a) shows the top view of the
simulation domain. The outer boundary condition was set to be a slip boundary condition, and
a local refinement near the edge was imposed to accurately resolve the fluid dynamics near the
boundary as shown in Fig. 7(b). In the depth direction, a uniform cell thickness was used, as shown
in Fig. 7(c).

The simulations were performed for φ/ε = 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, and 0.5. The
value of ε was fixed at 0.01, and the radius of the rheometer was fixed at 1. To confirm numerical
convergence, we calculate the relative error of the numerical forces and moments with φ/ε = 0.01
for various grid sizes. Figure 8 shows the convergence study of the numerical simulation using the
relative error of forces and moments by comparing theory and simulation. As shown in Fig. 8, the
relative error decreases as dx decreases. The relative errors are all less than 10−3 with the smallest
dx, providing accurate predictions of the forces and moments to within 0.1%.
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