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Surfactant-laden thin liquid films overlaid on solid substrates are encountered in a variety
of industrial and biological settings. As these films reach submicron thickness, they tend to
become unstable owing to the influence of long-range dispersion forces. In the current
study, we investigate how gravitational drainage affects the stability attributes of such
thin liquid films. Using scaling arguments, we demonstrate that gravity and dispersion
forces can exert their influence simultaneously over a wide range of film thicknesses. In
the lubrication limit, we carry out linear stability analysis and nonlinear simulations to
understand the evolution of draining thin films. Linear stability indicates the existence
of two unstable modes and two cutoff wave numbers, as opposed to a single unstable
mode and a unique cutoff wave number observed in stationary films. It is also found that
surfactant-laden flowing films are more stable than stationary films with surfactants as
well as draining films with clean interfaces. The origin of stabilization is identified as the
enhanced surfactant perturbations generated due to drainage. We demonstrate that films
exhibiting intermediate levels of surfactant activity and significant drainage exhibit the
lowest rates of disturbance growth, leading to extending the time of rupture.

DOI: 10.1103/PhysRevFluids.9.074004

I. INTRODUCTION

Rupture of submicron-sized thin liquid films on solid substrates under the influence of van
der Waals dispersion force has been extensively studied in the context of industrial coatings as
well as biological systems including precorneal tear films, mucosal airway lining, and so on
[1–8]. Classically, it has been shown that in the lubrication limit, van der Waals force can trigger
hydrodynamic instabilities in thin liquid films ultimately leading to their rupture [9]. However,
interestingly, interfacial tension and the presence of surface active impurities (surfactants) can retard
the growth rates of such van der Waals instabilities [1,2]. This stabilizing effect of surfactants
is attributed to the Marangoni convection, which arises from the redistribution of surfactants due
to interfacial deformations [1–3]. Moreover, viscoelastic interfacial stresses, arising from surface
rheology in surfactant-laden films, have also been demonstrated to exert a stabilizing influence on
the dynamics of thin films [10–12]. Recently, the rupture of ultra-thin films was further studied by
relaxing the constraints of lubrication theory and instead using the Stokes theory of fluid flow [13].
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However, predictions for rupture time from both the Stokes flow model and the lubrication model
are nearly identical, except in films of subnanometer thickness.

Over the years, stability characteristics of gravity-driven flows in liquid films have been thor-
oughly explored [6,14–17]. Yih [14], in a pioneering study, showed that a liquid film flowing
down an incline can develop instabilities and become unstable when a critical Reynolds number
is exceeded. Subsequently, the linear stability of a gravity-driven flowing film was also investigated
in the presence of insoluble surfactants [18]. In the presence of these insoluble surfactants, two
distinct modes were identified: a classical Yih mode associated with interface deflections and a
second Marangoni mode associated with spatial variations in surfactant concentration. In essence,
surfactants were found to have a stabilizing effect on the Yih mode by raising the critical Reynolds
number for instability. However, at a lower Reynolds number, the Marangoni mode was found to
decay more slowly than the Yih mode indicating a reduction in stability.

Despite the extensive scientific literature on thin film stability analysis, to date, no study has
addressed the influence of gravitational drainage on the stability of surfactant-laden thin films when
long-range dispersion forces are at play. The scarcity of literature in this direction may be due to
the prevailing notion that dispersion forces and gravitational drainage operate at vastly different
length scales and are seldom encountered concomitantly. However, we argue to the contrary. We
demonstrate through scaling arguments that the simultaneous occurrence of both van der Waals
interactions and gravitational drainage is practically feasible in thin films over a broad range of
physical properties and length scales. This observation holds relevance for thin films composed of
various liquid materials, ranging from aqueous biological films such as precorneal tear films [7] to
liquid metal films encountered during fabrication of plasmonic nanostructures [19]. Acknowledging
the broad applicability of this compound problem, all physical quantities and results presented in
this paper are expressed in a dimensionless form to maintain generality. The specific case of an
aqueous film is invoked in Sec. II A solely to establish the basic premise that van der Waals force
and gravitational drainage can indeed be simultaneously relevant in physically realistic parameter
regimes.

The rest of the paper is organized as follows. Section II gives the detailed mathematical formula-
tion of the problem. We present a scaling analysis that establishes the relevant horizontal length scale
for the system. The parameter regimes wherein gravitational drainage and van der Waals dispersion
force becomes simultaneously relevant are also highlighted in this section. Subsequently, the linear
stability of the system is investigated in Sec. III. Numerical setup for nonlinear studies and the
corresponding results are discussed in Sec. IV. Concluding remarks and outlook are presented in
Sec. V.

II. MATHEMATICAL FORMULATION

We consider the stability of a thin film of Newtonian liquid laden with insoluble surfactant
flowing down an impermeable inclined plane under the influence of gravity, as shown in Fig. 1. The
setup is assumed to be isothermal and evaporation losses from the film are neglected. Incompressible
Navier-Stokes governs the dynamics of the bulk fluid flow:

∇ · u = 0, (1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇(p + φ) + ∇ · τ + ρg, (2)

where u = [u, v]T is the velocity vector, p is the pressure, φ = A/6πh3 is the disjoining pressure
arising due to van der Waals attraction [3,9], with A denoting unretarded Hamaker constant,
and τ is the viscous stress tensor. For an angle of inclination θ , the acceleration due to gravity
may be expressed in terms of its components along and normal to the inclined plane as g =
[g sin(θ ), gcos(θ )]T.
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FIG. 1. Schematic of a thin liquid film flowing down an inclined plane, with surfactants overlaid on the film.

The evolution of the liquid-air interface y = h(x, t ) is governed by the kinematic condition [3]

∂h

∂t
+ u

∂h

∂x
= v. (3)

The concentration of insoluble surfactants �(x, t ) at the interface follows the advection-diffusion
equation [20] given by

∂�

∂t
+ ∇s · (u�) = Ds∇s

2�. (4)

Here ∇s = ∇ − n(n · ∇) is the surface gradient operator, with n being the unit normal vector to
the interface, and Ds denotes the surface diffusivity of the surfactants. Presently, we consider the
surfactant concentration in the dilute limit. Hence, surface tension is expected to vary linearly with
surfactant concentration as σ = σ0 − �(S/�0), where σ0 is the surface tension of the clean interface,
and S is the maximum spreading pressure given by S = σ0 − σs. Here σs is the surface tension of
the interface at the saturation surfactant concentration �0. Additionally, the normal and tangential
stress balance conditions at the interface y = h(x, t ) may be prescribed as [20]

−p + n · τ · n = −σ∇ · n, (5)

n · τ · t = ∇sσ · t, (6)

where the n and t are the normal and tangential unit vectors to the interface, respectively. Finally,
the no-slip and impenetrability conditions on the wall at y = 0 can be simply written as

u = 0, v = 0. (7)

A. Scaling analysis

Before proceeding with the nondimensionalization of the governing equations, it is worthwhile
to identify the major forces at play in the system and establish appropriate scales for the relevant
physical variables.

In liquid films with a free surface, especially those that are sufficiently thin, attractive van der
Waals force promotes the growth of perturbations arising at the interface. The physical mechanism
of this instability can be easily explained in terms of a film thickness-dependent disjoining pressure.
When a wavy perturbation is imposed on an initially flat interface, the disjoining pressure is higher
at the troughs of the perturbed film compared to the crests, driving fluid away from the troughs and
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amplifying the perturbation. However, capillary forces at the interface and viscous forces oppose
this growth of instability. Beyond a critical wavelength, dispersion forces prevail, ultimately leading
to the rupture of the thin film [2,9,21–23]. It is possible to identify a wavelength with the maximum
perturbation growth rate at which the rupture of the film is likely to occur [3,23].

Regarding characteristic length scales in the problem, the unperturbed film thickness is an ideal
choice for the scale for the film thickness. For length scale along the thin film, the wavelength of
the most unstable mode is the most appropriate scale, albeit its precise determination necessitates
a detailed stability analysis of the system. Nonetheless, a reasonable estimate can be obtained from
the dispersion relation for a thin liquid film with clean interface. To this end, we consider the linear
stability results from [2], for the special case of a surfactant-free thin film. In dimensional terms, the
dispersion relation reduces to

ω = −1

3

(
k4 σ0H3

μ
− k2 3A

μH

)
, (8)

where H is the characteristic thickness of the unperturbed film, σ0 is the surface tension of the
clean interface, A is the typical Hamaker constant, μ is the dynamic viscosity of the fluid, k is
the wave number of the imposed perturbation, and ω is the resultant perturbation growth rate. To
obtain the peak growth rate, we set ∂ω/∂k = 0 yielding kmax ∼ [A/(σ0H4)]1/2. Accordingly, the
corresponding scale for the wavelength of the most unstable mode may be approximated as λ ∼
1/kmax ∼ H2(σ0/A)1/2.

This estimate may be rationalized through a brief scaling analysis. Previous studies on the subject
[2,3] suggest that at short perturbation wavelengths, surface tension dominates, preventing the thin
film from destabilizing. This condition entails that the dominant balance is between capillary and
viscous forces. For long-wavelength disturbances, van der Waals dispersion forces can overcome
capillary stabilization. In this regime, a dominant balance exists between viscous and dispersion
forces as shown in Eq. (9), wherein U is the characteristic scale for streamwise velocity. This is in
turn related to the streamwise length scale L and characteristic timescale of system τ as U ∼ L/τ :

A
H3L

∼ μ
U

H2
∼ μ

L/τ

H2
. (9)

A scale for perturbation growth rates in the long-wavelength limit may be obtained as ω ∼ 1/τ ∼
A/(μL2H ). As the growth rate varies as L−2, long waves are associated with sluggish perturbation
growths. The most substantial growth can then be anticipated at intermediate wavelengths, where
van der Waals dispersion forces and capillary forces tend to exhibit comparable magnitudes.
This balance may be expressed as A

H3L ∼ σ0H
L3 . By rearranging the terms, an expression for the

characteristic length scale along the thin film given by Eq. (10) can be obtained, which is identical
to the wavelength of the most unstable mode obtained earlier from Eq. (8). However, it is crucial to
emphasize that this expression provides only an order of magnitude estimate. The precise value of
the most unstable wavelength may be influenced by additional factors, such as surfactant transport
and drainage, and necessitates a more rigorous analysis for exact determination. Nevertheless, as
a length scale for significant fluid dynamics in the streamwise direction of the film, the aforemen-
tioned estimate holds appeal:

L = H2

√
σ0

A . (10)

With a dominant length scale established for the rupture process, the relevance of gravitational
drainage at this scale may be assessed. To this end, we consider a nondimensional parameter G0 =
ρg sin(θ )H3L/A = ρg sin(θ )H5σ

1/2
0 /A3/2, which signifies the ratio of gravitational body forces

to van der Waals dispersion force. Parameter regimes where G0 is of O(1) represent the physical
conditions where these two forces are comparable. Let us consider the specific case of a vertically
draining aqueous film with ρ = 1000 kg m−3, g = 9.81 m s−2, and σ0 = 0.072 J m−2. Depending
on the nature of the underlying substrate, the Hamaker constant for aqueous films may vary from
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FIG. 2. Range of physical parameters for which both drainage and van der Waals interaction are simulta-
neously relevant for an aqueous film (ρ = 1000 kg m−3, g = 9.81 m s−2, and σ0 = 0.072 J m−2). The yellow
region bounded by the curves G0 = 0.1 and G0 = 0.1 indicates the theoretical parameter regimes for which
gravitational and dispersion forces are significant. The translucent blue zone denotes the physically realistic
range of Hamaker constants for an aqueous film. The intersection between the blue and yellow zones marks
the physically realistic parameter regime for which both the aforesaid phenomena are significant.

10−21 to 10−17 J. In the case of such a film, Fig. 2 shows the range of film thicknesses where both
van der Waals and gravitational body forces exhibit comparable magnitudes. We can thus conclude
that gravity-driven drainage and van der Waals interaction may be simultaneously important over
thicknesses spanning two orders of magnitude. Notably, this range of film thicknesses encompasses
the mucin layer in precorneal tear, along with airway linings [3], underscoring its relevance.

B. Nondimensionalization of governing equations and thin-film approximation

The system of equations can be nondimensionalized as follows:

x∗ = x

L
, y∗ = y

H
, h∗ = h

H
, u∗ = u

U
, v∗ = Lv

HU
,

t∗ = tU

L
, p∗ = p

P
, A∗ = A

A , �∗ = �

�0
, σ ∗ = σ

σ0
, S∗ = S

σ0
.

Here the characteristic streamwise perturbation velocity U and characteristic pressure P are defined
as

U = A
6πμ0HL

, P = A
6πH3

. (11)

These scaling choices are motivated by the dominant balance between van der Waals dispersion
forces and viscous forces existing in the film. Following the discussion in Sec. II A, the characteristic
streamwise length scale L = H2√σ0/A is assumed to be similar in magnitude to the fastest growing
rupturing mode in the film. These scalings are applied to Eqs. (1)–(7), resulting in the system
of nondimensional equations with boundary conditions given by Eqs. (12) to (19). The asterisk
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symbol (*) has been omitted from all nondimensional quantities for convenience:
ux + vy = 0, (12)

ε2Re(ut + uux + vuy) = −(px + φx ) + ε2uxx + uyy + G0, (13)

ε4Re(vt + uvx + vvy) = −py + ε4vxx + ε2vyy + εG0 cot(θ ). (14)

Boundary conditions at the substrate, y = 0:

u = 0, v = 0. (15)

Boundary conditions at the free surface, y = h(x, t ):
Kinematic condition:

ht + uhx = v, (16)

Surface transport of surfactants:

�t + (us�)x = 1

Pe
(�xx ), (17)

Normal stress balance condition:

p = 2ε2

1 + ε2h2
x

[
ε2uxh2

x + vy − (uy + ε2vx )hx
] − σhxx(

1 + ε2h2
x

)3/2 , (18)

Tangential stress balance condition:[(
1 − ε2h2

x

)
(uy + ε2vx ) − 4ε2hxux

] = −M�x
(
1 + ε2h2

x

)1/2
, (19)

where ε = H/L is the ratio of the characteristic height and length scales, Re(= ρUL/μ0) is the
Reynolds number, φ is the nondimensional van der Waals potential, Pe(= UL/Ds) is the Péclet
number corresponding to the surfactant diffusion, and M(= ε S

μ0U ) denotes the ratio of Marangoni
stresses to viscous stresses in the film. Further, the thickness of the film is considerably smaller
than its streamwise length scale, and hence ε � 1. Using the lubrication approximation, the leading
order equations, obtained by neglecting terms of O(ε), governing the evolution of the thin film can
be written as

ux + vy = 0, (20)

−(p + φ)x + G0 + uyy = 0, (21)

−py = 0, (22)

with the following boundary conditions at y = h(x, t ):

ht + uhx = v, (23)

�t + (�u)x = �xx

Pe
, (24)

p = −σhxx, (25)

uy = −M�x, (26)

and at y = 0:

u = 0, v = 0. (27)
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From the momentum balance equation along the film thickness (22) and the normal stress balance
at the interface (25), we obtain p = p(x) = −σhxx. Exact integration of the transverse momentum
balance equation (21), along with the tangential stress balance (26) and the no slip boundary
condition (27), gives the streamwise velocity as

u =
[

G0 −
(

−σhxx + A

h3

)
x

]
(hy − y2/2) − M�xy. (28)

Subsequently, using the continuity equation (20) and the no-penetration boundary condition (27),
we arrive at

v =
[
−G0 +

(
−σhxx + A

h3

)
x

]
hx

y2

2
+

(
−σhxx + A

h3

)
xx

(hy2/2 − y3/6) + M�xxy2/2. (29)

Substituting the preceding expressions for fluid velocities into Eqs. (23) and (24) for the kinematic
condition and surfactant transport respectively, we get the following system of coupled nonlinear
partial differential equations which governs the dynamics of the thin film:

ht + G0hxh2 −
[(

A

h3
− σhxx

)
x

h3

3

]
x

−
(
M�x

h2

2

)
x

= 0, (30)

�t +
{
�

[
G0h2

2
−

(
A

h3
− σhxx

)
x

h2

2

]}
x

− (M��xh)x = �xx

Pe
. (31)

The stability of the above system of ODEs, with respect to perturbations in thickness and
surfactant concentration, is studied in the subsequent sections.

III. LINEAR STABILITY ANALYSIS

To assess the linear stability characteristics of the system, we introduce normal mode perturbation
of the form h(x, t ) = HB + h̃eikx+ωt and �(x, t ) = �B + �̃eikx+ωt into the evolution equations (30)
and (31), where HB and �B represent the uniform thickness and surfactant concentration of the
unperturbed film. Here it may be noted that the characteristic length scale H used for nondimen-
sionalization of h(x, t ) has been chosen to be comparable to the unperturbed thickness of the film.
Consequently, the base, or the unperturbed, thickness of the film HB will typically be 1. However, the
term HB has been retained in the subsequent mathematical expressions and equations to explicitly
show the dependence on the unperturbed film thickness. This may be useful for comparing the
results between two films having different unperturbed thicknesses (albeit of the same order). In
that case, the present analysis can be directly applied by choosing one of the film thicknesses as
the characteristic scale H for both the films, and hence, HB will become 1 for one film, while HB

will be greater or lesser than 1 for the other. Furthermore, k denotes the nondimensional wave
number of the perturbation, and ω is the perturbation growth rate corresponding to a wave number.
The disturbances are assumed to be much smaller than the base state quantities, and hence, only
the linear terms in perturbations are retained for evaluating the stability of the film. This yields the
following homogeneous system of linear equations in h̃ and �̃:

⎡
⎣ω + ikG0H2

B − [
3Ak2

H4
B

− σk4
]H3

B
3

Mk2H2
B

2

ikG0�BHB − [
3Ak2

H4
B

− σk4
]H2

B�B

2 ω + ikG0H2
B

2 + Mk2�BHB + k2

Pe

⎤
⎦[

h̃
�̃

]
=

[
0
0

]
. (32)
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FIG. 3. Dispersion relation for a surfactant-laden draining film rupturing under van der Waals forces.
(a) Nondimensional perturbation growth rates. (b) Nondimensional wave speeds for two modes normalized
by the surface speed of the unperturbed draning film. Parameter values are G0 = 2, �B = 0.5, HB = 1, σ =
1,M = 1, A = 1, Pe = 1000.

For nontrivial solutions, the determinant of the coefficient matrix must be equal to 0. Using this
condition, the dispersion relation can be obtained as

ω2 + ω

(
3ikG0H2

B

2
−

[
3Ak2

H4
B

− σk4

]
H3

B

3
+ Mk2�BHB + k2

Pe

)

+ ikG0H2
B

(
ikG0H2

B

2
+ Mk2�BHB

2
+ k2

Pe

)

−
[

3Ak2

H4
B

− σk4

]
H3

B

3

(
ikG0H2

B

2
+ Mk2�BHB

4
+ k2

Pe

)
= 0. (33)

As the dispersion relation is quadratic, for a definite wave number k, two values of ω are obtained
which correspond to two different modes. The film is stable (unstable) to perturbation of a given
wave number k if the real part of the growth rate [Re(ω)] is negative (positive). The imaginary
component of ω is associated with the speed at which the disturbances travel on the surface of the
film. The solution of the dispersion relation for a set of parameters representing a film for which both
gravitational drainage and van der Waals interaction are important is shown in Fig. 3. The dispersion
relation depicts two unstable eigenmodes for the film traveling at two different wave speeds, which
in turn vary with the perturbation wave number. Specifically, mode 1 travels at approximately twice
the surface speed, whereas mode 2 travels nearly at the same speed as the surface of the draining
film [Fig. 3(b)]. To physically identify these modes, we consider the special case of a flowing film
laden with a passive insoluble species instead of surfactants (M = 0). In this limit, the stability
problem reduces to the following system of linear equations:⎡

⎣ω + ikG0H2
B − [

3Ak2

H4
B

− σk4
]H3

B
3 0

ikG0�BHB − [
3Ak2

H4
B

− σk4
]H2

B�B

2 ω + ikG0H2
B

2 + k2

Pe

⎤
⎦[

h̃
�̃

]
=

[
0
0

]
. (34)

This stability problem also yields two eigenvalues and their respective eigenfunctions. The
growth rate for the first mode is given by Eq. (35), and the corresponding relation between the
eigenfunctions h̃ and �̃ is given in Eq. (36). This mode can be considered as an interface mode,
characterized by interfacial perturbation accompanied by corresponding disturbances in the species
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concentration. This unstable mode has perturbation growth rates identical to that for a classical
surfactant free stationary film [2] and remains unstable at very low wave numbers. Furthermore,
the perturbations of this mode travel with wave speeds [c = Im(ω)/k = −G0H2

B ] twice that of the
film’s surface speed. Therefore, it may be seen that this mode is similar to the Mode 1 in Fig. 3 for
the surfactant-laden draining film. Based on the former observation on the perturbation growth rate,
we also can conclude that that drainage has little impact on the stability characteristics of the film
without the surfactants:

ω = −ikG0H2
B +

[
3Ak2

H4
B

− σk4

]
H3

B

3
, (35)

�̃

[
− ikG0H2

B

2
+

[
3Ak2

H4
B

− σk4

]
H3

B

3
+ k2

Pe

]
= h̃

[
ikG0�BHB −

[
3Ak2

H4
B

− σk4

]
H2

B�B

2

]
. (36)

The second mode for this special problem without any surfactants, the eignenvalues and eigen-
functions of which are described by Eqs. (37) and (38), respectively, denotes a species mode
triggered by a perturbation in the concentration of the insoluble species alone. This mode moves
with the same speed as the surface speed of the film [c = Im(ω)/k = −G0H2

B/2] and is analogous
to mode 2 in Fig. 3. Note that when the passive species is replaced by a surface active agent,
like surfactants, any perturbation in the species concentration generates a corresponding interfacial
deflection through the Marangoni stresses. Further, it is worth noting that the observations outlined
here are consistent with the studies on instabilities in surfactant-laden flowing films [16,18], wherein
two distinct modes affecting the stability of the film were identified:

ω = − ikG0H2
B

2
− k2

Pe
, (37)

h̃ = 0. (38)

The dispersion relation for the present problem stands out in comparison to the dispersion relation
for a thin film with insoluble surfactants, but without gravitational drainage, in a few key aspects.
Importantly, the draining film presents two unstable eigenmodes, whereas stationary films exhibit a
single unstable mode. A second important distinction from its stationary counterpart is the existence
of cutoff wave numbers at which either of the two modes are neutrally stable [Fig. 3(b)]. In addition,
an exchange of instability occurs at the first or the lower cutoff wave number. This is in contrast to

stationary films having a single cutoff wave number given by kc =
√

3A/H4
Bσ . To obtain analytical

expressions for the cutoff wave numbers in the present case, we consider the limit of negligible
surfactant diffusion (Pe → ∞). Furthermore, we rewrite ω = ωr + iωi in Eq. (33) and impose the
conditions ωr = 0 and ωi ∈ R. Straightforward substitution and decomposition yields two cutoff
wave number: an upper cutoff wave number(kc,high) and a lower cutoff wave number (kc,low) as

kc,low =
√

3A

σH4
B

− 3M�B

σH2
B

, (39)

kc,high =
√

3A

H4
Bσ

. (40)

The latter solution is admissible if and only if the following condition is satisfied:

0 <
3A

σH4
B

− 3M�B

σH2
B

�
(

G0HB

2M�B

)2

. (41)

Going forward, it may also be worthwhile to discuss a few other features of interest pertaining
to these cutoff wave numbers. The upper cutoff wave number is identical to that in a stationary
surfactant-laden film and occurs when 3Ak2

H4
B

− σk4 = 0, denoting a balance between the destabilizing
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FIG. 4. Effect of G0 on stability of the film for the parameters: �B = 0.5, HB = 1, σ = 1,M = 1, A =
1, Pe = 1000. Dispersion relations for different values of G0 are presented. (a) Nondimensional perturbation
growth rates and (b) normalized perturbation wave speeds. Solid lines and dashed lines in (a) and (b) denote
interface mode (mode 1) and surfactant mode (mode 2), respectively. Projection functions ζ1(k) and ζ2(k)
associated with the interface mode and surfactant mode are plotted in (c) and (d), respectively. The dotted
vertical lines represent upper and lower cutoff wave numbers for this parameter set.

van der Waals forces and the stabilizing capillary effects. However, the second cutoff wave number

occurs when −[ 3Ak2

H4
B

− σk4] H3
B

3 + Mk2�BHB = 0, which represents a special balance between van
der Waals, capillary and Marangoni forces. It is important to emphasize that this equilibrium is
observed only in the presence of surfactants and when drainage levels exceed a a critical threshold.

A. Effect of gravitational drainage on stability

The impact of the drainage parameter G0 on the stability of the film is demonstrated in Fig. 4, for
a typical parameter set. A cursory glance on the dispersion relation in Fig. 4(a) shows that increasing
G0 results in lower disturbance growth rates, suggesting that drainage apparently has a stabilizing
effect. However, a more thorough examination reveals many additional features of interest. For
the chosen set of parameters, the lower and upper cut off wave numbers are kc,low = 1.225 and
kc,high = 1.732 respectively. Note that criterion for existence of the lower cutoff wave number, as
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given in Eq. (41), is satisfied only for G0 > 1.225. For G0 values below this limit, mode 2 is always
stable, and instability arises from mode 1 alone. As the limit G0 = 1.225 is approached, a cusp
emerges in the dispersion relation at the lower cutoff wave number. Near this point, the growth
rate of the interface mode is suppressed while the growth rate of the surfactant mode is enhanced.
At even higher values of G0, both the modes become neutrally stable at kc,low. Beyond the lower
cutoff wave number, the surfactant mode emerges as the dominant unstable mode, indicating an
exchange of instabilities. For very rapid drainage (e.g., G0 = 3), both the surfactant and interface
modes experience attenuation.

To understand the genesis of the stabilizing effect seen in the first mode and destabilization
of mode 2, we carry out a detailed examination of the surface velocities generated by the two
modes. For this, we consider an interface with a sinusoidal deflection imposed on it, h(x, t ) =
HB + ĥ cos(kx), along with a perturbed surfactant distribution, �(x, t ) = �B + �̂ cos(kx + φ). Here
we may arbitrarily specify one of the perturbation amplitudes (say, ĥ). The amplitude (�̂) and the
phase shift(φ) of the second perturbation is determined by the eigenfunctions of the mode under
consideration. In the linear limit, the surface velocities generated by the perturbations as viewed
from a frame of reference traveling with the surface speed of the film, can be estimated as

Vs = kG0H2
B

2
ĥ sin(kx) + A

HB
k2ĥ cos(kx) − σH3

B

3
k4ĥ cos(kx)

−
[Mk2H2

B

2
�̂ cos(φ) cos(kx) − Mk2H2

B

2
�̂ sin(φ) sin(kx)

]
, (42)

Us = G0HBĥ cos(kx) − 3A

2H2
B

kĥ sin(kx) + σH2
B

2
k3ĥ sin(kx)

+ [MkHB�̂ sin(φ) cos(kx) + MkHB�̂ cos(φ) sin(kx)], (43)

wherein Vs and Us denote the surface velocities along the transverse and streamwise directions of
the film, respectively. Furthermore, the first terms in both the aforementioned expressions represent
the perturbation velocity generated by drainage. The second and third terms give the perturbation
velocity fields generated by van der Waals and capillary forces, respectively. Finally, the terms
within the square bracket are attributable to Marangoni convection. The Marangoni velocity field is
separated into two components: one that arises from the surfactant perturbation in phase with the
interface deflection: �̂ cos(φ) cos(kx) and another stemming from the surfactant perturbation with a
phase difference of π/2 relative to the interface deflection: �̂ sin(φ) cos(kx). The surface velocities
generated by the various physical effects described above are qualitatively depicted in Fig. 5 for
a phase difference of π/4 between the surfactant and interfacial perturbation. It may be observed
from Figs. 5(a) and 5(b) that perturbation velocity filed arising from van der Waals dispersion drives
fluid from the troughs to the crests in the films and thereby aids in perturbation growth. On the other
hand, the capillary velocity field generates a flow from the crests to the troughs, which causes
a decay of the perturbations. Interestingly, the drainage component in Fig. 5(c) does neither of
the above. Rather, as seen from the velocity fields, it generates a rightward motion of the surface
perturbation. In the case of Marangoni convection, from Fig. 5(d), it is evident that the component of
surfactant perturbation that is in phase with the interface deflection helps in attenuating the interface
deflection. However, as seen from Fig. 5(e), the component of surfactant perturbation that is at
a phase difference of π/2 with the interface disturbance leads only to a rightward motion of the
perturbation, with no variation in magnitude.

It may be noted here that the phase shift φ is nonzero only for draining films, whereas for a
stationary film it is identically zero. From this point and the preceding analysis, it can be observed
that the impact of drainage on stability solely manifests through the phase shift and magnitude of
the surfactant perturbation that accompanies a given interfacial deflection. For both modes obtained
from the linear stability problem, information regarding the aforementioned phase and relative
magnitudes is contained within the associated complex eigenfunctions h̃eikx and �̃eikx. For a given
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FIG. 5. Qualitative representation of perturbation surface velocities generated by various physical
pheonomena for a sinusoidal interfacial perturbation and an associated perturbation in surfactant concentration,
with a phase difference of π/2 between the two. Surface velocity field attributed to (a) van der Waals dispersion
forces, (b) surface tension, (c) drainage, and (d), (e) Marangoni convection due to components of surfactant
perturbation that is in phase and at a phase difference of π/2 with the interfacial deflection, respectively.

interfacial perturbation, h̃eikx, the Marangoni effect is able to stabilize the film better if �̃eikx is
large and in phase with h̃eikx. Conversely, if �̃eikx is small or has a phase difference close π/2 with
respect to the interfacial perturbation, Marangoni convection loses its efficacy in attenuating surface
perturbations and consequently, the film becomes less stable.

Further, we introduce the projection function ζ j (k) given in Eq. (44) as a normalized measure of
the component of surfactant perturbation, viz., in phase with the interface shape for the jth mode.
It may be also reasoned that for a given Marangoni number, the efficacy of surfactant-induced
stabilization in an eigenmode depends on the corresponding projection function ζ j (k). A larger

074004-12



RUPTURE OF A SURFACTANT-LADEN DRAINING THIN FILM

projection function implies greater stabilization and vice versa:

ζ j (k) = Re

(
〈h̃eikx, �̃eikx〉
〈h̃eikx, h̃eikx〉

)
= Re

(
�̃(k)

h̃(k)

)
. (44)

The key aspects of the linear stability results presented in Fig. 4(a) may now be explained based
on the projection of eigenfunctions for the two modes. Initially we shall consider the first mode
and the corresponding projection function ζ1(k) in Fig. 4(c). In the case of a stationary film and
at small drainage, ζ1(k) is monotonically decreasing with k. As the critical value of G0 = 1.225 is
approached, the projection function experiences a sharp increase at kc,low. Subsequently, for higher
values of G0, the projection function flattens out. This indicates an increase in surfactant perturbation
and Marangoni stabilization, which consequently accounts for the observed suppression of the
growth rate at kc,low [Fig. 4(a)]. The dispersion relations shows a rapid attenuation of the interface
mode beyond kc,low, for values of G0 > 1.225. This can be attributed to the enhanced Marangoni
stabilization associated with nearly flat projection function for this mode at higher G0. Next, for the
second mode, up to the critical value of G0, an increase in drainage leads to a reduction in the projec-
tion function ζ2(k), resulting in a decrease in the stability of the film. Beyond G0 = 1.225, a minor
increase in the projection function is observed between the upper and lower cutoff wave numbers,
which explains the stabilizing effect of drainage on the surfactant mode, at higher G0 values.

Although perturbation wave speeds do not play a role in determining the stability of the film,
a few interesting features regarding the same are worth mentioning. In the case of a draining film
laden with passive species, Eqs. (37) and (35) revealed that the surfactant mode perturbations travel
along with the film’s surface, while the interface mode disturbances propagate in the streamwise
direction at twice the speed of the film’s surface. For disturbances of exceedingly large wavelengths,
the surfactant perturbation is stretched out over very long scales, thereby making the surface tension
gradients infinitesimally small. Consequently, in the long-wavelength limit, Marangoni convection
becomes negligible, and the wave speeds for both the interface and surfactant modes become
identical to those for a film laden with passive contaminants. Finally, for rapidly draining films (e.g.,
G0 = 3), the wave speeds for the interface and surfactant modes become nearly independent of of
the wave number and approach their respective long-wavelength limits. This can be attributed to the
reduction in the relative magnitude of surface velocities generated through Marangoni convection,
with respect to the base state speed of the film’s surface.

B. Effect of Marangoni convection on stability of a draining film

To assess the influence of surfactants on the stability of a draining film, we compare the
dispersion relations for various values of the product M�B in Fig. 6. The reason behind selecting
this specific parameter stems from the observation that in the dispersion relation, both M and
�B consistently emerge as products, never separately. As seen from Fig. 6(a), in the absence of
Marangoni convection, we obtain a single unstable mode, which may be identified as the first mode.
Upon increasing M�B to 0.5, we obtain two unstable modes and two cutoff wave numbers as
seen in Sec. III A. At even higher values of M�B, the criteria in Eq. (41) is violated resulting
in the presence of only one unstable mode and a single cutoff wave number. In this scenario, the
instability is entirely attributed to the second mode, which is the only unstable mode. The aforesaid
phenomena may be explained using the reduction in the projection function ζ2(k) for the surfactant
mode with an increase in the surfactant parameter M�B, as demonstrated in Fig. 6(d). This effect is
in sharp contrast with that for a stationary film, where the enhanced Marangoni effect is consistently
accompanied by a reduction in disturbance growth rates.

The current observation also raises the question: with all other parameters held constant, which
combination of drainage and Marangoni effect renders the film most stable? In Fig. 7(a) a contour
plot of the maximum growth rate among all modes of the film as a function of G0 and M�B is
presented. The figure reveals that, for all nonzero values of the surfactant parameter M�B, the

074004-13



VIVEK, DEY, AND DIXIT

FIG. 6. Effect of surfactants on stability of the film for the parameters: HB = 1, G0 = 2, σ = 1, A =
1, Pe = 1000. For different values of the product M�B, we show (a) nondimensional perturbation growth rates;
(b) normalized perturbation wave speeds; (c) projection function for interface mode ζ1(k); and (d) projection
function for surfactant mode ζ2(k). Solid lines and dashed lines in (a) and(b) denote interface mode (mode 1)
and surfactant mode (mode 2), respectively. Note that for M�B = 0, the projection function ζ2(k) is infinitely
large and hence not depicted.

perturbation growth rate consistently decreases with an increase in drainage. However, elevating
the surfactant parameter initially stabilizes the film, though at exceedingly high values of M�B,
it may lead to faster perturbation growth. It may further be seen that rapidly flowing films with
intermediate levels of Marangoni convection, denoted by large G0 and M�B around unity, exhibit
the highest stability. Additionally, Fig. 7(b) illustrates a contour plot representing the most unstable
mode for the film, varying with G0 and M�B. Notably, there is a distinct jump in the most unstable
wave number observed between M�B = 0.5 and M�B = 1. This marks a threshold up to which
the instability is primarily driven by the first mode and beyond which the second mode becomes the
dominant source of instability.

C. Effect of surfactant diffusivity on stability

Note that most of the linear analysis in the preceding sections are carried out in the limit of
negligible surfactant diffusion. Here we briefly discuss the influence of surfactant diffusivity on the
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FIG. 7. Contours of (a) maximum disturbance growth rate and (b) most unstable wave number among all
modes for the parameter set: HB = 1, σ = 1, A = 1, Pe = 1000.

linear stability. The effect of Péclet number on the perturbation growth rates for a draining film
for three different parameter regimes, namely, a low drainage regime, a rapid drainage regime, and
a surfactant dominated regime, are shown in Fig. 8. Before going into the results, it is noted that
there are two mechanisms through which surfactant diffusivity can affect the stability of the film.
Primarily, for a given interfacial deflection and the associated surfactant perturbation, the higher sur-
factant diffusivity, as indicated by a smaller Péclet number, tends to even out the surfactant gradients,
thereby counteracting the stabilizing effect of Marangoni convections [3]. A second scenario may
be considered wherein a perturbation in the uniform surfactant concentration generates an unstable
interfacial perturbation through the Marangoni effect. In this case, a higher surfactant diffusivity can
undermine the Marangoni convection, leading to a reduced interfacial disturbance and consequently
an improvement in stability. In Figs. 8(a) to 8(c) the maximum perturbation growth rate for the
dominant unstable mode increases with decreasing Péclet number, which can be attributed to the
former effect, wherein enhanced diffusion of surfactants suppresses the Marangoni convection. Fur-
thermore, in all three figures, the apparent stabilization of the subdominant modes with an increase
in surfactant diffusivity may be caused by the latter phenomena. Another interesting matter worth
exploring is the effect of Péclet number on the cutoff wave numbers. However, unlike in the case
of a large Péclet number limit, it may not be feasible to obtain simple closed-form expressions for
cutoff wave numbers in the case of films with non-negligible diffusion. Rather, we attempt to derive
approximate solutions for the cutoff wave numbers using perturbation techniques. For this, we use
the perturbative expansion k = k0 + (1/Pe)k1 + O(1/Pe2) and ω = ω0 + (1/Pe)ω1 + O(1/Pe2).
We substitute the expansion into Eq. (33) and imposing the conditions Re(ω0) = Re(ω1) = 0 and
Im(ω0), Im(ω1) ∈ R as done earlier for the vanishing diffusion limit. This analysis yields the
following three approximate solutions for the cutoff wave numbers:

kc1 ≈ kc,low + 6

Pe

⎛
⎜⎝

[
kc,lowG0H2

B/4 − 1/2
√(

k2
c,lowG2

0H4
B/4

) − (
Mk2

c,low�BHB
)2]2

(M�B)2k5
c,lowH5

Bσ

⎞
⎟⎠, (45)

kc2 ≈ kc,low + 6

Pe

⎛
⎜⎝

[
kc,lowG0H2

B/4 + 1/2
√(

k2
c,lowG2

0H4
B/4

) − (
Mk2

c,low�BHB
)2]2

(M�B)2k5
c,lowH5

Bσ

⎞
⎟⎠, (46)

kc3 ≈ kc,high − 1

Pe

(
3G0

2σ (M�B)2k3
c,highHB

)
, (47)
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FIG. 8. Effect of surfactant diffusivity on the stability of the film for three parameter regimes: (a) low
drainage regime with G0 = 1,M = 1; (b) rapid drainage regime with G0 = 2,M = 1; (c) surfactant-
dominated regime with G0 = 2,M = 2.5. Other parameters for all three cases are: HB = 1, σ = 1, A =
1, �B = 0.5. Solid lines and dashed lines denote mode 1 and mode 2, respectively.

wherein kc,low and kc,high are given by Eqs. (39) and (40), respectively. These solutions exist if the
criterion given in Eq. (41) is satisfied. Judging by the sign and relative magnitudes of the first-order
corrections for cutoff wave number given in Eqs. (45) to (47), it can be seen that kc,low < kc1 <

kc2 � kc3 < kc,high. The same is evident from Fig. 8(b), which denotes the parameter regime that
meets the criteria [Eq. (41)] for coexistence of all three cutoff wave numbers. As seen from the
figure, with an increase in surfactant diffusivity, the second and third cutoff wave numbers move
closer to one another. This is also accompanied by a reduction in the perturbation growth rates for
the subdominant mode 2 as noted earlier. As the Péclet number is continuously further increased,
the second mode is completely stabilized and the two cutoff wave numbers Kc2 and Kc3 cease to
exist.

IV. NONLINEAR ANALYSIS

In this section we study the evolution of the film through numerical solutions of the coupled sys-
tem of nonlinear partial differential equations described in Eqs. (30) and (31). To start computations,
the following initial conditions are prescribed for the interface shape and surfactant concentration:

h(x, 0) = hB + Re(h̃eikmx ), (48)

�(x, 0) = �B + Re(�eikmx ). (49)

Here km represents the wave number associated with the fastest-growing mode obtained from
the linear stability analysis for the selected set of simulation parameters. In all cases, the initial
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interface perturbation is specified as h̃ = 0.01. The initial surfactant perturbation �̃ is obtained by
evaluating the eigenfunctions of the dominant mode using Eq. (32) at km and specifying h̃ = 0.01.
The governing equations are solved on a computational domain given by 0 � x � λm, with periodic
boundary conditions, wherein λm = 2π/km. Numerical solutions are obtained using an in-house
MATLAB solver that uses the central difference method to evaluate spatial derivatives, with the
Adam-Moulton scheme for temporal integration. The evolution of the film is tracked till the cusp at
the rupture point becomes excessively sharp, rendering the precise calculation of spatial derivatives
impractical.

The aforesaid method was validated using results from Burelbach et al. [24] in a previous study
[22] by the present authors. Nevertheless in Sec. IV A, a comparison is drawn between the linear
and nonlinear evolution of the film. A close agreement is observed between the two during the initial
stages of perturbation growth, affirming the validity of the current solver.

A. Thin film evolution

The numerical results for the evolution of the interface and surfactant concentration, for two
sets of parameters, is illustrated in Fig. 9. These parameters are selected in such a way that they
both yield the same perturbation growth rate in the linear limit but exhibit distinct dominant
modes. For the set HB = 1, �B = 0.5, G0 = 2, σ = 1, A = 1,M = 1, Pe = 1000 the instability is
driven by the interface mode, with a maximum perturbation growth rate Re(ωm) ≈ 0.203. How-
ever, the second group of parameters HB = 1, �B = 0.5, G0 = 1.35, σ = 1, A = 1,M = 2.5, Pe =
1000 yield a dominant surfactant mode with the same growth rate. These two cases shall hith-
erto be referred to as film 1 and film 2, respectively. It may be noted that the interface and
surfactant profile are depicted here as observed from a frame of reference that moves along
with the interface perturbations. From Figs. 9(a) to 9(d), it may be seen that as in the case
of stationary films [2,3], the initial disturbances on the film grows with time, resulting in
the formation of a sharp cusp at which the final rupture occurs. In contrast to stationary films,
the interface and surfactant profiles for the draining film are not symmetric about the rupture point.
This can be attributed to the cusp’s role as a barrier to fluid flow, leading to the accumulation of fluid
upstream of the cusp and depletion of fluid downstream from it.

In Fig. 9(e) we present a comparison of the nonlinear evolution of the minimum film thickness
for film 1 and film 2. Additionally, Fig. 9(f) illustrates a comparison between the linear growth
rate Re[ω(km)]t and the nonlinear growth rate metric [23] given by Eq. (50) for both cases. Results
for the two films shown in these graphs indicate that the nonlinear results align with the linear
estimates during the initial stages of disturbance growth. However, as the perturbations become
more pronounced, the nonlinear analysis predicts faster growth rates, resulting in a smaller rupture
time compared to the linear forecasts. This observation is consistent with previous studies on the
rupture of stationary thin films [2,3]:

G = ln

(
hmax(t ) − hmin(t )

hmax(0) − hmin(0)

)
. (50)

Another feature of interest is that, although both films exhibit identical linear growth rates, the
one with the unstable interface mode shows accelerated growth during the later stages of rupture,
leading to a quicker rupture. In the context of the linear studies, the comparable growth rate observed
for both films, despite film 2 having a higher Marangoni number than film 1, was attributed to the
lower surfactant perturbation projection function ζ (k) in the former case compared to the latter. A
similar observation can be made based on the interface and surfactant profiles of the two films in the
early stages on nonlinear rupture. At t = 13, the interface deflection and surfactant concentration
are given in Figs. 9(a) and 9(b) for film 1 depict similar profiles, indicating effective Marangoni
stabilization. On the contrary, a phase shift is evident between the interface shape and surfactant
distribution given in Figs. 9(c) and 9(b), respectively. Following the arguments in Sec. III A, this
phase shift impedes the Marangoni stabilization during the initial phases of rupture for film 2.
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FIG. 9. Nonlinear evolution of thin film for two different parameter sets with identical perturbation growth
rates [Re(ω) = 0.203] but for distinct modes. (a), (b) Evolution of interface shape and surfactant concentration
for film 1 (HB = 1, �B = 0.5, G0 = 2, σ = 1, A = 1,M = 1, Pe = 1000), viz., characterized by a dominant
interface mode. (c), (d) Evolution of interface shape and surfactant concentration for film 2 (HB = 1, �B =
0.5, G0 = 1.35, σ = 1, A = 1,M = 2.5, Pe = 1000), featuring an unstable surfactant mode. In (e) and (f) the
temporal variations of the linear and nonlinear estimates for the minimum film thickness and growth metric G
are compared for the two cases.
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FIG. 10. Contours of nondimensional rupture times for different values of G0 and M�B from (a) linear sta-
bility and (b) nonlinear analysis for the parameter set (HB = 1, σ = 1, A = 1, Pe = 1000). For both estimates,
an initial interfacial perturbation of magnitude h̃ = 0.01 is considered.

However, in advanced stages of rupture, the surfactant redistribution is primarily governed by the
interface motion due to van der Waals forces, and the effect of drainage becomes less pronounced.
For instance, at t = 14.0 for film 1 and t = 15.1 for film 2, it may be seen that the interface and
surfactant profiles become similar to one another. Consequently, surfactant gradients can effectively
contribute to the stability of both films. Due to the higher Marangoni number in film 2 compared
to film 1, the stabilization effect is more pronounced in the former case. This leads to slower
perturbation growth and consequently a higher estimated rupture time for film 2.

The contour plots in Fig. 10 depict variations of linear and nonlinear rupture time estimates
with drainage and Marangoni convection. The linear rupture time estimates [3] are obtained using
Eq. (51), where ωmax is the growth rate of the most unstable mode. As observed from the plots, the
nonlinear rupture times exhibit a similar pattern as the linear estimate, albeit with lower values
as noted earlier in Sec. IV A. In the absence of surfactants or when surfactants with a lower
Marangoni number are used, drainage has minimal impact on the film’s stability. In this regime, the
instability is attributable to the first mode, as seen in Fig. 4. The figures clearly illustrate that films
containing surfactants with moderate surface activity levels (M�B ∼ 1) exhibit greater stability than
surfactant-free films. Furthermore, with increase in drainage, such films exhibit markedly improved
stability owing to enhanced surfactant perturbations.

For stationary films and at low drainage levels, increasing surfactant activity (M�B > 1) con-
tinues to enhance film stability, with instability primarily driven by first mode. In such films, at
higher drainage levels, the second mode becomes the dominant source of instability, as previously
discussed in Sec. III B. Despite the tendency of increased drainage to stabilize films in this scenario,
the extent of stabilization remains lower compared to films with M�B ∼ 1. Consequently, the most
stable films, as indicated by their longest rupture times, are observed when high drainage levels are
combined with intermediate surface activity levels.

trup,lin = 1

ωmax
ln

(
HB

h̃

)
. (51)

V. CONCLUSIONS

In the present paper, we have studied the concomitant role of gravity and van der Waals forces in
the stability of a draining liquid film laden with insoluble surfactants. Through scaling arguments,
we have demonstrated that dispersion forces and gravitational drainage can become simultaneously
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relevant for a wide range of film thickness and Hamaker constants. Using lubrication theory,
we derive a set of coupled nonlinear partial differential equations governing the evolution of the
interface and surfactant concentration. A linear stability analysis of the film revealed the presence
of two unstable modes, as opposed to a single mode of instability in the case of stationary films.
The two modes were identified as an interface mode associated with deflection of the free surface of
the film and a surfactant mode triggered by perturbations in the surfactant concentration profiles.
In the long-wavelength limits, the surfactant mode was observed to travel at the same speed as the
surface of the unperturbed film. The interface mode, however, moves at twice the surface speed of
the film. We have also shown the existence of two cutoff wave numbers at which the film becomes
neutrally stable. In the limit of vanishing surfactant diffusion, analytical expressions for the cutoff
wave numbers were derived. Furthermore, it was illustrated that the upper cutoff wave number
reflects an equilibrium between the stabilizing interfacial tension and the destabilizing dispersion
forces, as indicated by prior investigations on stationary films. Conversely, the lower cutoff wave
number represents a unique equilibrium involving van der Waals forces, capillary effects, and
Marangoni effects, occurring above a critical threshold of the drainage parameter G0.

Despite the existence of two unstable modes, a linear stability analysis suggests that draining
thin films containing insoluble surfactants demonstrate greater stability compared to both station-
ary films with surfactants and draining films without surfactants. The increased stability can be
attributed to the enhanced surfactant perturbation in the interface mode in the presence of drainage.
The lowest perturbation growth rates were observed at large drainage levels and intermediate degree
of Marangoni convection (M�B ∼ 1). At high surfactant concentration and Marangoni numbers,
the stabilizing effect is diminished, with the surfactant mode emerging as the dominant mode of
instability.

Nonlinear evolution of the films was studied using numerical techniques, and the results show
good agreement with the predictions from linear theory, during the initial stages of perturbation
growth. However, nonlinear analysis predicts much shorter rupture times as compared to linear
predictions. A comparison of the linear and nonlinear breakup of thin films for different degrees
of drainage and Maranagoni convection revealed qualitatively similar rupture times. Nevertheless,
the analysis shows that drainage could exert a comparatively stronger stabilizing influence in the
nonlinear regime, particularly at lower levels of surfactant activity. Additionally, it was illustrated
that nonlinear rupture time in films driven by the interface mode could be slightly shorter than
those in films governed by dominant surfactant modes, even though linear studies predict similar
perturbation rates.

The results from the present study can potentially have implications for a wide variety of thin
films, ranging from precorneal tear films to industrial coatings. Further, it opens up the possibility of
maximizing the stability of thin films in industrial settings, through appropriate control of drainage
and surfactant dosage. Natural extensions of the current work include investigations into how
stability is affected by factors such as wall slip, surface rheology, and the viscoelastic characteristics
of the bulk fluid.
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