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Examining the influence of shock waves on cylinders and droplets at near-critical condi-
tions, especially when accounting for real fluid effects, represents a relatively unexplored
frontier. This research gap becomes even more relevant when extending the investigation
to three-dimensional scenarios. The underlying evolution mechanisms at these conditions
remain elusive, with limited existing literature. In this study, we present a thorough
exploration employing two-dimensional and three-dimensional numerical simulations of
a droplet with an embedded gas cavity subjected to a normal shock wave at near-critical
conditions. Our approach involves modeling the cylinder/droplet and the surrounding gas
flow using the compressible multicomponent equations, incorporating real fluid thermody-
namic relationships, and implementing a finite-volume-based hybrid numerical framework
capable of capturing shocks and interfaces. To establish the reliability of our approach,
we validate it against reference data, demonstrating excellent agreement. We also conduct
mesh independence studies, both qualitatively and quantitatively. Our analysis is compre-
hensive, considering the intricacies of shock impingement, the morphological deformation
of the cylinder/droplet and cavity, and the development of vortices. We discuss and
analyze various phenomena, including the evolution of wave patterns, jet formation, sheet
formation, hole appearance, the emergence of petal-shaped structures or lobes, ligament
formation, shear-induced entrainment, and internal cavity (bubble) breakup. We compare
the results obtained from the cylinder/droplet with a cavity to those from a planar shock
wave impacting a pure cylinder/droplet. We provide a holistic view of the two-dimensional
cylinder and three-dimensional droplet’s evolution before and after the impact of a shock
wave, accompanied by quantitative data regarding the positions of characteristic points
along the column over time. Our analysis further scrutinizes the geometrical characteristics
of the cylinder and the trends in the distribution of baroclinic vorticity at various stages.
Our findings reveal that the presence of a gas cavity plays a pivotal role in shaping the shock
wave, which, in turn, influences the generation and distribution of baroclinic vorticity.
This leads to a transformation in the unstable evolution process of both the cylinder
and the droplet. Importantly, shock waves impacting the evolving interfaces of the cylin-
der/droplet and the internal gas cavity generate baroclinic vorticity, which subsequently
affects the transport and distribution of vorticity, thereby influencing the evolution of the
cylinder/droplet interface. In the case of three-dimensional droplets, baroclinic vorticity
induces complex, intricate three-dimensional structure transformations.
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I. INTRODUCTION

The Richtmyer-Meshkov instability (RMI) manifests when an interface separating two fluids of
different densities is suddenly subjected to impacting shock waves. This instability undergoes a
linear growth phase followed by nonlinear development, culminating in the formation of numerous
small-scale vortices near the interface and ultimately leading to a turbulent mixture [1–4]. This
intriguing phenomenon has been studied both theoretically by Richtmyer [5] and experimentally by
Meshkov [6], with their contributions laying the foundation for our understanding of shock-induced
instabilities.

The implications of RMI extend to various fields, including inertial confinement fusion, space
rocket engines, and astrophysics. For space rocket engines, the interaction between shock waves
and the fuel-oxidizer interface within the combustion chamber plays a pivotal role in enhancing fuel
and oxidizer mixing, thereby reducing combustion distances and engine volumes. This, in turn, sig-
nificantly improves combustion efficiency and propulsion performance. Shock-droplet interactions
are particularly relevant in high-speed propulsion systems [7,8], such as liquid-fueled ramjets and
scramjets, especially during processes like startup, mixing, and combustion of high-speed liquid
diesel injection. When a high-speed diesel jet enters a combustion chamber where the pressure is
near the critical pressure of the fuel droplet, it can induce shock waves that interact with the fuel
spray. Hence, exploring RMI and shock-droplet interactions offers valuable insights for optimizing
fuel mixing in propulsion systems.

In cases near the critical point, it is essential to consider “transcritical” characteristics, where
the combustion chamber pressure approaches the critical pressure of the fuel fluids. Under such
conditions, higher temperatures can induce a transition from a liquidlike state to a gaslike behavior,
leading to a two-phase mixture [9,10]. For instance, the critical properties of n-dodecane are defined
by a critical pressure (pc) of 1.82 MPa and a critical temperature (Tc) of 658.1 K. If n-dodecane fuel
is injected into a combustion chamber at supercritical pressure (p/pc > 1) and at a temperature
below the critical temperature (T/Tc < 1), it mixes with hot ambient air or nitrogen, and the
temperature of the fuel increases. This can cause the fuel to cross the Nishikawa-Widom line,
transforming from a liquidlike fluid to a gaslike supercritical fluid. This unique scenario [11–13],
known as “pseudo-boiling,” occurs at higher supercritical temperatures and pressures, where fuel
fluids exhibit ideal gas behavior when their compressibility factor equals 1.

While many studies have explored near-critical droplets in low-speed convective environments,
where droplet evaporation is significantly influenced by viscous effects and heat conduction
[14–20], investigations of near-critical droplet interaction with shock waves or high-speed flows are
limited. In such high-speed flows, the impact of viscous diffusion, thermal diffusion, and surface
tension forces is expected to be negligible. Obtaining detailed experimental data on multiphase
shock-driven instabilities, particularly at high pressures and temperatures, remains a challenge.
Therefore, numerical experiments have become essential for studying the interaction between shock
waves and fuel droplets at near-critical conditions.

In summary, the study of RMI and shock-droplet interactions at near-critical conditions is of great
importance and presents various challenges due to the scarcity of experimental data. By conducting
numerical experiments, we aim to fill this knowledge gap and contribute to our understanding of
fuel mixing processes in high-pressure, high-speed propulsion systems.

Classical simulations of shock-bubble interactions (SBIs) [21–32] and shock-droplet interactions
(SDIs) [33–40] have been extensively documented, primarily focusing on scenarios involving
pure droplets or pure bubbles. However, these studies have predominantly explored subcritical
and supercritical conditions, with limited investigation into near-critical or transcritical conditions.
Fluids near their critical points exhibit distinct physical characteristics that differ significantly from
classical liquid droplets or ideal-gas bubbles [41–43], necessitating a unique approach.

In SBI-related research, Haas and Sturtevant [21] originally described the intricate phenomena
during shock interactions with helium and R22 refrigerant bubbles. Quirk and Karni [22] con-
ducted numerical simulations to characterize SBIs. Bubble compositions of SF6 and krypton were
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subsequently studied [23–31]. However, these investigations were conducted under atmospheric
pressure and room-temperature conditions, with the fluids in their gaseous state, classifying them as
SBIs.

In SDI-related studies, various processes such as primary shock impingement, droplet defor-
mation, and droplet breakup have been extensively discussed in the literature [5,22,28,44–46].
Duke-Walker et al. [47] explored the effects of droplet evaporation and breakup in the context
of mixing driven by shock-induced multiphase instabilities. Meng and Colonius [33] investigated
the interaction of shock waves with a water droplet, with detailed structures validated against
experimental data, including the chaotic flow features in the wake region caused by instability
growth. Kaiser et al. [48] conducted numerical investigations into water droplet breakup induced by
shock impingement and the resulting interface deformation. Sharma et al. [49] established a criterion
for the transition process between a shear-induced entrainment mode and a Rayleigh-Taylor piercing
mode during droplet breakup. Notably, these findings were obtained through both numerical sim-
ulations and experimental studies, yet research on near-critical or transcritical conditions [42,43]
remains scarce.

Despite existing research, investigations into shock interactions with fuel droplets under near-
critical or transcritical conditions remain limited [50–52]. A few studies have explored shock
interactions with the n-dodecane droplet at near-critical conditions [51] and the shock interaction of
a droplet above the critical pressure at varying temperatures around the Widom line [52]. While
these studies have provided valuable insights into early droplet breakup behavior and mixing
efficiency in high-pressure fuel injection, they have not delved into the detailed simulation of real
three-dimensional interface deformation.

Furthermore, the interaction between shock waves and droplets containing gas- or vapor-filled
cavities, as well as the interaction between shock waves and bubbles containing droplets, remains
a relatively unexplored area within the context of SDIs and SBIs. Previous investigations in this
field have primarily focused on scenarios characterized by low temperatures and low pressures
[53–59]. In certain industrial contexts, liquid droplets may contain gas cavities, as seen in scenarios
involving fuel droplet deformation in scramjet engines or fluid mixing processes [53]. Additionally,
there are complexities associated with fluid structures that encapsulate volatile substances, such as
perfluoropentane used in ultrasound therapy [54].

A substantial knowledge gap persists regarding the interaction between shock waves and
droplets containing embedded gas cavities, particularly under near-critical conditions and in three-
dimensional scenarios. Conducting experiments under these demanding conditions is challenging,
necessitating robust numerical methods capable of handling intricate flow characteristics. Only a
limited number of studies [55–59] have addressed this issue, and those have been conducted at
low temperatures and low pressures (at ambient conditions). For example, the interaction of shock
waves with droplets containing gas bubbles has been explored under ambient conditions [55],
shedding light on the impact of bubble collapse on shock-droplet interactions. Wang et al.’s work
[56] investigated the shock-accelerated gas ring, providing insights into its evolution and proposing
a straightforward method for predicting circulation. Feng et al. [57] experimentally delved into
the shock interaction with an SF6 ring, studying the effects of the internal gas cylinder on the
evolution of the SF6 ring with various radius ratios. Liang et al. [58] experimentally examined the
shock interaction with a water droplet containing an internal vapor cavity. In the numerical realm,
Xiang and Wang [59] scrutinized the shock interaction with a water column harboring an internally
positioned air cavity.

To the best of our knowledge, the interaction of a shockwave with a droplet embedded with a
gas cavity under near-critical conditions has not been investigated in three-dimensional cases. The
present study employs numerical simulations to investigate the interaction of a planar shock wave
with a diesel cylinder/droplet, both with and without a gas cavity, under near-critical conditions.
This research marks the investigation into the effects of an embedded cavity on a droplet under
near-critical conditions using a hybrid scheme with a real fluid model. It takes into consideration
the three-dimensional nature of the droplet, providing valuable insights for practical applications.
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(b)

(a)

FIG. 1. (a) Flowchart of the current numerical scheme: fully conservative scheme with PR-EOS/modified
PR-EOS and quasiconservative scheme (double-flux method) with PR-EOS/modified PR-EOS. (b) Schematic
diagram of the double flux model with the fluxes at the cell face i + 1/2.

II. METHODOLOGY

A. Hybrid numerical model

In our study, we employ a hybrid numerical model that can seamlessly transition between a fully
conservative (FC) scheme and a quasiconservative (QC) scheme under specific conditions. This
hybrid approach significantly reduces pressure oscillations [41] and minimizes energy conservation
losses [51] when a shock wave interacts with the interface, e.g., between nitrogen and n-dodecane.

The QC scheme employs either a pressure evolution (PE) equation [60–65] or the double-flux
(DF) [11,66] method. In this particular study, we utilize the DF method. Figure 1(a) provides a
flowchart of the model. We will elaborate on the specific details of this model in the subsequent
sections. PR-EOS denotes Peng-Robinson equation of state.
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The time integration is performed by an explicit, second-order-accurate low-storage four-step
Runge-Kutta method with an enhanced stability region. A detailed description can be found in Refs.
[67,68]. The Courant-Friedrichs-Lewy (CFL) value is generally set to 0.5 unless otherwise stated.

1. Fully conservative scheme with PR-EOS

In this section, we describe our fully conservative scheme with the Peng-Robinson equation of
state (PR-EOS) for modeling the behavior of the liquid and gas components in our system.

We have extended and enhanced an existing fully compressible one-fluid model, which is an
integral part of our proprietary solver, CATUM [67–70]. This model is based on the compressible
Euler equations, where the vector of conserved quantities q = (ρ, ρU, ρE , ρξi ) is computed from
∂q/∂t + ∇ · F i(q) = 0. Here, ρ is the density, F i(q) is the flux vector, U is the velocity vector,
ρE = ρ(e + |U |2/2) is the total energy and e is the internal energy, and ξi refers to the mass fraction
of component i and for in-total mass fraction of l species

∑l
i=1 ξi = 1. For two species, ξ1 + ξ2 = 1.

In our mathematical model, we neglect several factors, including gravity, heat transfer (thermal
conduction), viscous effects, surface tension, and chemical reactions. These omissions are justified
due to the extremely short interface interaction time in shock-droplet interaction. Gravity, heat
transfer, and viscous effects may become relevant in longer-duration interactions or low-speed
scenarios. Surface tension can be disregarded in transcritical flows [10,71–76] because the surface
tension coefficient decreases significantly near the critical point. To simplify representation, we refer
to the contiguous fuel region as “droplet.”

We employ the PR-EOS [77] for both liquid and gas components, as expressed in Eq. (1):

p = RT

v − b
− a

v2 + 2bv − b2
, (1)

where T is the temperature, R is the universal gas constant, V is the molar volume, V = M/ρ,
M is the molar mass, and a and b are coefficients. Detailed information on the parameters for the
NASA polynomials [78] used to calculate internal energy, enthalpy, and entropy can be found in
Appendix A.

In the fully conservative scheme, temperature is updated first, considering internal energy, den-
sity, and species mass fractions. This is accomplished using a gradient descent or Newton method.
Notably, we can improve the convergence speed of the gradient descent or Newton method for
temperature calculation by utilizing the temperature from the previous time step as an initial guess.

2. Quasiconservative scheme with PR-EOS

In this section, we discuss the quasiconservative scheme utilizing the PR-EOS and the DF method
[11,66,79] to model near-critical flows. Quasiconservative schemes, such as the DF method, have
been developed in recent years and are well suited for addressing the challenges posed by near-
critical flow scenarios.

The DF method [11,66,79] was initially proposed by Abgrall and Karni [66] for multicomponent
ideal-gas flows and later extended by Billet and Abgrall [79] for ideal-gas reacting flow systems.
Subsequently, high-order schemes based on the DF method have been developed [11,80,81]. In
our work, we integrate the double-flux-based model of Ma et al. [11,82] to handle the current
near-critical flows. It is worth noting that the numerical analysis, processing, and discussion are
applicable to both the PE [62,83] and DF methods. These two methods exhibit similar performance
and conservation behavior in transcritical flows and are comparable to each other in handling contact
interface problems [82].

The double-flux model is employed when specific parameters that exceed certain recommended
values, as defined in Eqs. (2) and (3), are met:

��∗
i,max = max(|�∗

i+1 − �∗
i |, |�∗

i − �∗
i−1|), (2)

�e∗
0,i,max = max(|e∗

0,i+1 − e∗
0,i|, |e∗

0,i − e∗
0,i−1|), (3)
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In Ref. [51], it is recommended that ��∗
i,max = 1, �e∗

0,i,max = 1000 kJ/kg. Under these condi-
tions, the fully conservative numerical scheme transitions to a quasiconservative scheme based on
the criteria mentioned earlier. Another parameter, |∇ρ|/ρ = 0.3, could also be employed for this
purpose [50]. It should be noted that this parameter |∇ρ|/ρ is not adopted, but is provided as an
option.

The primary characteristic of the DF model [11,51,66,79] is that it maintains the effective specific
heat ratio (γ ∗) and effective reference internal energy (e∗

0) as constant values in both space and time
to mitigate spurious pressure oscillations and oscillations of other physical parameters that may
result from pressure fluctuations. Essentially, the relationship between pressure and internal energy
remains fixed in both space and time, effectively transforming the local system into a calorically
perfect gas system.

The parameters γ ∗(�∗) and e∗
0 are determined based on the values from the previous time step

to establish relations between internal energy and pressure [82]. This approach [11,66] is taken to
prevent abrupt changes in γ ∗(�∗) and e∗

0 between cells, as such variations could disrupt pressure
equilibrium and induce spurious pressure oscillations. In this process, the effective specific heat ratio
(γ ∗) is calculated as γ ∗ = ρc2/p, the effective reference internal energy (e∗

0) is obtained as e∗
0 =

e − �∗ p/ρ, and �∗ is calculated as �∗ = 1/(γ ∗ − 1). These values are held constant throughout all
Runge-Kutta (RK) substeps within each time step to ensure stability and accuracy. A schematic of
the double-flux model is shown in Fig. 1(b).

In each time step of our simulation, the following operations are implemented.
Step 1. Reconstruction and flux computation at the cell faces involves using Eqs. (4) and (5) for

left and right face reconstructions:

c =
√

pγ ∗/ρ, (4)

(ρE )∗ = ρe∗
0 + 1

2
ρ|u|2 + �∗ p = ρe∗

0 + 1

2
ρ|u|2 + p

γ ∗ − 1
. (5)

When reconstructing the total energy of the left-hand side (belonging to U L,n
i+1/2) of the cell

interface i + 1/2, the parameters γ ∗
i and e∗

0,i of the left first cell i and the values pm, ρm, and um

of cell m are used to update (ρE )∗m of cell m (where m is part of the stencils used to reconstruct
U L,n

i+1/2), then the left-hand-side total energy is constructed according to the corresponding scheme:

(ρE )n
m = ρn

m e∗,n
0,i + 1

2
ρn

m|un
m|2 + pn

m

γ ∗,n
i − 1

. (6)

Similarly, when reconstructing the total energy of the right-hand side (belonging to U R,n
i+1/2) of

the cell interface i + 1/2, the parameters γ ∗
i+1 and e∗

0,i+1 of the right first cell i + 1 and the values
pk , ρk , and uk of cell k are used to update (ρE )∗k of cell k (k belongs to stencils used to reconstruct
U R,n

i+1/2). The total energy of the right-hand side is then constructed accordingly:

(ρE )n
k = ρn

k e∗,n
0,i+1 + 1

2
ρn

k |un
k |2 + pn

k

γ ∗,n
i+1 − 1

. (7)

Step 2. Obtain the conservative variables and the corresponding primitive variables such as
velocity, density, and energy.

Step 3. Update other primitive variables such as pressure for each cell using Eq. (8):

p = 1

�∗

(
ρE − ρe∗

0 − 1

2
ρ|u|2

)
= (γ ∗ − 1)

(
ρE − ρe∗

0 − 1

2
ρ|u|2

)
. (8)
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When updating pn+1
i of cell i, the frozen values γ ∗,n

i , e∗,n
0,i , and �∗,n

i from the last substep n and
the updated un+1

i , ρn+1
i , and (ρE )n+1

i are used,

pn+1
i = 1

�∗,n
i

(
(ρE )n+1

i − ρn+1
i e∗,n

0,i − 1

2
ρn+1

i

∣∣un+1
i

∣∣2
)

= (
γ ∗,n

i − 1
)(

(ρE )n+1
i − ρn+1

i e∗,n
0,i − 1

2
ρn+1

i

∣∣un+1
i

∣∣2
)

. (9)

Step 4. After obtaining the pressure, update the temperature using the equation of state (EOS)
based on density, pressure, and species mass fraction.

Step 5. Update other parameters such as speed of sound, enthalpy, and entropy based on the
temperature, pressure, density, velocity, total energy, and internal energy obtained.

At the end of all Runge-Kutta substeps within each time step, the total energy is updated. This up-
date is done according to ρE = ρe + 1/2ρ|u|2 and thermodynamic relations ρE = ρE (p, ρ, T,Y )
to ensure thermodynamic consistency since the temperature is updated after the pressure in Eq. (6).

In the QC scheme, pressure is obtained directly from the DF model [Eq. ((8) and is, therefore,
more easily maintained as positive. The temperature is then updated according to the pressure,
density, and species mass fraction [11]. However, because different values of γ ∗ and e∗

0 are used for
each cell, the two energy fluxes at a face are no longer the same, unlike in the FC scheme. This can
result in an energy conservation error. Nevertheless, it has been reported [11,66,82] that the total
energy conservation error decreases as the resolution increases and the difference in γ ∗ between
neighboring cells decreases.

3. Hybrid numerical model with modified PR-EOS

The hybrid numerical model, incorporating a modified PR-EOS, is introduced to address two
primary challenges:

(1) Conservative scheme-induced problem: When using a FC method with the classical PR-
EOS, pressure is updated from temperature and density within each time step, involving a complex
nonlinear real-fluid EOS. During this process, numerical diffusion and dispersion can result in
negative pressure or induce pressure oscillations, which may lead to simulation failures. FC schemes
struggle to maintain pressure equilibrium across transcritical contact interfaces. In contrast, QC
schemes are more effective in reducing spurious pressure oscillations and achieving positive pres-
sure. Additionally, reducing the high-order numerical scheme to a low-order numerical scheme can
help to mitigate pressure oscillations.

(2) Vapor dome problem: The classical PR-EOS is designed for use outside the vapor dome, and
it needs to be modified to handle conditions within the vapor dome. In certain situations, negative
pressures can occur for specific density values at relatively low temperatures, and the speed of sound
may become complex valued in the vapor dome [84]. Inside the vapor dome, the thermodynamic
state described by the classical PR-EOS is either metastable, or unstable or nonconvex.

To address the first issue, the QC scheme provides an effective solution. Moreover, by reducing
the high-order numerical scheme to a low-order numerical scheme, pressure oscillations can be
reduced.

To tackle the second issue, a modified PR-EOS [51] is introduced to approximate the fluid state
within the vapor dome region. This modified PR-EOS ensures that the speed of sound remains above
1 m/s, enhancing the robustness of the numerical method when the state falls within the vapor dome.
It is important to note that phase separation is not expected [85,86], and the proposed numerical
procedure in Ref. [71] is adequate for resolving pressure oscillations in transcritical flows.

This modification to the PR-EOS enhances the accuracy and stability of simulations, particularly
in cases where conditions within the vapor dome need to be represented. For more details, please
refer to Appendix C.
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B. Numerical methods

It is worth noting that, within the references related to transcritical flow [51,52], it has been
observed that the WENO3-type scheme outperforms WENO5 in terms of pressure oscillations,
particularly in near-critical or transcritical scenarios. Reference [52] specifically recommends
the use of the WENO3-type scheme to simulate higher-strength shock-droplet interactions, thus
improving numerical stability. In the case of a Mach 2 shock, they even employ a minmod flux
limiter based on the gradient of the mass fraction [52]. Reference [51] demonstrates that reducing
the order of reconstruction from WENO5 to WENO3 results in a significant reduction in pressure
fluctuations, from 8 to 3.2 MPa. This reduction is attributed to the increased numerical diffusion
provided by WENO3. It is evident that WENO3 enhances the numerical stability of the solver and
the robustness of the numerical scheme. However, it is important to acknowledge that while the
compact reconstruction stencils can reduce computational effort, they also yield results of reduced
accuracy when compared to the same mesh resolution with WENO5. To overcome this accuracy
limitation of WENO3, an increase in mesh resolution and computational resources is required. At
this higher resolution, the results can be made comparable to those obtained with WENO5 [51].

In light of these findings, the current study replaces WENO5 [51] with a WENO3-type scheme
to enhance the numerical stability in complex cases. This ensures that the current numerical scheme
maintains the key characteristics of the reference scheme. It will be meticulously validated to handle
the near-critical shock interactions with n-dodecane. The results of these validation cases will be
presented in detail and compared with the previous results obtained using the WENO5-type scheme,
which can be found in Sec. II C and Appendixes D and E.

The following section describes the classic JS-WENO3 and OWENO3 [87] schemes that will
be employed in the validation cases. Specifically, a WENO3-type scheme is employed for recon-
struction of pressure, density, velocity, internal energy, and mass fraction to achieve numerical
consistency. Interface diffusion is controlled by local adjustment of smoothness indicators and ENO
stencil weights. Consider the JS-WENO3 reconstruction for mass fraction ξ as an example:

ξgas
(
x 1

2

) = w0ξ
L
gas + w1ξ

R
gas. (10)

The left- and right-hand-side interpolation polynomials at the cell interface are ξL
gas =

−(1/2) f−1 + (3/2) f0, ξR
gas = (1/2) f0 + (1/2) f1. Smoothness indicators are defined as I0 =

( f0 − f−1)2, I1 = ( f1 − f0)2. fi is the variable embedded in cell i. The nonlinear ENO sten-
cil weights are denoted as w0 = α0/(α0 + α1) and w1 = α1/(α0 + α1), where α0 = c0/(I0 +
ε) and α1 = c1/(I1 + ε), with c0 and c1 being 1/3 and 2/3, respectively.

Additionally, an improved WENO3 scheme, OWENO3 [87], is adopted for comparsion, which
maintains the advantages of JS-WENO3 with reduced dissipation. For OWENO3, an additional
fourth node is included in the calculation of weights (measuring smoothness), based on a WENO
approach with unconditional third-order optimal accuracy on smooth data, and without relying on
any tuning parameters. The reconstruction domain is kept to a maximum of four points, consistent
with classical WENO3 schemes. The corrected OWENO3 stencil weights are defined as follows:

w0 = 1
3w + (1 − w)w̃0, w1 = 2

3w + (1 − w)w̃1, (11)

where w̃0 = (I1 + ε)/(I0 + I1 + 2ε) and w̃1 = (I0 + ε)/(I0 + I1 + 2ε) = 1−w̃0, with ε being a
small value (ε = 1 × 10−6), and a corrector weight defined as w = J/(J + τ + ε), where J =
I0(I1 + I2) + (I0 + I1)I2 and 0 � w � 1. τ represents the product of the square of the undivided
difference associated with the extended stencil (four stencils) and the sum of the smooth-
ness indicators, τ = dI , where d = (− f−1 + 3 f0 − 3 f1 + f2)2 and I = I0 + I1 + I2. An additional
smoothness indicator I2 using the additional node is employed for smooth indicators, leading to
I0 = ( f0 − f−1)2, I1 = ( f1 − f0)2, and I2 = ( f2 − f1)2.

OWENO3 is a valuable choice for the following reasons:
(1) It achieves unconditionally optimal accuracy when the data are smooth, and provides second-

order accuracy when a discontinuity crosses the stencil. The accuracy properties of OWENO3 are
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TABLE I. Initial conditions for shock-cylinder interaction at near-critical conditions.

Stage p (MPa) u (m/s) v (m/s) ρ (kg/m3) T (K)

Preshocked nitrogen 6.0 0 0 30.46 650.0
Postshocked nitrogen 9.096 −160.3 0 40.38 736.2
n-Dodecane 6.0 0 0 419.9 650.0

theoretically proven and confirmed through numerical experiments involving algebraic problems
and hyperbolic conservation laws.

(2) Several numerical experiments indicate that this scheme is more efficient in terms of error
reduction versus CPU time compared to traditional third-order schemes and, in most cases, even
outperforms classical higher-order WENO schemes (WENO5-JS).

(3) It allows for higher values of the CFL number in complex problems.
Moreover, an Harten-Lax-van Leer contact (HLLC) Riemann solver is applied, and additional

details can be found in Ref. [88].
In summary, the adoption of the WENO3-type scheme, along with finer meshes, allows for

robust, compact, easily implemented, and accurate studies of complex shock-droplet interactions
across a wide range of conditions. The effects of mesh resolution and validations are thoroughly
compared with results obtained using WENO5, as detailed in Sec. II C and Appendixes D and E.

C. Verification of shock interaction with a two-dimensional cylindrical fuel column

This section focuses on the validation of shock interaction with a cylindrical fuel column, taking
into account various factors such as mesh resolution, computational domain, boundary conditions,
and the chosen numerical scheme.

To generate numerical schlieren images, we employ the following formula to define the pseu-
doschlieren value:

∅ = exp

(
−C

|∇ρ| + A

B + A

)
. (12)

The pseudoschlieren value, denoted as ∅, is determined using the formula |∇ρ| = [(∂ρ/∂x)2 +
(∂ρ/∂y)2]1/2, where three adjustable parameters, A, B, and C, influence its calculation. Typically,
A is set to zero, and B equals |∇ρ|max, gradually leading to ∅ = exp(−C|∇ρ|/|∇ρ|max). The gray
values displayed in the schlieren images are fine-tuned based on the approach recommended in
Ref. [22]. It is important to note that the constant “C” plays a role here, taking the value of 600 for
light fluids (such as helium) and 120 for heavy fluids (like R22). In the case of shock interaction with
a cylindrical fuel column, C is set to 600 for the nitrogen environment and 120 for the n-dodecane
cylinder.

1. Detailed evolution of shock interaction with a cylinder at near-critical conditions

We conduct a validation study to investigate the evolution of shock interaction with an n-
dodecane cylinder at near-critical conditions in a nitrogen environment. The parameters for this
study closely match those in Ref. [52], with the exception of a finer mesh resolution of 0.115 mm
in the region where z = −160 mm and 160 mm, compared to their 0.23 mm. The initial conditions,
which include thermodynamic parameters, cylinder position, diameter, boundary conditions, and
the computational domain with the shaded fine-mesh region, are presented in Fig. 2 and Table I.

In this scenario, we aim to illustrate the shock interaction with a near-critical droplet. This
interaction occurs at a supercritical pressure and subcritical temperature, placing the n-dodecane
in a liquidlike supercritical state. The critical properties of n-dodecane are defined by a critical
pressure (pc) of 1.82 MPa and a critical temperature (Tc) of 658.1 K. As a result, the n-dodecane
droplet begins in a supercritical state where it is pressurized at subcritical temperature.
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FIG. 2. Scheme of the computational domain for the shock-cylinder interaction at near-critical conditions.

For the nitrogen environment, it is crucial to note that its temperature exceeds the critical temper-
ature, and its pressure is above the critical pressure. Nitrogen’s critical properties are characterized
by a critical pressure (pc) of 3.369 MPa and a critical temperature (Tc) of 126.2 K. The shock wave in
this environment maintains a Mach number of 1.2. Reference [78] provides the NASA polynomial
parameters, and for this part of the study, we employ OWENO3 as the numerical scheme.

In this section, our primary focus is to analyze the morphological aspects of shock interaction
with a pure cylinder. While Boyd and Jarrahbashi provide a useful overview of the main features
[52], we seek a more comprehensive description of the morphology at near-critical conditions.

As illustrated in Fig. 3, the incident shock wave (IS) initially passes the upstream pole and travels
towards the downstream pole. The time instance when the shock contacts the upstream surface of
the cylinder (USC) is defined as 0µs. Once the IS reaches the USC, it leads to the formation of a
curved refracted shock (TS) within the cylinder and a shock reflection (RS) from the USC. The RS
in n-dodecane is slower than the IS due to the lower speed of sound (SoS).

Around 105 µs, surface-vertical diffracted shocks (DSs) emerge on the downstream surface of
the cylinder (DSC). The sweep of these DSs subsequently induces the generation of an incident
diffracted transmitted shock (DTS). To balance the pressure difference between the converging
(refracted) transmitted shock (TS1) and the incident DTS, a new small shock (NSS1) is formed.
This leads to the gradual reduction of both the angle between the DTS and the TS1 and the
undisturbed zone (UZ).

By 115 µs, the crossover point of the incident shock is noticeable, and the convergence of NSS1,
DTS, and TS1 results in the formation of high-pressure zones. At 120 µs, the converged refracted
shock becomes evident, and by 125 µs, the original TS1 impinges on the Mach stem (generated by
the internal convergence of the DTS), creating an even higher pressure oval region (OZ).

At 130 µs, it is observed that the newly formed internal Mach stem (IMS, representing one
edge of the oval region) impinges on the downstream interface and generates a transmitted Mach
stem (TMS). Gradually, a surface jet formation (JF) is observed at 185 µs. This evolution, from the
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FIG. 3. Representative view of the flow morphology in a shock-accelerated cylinder. Typical views at the
time (a) 105 µs–185 µs, (b) 125 µs, 130 µs.

converged refracted shock (CRS) focal wedge, to the OZ, to the TMS, represents the mechanism
behind the development of the surface jet.

It is important to note that this morphological evolution is akin to the cases of shock interaction
with a heavy bubble (e.g., R22, SF6, Kr) studied by various researchers, such as Haas and Sturtevant
[21], Jacobs [89], Zhai et al. [90], Zou et al. [91], Fan et al. [92], and Guan et al. [93]. The process
depicted in Fig. 3 aligns well with the findings in Ref. [52], providing qualitative validation for
our methods and affirming that the mesh resolution is sufficient to capture these intricate features.
Further discussion and details are provided in Sec. III A.

Additionally, we conducted a quantitative comparison by examining pressure distributions and
comparing them with the results presented in the reference study. In Fig. 4, the black lines represent
the pressure distribution achieved using a mesh resolution of 0.115 mm and the OWENO3 numerical
scheme. The pressure distribution closely matches the reference data, although there is a minor
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FIG. 4. The pressure distributions of the current case and the reference case at time 185 µs.

pressure difference (less than 1%) near the discontinuity region. This discrepancy can be attributed
to the weak pressure oscillations that occur in the vicinity of the discontinuity region. For further
validation, a case involving shock interaction with a helium bubble is provided in Appendix E.

In summary, we have successfully demonstrated that our numerical scheme produces accurate
results and that the current mesh resolution is sufficient to capture the essential features of near-
critical shock-cylinder interactions.

2. Effects of mesh resolution and numerical scheme on near-critical shock-cylinder interactions

Mesh resolution studies are of particular importance, as essential flow characteristics may still be
observed with coarser mesh resolutions. We consider meshes up to four times finer than 0.23 mm.

In Figs. 5 and 6, we present simulations conducted within a larger computational domain with
coarser meshes near the boundaries. In this setup, wave reflections from the top and bottom walls
are suppressed to isolate the planar shock effects. We compare various mesh resolutions and
OWENO3 and WENO3, assessing the level of dissipation. The results demonstrate that OWENO3
yields improved results with reduced dissipation compared to WENO3. OWENO3, with a mesh
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FIG. 5. The shock n-dodecane cylinder interaction within the large domain at times 105, 115, 140, and
185 µs (from left to right). WENO3 with a mesh resolution of (a) 0.23 mm, (b) 0.115 mm, (c) 0.076 mm, (d)
0.0575 mm.
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FIG. 6. The shock n-dodecane cylinder interaction within the large domain at times 105, 115, 140, and
185 µs (from left to right). OWENO3 with a mesh resolution of (a) 0.23 mm, (b) 0.115 mm, (c) 0.0767 mm, (d)
0.0575 mm. WENO5 with a mesh resolution of (e) 0.23 mm from Ref. [52]. Reproduced from Ref. [52].
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FIG. 7. Grid convergence test on the shock n-dodecane cylinder interaction by OWENO3 within large
domain at time 143 µs.

resolution of 0.115 mm, can provide results that are comparable to those obtained with WENO5
from Ref. [52].

For assessing mesh independence, we also analyze the density distribution, as depicted in Fig. 7.
The density distributions directly display the contact positions of both fluids and converge to the red
line with the finest mesh resolution of 0.0575 mm. Notably, there are minimal differences between
the results obtained with mesh resolutions of 0.115 and 0.0575 mm. Therefore, for a well-balanced
consideration of accuracy and computational efficiency, a mesh resolution of 0.115 mm is a suitable
choice.

In this way, a high mesh resolution, exceeding 434 computational cells per droplet diameter
(diameter = 50 mm), is employed. This translates to more than 0.87 billion equivalent finite volumes
for the entire three-dimensional n-dodecane droplet simulation, potentially making it the largest
simulation of n-dodecane at near-critical conditions reported to date.

Even finer meshes would likely capture more small-scale structures, as demonstrated in our
mesh independence study. However, these tiny vortex structures are ephemeral in reality, quickly
dissipating due to physical processes (physical diffusion). In simulations, numerical viscosity (in-
herent to the simulation scheme) also acts to dissipate these structures rapidly, preventing them from
influencing the larger structures of interest. In essence, these small structures become so short-lived
that they are negligible. As in Refs. [52,82], viscous terms are insignificant in short-duration
processes with rapid shock interactions.

Our results accurately capture the interface structures and shock wave patterns (Fig. 6) when
compared with reference data [52]. In cases where different mesh resolutions are used, the main
roll-up structures are captured in a comparable manner. As discussed above, while finer meshes
might reveal even smaller two-phase structures, these would likely have minimal influence on the
dominant processes governing the deformation of the two-phase interface and the evolution of shock
waves. Therefore, the focus on capturing the key characteristics and conducting mesh independence
studies is justified.

Furthermore, the relative total energy error values are calculated at t = 105 µs, where ε =
|(∫

�
(ρE )t − ∫

�
(ρE )0)/

∫
�

(ρE )0|. The values are 0.0405, 0.0219, 00110, and 0.0009 for cases
with mesh resolution of 0.2300, 0.1150, 0.0767, and 0.0575 mm, respectively. It is consistent with
Refs. [11,51,66] that the total energy conservation error decreases with increasing resolution.
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FIG. 8. The schematic for the computational domain of the shock-cylinder ring interaction.

Additionally, we also consider various cases involving different computational domains and
boundary conditions to demonstrate the robustness and accuracy of our current numerical scheme
(see Appendixes D and E for these additional cases).

III. RESULTS AND DISCUSSION

A. Analysis of a cylinder with an internal gas cavity

As depicted in Fig. 8, a gaseous cavity is situated at the center of the cylindrical column
with a diameter r/R = 0.5. The thermodynamic properties, such as pressure, velocity, density,
and temperature, of the internal gas bubble are maintained consistent with the preshock nitrogen
environment.

One way to define the characteristics of the shock interactions in such cases is by considering the
speed-of-sound (SoS) ratio, as suggested by Ref. [21]. In the present scenarios, the speed of sound
(cS) in the surrounding preshock nitrogen environment is greater than that in the n-dodecane cylinder
(cD). This results in a SoS ratio (n = cS/cD) greater than 1, indicating a convergent situation, where
the refracted shock within the n-dodecane cylinder is slower than the incident shock wave. This is
analogous to the convergent situation seen in shock–R22 bubble cases, in contrast to the divergent
situation in shock–helium bubble cases. Additionally, δZ > 0 is a typical description of a convergent
case [28].

The acoustic impedance mismatch across the material interface between the n-dodecane cylinder
and the surrounding nitrogen fluid, denoted as δZ = (ρc)D − (ρc)S > 105, significantly influences
the transition of a shock wave across the interface. In the current cases, when the incident shock
reaches the upstream surface of the cylinder (USC), it forms a refracted wave as well as a reflected
shock wave due to the fact that δZ � 0 (similar to shock–R22 bubble cases). Conversely, if there
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is no gas cavity within the cylinder (a pure cylinder), and the refracted shock travels through the
cylinder to the downstream surface of the cylinder (DSC), an opposite impedance mismatch occurs
with δZ � 0, causing the reflected wave to become a rarefaction wave for the current case, much
like in shock–R22 bubble cases.

Another important parameter to consider is the Atwood number (A), which is defined as
A = (ρD − ρS )/(ρD + ρS ) and characterizes the effect of density variation between the n-dodecane
cylinder and the surrounding nitrogen fluid. The dimensionless time t∗ corresponds to the simulated
physical time t , divided by an arbitrarily chosen reference time tref = 8.68 × 10−6 s.

1. Early wave pattern evolution of the shock-cylinder ring interaction at near-critical conditions

This section offers an in-depth analysis of the early wave pattern evolution during the interaction
between a shock and a cylindrical ring at near-critical conditions. Figure 9(a) illustrates the initial
phase of the interaction. The incident shock (IS) passes over the USC, leading to the generation of
the reflected shock (RS) and the converging (refracted) transmitted shock (TS1). Simultaneously,
the cylinder undergoes deformation and initiates downstream movement. These processes are
designated as “1.”

Subsequently, after TS1 encounters the upstream surface of the embedded gas bubble (USB), the
angle between USB and TS1 begins to increase from zero. During this early stage, two significant
events occur:

(1) The second reflected rarefaction wave (RR) is generated.
(2) The diverging (refracted) transmitted shock 2 (TS2) begins to take shape.
Both begin at relatively small angles. Simultaneously, the embedded gas bubble also starts

moving and deforming downstream. These processes are marked as “2.” These early wave pattern
changes, constituting the inner shock-bubble interaction process, resemble typical refraction pro-
cesses, akin to shock interactions with lighter gas bubbles, as seen in shock–helium bubble cases.

Given the higher impedance of the n-dodecane cylinder compared to nitrogen, TS2 inside the
nitrogen bubble moves faster than TS1 inside the cylinder. This results in the generation of a side
shock (SS) and a new shock 1 (NS1), as depicted in Fig. 9(b). SS is often referred to as the free-
precursor shock wave (FPS) in the literature [57]. At this stage, TS1, SS, NS1, and reflected shock
2 (RS2) converge at a point marked as “P4,” which resembles the free precursor refraction (FPR)
phenomenon [57,94].

As RS2 and SS propagate in different directions, they form an angle between them. Conse-
quently, as shown in Fig. 9(c), P4 is replaced by two distinct intersection points (P2) and the
formation of a Mach stem. This wave pattern is reminiscent of the twin von Neumann refraction
(TNR) [94].

In Fig. 9(d), as TS2 reaches the downstream surface of the bubble (DSB), it gives rise to a
transmitted shock (TS3) and a reflected shock (RS3), both traveling in opposite directions. The
points of intersection for these three shock waves (P3) arise from the movement of TS1. Moving
on to Fig. 9(e), both the transmitted wave TS5 and the reflected wave RS5 emerge near the USB.
RS2 refracts from the DSC, forming a transmitted shock from RS2 (TRS2). Additionally, diffracted
shock waves form a crossover point outside the DSC. Furthermore, as depicted in Fig. 9(f), TS3
passes through the DSC, creating a fourth transmitted shock (TS4) and a rarefaction wave heading
towards the DSB. The diffracted shock, TRS2, and TS4 comprise the primary structures of the
wave pattern outside the cylinder ring. Inside the cylinder ring, further development of NS1, TS1,
the rarefaction wave of TS3, and other waves form a more intricate pattern of waves.

A comparison between Fig. 3 and Figs. 9(a)–9(g) reveals that the evolution of the outer cylinder
surface in the ring case mirrors that of the pure cylinder case, akin to shock interactions with
heavy fluids [21,89–93]. The two-phase interface between the cylinder ring and the outer nitrogen
environment resembles the previous results of a pure cylinder. However, the jet formation at the
DSC is diminished, attributed to the newly formed complex wave pattern interaction, such as the
interaction between P3 and DSC.
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FIG. 9. Representative view of the flow morphology and wave pattern evolution in a shock-accelerated
cylinder ring at near-critical conditions.

Figures 9(a)–9(g) show the progression of the shock wave pattern in a case involving a gas cavity.
Over time, the USB presses into the center of the nitrogen, taking on a kidney shape, reminiscent
of shock-accelerated light bubbles (shock helium bubble). It is noteworthy that the internal shock
wave pattern bears resemblances to shock–helium bubble (light gas) interaction cases. In the current
cylinder ring scenario, the IS of shock–helium bubble cases is replaced by TS1, a reasonable
substitution given the shared attributes of “heavy-light layer” cases.
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FIG. 9. (Continued).

2. Late development of pure cylinder and cylinder ring

In the later stages of the evolution process, the internal kidney-shaped gas bubble continues to
move downstream, as seen in Figs. 10(a)–10(g). For the internal bubble region in the case with a
cavity, it is observed that a cylindrical jet forms and grows over time, displaying similarities to
the shock–helium bubble case. Initially, a mushroomlike structure containing a pair of vortices
[Fig. 10(h)] develops in the downstream direction and then reaches the DSB [Fig. 10(i)]. The
distance between the USB and DSB decreases, and the internal bubble gradually splits into two
smaller bubbles [Fig. 10(j)]. Subsequently, two pairs of vortices move in opposite directions
and spray separately into two nitrogen bubbles, forming several smaller jets [Fig. 10(k)]. These
newly formed small curved jets spin around and move towards the cylinder-bubble interface again,
rolling the small bubble interface upstream. Finally, the curved interfaces form another mushroom
containing a pair of vortices and tend to impact the USB [Fig. 10(l)]. These processes introduce
complex impacts and interactions into the internal region of an originally pure cylinder, enhancing
the mixing of gas and cylinder.

Additionally, in a shocked pure cylinder, the high pressures (OZ) generated by the shock focusing
inside the cylinder lead to the formation of an outward jet, as shown in Fig. 3. Gradually, the induced
jet approaches the DSC of a pure cylinder. However, in the case with a cavity, the internal bubble
alters the motion of the shock waves, disrupting the OZ and reducing the tendency for jet formation,
as also observed in Fig. 9.

In the literature [5,33,47–49,55–59], investigations of configurations similar to ours, but under
subcritical conditions, are presented. We compare our results with existing subcritical studies
[57,59] to understand the influence of near-critical conditions. Both Feng et al. [57] (gas cylinder)
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FIG. 10. Late evolution of the jet formation of pure cylinder and cylinder ring at near-critical conditions at
t∗ = (a) 27, (b) 29, (c) 31, (d) 33, (e) 35, (f) 37, (g) 40, (h) 46, (i) 49, (j) 56, (k) 60, and (l) 66.

and Xiang and Wang [59] (water column) employed configurations with comparable Mach numbers
to ours.

In the initial stages, the wave patterns observed in our near-critical case (our Figs. 3 and 9)
resembled those reported by Feng et al. [57] under subcritical conditions (their Figs. 4 and 7).
This suggests similar shock interactions (Mach stem, transmitted shock, shock focusing, etc.).
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FIG. 11. The diagram of the measured parameters (sketch map).

However, the deformation behavior of our near-critical cylinder diverged significantly from the SF6

gas cylinder response under subcritical conditions [57].
Interestingly, our near-critical wave patterns (our Figs. 3 and 9) differed from those observed by

Xiang and Wang [59] for a subcritical water column without a cavity (their Fig. 5). However, the
two-phase structures observed in their study with a cavity (their Figs. 14 and 16) exhibited a strong
resemblance to the deformation behavior of our near-critical cylinder (our Fig. 10).

These comparisons lead to the following conclusions:
(i) Early-stage wave patterns in our near-critical cylinder case are similar to subcritical SF6 gas

cylinder cases [57].
(ii) The deformation behavior of our near-critical cylinder deviates significantly from the clas-

sical subcritical SF6 gas cylinder behavior shown in Ref. [57].
(iii) While the wave patterns in our case differ from subcritical water columns, the deformation

behavior of our near-critical cylinder closely resembles that of a subcritical water column in air as
investigated by Xiang and Wang [59].

3. Quantitative analysis of shock-cylinder ring interaction

Figures 11 and 12 present a quantitative analysis of the shock-cylinder ring interaction, focusing
on the evolution of key parameters. These parameters include the top height of the cylinder ring,
the half-height of the internal bubble, the width of the inner bubble, the upstream width of the
cylinder ring, and the downstream width of the cylinder ring. This analysis allows for a detailed
understanding of the complex interactions taking place.

Top height of the cylinder ring (green line). After T1, the IS induces Richtmyer-Meshkov
instabilities (RMIs), leading to the development of concave-convex structures in the two-phase
interface. These instability structures grow and rotate forward, resulting in variations in the top
height of the cylinder ring.

Half-height of the internal bubble (purple line). Following T2, this parameter initially remains
relatively flat. However, as transmitted shock 1 (TS1) passes the semicircle of the internal bubble, it
begins to decrease due to the converging TS1. Subsequently, the internal bubble takes on a kidney
shape and the height gradually increases.

Half-height of the cylinder ring (dark yellow line). This parameter is the sum of the top height
of the cylinder ring and the half-height of the internal bubble, which reflects the behavior of the top
height of the cylinder ring and closely follows the same trends.

Upstream width of the cylinder ring (black line). The width decreases shortly after T1. Subse-
quently, as TS1 interacts with the USB, the width tends to increase, mainly due to the formation of
the kidney-shaped internal bubble.

Width of the internal bubble (blue line). The width of the internal bubble begins to decrease after
T2.
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FIG. 12. The evolution histories of the measured parameters of the cylinder ring. T1–T4 separately
represent four important times: IS reaches the USC, TS1 reaches the USB, TS2 reaches the DSB, and TS3
reaches the DSC. The dimensionless time used here is calculated from the beginning and is normalized by
8.68 × 10−6 s. The heights are measured at the line x = 50 mm.

Downstream width of the cylinder ring (red line). After TS2 passes the DSB, the downstream
width of the cylinder ring decreases. It slightly increases after TS3 passes the DSC, but then
continues to decrease. Another TS wave passing the DSC induces a small increase. Subsequently,
the cylinder ring appears to stretch in the normal direction, and the width between DSC and DSB
decreases. A decreased jet formation near the DSC is also observed, which differs from the behavior
in shock interaction with a pure cylinder.

B. Quantitative comparison between pure cylinder and cylinder ring

1. Quantitative analysis of vorticity dynamics

Baroclinic vorticity production arises from unbalanced gradients between density and pressure,
particularly when the IS or TS passes the two-phase interface. This phenomenon plays a crucial role
in RMI and the induction of turbulent mixing. Figure 13 shows the process of vortex generation
by baroclinic production in the shock-cylinder ring interaction. The vorticity transport equation
is represented by Dω/Dt = 1/ρ2∇ρ × ∇p. The angle between the pressure gradient and density
gradient is most significant near the top and bottom vertices of the cylinder, as depicted in Fig. 14(a).
The vortex pairs develop near the pits and bumps (peaks and valleys) of the outer cylinder, gradually
increasing in intensity. Notably, in both cases with and without a cavity, vortex growth and rotation
are observed near the top and bottom vertices of the cylinder, ultimately forming prominent wake
roll-up structures [Figs. 13(a) and 13(b)]. Positive and negative vortices predominantly form on the
upper and lower surfaces of the outer cylinder, respectively.

In the pure cylinder case (without a cavity), a jet is evident near the DSC, with the vertex of the jet
being particularly noticeable in the equator region. In contrast, in the case with a cavity, the outer jet
is suppressed [Fig. 13(c)], but baroclinic effects caused by shock interaction with the internal light
bubble within the heavy cylinder environment lead to additional vorticity generation. The newly
formed internal mushroom jet is associated with a pair of vortices characterized by opposite spin
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FIG. 13. Schematic diagram of vorticity generation in the shock-cylinder ring interaction (vorticity
restricted to the same range of values). For t*, (a) 5, 10, 15, 20, (b) 25, 30, 35, 40, (c) 45, 50, 55, 60, (d)
65, 70, 75, 80.
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FIG. 13. (Continued).

directions [Fig. 13(c)]. This jet carries roll-up vortex structures. Vortex patterns of negative and
positive vorticity primarily form on the upper and lower surfaces of the inner bubble, respectively,
which is the opposite pattern to that observed on the outer cylinder.

In Fig. 14, we examine the impact of an internal gas cavity on the time evolution of enstrophy
in the shock wave–cylinder interaction at near-critical conditions. Enstrophy, which accounts for
compressibility, is presented in a mass-averaged form as (

∫
ρω2dxdy)/(

∫
ρdxdy). For both cases,

with and without a cavity, the enstrophy values are initially zero before the shock wave reaches the
USC. Subsequently, they increase almost linearly. In the early stage (t∗ < 36), enstrophy in both
cases is similar, primarily due to the negligible enstrophy of the internal bubble. However, once the
internal bubble forms a jet, the enstrophy of the cylinder ring case becomes greater than that of the
pure cylinder case. During a narrow time interval (63 < t∗ < 69), the enstrophy of the pure cylinder
case surpasses that of the cylinder ring case. This shift could be attributed to the formation of a jet

FIG. 14. The evolution of the enstrophy integrated in the domain (normalized by 1 × 108 s−2).
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FIG. 15. The drift of the center-of-mass position and velocity (dimensionless by 0.05 m and 100 m/s).

near the downstream surface of the pure cylinder and the role of the internal bubble in accelerating
the vorticity consumption process.

As the internal bubble forms additional mushroom structures, which contain more enstrophy, and
with the presence of more complex structures near the downstream surface, the trend is reversed,
and the enstrophy of the cavity case exceeds that of the pure cylinder case (t∗ > 69). Overall, the
generation of baroclinic vorticity significantly increases enstrophy during the early and intermediate
stages of shock wave interaction with the two-phase interface. This enhanced vorticity promotes the
mixing of internal and external ambient gases with the fuel cylinder (or ring) and facilitates vorticity
energy transfer and consumption, ultimately leading to a reduction in enstrophy strength.

This analysis illustrates how the internal gas cavity influences the enstrophy dynamics in the
shock-cylinder ring interaction, particularly in the context of enstrophy generation, transfer, and
consumption throughout the interaction process.

2. Drift of the center-of-mass position and velocity

The center-of-mass properties of both the deforming cylinder and the cylinder ring are essential
for diagnostics [33] and can be quantitatively analyzed through simulations. Drift analysis involves
calculating the center-of-mass position and velocity of these objects as indicated by the following
equations:

xc =
∫

(1 − ξGas)ρxdxdy∫
(1 − ξGas)ρdxdy

, (13)

uc =
∫

(1 − ξGas)ρu dxdy∫
(1 − ξGas)ρ dxdy

. (14)

The integration region refers to the entire computational domain.
Figure 15 provides a comparison of the center-of-mass location and velocity between the pure

cylinder and the cylinder with an embedded gas cavity. Generally, the center-of-mass location and
velocity of the ring are similar to those of the pure cylinder. However, the presence of the gas cavity
results in the entire ring moving at a higher velocity compared to the pure cylinder, which can have
implications for enhancing the mixing process.

C. Three-dimensional simulation of shock interaction with droplet with and without cavity

In this section, we will conduct three-dimensional simulations of shock interaction with a droplet,
under the same conditions as described in Sec. III A. The setup involves using a quarter of the
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FIG. 16. Schematic of the computational domain for shock interaction with (a) a droplet or (b) a droplet
shell.

spherical droplet and a quarter of the droplet shell, as depicted separately in Figs. 16(a) and 16(b),
with a diameter ratio of r/R = 0.5.

Building upon the insights gained from the two-dimensional results, we will observe the evo-
lution of the shock-droplet interaction. To capture the intricate details of the spherical droplet, a
uniform mesh will be employed in the region adjacent to the droplet, while a coarser mesh will be
used in regions farther away from the droplet. Specifically, a uniform mesh resolution of 0.115 mm
will be applied within the shadowed cuboid box region, which matches the parameters used in the
two-dimensional case. This resolution corresponds to approximately 434 cells to effectively capture
the characteristics of the spherical droplet. This region will contain about 2.1 × 108 mesh cells to
comprehensively cover the typical development area of the droplet shell.

Beyond this region, the mesh resolution will become progressively coarser at a ratio of 1.1. All
other conditions will be consistent with those used in the two-dimensional simulations, with the
adoption of symmetry boundary conditions for two surfaces connected to the droplet.

It is worth noting that the computational configuration used in this study surpasses that of
previous simulations involving water droplets, such as the work by Meng and Colonius [33], where
they used WENO3 and a grid resolution equivalent to 100 cells per original droplet diameter.
In the following section, we will delve into the deformation of the two-phase interfaces and the
development of vortices, considering the three-dimensional characteristics of the interaction.

1. Evolution of surface deformation

Simulating two-phase interfaces often results in a smeared interface spanning several grid cells,
as observed in our study and others [33]. This is because the chosen method inherently averages
properties across a small region. The accuracy of the interface visualization can be further affected
by the specific value chosen for the isosurface or isopleth (which represent surfaces or lines of
constant value).

In our postprocessing, we distinguish between liquid and gas phases using the mass fraction
of the gas phase and employ isosurfaces ranging from 0.01 to 0.99 to represent the two-phase
interface. These isosurfaces account for the inherent uncertainty in the postprocessing stage due
to the smeared interface characteristics [refer to Figs. 17(f)–17(h) and the Supplemental Material
[95] for examples). As noted in Ref. [33], the choice of gas mass fraction value can influence the
observed interface structures.
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FIG. 17. (a) Gas mass fraction contour of the cylinder case at t∗ = 15, 27, 49, 56, and 66 (from left to
right). [(b)–(e)] Isosurface of the gas mass fraction 0.5 of the droplet case at t∗ = 15, 27, 49, 56, and 66 (from
left to right). (f) Isosurfaces of the gas mass fraction, 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, and 0.99 (from left to
right) at t∗ = 27. (g) Isosurfaces of the gas mass fraction, 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, and 0.99 (from left
to right) at t∗ = 49. (h) Isosurfaces of the gas mass fraction, 0.01, 0.05, 0.25, 0.5, 0.75, 0.95, and 0.99 (from
left to right) at t∗ = 56.
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FIG. 17. (Continued).
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FIG. 17. (Continued).
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It is important to remember that these three-dimensional structures are only visualized for a
specific isosurface value (e.g., 0.5 for gas mass fraction). This approach aligns with the postpro-
cessing technique used in Ref. [33], where varying gas fraction values for isosurfaces resulted in the
visualization of different droplet breakup structures. Unfortunately, there is no perfect choice for
the isosurface value, as the numerical method itself introduces uncertainty that cannot be entirely
eliminated. In essence, the chosen value (mass or volume fraction) to define the interface affects the
shapes and structures captured by the isosurfaces.

Similar to the work in Ref. [33], we acknowledge the presence of smeared or diffuse features
in our visualization, even with our resolution of 434 cells per initial diameter to represent the
droplet. Nevertheless, based on our grid convergence study and the chosen numerical scheme, we are
confident that the dominant structures and key features are accurately captured. While the numerical
scheme might lead to the appearance of smaller breakups, these phenomena cannot be validated
against experimental data and are likely artifacts of the simulation. It is important to emphasize
that the overall conclusions are not affected by the isosurface value selection, as we consistently
apply the same analytical and quantitative methods throughout all cases. Considering the numerical
methods employed and the achieved mesh independence with 434 grids per diameter, the results
provide a reasonable representation of the physical phenomena, with the understanding that the
smeared region incorporates the effects of numerical viscosity.

The results depicted in Fig. 17 illustrate the progression of deformed two-phase contact structures
for both the cylinder case and the three-dimensional droplet case simulations. A threshold value of
0.5 is employed for the isosurface to delineate the gas phase for the three-dimensional droplet case.
Various distinctive deformation scenarios that capture the dynamics of the droplet structure have
been chosen for analysis. The qualitative descriptions provided in two-dimensional simulations, as
discussed in Secs. III A 1 and III A 2, are equally applicable to the three-dimensional simulations,
with the primary distinction being the added dimension. In comparison to the two-dimensional
findings, the deformation processes remain quite analogous, yet the inclusion of the third dimension
allows for a more comprehensive representation of the dynamics. The structures observed in these
simulations, including sheets, petal-shaped structures or lobes, and ligaments, exhibit pronounced
three-dimensional characteristics that were not discernible in the two-dimensional simulations.

Combining the insights from Secs. III A 2 and III B 1, we can draw the following conclusions:
The droplet effectively behaves like a solid block, contributing to the formation of a plume shape
characterized by a flattened disk or a cupcakelike structure. Within the recirculation region, counter-
rotating vortices develop near the leeward side of the droplet, playing a crucial role in shaping this
distinctive form and drawing liquid sheets from both the droplet’s equator and its flattened rear [33].
The presence of an enclosed cavity attached to the downstream side of the deforming droplet is
associated with the development of a recirculation region that entrains fluid and redirects it upstream
to impact the leeward side of the droplet. The continual deformation of the droplet in the normal
direction increases its projected area for aerodynamic effects, further promoting the flattening of the
liquid droplet and assisting in its breakup [49]. Additionally, as shown in Fig. 17(e), the internal
cavity serves to reduce jet formation. Notably, the internal spherical cavity undergoes deformation,
transforming into a kidney-shaped structure before breaking into a toroidal shape.

Surface tension is typically disregarded in transcritical flows [10,51,52,71–76] because the
surface tension coefficient significantly diminishes in the vicinity of the critical point. In refer-
ences related to simulation at near-critical conditions [51,52], the Weber number is defined as
We = ρpostu2

postD0/σ , which is adopted to assess the type of deformation. For the current case with
a Mach number of 1.2, with Tref = 650 K, pref = 6 MPa, upost = −160.3 m/s, D0 = 50 mm, and
ρpost = 40.38 kg/m3, assuming that σ = 0.001 N/m [51], then the approximate Weber number is
about 5 × 107. It is therefore reasonable to assume that, during the initial phase of development,
there should be no discernible difference between the flow simulated with or without surface tension.
Consequently, it is anticipated that these cases with a very large Weber number [96] will fall into
the regime of shear-induced entrainment (SIE) breakup. However, neglecting surface tension in
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FIG. 18. Isosurface of the gas mass fraction 0.5 of the droplet with gas cavity at t∗ = (a) 15, (b) 27, (c) 49,
(d) 56, and (e) 66.

the model simplifies the problem by replacing the actual phase interface with a contact region.
While both fluids are initially separated in this region, they can mix during the deformation process.
Strictly speaking, neglecting surface tension means simulating contact region deformation rather
than interface breakup, although the established terminology in the field seems to differ.

In the initial stages, spanning from t∗ = 0 to t∗ = 27, the RMI induces morphological deforma-
tions of the two-phase structures, causing lobes to stretch and ligaments to form. In the later stages,
occurring between t∗ = 49 and t∗ = 66, the deformation of ligaments becomes apparent, especially
when visualized using an isosurface value of a mass fraction of 0.5.

The numerical results capture the key characteristics of inertia-driven mechanisms, although
neglecting surface tension inherently leads to a loss of sharp interfaces. Despite satisfying the SIE
breakup condition and capturing the expected phenomena, the results are limited by their numerical
nature and dependence on a specific isosurface value selection. These limitations (surface tension
neglect and finite resolution) confine the interpretation of the simulated structures as analogies,
albeit reasonable ones based on the dominant forces.

In Fig. 18, we observe the formation of internal jets, deformation of the internal bubble, and
its eventual transformation into a toroidal shape. Notably, the emergence of external jets on the
downstream side of droplet (DSD) is suppressed in cases involving a gas cavity.
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Our analyses are based on analogies and further confirmation will require experimental data. It
should be noted that numerous mechanisms contribute to the disintegration process, an area explored
in prior studies [49,97–103] yet still evolving. SIE breakup involves the formation of sheets,
petal-shaped structures or lobes, and ligaments. This process is closely linked to the development
of Kelvin-Helmholtz (KH) waves and flow entrainment, particularly on the windward side of the
droplet, as well as liquid transport [49] due to droplet deformation, especially on the leeward side.

KH waves primarily form on the droplet’s surface between the front to the peak (FTP) and
the equator, where shear effects are predominant [97]. These waves can induce droplet stripping,
resulting in KH-based liquid transport mechanisms [49,97,98] [see Fig. 18(a)]. As observed in
Figs. 18(a)–18(c) and Sec. III A 2, KH waves gradually increase in amplitude and then deflect in
the streamwise direction when becoming entrained by the external airflow. The entrainment of the
flow causes the surface waves to move downstream [49], leading to the accumulation of liquid as
sheets, petal-like structures, or lobes. The development of these surface structures is influenced by
the entrainment force induced by the external airflow and by the driving force of the internal flow
due to the KH wave. Additionally, shock-induced internal flow with vortices can contribute to the
rupture of surface structures [99].

Moreover, petal-like structures or lobes undergo a cascade process [49] during the formation of
ligaments, including the stretching of the structures, corrugation stretching, and the perforation of
holes that lead to bridge breakup [100,101]. The formation of holes can result in the rupture of sheet
and petal-like structures, ultimately yielding cylindrical ligaments. These holes can increase in size
over time. In cases where surface tension dominates, these formed ligaments can undergo further
secondary atomization into smaller droplets via Rayleigh-Plateau instability (RPI). However, for
fluids at near-critical conditions with a relatively higher gas-liquid density ratio and high kinetic
energy, surface tension effects are negligible [52] for relatively large ligaments. It should be noted
that our simulation’s resolution cannot capture the minuscule effects of surface tension, particularly
given the chosen method’s limitations in representing infinitely sharp boundaries.

Furthermore, Liang et al. [58] conducted an experiment on the interaction between a planar shock
wave and a water droplet containing a vapor cavity under subcritical conditions. In our cases, under
near-critical conditions (our Fig. 17), the ringlike structures, the transverse jets are similar to their
experimental data under subcritical conditions (their Fig. 2). In this way, the deformation of our
near-critical droplet behaves similarly to a water droplet in air under subcritical conditions [58].

We also analyze the drift of the center-of-mass velocity for these selected times. The results from
the two-dimensional simulation are used for comparison, as shown in Fig. 19. When comparing the
results between two-dimensional and three-dimensional simulations, it becomes evident that there
are significant differences, highlighting the importance of three-dimensional simulations for more
realistic and quantitatively accurate descriptions. The presence of a gas cavity enhances the drift
velocity in both cases. While two-dimensional studies offer qualitative insights into the effects of a
cavity on the droplet evolution process, three-dimensional studies provide more detailed information
on deformation and interactions.

2. Vorticity evolution and vortical structures

Figure 20 shows the contour of Z vorticity of the plane Z = 0, and Y vortic-
ity of the plane Y = 0. Figures 21 and 22 show the isosurface of � = 0.52. � =
||B||2/(||B||2 + ||A||2 + ε), where, ε is a minor value to prevent division by zero, ||B|| =
0.5((∂u/∂y − ∂v/∂x)2 + (∂u/∂z − ∂w/∂x)2 + (∂v/∂z − ∂w/∂y)2), and ||A|| = (∂u/∂x)2 +
(∂v/∂y)2 + (∂w/∂z)2 + 0.5(∂u/∂y + ∂v/∂x)2 + 0.5(∂u/∂z + ∂w/∂x)2 + 0.5(∂v/∂z + ∂w/∂y)2.

The results presented in Figs. 20–22 demonstrate the gradual development of vortex structures
after the shock interacts with the two-phase interface. The following key observations can be made:

Early vorticity induction. In the initial stages, vorticity is induced on the outer surface of the
droplet due to baroclinic effects (baroclinic vorticity). Near the upstream surface of the droplet
(USD), most vortices are oriented perpendicular to the flow direction [Figs. 21(a) and 22(a)].
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FIG. 19. The drift of the center-of-mass position and velocity (dimensionless at 100 m/s).

Streamwise-type vortices. As the simulation progresses, additional vortices are generated near
the USD. Notably, most of the newly formed vortex filaments near the downstream surface of the
droplet (DSD) are parallel to the flow direction [Fig. 21(b)]. These streamwise-type vortices exhibit
elongated hairpinlike structures in the azimuthal direction of the vortex core [Figs. 21(c)–21(e) and
22(c)–22(e)].

Vortex stretching and mixing. Fine filaments of vorticity serve as indicators of areas with intense
vortex stretching. Much like the discussion in Sec. III B 1, the heightened vorticity fosters the mixing
of fluids and amplifies the process of transferring and dissipating vortex energy. In the later stages,
the progression of Richtmyer-Meshkov instability (RMI), Rayleigh-Taylor instability (RTI), and
Kelvin-Helmholtz instability (KHI) further contributes to the deformation of the shocked droplet
and augments its mixing properties, as illustrated in Figs. 21(e) and 22(e).

Azimuthal instability. The azimuthal instability of the axisymmetric KH waves can be caused by
baroclinic effects (associated with RMI or RTI) and the generation of streamwise vortices [49]. This
leads to the formation of petal-like structures or lobes.

Baroclinic effects and vortex strain. At low gas-liquid density ratios, the baroclinic effects are
significant due to the high-density gradient across the interface. As the density ratio increases,
vortex-strain interactions (due to the vortex tilting and stretching mechanism) become more im-
portant in azimuthal modulation on KH waves due to higher gas inertia [100–103]. This results in
a higher vortex strain near the liquid interface, and the contribution of the baroclinic effect to the
generation of streamwise vorticity is reduced.

Roll-up vortex structures. When we combine the findings from Fig. 17, which pertains to the
region near ligament formation and deformation, with the insights from Fig. 18, we observe a
profusion of roll-up vortex structures, particularly streamwise vortices, as depicted in Fig. 21. These
streamwise vortices exhibit a pair of positive and negative values, as shown in Fig. 20, and play a
pivotal role in influencing the dynamic behavior of the system.

Such vortex structures and behavior of the droplet with a cavity represent an observation at
near-critical conditions. The complex interplay of various vorticity mechanisms, baroclinic effects,
and instabilities contributes to the intricate dynamics observed in the simulations.
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FIG. 20. The contour of Z vorticity of the plane Z = 0, and Y vorticity of the plane Y = 0 at t∗ = (a) 15,
(b) 27, (c) 49, (d) 56, and (e) 66.

IV. CONCLUSIONS

This study examines the intricate interactions of shock waves with a cylinder or droplet con-
taining an embedded gas cavity, particularly under near-critical thermodynamic conditions. The
gas-cavity presence significantly impacts various properties of the cylinder or droplet, encompassing
flow wave patterns, morphological changes, vortex formation, enstrophy, and three-dimensional
developmental characteristics. For processes at a near-critical conditions, we come to the following
observations.

(1) Distinct wave patterns and morphology changes: The presence of an internal gas cavity
significantly alters the observed wave patterns and interactions. A detailed analysis of various
parameters, including cylinder and internal bubble morphological changes, provides valuable in-
sights into shock-induced deformation and wave interactions. We examined the interaction in detail,
focusing on the early and late stages such as shock impingement, wave evolution, and morphological
deformation. The internal structures observed resemble those reported in numerical and experimen-
tal studies of shocked light bubbles. Interestingly, while the wave patterns at near-critical conditions
are similar to those obtained in the case with the cylinder consisting of SF6 in air at subcritical
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FIG. 21. Isosurface of � = 0.65 at t∗ = (a) 15, (b) 27, (c) 49, (d) 56, and (e) 66.

conditions, the deformation behavior of the current cylinder under near-critical conditions is more
akin to that of a water column in air under subcritical conditions.

(2) Vortex formation and baroclinic effects: The simulations demonstrate the emergence of
vortices and the deposition of vorticity on the surfaces of the cylinder or droplet. Vortices develop
on the external surfaces, and the presence of the gas cavity has a notable impact on the creation of
liquid mushroom jets, vortex structures, and the rupture of the cavity bubble, all of which contribute
to the deformation of the interface.

(3) Enstrophy and mixing: Enstrophy, reflecting the mixing process, evolves over time. The
presence of the gas cavity results in increased enstrophy due to internal jet formation and distortion
of the mushroom structure. The generation of baroclinic vorticity intensifies enstrophy, promoting
liquid-gas mixing.

(4) Center-of-mass redistribution: The analysis includes the drift of the center-of-mass position
and velocity. The presence of the gas cavity enhances the shift velocity in both cylinder and droplet
cases.

(5) Three-dimensional interface deformation: Three-dimensional simulations are crucial for
revealing complex, deformed structures near the two-phase interface, such as ligaments, lobes, petal
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FIG. 22. Isosurface of � = 0.52 at t∗ = (a) 15, (b) 27, (c) 49, (d) 56, and (e) 66.

shapes, and toroidal structures. These features, along with the three-dimensional vorticity distribu-
tion, cannot be captured by two-dimensional simulations. A comparative analysis is conducted to
examine the similarities and differences between the cases involving droplets and the cylindrical
column. Interestingly, the deformation of the droplet shell at near-critical conditions resembles that
of a water droplet containing a cavity in air under subcritical conditions, exhibiting similar ringlike
structures and the transverse jet. While our simulations are comparable to the characteristics of
shear-induced entrainment for a chosen mass fraction, a complete understanding of the underlying
physics requires further experimental validation.

Future work should encompass additional simulations with varying parameters alongside more
extensive experimental research. This comprehensive approach will enable a deeper understanding
of the complex mechanisms governing these interactions and disintegration processes.
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APPENDIX A: DETAILS OF THE PENG-ROBINSON EOS

Here

p = RT

v − b
− a

v2 + 2bv − b2
, (A1)

where T is the temperature, R is the universal gas constant, v is the molar volume, v = M/ρ, and
M is the molar mass. Coefficients are a = ∑N

α=1

∑N
β=1 XαXβaαβ and b = ∑N

α=1 Xαbα .
Specifically, Xα is the mole fraction of species α and in-total species number is N ; coefficients

aαβ = 0.457236(RT c,αβ )2/pc,αβ (1 + cαβ (1 − √
T /Tc,αβ ))2 and bα = 0.077796RTc,α/pc,α are ob-

tained according to the mixing rules [104]. pc,αβ is the critical mixture pressure and pc,αβ =
Zc,αβRTc,αβ/νc,αβ , cαβ = 0.37464 + 1.5422ωαβ − 0.26992ω2

αβ , Tc,αβ is the critical mixture tem-
perature, and Tc,αβ = √

Tc,αTc,β (1 − kαβ ). Tc,α and Tc,β are critical temperatures for species α and
β, and kαβ is the binary interaction parameter.

The critical mixture molar volume νc,αβ , the critical mixture compressibility Zc,αβ , and the

acentric factor ωαβ are denoted as νc,αβ = (1/8)(ν1/3
c,α + ν

1/3
c,β )

3
, Zc,αβ = (1/2)(Zc,α + Zc,β ), and

ωαβ = (1/2)(ωα + ωβ ), where ν1/3
c,α and ν

1/3
c,β are critical molar volumes for species α and β, Zc,α

and Zc,β are critical compressibility factors for species α and β, and ωα and ωβ are acentric factors
for species α and β. Further details can be found in Refs. [17,104].

APPENDIX B: SOLUTION OF THE CUBIC EQUATION

When solving cubic equations of state (EOS), such as the PR-EOS, it is important to recognize
that there may be three roots. However, it is essential to disregard nonphysical roots, which include
negative values and complex values, and focus on identifying the real, positive roots [105–107]. The
process of solving the cubic equation is outlined as follows:

x3 + Ax2 + Bx + C = 0, (B1)

where A, B, and C are known coefficients obtained directly from the cubic EOS. The discriminant
is � = D2 + E2 and D = (A/3)3 − AB/6 + C/2, E = B/3 − (A/3)2.

For � = 0, there are at least two equal roots, which are given by

x1 = 2 3
√−D − A

3
, x2 = x3 = − 3

√−D − A

3
. (B2)

� > 0, there are two nonphysical conjugate roots and one real root, F = 3
√

−D + √
�, G =

3
√

−D − √
�

x1 = F + G − A

3
, x2 = −

[
1

2
(F + G) + A

3

]
+

√
3

2
(F − G)i,

x3 = −
[

1

2
(F + G) + A

3

]
−

√
3

2
(F − G)i. (B3)

� < 0, there are three real and unequal roots, θ (rad) = arccos(−D/
√−E3),

x1 = 2
√−E cos

(
θ

3

)
− A

3
,

x2 = 2
√−Ecos

(
θ

3
+ 2

3
π

)
− A

3
,

x3 = 2
√−E cos

(
θ

3
+ 4

3
π

)
− A

3
. (B4)
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APPENDIX C: MODIFIED PR-EOS

The modified PR-EOS is designed to represent the saturation line in a straightforward manner.
Within the vapor dome region, an approximate saturation pressure for the mixture is utilized. The
algorithm for determining the pressure, which yields the temperature, density, and mass fraction, is
as follows:

Step 1. Calculate the pressure from the PR-EOS giving the temperature and density, as
well as the mass fraction. If nonpositive pressure (p∗ � 0) is obtained from the relation p∗ =
pPR−EOS(T, ρ, ξi ), a small arbitrarily positive value such as 1 would be adopted to replace this
nonpositive value (p∗ = 1 Pa).

Step 2. Calculate the density from PR-EOS given the PR-EOS pressure p∗, temperature, and
mass fraction, and check how many roots are obtained in the process ρ∗ = pPR−EOS(p∗, T, ξi ).

Step 3.1. If there is only one real value for ρ∗, then the PR-EOS pressure p∗ is chosen as the
corrected pressure.

Step 3.2. If there is more than one root for (ρ∗), then the saturation pressure (psat ) is given by
calculating the root, ∂ p/∂ρ = 0, via PR-EOS. Generally, the one at the lower density value (ρmin)
would be selected from the two resulting roots. The saturation pressure (psat ) is then defined as the
pressure corresponding to this root (ρmin).

Step 4. If the density that is given by the PR-EOS (lowest density root, ρ∗ = pPR−EOS(p∗, T, ξi ))
is very similar to the density provided (ρ), like (ρ∗ − ρ)/ρ < 10−4, then return the PR-EOS
pressure p∗; otherwise, return the saturation pressure (psat ).

In the case of DF methods or hybrid numerical schemes with a modified PR-EOS, it is crucial
to calculate the temperature (T ) for a given set of pressure (p), density (ρ), and mass fraction (ξi)
using the modified PR-EOS (T = pmodified−PR−EOS(p, ρ, ξi )). This can be expressed as follows:

Step 1. Initial guess (Tguess) temperature according to the initial condition and the temperature
from the last time step.

Step 2. This Tguess is used to calculate the pressure, using modified PR-EOS pguess =
pmodified−PR−EOS(Tguess, ρ, ξi ), where the state inside the vapor dome has already been corrected.

Step 3. If the pressure given by the modified PR-EOS (pguess = pmodified−PR−EOS(Tguess, ρ, ξi )) is
very similar to the pressure given by the modified PR-EOS (p∗), e.g., (pguess − p∗)/p∗ < 10−6, then
the temperature Tguess is selected as the correct temperature, T = Tguess.

Step 4. Otherwise, the guess temperature is updated according to the secant method or gradi-
ent descent or Newton method, and the criteria are p∗ = pmodified−PR−EOS(Tguess, ρ, ξi ) and (p∗ −
p)/p < 10−6.

Step 5. The modified PR-EOS [71] also limits the speed of sound to a minimum value—the
minimum speed of sound value used in this paper is 1 m/s [71]. Three subcritical isotherms of
varying composition are depicted in Fig. 30 of Ref. [51] to showcase the modified PR-EOS.

APPENDIX D: EFFECTS OF COMPUTATIONAL DOMAIN AND BOUNDARY
CONDITIONS ON NEAR-CRITICAL SHOCK-CYLINDER INTERACTIONS

Additional validations are presented in this section. These cases, when compared to previous
validation cases, serve to elucidate the influence of the computational domain and boundary
conditions on shock-cylinder interactions. As depicted in Fig. 23, reflective boundary conditions
are employed within a constrained computational domain. The purpose of this comparison is to
highlight the advancements offered by OWENO3 in contrast to the results obtained by the classical
WENO3 method.

Due to its lower dissipation characteristics in comparison to the WENO3 scheme, the results
obtained using the WENO3 scheme (Fig. 24) are outperformed by those of the OWENO3 scheme
(Fig. 25) when employing the same mesh resolution. Irrespective of the mesh resolution chosen,
the OWENO3 consistently delivers favorable results, whereas the performance of the WENO3
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FIG. 23. The restricted computational domain of the shock-cylinder interaction at near-critical conditions
(sketch map).

FIG. 24. The shock cylinder interaction within the restricted domain at times 65, 134, 164, 300, and 450 µs
(from left to right). WENO3 with a mesh resolution of (a) 0.23 mm, (b) 0.115 mm, (c) 0.0767 mm, (d)
0.0575 mm. WENO5 with a mesh resolution of (e) 0.23 mm [51]. Reproduced from Ref. [51].
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FIG. 25. The shock n-dodecane cylinder interaction within the restricted domain at times 65, 134, 164, 300,
and 450 µs. OWENO3 with a mesh resolution of (a) 0.23 mm, (b) 0.115 mm, (c) 0.0767 mm, (d) 0.0575 mm.

scheme diminishes during later evolution times (t = 450 µs) when using mesh resolutions of 0.23
or 0.115 mm.

Upon comparing results obtained from coarser mesh resolutions to finer ones across different
numerical schemes, it can be deduced that the OWENO3 method, combined with a mesh resolution
of 0.115 mm, can yield results comparable to those of the WENO5 scheme from Ref. [52], all while
maintaining computational efficiency and accuracy.

FIG. 26. Schematic of the shock-bubble interaction computational domain.
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TABLE II. Initial conditions for the shock-bubble interaction.

p u v ρ Non-dimension [108]
Stage (Pa) (m/s) (m/s) (kg/m3) (p, u, v, ρ)

Preshocked air 101325 0 0 1.225 (1,0,0,1)
Postshocked air 159059 113.5 0 1.686 (1.5698, −0.394, 0,1.3764)
Helium 101325 0 0 0.169 (1,0,0,0.138)

APPENDIX E: SHOCK INTERACTION WITH HELIUM BUBBLE

We have validated the current numerical scheme using the shock–helium bubble case as dis-
cussed in Refs. [22,108]. The computational domain is depicted in Fig. 26. The initial conditions
are given in Table II.

We have employed a Cartesian mesh with a uniform resolution of 0.115 mm. The parameters for
the NASA polynomials can be found in Ref. [78].

As depicted in Fig. 27, the results for the helium-air case exhibit excellent agreement with the
findings presented by Quirk and Karni [22]. This alignment in results has also been observed by
Haas and Sturtevant [21] and other researchers [109]. The methodology employed in this study
effectively captures the underlying physical phenomena while ensuring robust performance. The
selection of evolution time steps closely approximates the reference time, making minor deviations
acceptable.

FIG. 27. Numerical schlieren images for the evolution of the shocked air-helium interaction at time (a)
32 µs, (b) 52 µs, (c) 72 µs, (d) 102 µs, and (e) 245 µs. The first column shows the current numerical results,
while the others show the results from Ref. [22]. From left to right: numerical scheme (mesh resolution),
reference scheme (0.056 mm), WENO3 (0.23 mm), and OWENO3 (0.23 mm). Reproduced from Ref. [22].
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