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The dynamics and energy-harvesting capacity of fixed-free plates covered with piezo-
electric materials in oscillatory cross flows are investigated numerically by using a coupled
fluid-structure-electric model. The focus is on the effect of hydrodynamic interaction
within a formation of such plates. Through systematic simulations, it was discovered that
at certain combinations of parameters (e.g., plate stiffness, distance between neighboring
plates, and Keulegan-Carpenter number), the group-averaged values of plate deformation
and power extraction in an array of plates surpass those of a single stand-alone plate. For
example, in an array of five plates the group-averaged deformation and power extraction
can be increased by 43% and 110% in comparison with a single plate, respectively. Further
investigation shows that this phenomenon is determined by the competition between
two mechanisms: the shielding mechanism and the wake energy recovery mechanism.
Constructive interaction occurs when the latter one outweighs the former one. Parametric
studies have also been conducted to identify the region within the parametric space in
which constructive interaction can be achieved.
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I. INTRODUCTION

In recent years, flow energy harvesters made of flexible materials have attracted much attention
due to their advantages in deployability and reduced environmental footprint. In conventional flow
energy harvesters such as wind turbines or water turbines, the actual energy extraction islocalized
at the rotational axes where generators are installed. This design, however, is not suitable in flexible
devices in which the flow-induced deformation is complicated and occurs all over the body [1]. For
these devices, distributed energy extraction that covers the whole body or a significant portion of
the body appears to be a better option.

One of the simplest designs is a flexible plate that bends under fluid dynamics load. In this design
the energy harvesting includes two consecutive processes: the transfer of mechanical energy from
the surrounding flow field into mechanical energy in the plate, and the conversion of the mechanical
energy in the plate into electricity.

The first process is essentially flow-induced vibrations of the plate. In most of the existing studies
this is achieved by structural instability induced by a steady incoming flow, e.g., the flow-induced
oscillation of a flag [2–4], or an inverted flag [5–7] (which is less stable so that it demonstrates more
severe responses). To trigger such vibrations, certain conditions about the flow speed and structural
properties need to be satisfied.

Compared with flows that are aligned with the elongated structure such as a flag or a plate, cross
flows often cause larger bending deformation [8,9]. In such a system, if the incoming flow is steady,
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the structural vibration is caused by unsteady vortex shedding from the structure, which is indirect
and not effective. Alternatively, the unsteadiness could also come from the incoming (background)
flow itself instead of the physically complicated mechanisms of flow-induced instability or unsteady
vortex shedding. For example, in an oscillatory flow field (in nature oscillatory flows are often
associated with free-surface waves) there exist time-varying flow speed and time-varying pressure
gradient. Flexible plates may harvest both kinetic energy from the flow and potential energy from
the pressure gradient, and transfer them into mechanical energy in the structure [10–13].

A popular method to convert the mechanical energy in these plates into electricity is by using
attached piezoelectric pairs [14–16]. When deformed, these pieces generate electric voltage. For
example, if a single pair of piezoelectric material is attached to each side of the plate, as the
plate bends the piece on one side will be stretched, whereas the one on the other side will be
compressed. This creates a difference in the voltage they generate so that an electric current can
be induced in a circuit connected to these two pieces [6,17]. This design, however, comes across
issues when there are points of inflection on the plate where the direction of curvature switches.
When this occurs, segments of the plate with opposite signs of the curvature will offset each other
and diminish production of electricity. To avoid this shortcoming, it is possible to use multiple
pairs of piezoelectric pieces that are distributed along the plate so that the electricity generation is
achieved through the local curvature rather than its integrated effect along the chord [18–23].

In a recent study we have examined the energy-harvesting performance of a single piezoelectric
plate or a pair of plates from oscillatory cross flows [24]. The dynamics of the system and the
energy extraction capacity at different parameters (e.g., flow strength as well as the electric/elastic
properties of the piezoelectric plates) have been documented. Among all the findings, the most
interesting (and potentially useful) one is the discovery of constructive interactions between two
plates in a pair. When this happens, the deformation and energy-harvesting capacity of a plate in
the pair surpass those of a single stand-alone plate. This is an indication that this plate is capable of
recovering energy from the wake of its neighbor for performance enhancement. There is, however,
little knowledge about the exact condition for this to happen. It is not known either whether or not
it happens in an array of more than two plates.

For in-depth knowledge of the constructive interactions in an array of piezoelectric plates in
oscillatory cross flow, we hereby conduct systematic simulations to predict the dynamics and
energy harvesting capacity of such an array with different plate properties (e.g., bending stiffness),
configuration (e.g., number of plates in the array and distance between neighboring plates), and
ambient flow conditions (e.g., frequency of oscillation and amplitude of flow velocity). Through
these simulations we aim at answering the following critical questions: (1) Does constructive
interaction occur in an array containing more than two plates? (2) What are the underlying physical
mechanisms that contribute to the occurrence of constructive interaction among plates in an array?
(3) What are the requirements on the physical parameters for constructive interaction to occur?

The rest of the paper is organized as follows. In the next section we start by describing the
physical problem to be studied. This is followed by a brief introduction of the mathematical
formulation and the numerical algorithm. The numerical results are then presented. The final section
includes conclusions and discussion.

II. PHYSICAL PROBLEM

As shown in Fig. 1, we examine the dynamics of an array of N plates (marked as plate 1 through
plate N in the figure). When they are not deformed, these plates are perpendicular to the direction of
the background flow. For convenience, we assume that each plate has uniform properties (bending
stiffness and mass per unit length) along its length L. They are assumed to be identical to each
other. The distance D between neighboring plates is also assumed to be constant. The bottom end
of a plate is fixed, while the top end is free. For the purpose of energy harvesting, these plates
are covered with continuously distributed pairs of piezoelectric patches [19]. When such a pair is
bent following the local deformation of the plate, one side is stretched whereas the other side is
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FIG. 1. The computational domain and the boundary conditions.

shortened. This difference in deformation creates an electric voltage between the positive electrodes
attached to these two sides. The electrodes are then connected to a purely resistive circuit, where an
electric current is induced by the voltage.

The problem is defined within a coordinate system (x, y), with x in the background flow direction
(the longitudinal direction) and y in the lateral direction. An oscillatory flow, whose speed varies
sinusoidally with time as U (t ) = U0 sin(ωt ), is applied on the far field. Here U0 is the amplitude
of the flow speed and ω = 2π/T is the frequency (T is the period). This flow condition roughly
corresponds to the flow field generated by a shallow-water wave near the bottom, in which there is
almost no vertical velocity component. If the wavelength is much larger than the length scale of the
system, the variation of the horizontal flow speed in x is negligible.

The study is conducted within a 20L × 20L domain. The boundary conditions for the two
velocity components u (in the x direction) and v (in the y direction) are included in Fig. 1.

III. MATHEMATICAL FORMULATIONS AND NUMERICAL APPROACH

A. Governing equations

We assume that the flow is incompressible so that the two-dimensional Navier-Stokes equation
is employed for mathematical formulation. We have

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u + f (x, t ) (1)

and

∇ · u = 0, (2)

where x ≡ (x, y) is the coordinate system shown in Fig. 1. u ≡ (u, v) is the flow velocity vector. ρ

and μ are the density and dynamic viscosity of the fluid, respectively. p is the pressure. f is the force
density exerted by the immersed structure on the fluid.

074101-3



QIANG ZHU

In the structural part, we first focus on plate 1, whose dynamic responses are governed by

m
∂2X
∂t2

= ∂

∂s
(στ) − ∂2

∂s2

(
kb

∂2X
∂s2

)
+ ∂

∂s

(
A

∂V

∂s
n
)

− F, (3)

where X is the instantaneous location of this plate, along which a Lagrangian coordinate s is defined.
m is the mass per unit length of the plate. kb is the bending stiffness. τ and n are the unit tangential
and normal vectors of the body, respectively. The third term on the right-hand side of this equation
stands for the mechanical stress generated by the voltage in the piezoelectric patches. Here V is
the voltage in the circuit. A is the coupling coefficient determined by the material properties of the
piezoelectric patches. F is the force density applied by the surrounding fluid to the structure. σ is
the tension inside the plate. We assume that the plate is unstretchable (i.e., |∂X/∂s| = 1) so that σ

is determined through the inextensibility constraint [25–27]. At the bottom end of the plate (s = 0),
X = X0 (where X0 is a prescribed location) and ∂X/∂s = (0, 1). At the top end of the plate (s = L),
the bending moment, normal stress, and shear stress disappear.

For the circuit, we have

C
∂V

∂t
= − 1

R
V − A

∂

∂t

(
∂2X
∂s2

· n
)

, (4)

where C is the linear capacitance of the piezoelectric element and R is the resistance in the circuit.
This circuit is connected with an infinitesimally small piece of the piezoelectric pair. The power
extracted by plate 1 is then

P1 = 1

R

∫ L

0
V 2ds. (5)

The same approach is employed to determine the dynamics of plate i (i = 2, . . . , N), whose
power extraction is obtained as Pi.

To normalize the problem, we choose L as the characteristic length, T as the characteristic time,
ρL as the characteristic mass per unit length, and LT −1√ρL/C as the characteristic voltage. For
convenience, hereafter we use the same symbols for dimensional variables (e.g., s, t , m, X, σ , F, V ,
and Pi) to represent their dimensionless counterparts. Subsequently, Eqs. (3) and (4) are normalized
as

m
∂2X
∂t2

= ∂

∂s
(στ) − ∂2

∂s2

(
κ

∂2X
∂s2

)
+ ∂

∂s

(
α
√

κ
∂V
∂s

n
)

− F (6)

and

β
∂V
∂t

= −V − αβ
√

κ
∂

∂t

(
∂2X
∂s2

· n
)

, (7)

where α = A/
√

kbC, β = CR/T , and κ = kb/(ρL5T −2).
The normalized power extraction is

Pi = 1

β

∫ 1

0
V2ds. (8)

Equations (6)–(8) are solved for each plate to find its power extraction. The time-averaged value
of Pi is calculated as Pi = 1

T

∫ t0+T
t0

Pidt , where t0 is a time instant after the steady state has been

established. Furthermore, we define the group-averaged power extraction Pavg in an array of N
plates as Pavg ≡ 1

N

∑N
i=1 Pi.
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B. Numerical method

The fluid-structure interaction problem formulated in Sec. III A is solved with an immersed-
boundary algorithm by relating the force density exerted by the immersed structure on the fluid [i.e.,
f in Eq. (1)] and the force density applied by the surrounding fluid to the structure [F in Eq. (3)]
through a Dirac delta function δ. We have

f (x, t ) =
∫

�

F(s, t )δ[X(s, t ) − x]ds, (9)

where � represents the structure.
The force density F, on the other hand, is determined via the enforcement of the no-flux and no-

slip conditions at the fluid-structure interface. This is achieved by connecting the neighboring fluid
and structure with a spring so that they do not drift away from each other [27,28]. Mathematically,
we have

F(s, t ) = αn

∫ t

0
[U(s, τ ) − V(s, τ )]dτ + βn[U(s, t ) − V(s, t )], (10)

where V is the structural velocity and U is the fluid velocity at the fluid-structure interface. Under the
immersed-boundary framework, U is obtained from the flow velocity u by using the delta function
as

U(s, t ) =
∫



u(x, t )δ[x − X(s, t )]dx, (11)

where  is the fluid domain. αn and βn are numerical parameters with sufficiently large negative
values, which physically correspond to the stiffness and damping property of the spring that
connects the fluid and structure. Through numerical tests, we choose αn = −4 × 105 and βn = −50.
Their exact values have a negligible effect on the results.

IV. RESULTS

The dynamics and performance of the system are determined by the following dimensionless
parameters:

(1) The configuration of the array, including the number of plates in the array N and the distance
D between neighboring plates. Hereby we choose N from 2 to 5. For comparison, the case with
N = 1 (i.e., a single plate) is also examined. The range of D is between 0.1 and 1.0. When D is
larger than 1 the interaction among the plates is relatively weak. If D is too small, a refined mesh
will be needed in the gap for numerical accuracy, which will significantly increase the computational
effort.

(2) Mechanical properties of each plate, including its stiffness κ as well as the piezoelectric
parameters α and β. Based on previous studies [19,21–23], we choose α = 0.3 and β = 0.5. The
mass per unit length of a plate is chosen to be 0.5. The range of κ is between 1 and 3. Below this
range, the response is often irregular [24]. Above this range, the constructive interaction, which is the
focus of this study, is not pronounced. Within this range of stiffness, the deformation is dominated
by the fundamental natural mode so that the maximum lateral deformation occurs at the top end of
the plate.

(3) The Reynolds number Re, defined as ρLU0/μ. We choose Re = 100 in this study.
(4) The Keulegan-Carpenter number KC , defined as U0T/L. In the flow condition considered

here, KC is the normalized amplitude of fluid particles divided by 2π . The range of this parameter
considered here is between 0.1 and 2.

Although the numerical algorithm has been extensively validated in previous studies [23,27,29],
before presenting the numerical results we conduct simulations to explore the sensitivity of the
results with respect to numerical parameters to demonstrate the accuracy of the predictions. Towards
this end, we create three different numerical meshes with different δx, δy, and NB. δx and δy are the
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FIG. 2. Sensitivity of the power extraction Pi (i = 1, 2, 3) with respect to the mesh density (upper row) and
time step δt (lower row). N = 3, KC = 1, κ = 1. In the mesh density tests δt = 2.5 × 10−5. In the time step
tests the refined mesh is used.

sizes of the fluidic mesh in the vicinity of the structure. NB is the number of structural grids on
a plate. The three meshes are a coarse mesh (δx = δy = 0.033, NB = 39), a medium mesh (δx =
δy = 0.025, NB = 53), and a refined mesh (δx = δy = 0.0167, NB = 78).

Furthermore, three different time steps, δt = 5 × 10−5, 2.5 × 10−5, and 1.25 × 10−5, have been
adopted to show the accuracy of the time integration in the algorithm.

In Fig. 2, we plot the time histories of the power extraction Pi (i = 1, 2, 3) in a case with N = 3,
KC = 1, and κ = 1 with different meshes and time steps within the 19th period. All the results in
this section are obtained after the steady state is established. It usually takes 10–20 periods. For
simplicity, in the figures of time histories or snapshots presented in this section we shift the starting
time to t = 0.

Based on Fig. 2, it is clear that the results are not sensitive to the choice of the computational
mesh (see the upper row). The effect of the time step is even less significant—the time histories of Pi

obtained with different time steps shown in the lower row in Fig. 2 are graphically indistinguishable
from each other.

In addition to these tests, we have also checked the effect of the size of the computational domain
by using other domain sizes (e.g., 30L × 30L). The impact was found to be negligibly small.

To characterize the dynamic response and energy-harvesting capacity of the system, we will
document the amplitude of vibration at the top end in the horizontal direction and the time-averaged
power extraction (Pi and Pavg). Hereby the amplitude of the top end of plate i is defined as ai =
(xtmax − xtmin )/2, where xtmax and xtmin are the maximum and minimum x locations of the top end of
this plate, respectively. The average value of ai within an array, aavg, is defined as aavg ≡ 1

N

∑N
i=1 ai,

the group-averaged vibration amplitude at the top ends.
To quantitatively study the effect of hydrodynamic interactions among the plates in an array, we

use two dimensionless parameters, Aa and AP, to show the comparison between the plates in an array
and a single stand-alone plate. Aa, the amplitude amplification factor, is defined as aavg/a0, where
a0 is the amplitude of the end of a single stand-alone plate in horizontal direction under the same

074101-6



CONSTRUCTIVE INTERACTION IN AN ARRAY OF …

0 0.2 0.4 0.6 0.8 1
0.18

0.2

0.22

0.24

0.26

0.28

N=1

N=2

N=3

N=4

N=5

a
avg

D

(c)

-0.5 -0.25 0 0.25 0.5
0.18

0.2

0.22

0.24

0.26

0.28
N=1

N=2

N=3

N=4

N=5

x
b

a
i

(a)

-0.5 -0.25 0 0.25 0.5
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022
N=1

N=2

N=3

N=4

N=5

x
b

P
i

(b)
_

0 0.2 0.4 0.6 0.8 1
0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

N=1

N=2

N=3

N=4

N=5

P
avg

D

(d)
_

FIG. 3. (a) Amplitude of the top end ai and (b) time-averaged power extraction capacity Pi of a plate whose
bottom end locates at x = xb within different array configurations (D = 0.2). (c) and (d) The group-averaged
values of a (aavg) and P (Pavg) within an array as functions of D. κ = 1, KC = 1.

structural and hydrodynamic conditions. Similarly, the power amplification factor AP is defined as
Pavg/P0, where P0 is the time-averaged power extraction of a single plate.

A. Destructive and constructive interactions

By definition, destructive interaction refers to the scenario when Aa < 1 or AP < 1. In this
scenario, the hydrodynamic interaction among the plates in an array reduces the group-averaged
deformation and/or the power extraction. In contrast, when constructive interaction occurs the
group-averaged deformation and the power extraction are increased so that Aa and AP are larger
than 1.

A typical case of destructive interaction in an array is displayed in Fig. 3. In this case the plate
stiffness κ = 1 and the Keulegan-Carpenter number KC = 1. The number of plates in the array
(N) ranges from one to five. According to Fig. 3(a), at D = 0.2 when N � 2 the amplitudes of
deformation of the plates in an array are all below that of a single plate (N = 1). In addition, within
an array the plates near the border deform more than those in the middle; in fact, the one located at
the center has the least deformation in the bunch. Similar trends are observed in the behavior of the
time-averaged power extraction [Fig. 3(b)]. Another notable phenomenon in these figures is that as
N increases, the group-averaged deformation amplitude (aavg) and power extraction (Pavg) decrease.
This is confirmed in Fig. 5(a), where the dependencies of Aa and AP upon N are plotted.

074101-7



QIANG ZHU

0 0.2 0.4 0.6 0.8 1
0.2

0.22

0.24

0.26

0.28

0.3

0.32

N=1

N=2

N=3

N=4

N=5

a
avg

D

(c)

-0.5 -0.25 0 0.25 0.5
0.2

0.25

0.3

0.35

0.4
N=1

N=2

N=3

N=4

N=5

x
b

a
i

(a)

-0.5 -0.25 0 0.25 0.5
0.02

0.03

0.04

0.05

0.06

0.07

0.08
N=1

N=2

N=3

N=4

N=5

x
b

P
i

(b)
_

0 0.2 0.4 0.6 0.8 1
0.02

0.03

0.04

0.05

0.06

N=1

N=2

N=3

N=4

N=5

P
avg

D

(d)
_

FIG. 4. Same as Fig. 3 except that κ = 2 and KC = 0.5.

In Figs. 3(c) and 3(d) we plot the dependencies of aavg and Pavg upon D, the distance between
neighboring plates. Both decrease almost monotonically when D is reduced. The exception occurs
at the case when N = 2. In this case when D drops below 0.2 there is a tendency for aavg to plateau.
However, due to the limitation of the computational mesh it is difficult to further reduce the value
of D, so the exact behavior of the system when D is very small has not been investigated.

Figure 4 demonstrates a typical case of constructive interaction among plates in an array. In
comparison with the previous case, the most important change in physical parameters is that the
plate stiffness is increased from 1 to 2. Although the Keulegan-Carpenter number has also been
changed (from 1 to 0.5), it is not the determining factor. Indeed, even if KC stays at 1, when κ is 2
we still see constructive interactions (see, e.g., Fig. 13).

According to Figs. 4(a) and 4(b), in this case the deformation and power extraction of a plate
in an array surpass those of a single plate. Moreover, the plates near the center in the formation
deforms more than those near the border, with the maximum deformation occurring right at
the center. Similar to the destructive case, the effect of constructive interaction becomes more
pronounced when the number of plates in an array increases [see Fig. 5(b)]. For example, when
N = 2 the values of Aa and AP are 1.15 and 1.34, respectively. When N = 5, on the other hand,
these values are increased to 1.43 and 2.10, indicating that by using an array of five plates the
average energy-harvesting performance of each plate is increased by 110%. The implication is that
the performance of the system can be significantly improved by using large arrays in which the
individual plates interact constructively with their neighbors.
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FIG. 5. Amplification factors Aa and AP at different array size N . (a) κ = 1, KC = 1; (b) κ = 2 and KC =
0.5. D = 0.2.

Figures 4(b) and 4(c) show the effect of the gap size D on aavg and Pavg. When D is decreased,
both aavg and Pavg increase until the neighboring plates are too close to each other (D < 0.2), when
the slopes of these curves start to decrease. Again, with the current method it is not possible to study
the cases in which D is very small.

The plate stiffness κ is a key parameter that plays a critical role in determining the (destructive
versus constructive) nature of the hydrodynamic interaction inside an array. For example, in Fig. 6
we plot the dependencies of Aa and AP upon κ with the other parameters fixed as D = 0.2 and KC =
0.5. Under these conditions constructive interaction is achieved when κ is in the range between 1.55
and 2.75, regardless of how many plates are in the array (although the effect is more pronounced
when N increases). Another notable phenomenon is that when κ is large (e.g., κ = 3), there could
be a symmetry-breaking effect that disturbs the symmetry in the longitudinal direction. This effect
depends not only on κ but also on other parameters such as D and KC . An example is shown in
Fig. 7, where we consider the case when κ = 3 and KC = 0.4. Based on this figure, it is seen that
the responses of the plates are not symmetric in the x direction.

B. Underlying physical mechanisms

As indicated in Fig. 6, the plate stiffness κ plays a critical role in determining the interaction mode
between neighboring plates. To investigate the underlying physics of destructive and constructive
interactions, we choose cases with three typical values of κ (1, 2, and 3) to examine the differences
in the features of the surrounding flow fields in destructive and constructive interaction scenarios.

For clarity, we consider a single stand-alone plate. As the interaction between a plate and its
surrounding flow field is closely associated with the relative motion between it and the flow, in
Fig. 8 we plot time histories of the horizontal velocity at the top end of such a plate (uxt ) together
with that of the background flow (U ) in three cases with κ = 1, 2, and 3 within a period. According
to Fig. 8(a), when the plate is soft (κ = 1), uxt and U are in phase with each other over the whole
period. The phase difference between the two estimated by using the peaks of the two curves is
only about 1◦. Although the difference between uxt and U suggests that this is not a pure feathering
scenario, the relative speed between the top end and the background flow in this case is small
so that separation and vortex generation from the top end are negligibly weak [Fig. 9(a)]. In this
scenario the effect of this plate on its neighbor downstream is mostly blocking—it weakens both
the speed and the pressure gradient from the background flow on the neighboring plate. This effect
is particularly strong for plates in the middle of an array since these plates are blocked during the
whole period by their neighbors on both sides, whereas the plates on the borders are only blocked
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FIG. 6. Dependencies of amplification factors Aa and AP on κ at (a) N = 2, (b) N = 3, (c) N = 4, and
(d) N = 5. D = 0.2, KC = 0.5.

during half of a period since they only have a neighbor on one side. This explains the trend that the
destructive interaction effect is more pronounced for plates in the middle of a formation, discussed
in Sec. IV A.

The next case we consider is the one with κ = 2 and KC = 0.5, in which constructive interaction
has been found (see Sec. IV A). In this case there is a small phase difference (around 17◦) between
the motion of the top end of the plate and the background flow [Fig. 8(b)]. However, in comparison
with the case in which κ = 1, in the current case there is an increased difference between the
amplitudes of uxt and U so that the relative motion between the plate and the flow is also increased,
leading to more pronounced vortex shedding from the top end. As shown in Figs. 9(b) and. 10(a),
at the beginning of the period (t = 0), the background flow speed is zero. The plate tends to sweep
back to the right due to its own bending stiffness. After this moment both the background flow
speed U and the speed of the top end of the plate uxt are in the +x direction. In this case the bending
stiffness is sufficiently large so that the top end of the plate moves faster than the background flow.
It creates a counterclockwise vortex [marked as vortex “V” in the sketch in Fig. 10(a)]. After this
vortex is generated, it grows in strength and sheds to the left side of the plate [see the snapshots at
t = 8/T and t = T/4 in Fig. 10(a)].

To examine the effect of the aforementioned vortex shedding process on the dynamics of an
array of plates, we use a formation of three plates with κ = 2 and KC = 0.5 as an example. The sur-
rounding flow fields in this case are shown in Fig. 11. To clearly show the vorticity field, we choose
D = 0.4. Similar to the single-plate case, each plate in the array generates a counterclockwise vortex
from its top end at the beginning of the period. These vortices are marked as “V1,” “V2,” and “V3”
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FIG. 7. (a) Amplitude of the top end ai and (b) time-averaged power extraction capacity Pi of a plate whose
bottom end locates at xb within different array configurations. κ = 3, KC = 0.5, D = 0.4.

in the sketches shown in Fig. 11, corresponding to the vortex shed from plate 1 (the left plate), the
one from plate 2 (the middle plate), and the one from plate 3 (the right plate).

Vortices induce areas of low pressure so that they could impose suction force on solid surfaces
nearby. In the case shown in Fig. 11, during the first half of the period, vortex V2 creates a rightward
force near the top of plate 1. Similarly, vortex V3 also generates a rightward force on plate 2. These
forces are in the same direction as the motion of these two plates so that they pump mechanical
energy into these plates and enhance their vibrations. Within the time slot shown in the figure, there
is no such additional energy source for plate 3. During the second half of the period, however, the
direction of the flow is reversed so that plate 3 can harvest energy from the vortex shed from the top
end of plate 2. Meanwhile, plate 2 can harvest energy from the wake of plate 1. This is the physical
mechanism behind the phenomenon of constructive interaction. Moreover, since plate 2 is able to
harvest wake energy within the whole period, whereas plate 1 and plate 3 are only able to do so
during half of the period, plate 2 should deform more than the other two. This is consistent with the
results shown in Fig. 4.

Finally, we consider the case when κ = 3 and KC = 0.5 in Figs. 8(c), 9(c), and 10(b). As
indicated in Fig. 8(c), in this case the phase difference between uxt and U is significant (about
48◦); indeed, during part of the period [t ∈ (0.33, 0.5) and t ∈ (0.84, 1.0)] these two are in opposite
directions. Thus there is considerable relative motion between the plate and the background flow,
leading to the following consequences:
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FIG. 8. Horizontal velocity at the top end of a single plate (uxt ) and the background flow velocity (uf )
during a period with (a) κ = 1, (b) κ = 2, and (c) κ = 3. N = 1, KC = 0.5.
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FIG. 9. Snapshots of the flow field around the plates visualized through vorticity contour during half a
period for (a) κ = 1, (b) κ = 2, and (c) κ = 3. N = 1, KC = 0.5.

(1) The strength of vortices shed from the top end is enhanced [Fig. 9(c)]. This is supposed to
enhance the wake energy recovery mechanism. However, in this case the body motion and the load
from the vortex shed from its neighbor is not well synchronized in comparison with the case when
κ = 2. This can be seen in Fig. 10 by comparing the plots in (a) and (b) at t = 3T/8. Subsequently
the work done by the vortex-induced load could be negative during part of the period. It will reduce
the wake energy recovery mechanism.

(2) Another consequence of the increased relative motion between the plate and the background
flow (especially when they are in opposite directions) is the significant increase in the shielding
mechanism due to the disturbance from the plate.

FIG. 10. Schematic illustrations of plate deformation and vortex generation at (a) κ = 2 [the case shown
in Fig. 9(b)] and (b) κ = 3 [the case shown in Fig. 9(c)]. The arrows indicate the direction and (qualitatively)
the speed of horizontal motion at the top end.
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FIG. 11. Upper row: Snapshots of the flow field around a formation of three plates visualized through
vorticity contour during half a period for κ = 2, KC = 0.5, and D = 0.4. Lower row: Schematic illustrations of
the plate deformation and vortex generation. The arrows indicate the direction of horizontal motion at the top
ends.

(3) When the vortices are sufficiently strong, the interactions among them and their interactions
with the flexible structure may trigger symmetry-breaking instabilities, leading to nonsymmetric
behavior as shown in Fig. 7.

Considering these effects, the exact interaction mode (destructive or constructive) is determined
by the dominant one between the wake energy recovery mechanism and the shielding mechanism.
It depends not only on the stiffness κ , but also on other physical parameters such as D and KC (see
Sec. IV C).

To conclude, in terms of the hydrodynamic interaction among plates in an array, there exist two
competing physical mechanisms. One of them is the shielding mechanism, referring to the effect
that due to the presence of an upstream plate, the impact of the incoming flow on the downstream
plate is reduced so that the deformation of this plate is diminished. The other one is the energy
recovery from the wake of a neighboring plate (i.e., the vortices shed from the top end of this plate).

For example, considering the cases shown in Fig. 6, where D = 0.2 and KC = 0.5, in the soft
plate case (κ = 1), the vorticity generation from the top ends of the plates is weak, so the energy
recovery mechanism is insignificant in comparison with the shielding mechanism. The net effect is
thus the destructive interaction. In the medium-softness plate (κ = 2), with vortex shedding from the
top ends of the plates the energy recovery mechanism surpasses the shielding mechanism, leading to
the constructive interaction. When the plates are stiff (e.g., κ = 3), the energy recovery mechanism
is overwhelmed by the shielding mechanism. This explains the tendency shown in Fig. 6 that the
amplification factors decline when κ >∼2.3.

As suggested by Fig. 8, the phase difference between uxt and U is closely related to constructive
interaction; for it to occur the value of this difference cannot be too large. This parameter is affected
not only by κ , but also by the flow conditions such as the Keulegan-Carpenter number KC . For
instance, in the case when κ = 2, if KC is increased from 0.05 to 0.2, this phase difference becomes
37◦, and consequently the interaction mode switches from constructive to destructive (when N =
2 and D = 0.2, the values of Aa and AP are 0.97 and 0.91, respectively). Physically, the phase
difference between uxt and U depends on the following factors:

(1) The phase of the hydrodynamic load on a plate: According to the Morison equation [30],
this load includes two parts: a viscous drag that is in phase with the background flow speed, and
an added-mass load that is in phase with the background flow acceleration. The relative strength
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FIG. 12. Amplification factors Aa (a) and AP (b) at various combinations of D and KC . N = 2, κ = 1.

of each effect depends on parameters such as the Keulegan-Carpenter number and the Reynolds
number.

(2) The frequency ratio: This is the ratio between the background flow frequency and the
frequency of the fundamental natural mode of the plate. The natural frequencies of the plate depend
on its bending stiffness κ and mass per unit length m. With m fixed at 0.5, flow-structure resonance
is achieved when κ is around 2.5 according to numerical tests [24].

The effects of the phase difference between uxt and U on the wake energy recovery mechanism
are summarized in the following: (1) If the phase difference is small, the relative motion between the
top ends of the plates and the incoming flow is small so that the vortices generated there are weak.
In this scenario there is not much energy to be harvested in the wake. (2) If the phase difference is
adequate, the top-end vortices are sufficiently strong. Meanwhile, the suction forces generated by
these vortices on neighboring plates are more or less in phase with their motions so that they pump
energy into the plates and significant wake energy recovery is achieved. (3) If the phase difference
is too large, the top-end vortices are further strengthened. However, there is also an increased phase
lag between the suction forces and motions of the plates so that the energy recovery mechanism
is diminished. In addition, when the relative motion between the plates and the flow is large, the
incoming flow field is severely disturbed by the plates so that the shielding effect is strong. With
these two effects combined, in these cases the shielding effect is often dominant.

In addition, the separation D is another important physical parameter in determining the interac-
tion mode. In our case the Reynolds number and the mass per unit length are both fixed. The effects
of KC and D are considered in detail in Sec. IV C.

C. Parametric studies: Effects of KC and D

For further insight into the occurrence of constructive interaction at different combinations of
physical parameters, we conduct additional simulations to examine the constructive and destructive
effects, characterized by the amplification factors Aa and AP, in the interaction among piezoelectric
plates in an array. Towards this end, we will fix N at 2 (according to the results presented in
Secs. IV A and IV B, N plays little role in determining the nature of the interaction, although it
does affect the exact values of the amplification factors). Three values of κ are chosen, a small one
at κ = 1, an intermediate one at κ = 2, and a large one at κ = 3.

Figure 12 displays the values of Aa and AP at various D and KC when κ = 1. At this value of κ

the energy recovery mechanism is negligible so that destructive interaction (i.e., Aa < 1, AP < 1)
dominates within the whole range of parameters. This interaction mode is attributed to the blocking
of flow and pressure gradient by the upstream plate. It is particularly strong when D is small and KC

is large.
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FIG. 13. Amplification factors Aa (a) and AP (b) at various combinations of D and KC . N = 2, κ = 2.

When κ rises to 2, constructive interaction becomes the dominant interaction mode (see Fig. 13).
In fact, only when KC is large there are relatively small regions in the parametric space correspond-
ing to destructive interaction. Within the range of parameters we consider, the maximum value of
Aa is 1.34 and the maximum value of AP is 1.80. Both are achieved at D = 0.1 and KC = 0.1.

Finally, in Fig. 14 we plot the dependencies of Aa and AP upon D and KC when κ = 3. In
comparison with the case when κ = 2, the size of the area corresponding to constructive interaction
in the parametric space is reduced. Meanwhile, the peak values of Aa and AP are reduced to 1.14
and 1.31, respectively. Both of these values occur when D = 0.4 and KC = 0.25.

In general, these studies show that intermediate plate stiffness is most beneficial in achieving
constructive interactions.

V. CONCLUSIONS

Based on the immersed-boundary framework, a numerical model has been created by combining
a Navier-Stokes fluid solver with a structural model and a resister-capacitor model of a resistive
circuit to simulate the dynamics and energyharvesting capacity of a group of piezoelectric plates in
oscillatory cross flow. These plates are fixed at one end and free at the other.
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FIG. 14. Amplification factors Aa (a) and AP (b) at various combinations of D and KC . N = 2, κ = 3.
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Simulations have been conducted to study the performance of this system in different conditions,
including the configuration of the array (i.e., the number of plates in the array and the distance
between neighboring plates), the bending stiffness of a plate, and the frequency/strength of the back-
ground oscillatory flow. We are particularly interested in determining the underlying mechanisms
of destructive and constructive interactions among the plates in an array as well as the conditions
for constructive interaction to occur.

Two counteractive physical mechanisms have been identified. The first one is the shielding
mechanism, corresponding to the reduction of flow speed and pressure gradient of the ambient flow
by upstream plates. The other one is the energy recovery mechanism. When this happens, a plate is
able to extract energy from the vortices shed from its neighbors so that its deformation and energy-
harvesting capability are enhanced. In cases dominated by the first mechanism, the interactions
among the array are destructive so that the group-averaged deformation and power extraction are
smaller than those of a stand-alone plate. On the other hand, when the second mechanism dominates,
the interaction is constructive, which improves the energy-harvesting performance of the system.
In both scenarios, the effect becomes more pronounced as the number of plates in a formation is
increased.

An important physical parameter that determines the occurrence of destructive and constructive
interactions is the plate stiffness. When a plate is too soft, it features under the impact of the flow and
subsequently little vorticity is generated from its free end. It is thus not possible for its neighboring
plates to recover energy from its wake so that the interaction is destructive. When a plate is too stiff,
it does create strong vortices from its free end for energy recovery. However, its shielding effect is
also strong and it may outweigh the energy recovery effect in many cases. Therefore, to achieve
constructive interaction the best option is intermediate plate stiffness. The basic requirements for
constructive interaction are (1) the plates are not too soft to avoid feathering response and (2) the
phase difference between the vibration of the plates and the background flow is relatively small.
Other parameters, such as the Keulegan-Carpenter number and the separation between neighboring
plates, also play a role.

The current study is based on an idealized scenario in which the flow field resembles the flow
caused by a shallow-water wave whose wave length is much larger than the length scale of the
system. The flow fields related to more general wave conditions are more complicated since there
is a vertical flow component as well as variations of flow velocity in the horizontal direction.
Nevertheless, the physical mechanisms identified in the present study are universal so that they
can be applied for qualitatively understanding the fluid-structure interaction problems involved in
those scenarios.

Another issue that needs to be investigated in future studies is the behavior of the system when N
is large. The current results suggest that the constructive interaction effect increases monotonically
with N when N is in the range between 1 and 5. There is no knowledge about this effect above this
range. The difficulty of such study lies mostly on the computational effort since larger computational
domains, and subsequently more grids in the fluid domain, are necessary.
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