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Capillary-lubrication force between rotating cylinders separated
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Two cylinders rotating next to each other generate a large hydrodynamic force if the
intermediate space is filled with a viscous fluid. Herein, we explore the case where
the cylinders are separated by two layers of viscous immiscible fluids, in the limit of
small capillary deformation of the fluid interface. As the interface deformation breaks
the system’s symmetry, a novel force characteristic of soft lubrication is generated.
We calculate this capillary-lubrication force, which is split into velocity-dependent and
acceleration-dependent contributions. Furthermore, we analyze the variations induced by
modifying the viscosity ratio between the two fluid layers, their thickness ratio, and the
Bond number. Unlike standard elastic cases, where a repelling soft-lubrication lift force
has been abundantly reported, the current fluid bilayer setting can also exhibit an attractive
force due to the nonmonotonic deflection of the fluid interface when varying the sublayer
thickness. In addition, at high Bond numbers, the system’s response becomes analogous to
that of a Winkler-like substrate with a viscous flow inside.
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I. INTRODUCTION

The movement of solid objects in viscous fluids has been the subject of detailed research in fluid
sciences for more than a century [1,2]. As opposed to particle motion in a bulk fluid [3-6], when an
object moves in close proximity to a boundary, the resulting pressure field and the force exerted on
the object are modified [7—10]. Such lubricated contacts have implications spanning over different
domains, from tribology [11] to biomechanics of synovial fluids in joints [12,13] or the transport of
cells in the blood [14]. The understanding of single-particle dynamics then further helps explain the
properties of clusters and suspensions [15-19].

Over the past decades, dedicated research has explored the influence of soft boundaries on the
motion of the particles to understand the role of boundary elasticity on hydrodynamic flow. The
force and torque felt by the particle approaching the boundary have been calculated [20,21] and
have been used to design the contactless rheological probes employed for soft materials [22,23].
Surprisingly, as opposed to rigid boundaries, particles translating parallel to soft boundaries feel
a repulsive lift force that arises out of the symmetry breaking induced by the elasticity of the
wall [24-34]. The theoretical predictions of these forces have been confirmed by experimentally
exploring the forces on both small and large objects moving near deformable boundaries [35-40]
using different techniques ranging from the use of atomic force microscopy to surface forces appa-
ratus, with a variety of soft materials exhibiting different elastic natures. The scope has been further
expanded to explore the influence of fluid compressibility [41], fluid inertia [42], viscoelasticity of
the boundary [38], and the inhomogeneities in slippage at the boundary [43].
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FIG. 1. Schematic of the system. Two rigid infinite cylinders rotate with prescribed velocities near a
capillary interface between two incompressible Newtonian viscous fluids. The origin of spatial coordinates
is located at the undeformed fluid interface (z = 0) in the line joining the centers of mass of the cylinders
(x = 0). The deformed fluid interface is located at z = 8(x, t).

As the solids become softer, capillary stresses dominate over the material’s bulk elasticity, and
inner flows become increasingly important. The latter start to modify the force and torque generated.
In the limit of point forces, previous research [44—46] has highlighted the pumping flow that can
be observed when the interface deflection is accounted for. On the other hand, Leal and co-workers
calculated the force felt by a finite-sized sphere moving near a fluid interface, by utilizing Lorentz’s
reciprocal theorem, for the regime of a large gap as compared to the size of the sphere [47-50].
Further developments included advancements in slender-body theory [51] to explain the swimming
of microorganisms near fluid interfaces [52-55], as well as the formation of floating biofilms [56].
A recent study on viscoelastic fluid substrates [57] also highlighted that capillary interfaces could
result in an attractive force instead of a repulsive lift one.

While previous research has shown the importance and applicability of understanding the motion
near a fluid interface, the characterization across different viscosity ratios and arbitrary layer
thicknesses, for immiscible fluids, remains to be done. In the present article, we study the system
of two rotating cylinders in close proximity to each other, separated by two viscous fluid layers.
We calculate the force generated on one of the cylinders in the limit of small deformation of the
fluid interface, as characterized by the capillary compliance. The article is organized as follows.
We start by describing the viscocapillary lubrication problem at stake, followed by the theoretical
methodology to obtain the different fields using perturbation analysis at small capillary compliance.
We then discuss the implications of the deformable interface and the sublayer flows on the force
generated on the cylinder.

II. CAPILLARY-LUBRICATION THEORY

We consider two rigid infinite cylinders of radii a; and a, rotating with prescribed time-
dependent angular velocities w; and w; near a fluid interface, as shown in Fig. 1. The interface is
characterized by its surface tension o, and separates two incompressible Newtonian viscous fluids,
with dynamic shear viscosities 7; and 1,, as well as mass densities p; and p, (with p» < p;). The
acceleration of gravity is denoted by g. The thickness profiles z = —h(x) and z = hy(x) of the
bottom and top cylinders, depend on the horizontal position x. We denote by z the vertical position
and by ¢ the time.
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Governing equations

We neglect fluid inertia and assume the typical thicknesses d;, of the two fluids indexed by i =
1, 2, to be much smaller than the relevant horizontal length scales, defined by the hydrodynamic radii
+/2a;d; [20], allowing us to invoke lubrication theory [58,59]. Introducing the excess pressure fields
pi(x, z, t) with respect to the hydrostatic contributions, and the horizontal velocity fields u;(x, z, t),
the incompressible Stokes equations thus read at leading lubrication order

ap;

a_i =0, (1)
8[7,' 821/{,'
o Moz @

In the near-contact region, in the limit of a small gap, the shapes of the cylinders can be approxi-
mated by their parabolic expansions, as

x2

hi(x) ~d + 3 3)
a
and
32
hz(_x) >~ d2 + 2— (4)
ap

Finally, we close the equations by setting the flow boundary conditions. We impose no slip at the
three interfaces alongside the balance of tangential and normal stresses at the fluid interface located
at 7z = 5(x, t). Hence, at z = —hy, one has

Uy = —wyay, (5)
at z = h,, one has
Uy = wray, (6)
and at z = &, one has
uy = up, (7
nzaa—b? = 77188—1?, ®)
828
pp—pr oo + 88(p2 — p1). )
Let us now nondimensionalize the equations through:
h(x) = dyH\(X), ha(x) = drHr (X), x=IX, z=d)Z,
t = éT, u(x,z,t)=cU1(X,Z, T), uyx,z,t)=cl(X,Z,T),
pi(x, 1) = TZ—EIPl X, T), px,1)= TZ—EZPz(X, T), 8(x,1) =dr,AX, T),
2 2

with the upper hydrodynamic radius [ = +/2a»d>, and where c represents a characteristic horizontal
velocity scale, e.g., axw,. Moreover, the viscosity ratio is denoted by M = n;/n,. Using these
dimensionless variables, Egs. (3) and (4) become

X2
HI(X):a+F, (10)
HX)=1+X2, (11)
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where « = d,/d, and 8 = a,/a, are the geometrical aspect ratios of the problem. The solutions of
the dimensionless versions of Egs. (1) and (2) are of the form

U, —P{ZZ-G-CZ*l-C (12)
1 = M 1 25

P
U2:?Z + G3Z + Cy, (13)

where the prime symbol corresponds to the partial derivative with respect to X, and where the
coefficients C;, with j = 1, 2, 3, 4, can be calculated by using the boundary conditions of Egs. (5)-
(8). Doing so, we obtain the velocity profiles:

[ Z* — H} Z+H, A? — H}
Ui =P + — A(A - Hy)
oM M(A —H,)— (A+Hy)| 2M
, (Z + Hy)(A — Hy)? W +W)(Z+H))
+P — -V, (14)
2[M(A — Hy) — (A + Hy) M(A —Hy)— (A+Hp)
o] Z-H)A+H) (22— H?
V== I{Z[M(A—Hz)—(A+H1)]} 2{ ;@)
_ 2 _
5 [_A+ M(A — H,) “ __MWAVWEZ-H)
2[M(A — Hy) — (A + Hy)] M(A — Hy) — (A +Hp)
where V; = a;w;/c. We then calculate the flow rates within the two fluid films, as
A (A +H) AM(A —Hy) — (A+H)  Py(H + A?(Hy — A)?
o _/ Uiz = —P—r u
—H (A—Hy))—(A+H) 4[M(A—-H)—(A+H)
(A+H) (Vi + V)
—Vi(A +H) — , 16
WATHD) = SN —Hy) — (A + HD (16)
Ha P (A—H)*(A+H) ,(Hy — Ay M(A — Hy) — 4(A + H))
O = / U,dZ = — - P,
A 4 [M(A—Hy)— (A+Hy)] 12 M(A - Hy)— (A+Hy)
_ 2
- Vo(Hy — A) + & )7 (Vh + Vo) (17)

2[M(A — Hy) — (A +H)]'

which, by introducing ad hoc auxiliary functions F; and [;, can be rewritten in a more compact
fashion, as

Q0 = Fi(H, H,, )P + F,(H,, Hy, )P, + I, (H,, H, A), (18)

0> = Fs(H,, H», A)P| + Fy(H,, Hy, APy + L(H,, H, A). (19)

The thin-film equations for this system can be derived by invoking volume conservation in the
two fluid layers, as

L 0
oT

A

T 0,=0. (21)

Finally, Eq. (9) reads in dimensionless form,
A" —BoA =« (P, — Py), (22)

where Bo = (I/1.)> denotes the Bond number of the problem which compares the relevant dy-
namical horizontal length scale / to the capillary length I, = /o /[g(p1 — p2)]. The dimensionless
compliance of the fluid interface is denoted by k = Ca/e?, where Ca = n,c/o is a capillary number
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and € = d, /! is a small lubrication parameter. At this point, it is interesting to highlight the different
regimes depending upon the value of Bo in the above equation. If Bo « 1, then the interface
deformation is only slightly affected by gravity. As the Bo is slowly increased, the deformation
linearly varies with its increase. On the other hand, for large Bo, the influence of interface curvature
becomes negligible in the above equation, and we expect a Winkler-like response with the effective
compliance given by « /Bo, which is now independent of surface tension and is inversely related
to the gravitational pull. This Winkler-like response is in fact viscoelastic in the sense that it still
includes the fluid flow in the sublayer. Altogether, the problem has three unknown fields: A, P;, and
P,. These obey the set of three coupled differential equations given by Egs. (20)—(22), together with
the following spatial boundary conditions: P, — O and A — O at X — =o0.

III. PERTURBATION ANALYSIS

Following the approach of previous soft-lubrication studies [24,26,28,30,60], we assume that
k < 1 and perform an expansion of the fields up to first order in «, as

A>~0+kAq, (23)
P~ P+ «Py, 24)
Py > Py + kP, (25)
Uy >~ Uy + «Un, (26)
U, >~ Uy + Uy, 27

where k A; is the deformation profile of the fluid interface at first order in «, KIP; ; the excess
pressure field in layer i at perturbation order j, and x/U; ; the velocity field in layer i at perturbation
order j. Given the respective symmetries of the fields at each order in «, it is more convenient to
focus only on the X > 0 domain, and impose the following equivalent spatial boundary conditions:
Po=0,P; =0,and A; =0atX =0,aswellas P,; - Oand A; - 0 atX — +4o0.

A. Zeroth-order solution

At zeroth order in k, the fluid interface is undeformed. Equations (20) and (21) then lead to the
following coupled ordinary differential equations for the two pressure fields:

FioP{y + FaoPyy = ki — Lo, (28)
FoP|y + FioPyy = ko — by, (29)

where the k; are integration constants, and where we have evaluated the above auxiliary functions at
zeroth order in «, as

H} 4MH, + H, H?H; H; MH, + 4H,
F10=———, F20=F30=——, W =—————"——"> (30)
12M MH, + H, 4(MH, + H)) 12 MH, + H,

HX(V + V- MHZ?(V; + V-
wzw_v][{l’ Izozvzyz_w_ (31)

2(MH, + Hy) 2(MH, + Hy)

The derivatives of the pressure fields can then be evaluated from the above expressions, to give
Fao(ky — Tho) — Fao(ka — I)
FioFs — FaoF3o

Fio(ky — 1) — Fo(ky — I1p)
FioFy — FxF3 '

Py = , (32)

Py = (33)
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The latter equations can be integrated, e.g., with Mathematica or an explicit finite-difference
numerical method—both giving identical results. The obtained solutions will be analyzed in the
Discussion section. The corresponding variation of the zeroth-order flux is plotted and discussed in
the Appendix.

B. First-order solution

According to Eq. (22), the zeroth-order pressure fields calculated above lead to a deflection of
the interface at first order in «, which satisfies

A/{—BOAl =P20—P]0. (34)
The formal solution of Eq. (34) satisfying the above boundary conditions reads

1
+/Bo

X
A(X,T) = A(T)sinh(X+v/Bo) — / dY [Py (Y, T) — Pyo(Y, T)] sinh[(Y — X)+v/Bo],
0

(35)

where Ac(T) = (1/+/Bo) [;° dY[Pio(Y, T) — Px(Y, T)] exp(—Y +/Bo). This solution can be nu-
merically evaluated for fixed parameters Bo, M, «, and 8.

Then, from the obtained deflection at first order in «, one can calculate the pressure fields at first
order in k, as explained hereafter. To begin with, the auxiliary functions are evaluated at first order
in k, as

oF,

F,~Fy+ kA , 36

0t rAL o (36)
al,

Im: m()+KA1_ ) (37)
A A=0

forn=1,2,3,4 and m = 1, 2. Introducing G,y = %IAzo and E,,p = %IAzo, and expanding the
fluxes as Q; ~ Qip + kQ;1, one gets the first-order corrections to the fluxes:

011 = FioP{, + A1GioPjy + FaoPyy + A1GyPyy + ArE, (38)
021 = FyoP{, + A1G3oPjy + FaoPyy + A1GaoPsy + A Ex. (39
Furthermore, the thin-film equations and the X = 0 boundary conditions imply
X
0n = f 221 ix (40)
11 = o BT ’
0: = | OBy 1)
21 = L ar
Combining the last four equations leads to
FoP{, + FxPy = —K — J1, (42)
FyoP[, + FpoPy =K — 7, (43)
with
T = A1(GroPly + GaoPoy + Evp), (44)
J> = A(G3oPyy + GaoPry + Exp). (45)
X
A
K= / 921 4x. (46)
o 0T
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Decoupling the equations leads to

, FoHi — M
U FioFy — FaoFso
FioHa — FoHa
FioFy — FoF3’

(47)

P = (48)
with H; = —K — J; and H, = K — J>. These can be numerically integrated over X, for fixed
parameters Bo, M, «, and B, using the far-field boundary conditions. The obtained solutions will be
analyzed in the Discussion section, while the corresponding first-order flux in the top layer will be
discussed in the Appendix.

We conclude this section with an important remark. In the above expressions, we see that K
involves the accelerations of the cylinders, while .7} and 7, both involve squared velocities instead.
Moreover, the first-order corrections of the pressure fields are linear combinations of X and 7;,
which is reminiscent of past soft-lubrication studies [32,61,62]. Therefore, in order to address
these two independent forcing modes later on, we split H; and H, into their (i) squared-velocity-
dependentcontributions ()2, generically denoted by the subscript “U2,” and referred to as “lift”
terms; and (ii) acceleration-dependent contributions (H;);;, generically denoted by the subscript
“U and referred to as “unsteady” terms. These contributions read

Hy2 = =1, (49)
(Ho)y2 = =, (50
(Hy = —K, S

(Ha)y = K. (52)

IV. DISCUSSION

Hereafter, keeping 8 >> 1 in order to approach the situation of a cylinder moving near a thin,
supported and flat fluid film, we discuss the zeroth-order and first-order solutions, and investigate
the influence of the three other key dimensionless parameters of the problem: the viscosity ratio M,
the gap ratio «, and the Bond number Bo.

A. Zeroth-order pressure

The zeroth-order excess pressure fields in the two layers are computed from Eqgs. (32) and (33)
and plotted in Fig. 2, for « = 15 and B =99, and for different values of the viscosity ratio M.
For comparison, we also show the pressure Py(X) = —2V,X/(1 4+ X?)? [10] generated if the fluid
interface was replaced by a no-slip solid boundary. The pressure fields in both layers appear to have
opposite signs. Furthermore, due to the allowed flow in the bottom layer, the pressure generated in
the top layer is lower than if the interface was a no-slip solid substrate. However, increasing M, i.e.,
increasing the viscosity of the bottom layer with respect to the one in the top layer, increases the
pressure magnitude in both layers. Eventually, at large M, the pressure field in the top layer saturates
towards P;, as expected.

In Fig. 3, we investigate the effect of the ratio o between the bottom-layer and top-layer
thicknesses. Reducing o increases the magnitude of the pressure generated in the top layer, as
expected due to the reducing flow ability in the bottom layer. Once again, the curves eventually
saturate towards the no-slip solid pressure F;. Interestingly, at some point, the decrease of « leads
to a sign change for the bottom-layer pressure. The transition point of such a sign change depends
(not shown) upon the chosen values of M and S.
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0.1 : by O
(@) 3 = 0.001 (b)
M =0.01
0.081 M=01 || -0.2
M=1
_ 0.06 M=10 | N M =0.001
& ——M =100 f -0.4 + M =0.01
0,041 M=0.1
M=1
-0.6 M =10
0.02 — M =100
_Ps
0 -0.8 : : ‘ -
0 2 4 6 8 10 0 2 4 6 8 10
X X

FIG. 2. Zeroth-order excess pressure fields Py (a) and Py (b) as functions of the horizontal coordinate X,
as evaluated from Eqgs. (32) and (33) for « = 15 and 8 = 99, with V; = 1 and V, = 1, and different values of
M as indicated. The black line in panel (b) represents the pressure profile P, generated near a solid boundary
[10].

B. Interface deflection

The first-order interface deflection field is calculated using Eq. (35) and plotted in Fig. 4 for
several Bo values. While the horizontal range and the magnitude are both affected by Bo, the
former can be absorbed into a rescaled horizontal coordinate X+/Bo. This is characteristic of
problems involving capillarity and a direct consequence of the Young-Laplace condition of Eq. (34).
In addition, the deflection magnitude decreases as Bo is increased, since gravitational resistance
towards interface deformation is increased. However, the decrease does not seem to follow a simple
scaling law with Bo.

Let us now investigate the influence of the viscosity ratio M and gap ratio «. The results are
plotted in Fig. 5. As M increases, the zeroth-order pressure fields increase in magnitude monoton-
ically, leading to a corresponding increase in the magnitude of the interface deflection. Similarly,
decreasing « increases the magnitude of the interface deflection. However, the sign change for the
bottom-layer pressure field observed previously at small « leads to an intricate behavior of the
interface deflection profile. Further decreasing (not shown) « can even lead to a complete sign flip
of the interface deflection.

.
(a) JO T T T 50 (b) 0
40 0
-0.2
_ 30 _ a=0.001
o< & -0.4+ a=0.01
20 a=0.1
a=1
-0.6 | —a =10
10 ——a =100
—P,
0 -0.8 . :
0 2 4 6 0 2 4 6 8 10
X X

FIG. 3. Zeroth-order excess pressure fields Py (a) and Py (b) as functions of the horizontal coordinate X,
as evaluated from Eqgs. (32) and (33) for M =2 and g =99, with V; =1 and V, = 1, and different values
of o as indicated. The black line in panel (a) represents the top-layer pressure field for « = 0.001, with the
appropriate scale on the right y axis. The black line in panel (b) represents the pressure profile P, generated
near a solid boundary [10].
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1.2 .
Bo =10.01
1t Bo=0.1 |
Bo=1
0.81L Bo=10 |
Bo =100
<T 0.6 J
0.4 ]
0.2 J
0 :
0 2 4 6 8 10

X+vBo

FIG. 4. First-order interface deflection profile A; as a function of rescaled horizontal coordinate X +/Bo, as
calculated from Eq. (35) withM =2, =15, 8 =99, V; =0, V, = 1, and for several Bo values as indicated.

C. First-order pressure

Integrating Eqs. (47) and (48) allows us to find the first-order pressure corrections P;; = ;2P +
o Pi1, which are separated into two different contributions as mentioned beforehand: (i) lift terms
v2Pi1 and (ii) unsteady terms ; P;;. We further stress that our discussion below focuses only on the
top layer, as our goal is to eventually calculate the force generated on the top cylinder. The lift and
unsteady terms in the top layer are shown in Fig. 6 for a given set of parameters. As we can see,
they typically push the cylinder away from the interface. In addition, as the Bond number Bo is
increased, one observes (not shown) a decrease in both the lift and unsteady terms, which is due to
the reducing interface deflection observed above.

Moreover, the effects of the viscosity ratio M and gap ratio o are presented in Figs. 7 and 8.
Increasing M, or decreasing «, increases the magnitude of both the lift and the unsteady terms. This
is explained once again by the reducing flow ability in the bottom layer. However, interestingly,
for very small « values, where the zeroth-order pressure field in the bottom layer changes sign, the
first-order pressure field in the top layer reduces in magnitude.

(a) 2 : (b) 50 ;
M = 0.001 —a =0.001
M =0.01 40 t a=0.01
1.5} M=01 [ a=0.1
M=1 | 301 , —a=1
—M=10 T T a=10
J 1 —M =100 |] g 20t ——a =100
0.5+
0 -10
0 2 4 6 8 10 0 2 4 6 8 10
X X

FIG. 5. First-order interface deflection profile A; as a function of horizontal coordinate X, as calculated
from Eq. (35) with Bo = 0.01, 8 =99, V, = 0,and V, = 1, for (a) = 15 and varying M as indicated; and (b)
M =2 and varying « as indicated.
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10

FIG. 6. First-order pressure correction P»; in the top layer as a function of horizontal coordinate X, as
obtained from numerically solving Egs. (47) and (48) for M =2, « = 15, § = 99, and Bo = 0.01. Both the
lift term 2 P5; (blue) for V; = 0 and V, = 1, and the unsteady term ;; P, (red) for V; = 0 and V, = 1, are shown.

D. Capillary-lubrication force

In dimensional units, the normal force per unit length F' felt by the top cylinder can be found by
integrating the pressure field p, in the top layer along the horizontal coordinate x. At zeroth order,
the force is null by symmetry of the excess pressure fields. At leading order in perturbation, one
thus has

00 222 5/2 2. 2 2

F =/ padx ~ M<ﬂ) v + 220 (£> oV, (53)
—00 o d2 (o2 d2

where ;2yn = (27/2/V22)f0oo v2P1dX and gy = (24/\/.2)f0Oo P21 are dimensionless coeffi-

cients corresponding to the lift and unsteady terms, respectively. These two coefficients are plotted

in Fig. 9 as functions of the viscosity ratio M and for various gap ratios «. Two main comments can

be made on the results. First, the coefficients vary by orders of magnitude upon changing the two

(a) ‘ - ‘ ‘ (b) 1.5
11 i
0.8
1 L
06 ~
& M = 0.001 &
S04 M =0.01 = .
M =01 Dr
0.2 M -1 .
—M =10
O —M =100 ||
| | | ‘ 0
0 2 4 6 8 10 0 2 4 6 8 10
X X

FIG. 7. First-order pressure correction P, in the top layer as a function of horizontal coordinate X, as
obtained from numerically solving Eqs. (47) and (48) with o« = 15, 8 = 99, and Bo = 0.01, and for various M
as indicated. Both the lift term ;2P (a) with V; = 0 and V, = 1, and the unsteady term ; P,; (b) with Vi=0
and V, = 1, are shown.
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(a) 60 , ‘ : : (b) 4000
mi 3000 |
- _, 2000 ¢
& 20 —a—oo01]] & —a =0.001
= o =0.01 = 1000} o =0.01
a=01 a =01
0 — —a=1 = 0 \ —a =1
—a=10 v —a=10 [
—a =100 —a =100
-20 : : ‘ : -1000 : : : :
0 2 4 6 3 10 0 2 4 6 8 10
X X

FIG. 8. First-order pressure correction P, in the top layer as a function of horizontal coordinate X, as
obtained from numerically solving Egs. (47) and (48) with M = 2, 8 = 99, and Bo = 0.01, and for various «
as indicated. Both the lift term ;2P (a) with V; = 0 and V, = 1, and the unsteady term ; P,; (b) with Vi=0
and Vz = 1, are shown.

ratios, which indicates the possibility of tuning the conditions to modify, control, and optimize the
capillary-lubrication effects. Moreover, in direct contrast to classical elastic soft lubrication [33],
the coefficient signs can be changed too, as already reported for the lift force in a recent study on
viscoelastic fluid substrates [57].

We saw earlier that increasing Bo reduces the deflection of the interface and in turn the first-order
pressures. The variation of the lift coefficient ;21 is thus plotted in Fig. 10 against Bo and for
different values of «. For small Bo values, the decrease is affine (i.e., ;2121 =~ aBo + b, where
a and b are constants). For large Bo values, the lift coefficient becomes inversely proportional to
Bo. Interestingly, as discussed earlier, in the latter regime, the curvature term in Eq. (34) becomes
negligible, and the interface response becomes Winkler-like [30]. As a result of the modified
compliance, the influence of Bo on the deflection of the interface is modified, which is reflected
in the variation of the lift coefficient. However, it is to be remarked that, in contrast to pure Winkler
solids, there are still flows in the bottom layer here.

i b) 10°
(@) —o—a = 0.001 (®)
—o—a=0.1

= 1021

=

B

—o0—a=0.001 —o—a=10
o —o—a =01 —e—a=1000
107 + coa=1
102 10° 102
M

FIG. 9. Lift coefficient ;21 (a) and unsteady coefficient ;v (b) of the first-order normal force per unit
length [see Eq. (53)] exerted on the top cylinder as functions of the viscosity ratio M and for various gap ratios
a. These coefficients were obtained from numerical integration of P,; along X, as computed for Bo = 0.01,
B =99, and for either V|, =0, V, =1 (a) or Vi=0V,=1 (b). The squares denote the absolute values in the
case of negative values.
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FIG. 10. Lift coefficient ;21 of the first-order normal force per unit length [see Eq. (53)] exerted on the
top cylinder as a function of the Bond number Bo and for various gap ratios . This coefficient was obtained
from numerical integration of P,; along X, as computed for M =1, 8 =99, V; =0, and V, = 1. The solid line
corresponds to an affine decrease with Bo, while the dashed line corresponds to an ~1/Bo power law.

Finally, in dimensional units, the torque per unit length 7" generated on the top cylinder is found
by integrating the shear stress, as

° Buz
T =-a m—

12
a
dx >~ —Yizwzag(—z) 20, (54)
o 0z

d>

z=hy

with ¢y = (232/V3) fooo ag—zml z=n,dX the zeroth-order dimensionless coefficient. Indeed, by sym-
metry of the velocity field, there is no contribution at first order in compliance. The zeroth-order
coefficient ¢, is plotted in Fig. 11 against the viscosity ratio M, and for different values of the gap
ratio o. We first see that for all o the zeroth-order coefficient saturates to two limiting values, for
M — 0 and M — oo, respectively. The latter corresponds to the no-slip rigid case, as expected.
Moreover, inspired by our previous study on the normal motion [62], we observe a collapse when
using the rescaled parameter M/«, for o« > 1.

(b) 12

0.4

107° 100 10°
M/«

FIG. 11. (a) Coefficient ¢, of the zeroth-order torque per unit length [see Eq. (54)] exerted on the top
cylinder, and normalized by the value for a rigid no-slip boundary, as a function of the viscosity ratio M and
for various gap ratios «. This coefficient was computed for § = 99, V; = 0, and V, = 1. (b) Same data with a
rescaled parameter M/« on the x axis.
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FIG. 12. Zeroth-order flux O, in the top layer as a function of viscosity ratio M, for 8 =99, V; =0,
V, = 1, and for different «, as indicated.

V. CONCLUSION

We have studied two rotating cylinders separated by a capillary interface in between two
lubricating viscous films. Specifically, by using a perturbative expansion in the limit of small
deformation of the interface, we have numerically calculated the pressure fields, the interface
deflection, and the subsequent force generated on one cylinder. These were separated into lift and
unsteady contributions. We have further investigated the influence of all the relevant geometrical
and physical parameters of the problem on these contributions and have revealed a large degree of
tunability of their magnitudes and even signs. The latter peculiar feature is absent of classical elastic
soft lubrication and highlights the interest of such capillary-lubrication settings. Our results pave the
way towards the characterization of colloidal mobility near complex boundaries.
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APPENDIX

The fluid fluxes in both layers depend upon the parameters of the study. The zeroth-order flux
0> in the top layer, normalized by its value for the case of a no-slip boundary [10], is independent
of X, and is plotted versus M in Fig. 12 for different values of «. We observe that the flux decreases
monotonically for increasing M but saturates in the limit of both small and large M. Increasing «
leads to higher flux at the same value of M.
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FIG. 13. First-order flux Q,, in the top layer as a function of the horizontal coordinate X, for M = 2,
B =99,V, =0, and V, = 1, and for various (a) « at Bo = 0.01 and (b) Bo at @ = 15.

As opposed to the zeroth-order flux, the first-order flux 9, in the top layer does not depend upon
the angular velocity of the cylinders, but rather on the angular accelerations of the cylinders. It also
varies spatially but saturates to a constant value in the far field. Figure 13 shows the spatial variation
of Q»y, for various o and Bo. We see a nonmonotonic response with increasing « in Fig. 13(a). On
the other hand, increasing Bo reduces the flux, as a result of the decreasing interface deflection.
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