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Modal and nonmodal stability analysis of a channel flow with longitudinal riblets are
investigated. To this extent, a method based on the coupling between a two-dimensional
stability problem and a computational framework for n-periodic systems based on Bloch
waves is proposed. Unstable modes from linear stability can be retrieved. The influence of
the riblets on the most amplified flow structures is investigated through a transient growth
analysis: a resonance is found when the riblet wavenumber is equal to the wavenumber
of the optimal streaks in a smooth channel flow. For large riblet spacing, a wavenumber
lock-in regime, in which the streaks dynamics and wavelength are totally controlled by
the riblet spacing, is observed. Physically, a modulation of the streaks amplitude in the
spanwise direction via a beating mechanism is seen. These phenomena are characteristic
of dynamic systems spatially forced and may exhibit geometric frustration. Similar results
were found in the study of secondary flows in Rayleigh-Bénard convection with wavy
walls. A resolvent analysis is also performed: it is found that riblets lead to the development
of oblique waves that may trigger an early transition.
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I. INTRODUCTION

Surface roughness has a prominent role in the transition to turbulence and as such, has been
studied since the seminal work of Reynolds [1]. The first studies were experimental [2–4] and
aimed at identifying the conditions under which the roughness had an influence on the overlying
turbulent flow. Specifically, the investigation of the drag-reducing properties of a rough surface
has attracted a lot of attention [5–10] due to the large number of possible applications in the
engineering field. The effectiveness of the drag-reducing effect was found to be dependent mostly on
the roughness’ spacing s with the drag reduction being a linear function of it. If the spacing increases
too much, the viscous regime breaks down [8] and the rough surface increases drag instead.
Several mechanisms for this breakdown were proposed: the penetration of turbulent fluctuations
into the grooves [11,12] or the creation of vortices near the tips of the riblets [13]. More recently,
García-Mayoral and Jiménez [7] observed the development of spanwise-coherent rollers, resulting
from a Kelvin-Helmholtz instability and associated with a shear stress increase in the vicinity of the
riblets. These structures were further investigated in the work of Endrikat et al. [14] in which the
optimal roughness shape for the development of rollers was obtained.

The problem of the influence of a rough surface has also been tackled from a stability point of
view by Floryan [15]. In this case, a roughness is said to be hydraulically active if it is able to induce
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flow bifurcation and transition to turbulence. This criterion requires the investigation of the linear
stability of the flow over the rough surface, commonly done through a reduced order geometry
(ROG) model [16]. In this framework, the roughness shape is assumed to be accurately described
by the first leading modes of its Fourier expansion, which, in most cases, appear sufficient to capture
the underlying physical mechanisms [17]. From there, base flows for a large variety of roughness
configurations and their linear stability have been investigated, either through immersed boundary
condition methods [18–20] or through domain transform approaches [19,21,22]. Depending on the
flow parameters, notably on the height and wavenumber of the roughness, instabilities may arise
either from traveling waves or from streamwise vortices [15]. Linear stability of the flow over
longitudinal riblets was specifically investigated in the work of Moradi and Floryan [20], where
quasi-two-dimensional Tollmien-Schlichting waves were found to be responsible for the transition
to turbulence. Later, Mohammadi et al. [23] showed that Squire-related modes, located in the center
of the channel, could also destabilize the flow for small streamwise wavenumbers.

All these results were obtained within the modal stability framework, focusing only on the
asymptotic stability of the flow. However, due to the non-normality of the linearized Navier-Stokes
operator [24], perturbations can experience a non-negligible transient energy amplification, that
triggers the onset of nonlinear effects. Streaky perturbations similar to those inducing an optimal
transient growth of the energy are typically observed during the laminar-turbulent transition of shear
flows in subcritical conditions [25–27]. Streamwise-elongated coherent structures generated by the
lift-up effect [28] are observed also in turbulent flows at both inner and outer scales, indicating that
this mechanism is at the heart of the near-wall cycle [29,30], as well as at the origin of the formation
of large-scale structures [31].

For several flows over hydraulically active roughnesses, the presence of non-negligible transient
growth has been suggested in the experimental works of Reshotko and Leventhal [32], Corke et al.
[33], Downs et al. [34] and Liu et al. [35]. However, to the authors’ best knowledge, nonmodal
stability analysis of the flow over rough surfaces has been the subject of limited research. Transient
growth over a rough surface was investigated only in the works of Szumbarski and Floryan [36]
for a laminar flow over a spanwise independent corrugation and in Chavarin and Luhar [10] for a
turbulent flow over longitudinal riblets. The framework used in these two studies is an extension
of the ROG model to transient growth computations. Moreover, a stochastic resolvent framework
(surveyed in [37]) has been used by Ran et al. [38] to quantify the effect of longitudinal riblets on
turbulent kinetic energy and skin-friction drag. Here, we propose an alternative method based on the
numerical framework introduced by Schmid et al. [39]. This framework allows the study of the linear
modal and nonmodal stability of n-periodic systems, taking into account detuned instabilities, by
numerically tackling only the stability problems on a very limited number of subunits. This method
has never been applied on flows over distributed wall roughnesses, but it can be easily adapted to this
problem by applying a domain transform technique prior to solving the two-dimensional stability
problem on the subunits, allowing both modal and nonmodal stability analyses at a reasonable cost.
This method is of interest for the considered flow, since it allows one to take into account long-
wavelength instabilities, which are of the order of many riblets spacings, that cannot be described
by a secondary stability analysis on a single riblet. Many works (among others, see [40,41]) have
shown that, under certain flow conditions, riblets can delay the development of turbulent structures
in the transitional zones during bypass transition, shifting the point of transition downstream. The
asymptotic analysis carried out in [42] also indicates that riblets exert a destabilizing action on the
evolution of Tollmien-Schlichting waves in a laminar flow but stabilize the longitudinal vortices
that might be involved in bypass transition. Since bypass transition is observed in many practical
applications, studying the development of secondary instabilities in the flow over riblets can have a
strong possible impact on drag reduction through transition delay.

The primary objective of this work is thus to investigate modal and nonmodal stability analysis
of the flow over a rough surface. Since we consider the laminar flow over the riblets, the focus
is on the laminar-turbulent transition of the flow over such rough wall, with possible implications
in the field of transition delay. The presence of a spanwise shear in the base flow velocity in the
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presence of riblets suggests that the instability mechanism which initiates transition over the riblets
may be different from that of the smooth wall. This is one of the many crucial issues that need further
investigation if riblets are to be considered in industry applications [43]. To this purpose, a method
based on the Bloch wave formalism [44] is proposed and applied on a channel flow with the bottom
wall covered with streamwise independent trapezoidal riblets. Using this method, the modal insta-
bilities found in the works of Moradi and Floryan [20] and Mohammadi et al. [23] are retrieved for
validation. Moreover, the influence of the riblets on the lift-up mechanism and the development of
streaks is investigated. Three regimes can be observed: for small spacings s, riblets slightly affect the
transient energy amplification when detuned perturbations are considered, whereas fundamental
(small wavelength) disturbances are strongly dampened. For π/4 � s � π , resonances leading to
an increase of transient growth can be observed, at first for detuned instabilities only, and then,
as s increases, also for fundamental ones. Ultimately, large spacings are associated with a more
rapid (although slightly weaker) lift-up mechanism. In this case, the system does not select a unique
ground state, which is a condition associated with geometric frustration [45]. Finally, resolvent
analysis shows that the presence of riblets unexpectedly leads to the development of oblique waves,
which may cause a quick transition to turbulence through nonlinear effects.

The remainder of the paper is structured as follows. Section II describes the flow over the
riblets together with the governing equations. Section III introduces the linear stability problem.
The computational framework is introduced in Sec. IV, with special care given in Sec. IV B to the
method introduced in the work of Schmid et al. [39]. Section V presents the results obtained within
the framework with Secs. V C and V D discussing, respectively, the transient growth and resolvent
analyses. A summary of the main conclusions is provided in Sec. VI.

II. FLOW IN A CHANNEL WITH LONGITUDINAL RIBLETS

We consider the flow of an incompressible Newtonian fluid with viscosity ν∗ in a channel
of height 2h∗ with the lower wall covered with riblets. The reference frame is chosen as x∗

0 =
(x∗

0, y∗
0, z∗

0 ), with x∗
0 , y∗

0, and z∗
0 being, respectively, the streamwise, wall-normal, and spanwise

directions. The dynamics of the flow is governed by the Navier-Stokes equations:

∂U∗

∂t∗ = −(U∗ · ∇)U∗ − 1

ρ∗ ∇P∗ + ν∗∇2U∗, (1)

∇ · U∗ = 0, (2)

where the superscript asterisk indicates dimensional variables, U∗ = (U ∗,V ∗,W ∗)T is the velocity
field, and P∗ is the pressure. No-slip boundary conditions are applied at the walls. The top wall
is assumed to be smooth while streamwise invariant riblets are mounted on the bottom wall. The
roughnesses are characterized by their peak height ε, the riblet spacing s = 2a∗/h∗, and their shape
η∗(z∗

0 ) (explicitly given in the Appendix). In most of the cases considered in this study, trapezoidal
streamwise invariant riblets with a fixed height ε∗ = 0.15h∗ will be considered. The choice of this
shape is not arbitrary: in the case of a channel with two rough walls, Moradi and Floryan [20]
showed that these grooves represent an optimal choice for laminar drag reduction when both height
and depth are imposed and kept equal.

The flow is characterized by the presence of two separate length scales: in the wall-normal
direction y∗

0, the natural length scale is the half height of the channel h∗ (taken between the center of
the channel and the tip of the riblets) while, for the spanwise direction z∗

0, it is taken to be the spacing
s of the riblets. Following Philip [46] and Picella et al. [47], we introduce the reference velocity
U ∗

r = 3U ∗
a /2, with U ∗

a being the average of the base flow velocity U ∗
a = 1/(2h∗)

∫ +h�

−h� U ∗(y∗)dy∗
of the reference case of the channel flow without any riblets, which is one-dimensional. The most
common choice of the centerline streamwise velocity as reference velocity is unsuitable in this
case as it is dependent on the geometry of the roughness. Whereas, with the present choice of
U ∗

r = 3U ∗
a /2, the Reynolds number remains fixed at a constant flow rate. Notice that Ur corresponds

073903-3



JOUIN, ROBINET, AND CHERUBINI

to the maximum velocity in the flow field in the laminar smooth-wall case, while in the riblets cases
it does not represent any intrinsic property of the flow, so that it is chosen as the reference velocity
mostly for comparison purposes. Thus, the Reynolds number is defined as Re = U ∗

r h∗/ν∗. In the
following, all the physical quantities without the superscript asterisk are scaled by the channel
half-height h∗ and by the reference velocity U ∗

r .
For all the configurations studied, the flow rate Q is fixed constant, which leads to an evolution

of the pressure gradient as a function of the height ε and the spacing s of the riblets [20]. This
constraint states that the flow rates in the smooth and grooved channels are identical. In this context,
the laminar stationary base flow U0(x0) = [U (y0, z0), 0, 0]T in the grooved channel is described by
the x-momentum equation of the form

∂2U0

∂y2
0

+ 1

s2

∂2U0

∂z2
0

= Re
dP0

dx0
, (3)

together with no-slip boundary conditions at the walls, which, in the normalized physical domain,
are imposed at 0 � z0 � 1 and −1 + η(z0) � y0 � 1. Periodic boundary conditions are imposed in
the spanwise direction.

Irregular boundary conditions can be tackled either via a domain transformation method [21,48]
or through an immersed boundary conditions method [20,49]. The latter remains limited to small
amplitude riblets. Thus, a domain transform technique is employed and, following Ehrenstein [21]
and Mohammadi et al. [23], we introduce a coordinate system x1 = (x1, y1, z1) such as

x1 = x0, z1 = z0, y1 = (1 − γ )y0 + γ , with γ = η(z0)/[η(z0) − 2]. (4)

By means of this domain transformation, the physical domain x0 is mapped into a smooth channel
in the computational domain x1 where 0 � z1 � 1 and −1 � y1 � 1. The relations between the
derivative operators of the two domains are given in the Appendix. In this domain, the Stokes
equation (3) becomes ∇2

1U = −2 where ∇2
1 is the Laplacian written in the coordinate system,

as given in Appendix. Notice that the fact of having only one rough wall is essentially linked to
the use of such a simple coordinate transformation. Although this choice does not correspond to
a realistic configuration that might be used in an industrial application, we are aware of many
works considering riblets on only one wall (see [10,21,38,41] among others). Thus, for the sake
of numerical simplicity, we have chosen to consider only one rough wall, although the results are
easily extendable to the case of two rough walls.

III. LINEAR STABILITY EQUATIONS

The flow is decomposed into the two-dimensional base flow Q0 = (U0(y1, z1), P0)T and a
small perturbation q1 = (u1, p1)T = (u1, v1,w1, p1)T such as Q(x1, t ) = Q0(x1) + q1(x1, t ). The
Navier-Stokes equations are linearized around the two-dimensional base flow yielding the following
system:

∂u1

∂t
+ U0

∂u1

∂x1
+ v1

∂U0

∂y1
+ w1

s

∂U0

∂z1
= −∂ p1

∂x1
+ 1

Re
∇2

1 u1, (5)

∂v1

∂t
+ U0

∂v1

∂x1
= −∂ p1

∂y 1
+ 1

Re
∇2

1v1, (6)

∂w1

∂t
+ U0

∂w1

∂x1
= −1

s

∂ p1

∂z1
+ 1

Re
∇2

1w1, (7)

∂u1

∂x1
+ ∂v1

∂y1
+ 1

s

∂w1

∂z1
= 0, (8)

together with no-slip boundary conditions at the walls, i.e., y1 = ±1 and 0 � z1 � 1, and peri-
odic boundary conditions in the spanwise direction. Temporal stability is investigated considering
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perturbations having the following modal expansion:

q1(x1, y1, z1, t ) = q̃1(y1, z1) exp [i(αx1 − ωt )] + c.c., (9)

where α is the real streamwise wavenumber, ω = ωr + iωi the complex frequency of the wave, and
q̃1(y1, z1) = [ũ1, ṽ1, w̃1, p̃1]T is the associated eigenfunction. Ultimately, introducing the previous
modal decomposition into Eqs. (5)–(8), the system takes the following form:

−iωũ1 + iαU0ũ1 + ṽ1
∂U0

∂y1
+ w̃1

s

∂U0

∂z1
= −iα p̃1 + 1

Re
∇2

1 ũ1, (10)

−iωṽ1 + iαU0ṽ1 = −∂ p̃1

∂y1
+ 1

Re
∇2

1 ṽ1, (11)

−iωw̃1 + iαU0w̃1 = −1

s

∂ p̃1

∂z1
+ 1

Re
∇2

1 w̃1, (12)

iαũ1 + ∂ ṽ1

∂y1
+ 1

s

∂w̃1

∂z1
= 0, (13)

together with no-slip boundary conditions. The derivative and Laplacian operators in the new
coordinate system are defined in the Appendix. The system (10)–(13) can be recast in the following
compact form:

iωq̃1 = Aq̃1, (14)

where the Jacobian of the system A is introduced. Due to the bidimensionality of the base flow,
the system (10)–(13) constitutes a two-dimensional local eigenvalue problem [50] with periodic
coefficients in the spanwise direction z1. Notice that it can be further reduced by considering
normal velocity and vorticity as a new set of variables [51]. Squire’s theorem is also likely to
be invalidated due to the spanwise velocity gradients in the base flow. However, if the spanwise
gradients remain small, as appears to be the case for riblets with small spacing s, the theorem
should hold “qualitatively,” as found by Moradi and Floryan [20]. In the case they considered, the
most unstable disturbances were three-dimensional but arose from the continuous deformation of a
purely two-dimensional Tollmien-Schlichting (TS) wave induced by the riblets.

IV. COMPUTATIONAL FRAMEWORK

A. Spectral methods

In order to be solved numerically, both the Stokes equation for the base flow and the linear
stability system need to be properly discretized. Spectral collocation methods [52] are chosen,
yielding high accuracy even for a limited number of points. These methods have already been
used to study the flow over riblets within different computational frameworks [20,21] or for
similar global stability problems in different configurations [53,54]. The wall-normal and spanwise
directions, y1, z1, are respectively discretized using Chebyshev and Fourier grids, yielding derivative
operators dy and dz. In order to be solvable, the two-dimensional problem is then transformed into
a one-dimensional problem through tensor product manipulations [52]. Derivative operators in the
computational domain x1 can be computed as follows:

Dy = dy ⊗ Iz, Dz = Iy ⊗ dz, (15)

where Iy and Iz are respectively the identity matrices of size Ny × Ny and Nz × Nz and ⊗ is the
Kronecker tensor product. Second-order derivatives and weight matrices can be obtained in a similar
way.

B. Bloch wave formalism

Performing a linear stability analysis on a system composed of only one riblet would be of little
interest, since coherent structures within the flow can span multiple spacings of the roughnesses.
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FIG. 1. Sketch of the channel and of the riblet geometry considered. The domain is normalized in the
spanwise direction.

On the other hand, solving the two-dimensional problem for a large number of riblets would yield
a prohibitive computational cost. Usually, linear stability of such a system is investigated via a
spatial Floquet analysis [15,20,23], assuming that the roughness can be accurately described by a
few leading Fourier modes.

Instead, we propose an alternative method which allows the computation of the solution (at a
reasonable numerical cost) of the stability problem for a system composed of an arbitrary number
n of riblets. It is based on the computational framework presented in the work of Schmid et al.
[39]. For clarity, the method will be presented in the following. Consider a system consisting in
the repetition of n riblets in the spanwise direction. The system can be decomposed and reordered
into n smaller subsystems, each describing the flow into the subunit and its interactions with the
adjacent subunits. In particular, since the base flow is periodic in spanwise direction z, Q0(y1, z1) =
Q0(x1, y1, z1 + 2ka) (see Fig. 1), and the linearized dynamics of the complete system is governed
by

∂q1

∂t
= Aq1,

where the matrix A is a block-circulant matrix which is a particular case of the Toeplitz matrix. For
the subsystem ( j) the linearized dynamic can be written

∂q( j)
1

∂t
= A( j)q( j)

1 ,

where the disturbance state vector in the jth subunit is denoted as q( j)
1 , and A( j)q( j)

1 = ∑
k A( j)

k q1
( j)
k .

Thus, the whole system can be recast under the following form:

∂

∂t

⎛
⎜⎜⎜⎜⎜⎜⎝

q(0)
1

q(1)
1

...

q(n−1)
1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

A(0) A(1) . . . A(n−1)

A(n−1) A(0) . . . A(n−2)

...
...

...

A(1) A(2) . . . A(0)

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

⎛
⎜⎜⎜⎜⎜⎜⎝

q(0)
1

q(1)
1

...

q(n−1)
1

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
q̃1

, (16)

with A the Jacobian associated to the full stability problem. It is decomposed into the matrices A(0)

and A( j) (for j = 1, . . . , n − 1) describing, respectively, the dynamics in a subunit and the coupling
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interactions between subunits. If we consider that a subunit can interact only with adjacent subunits
(i.e., nearest-neighbour coupling), then the Jacobian A reduces to a block-tridiagonal matrix. Only
the three-unit subgroup (A(0), A(1), A(n−1)) is nonzero, significantly reducing the complexity and
computational cost of the method.

Note that the Jacobian matrix A is block circulant due to the specific n-periodic nature of the
system and can become block diagonal through the similarity transformation:

PH AP = diag(Â(0), Â(1), . . . , Â(n−1)) ≡ Â, (17)

where the transfer matrix P can be found analytically as

P = J ⊗ I (18)

with J a matrix such as J j+1,k+1 = ρk
j /

√
n for j, k = 1, . . . , n − 1 and ρ j = exp(2iπ j/n) the nth

roots of unity. The symbol ⊗ denotes the usual Kronecker product and I the identity matrix.
With this transformation, the linear stability problem has been reduced to the study of n smaller
subsystems characterized by the matrices Â( j). The eigenproblems associated with the matrices
Â( j) are solved with a Krylov-Schur algorithm coupled with a shift-and-invert method. Ultimately,
the full spectrum of the matrix A can be found from the merging of the n spectra of Â( j) for
j = 1, . . . , n − 1. Similarly, provided v j is an eigenvector of Â( j), the eigenfunctions of the full
system can be retrieved and take the form [v j, ρ jv j, ρ

2
j v j, . . . , ρ

n−1
j v j]T for j = 1, . . . , n − 1.

The equivalence with the Floquet analysis and its detuning factor ε can be dicussed. After
Fourier expanding the base flow, it can be found (see [20] for example) that the perturbation has
the following modal expansion:

q2(x, y, z, t ) = eiωt eiαx
∑

m

q̂m(y)ei(m+ε)β0z. (19)

Recalling that the system is n periodic, the detuning factor can only be a limited number of n
discrete values such as ε j = ± j/n, j = 1, . . . , n/2. Reintroducing this expression of the detuning
factor into the Floquet modal expansion yields for j = 1, . . . , N − 1,

q j
2(x, y, z, t ) = eiωt eiαxei j(β0/n)z

∑
m

q̂m(y)eimβ0z (20)

= eiωt eiαxei j(β0/n)zq̃(y, z) (21)

= eik j zq̃2(x, y, z, t ), (22)

where k j = ε jβ0 = jβ0/n is the Bloch wavenumber and q̃2(x, y, z, t ) is a 2π/β0-periodic function.
Thus, the Bloch theorem for the system with the n subunits is retrieved.

Most importantly, transient growth and resolvent analyses [24] can also be realized within the
same framework. Introducing a harmonic forcing of the form f1 = f̂1ei�t , the system (14) takes the
following form:

∂q1

∂t
= Aq1 + f1. (23)

In the case in which the system is not harmonically forced (i.e., when f1 = 0), it is interesting
to identify the perturbation to the base flow, u1(0), able to provide at a given target time T the
maximum energy amplification defined as

G(t ) = max
u1(0)

E [u1(t )]

E [u1(0)]
= || exp (At )||2E , (24)

where E [u1(t )] = ||u1||E = ∫
V |u2

1|dV is the kinetic energy of the perturbation, whereas, in the case
in which the presence of a harmonic forcing is considered (i.e., f1 �= 0) an optimal response to the
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forcing can be defined as

H (�) = max
f1

E (u1)

E (f1)
= ||(i�I − A)−1||2E . (25)

Here we have used the energy for evaluating the growth of perturbation, although other quantities
of interest might be considered as well. Numerically, the norm is defined through the imposition of
a weight matrix Q0, identical for each subsystem. Besides the amplification curves, the “optimal”
perturbation uopt and forcing fopt yielding, respectively, the maximum energy growth and maximum
response at a target time T can be obtained [25,44]. These disturbances can be retrieved through a
singular value decomposition [39,44] defined as follows:

U j� jVH
j = SVD

[
F0 f (Â j )F−1

0

]
, (26)

where f is defined as f (A) = exp (At ) for the optimal perturbation and as f (A) = (i�I − A)−1

for the optimal forcing. As for the linear stability eigenfunctions, principal left and right singular
vectors, representing optimal perturbation (or forcing depending on f ) at initial and target times,
take the following form:

uopt(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

u j

ρ ju j

ρ2
j u j

...

ρn−1
j u j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, vH
opt(T ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

vH
j

ρ jvH
j

ρ2
j vH

j

...

ρn−1
j vH

j ,

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(27)

where ρ j is the root of unity yielding the largest singular value. As for the linear stability analysis,
optimal perturbations and forcings can be now obtained for the whole system by calculating the
singular value decomposition associated with the n smaller subsystems.

V. RESULTS

A. Laminar base flow

The presence of riblets on the channel walls induces variations of the shear-stress distribution
in their neighborhood, yielding changes in the drag generated at the wall. These changes can be
quantified by comparing the pressure gradients required to obtain the same flow rate in a rough
channel and in a smooth channel of equivalent height. Mathematically, introducing the pressure
gradients �Ps and �Pr , respectively corresponding to smooth and rough walls, the correction of
the pressure gradient is simply expressed as δP = �Pr − �Ps. The evolution of this quantity as a
function of the roughness height ε and spacing s is displayed in Fig. 2. For s � 6, the pressure
correction is positive indicating a drag reduction effect, whereas for s < 6 the expected drag
reduction effect is observed. For comparison, in the case of a wavy rough wall, the critical spacing
was found to be s ≈ 3.65 [20]. This drag-reduction effect can be explained as a consequence of the
change of the base flow topology, which can be seen in Fig. 3. In the case of small s, the flow is
lifted above the tip of the riblets due to viscous friction. The region of stagnation in the grooves
leads to the formation of a strong spanwise shear in the velocity profile, potentially responsible
for a destabilization of the flow [44]. For larger s, the presence of the riblets modulates the local
centerline velocity, thus generating strong spanwise velocity gradients at the center of the channel.
In both cases, the instability mechanisms may lead to Kelvin-Helmholtz related instabilities.

In the remainder of this study, riblets with a fixed height ε = 0.15 and spacing 0.25 < s < 4.5
will be considered, for which the pressure correction is negative and thus a drag reduction effect
is observed. As stated by [20], at fixed riblets height (as in the present case) the lower bound on
the pressure gradient correction due to the presence of riblets can be determined by ignoring the
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FIG. 2. Variations of the pressure gradient correction δP as a function of the spacing s and height ε.

boundary layer and approximating with the flow in a channel with the height reduced by the riblets
height ε, i.e., Re∂ p0/∂x = 2[1 − (1 − ε/2)−3]. The above relation provides a good approximation
of the pressure gradient correction that riblets provide with respect to a smooth wall channel flow
for sufficiently small riblets spacing, indicating that the change of pressure gradient in the cases
considered here is indeed small.

B. Modal stability analysis

In a smooth channel, it is well known that two-dimensional TS waves with wavenumber α = 1.02
become asymptotically unstable for Rec � 5772 [55]. This instability can be subcritically triggered
even at Reynolds numbers as low as Rec ≈ 2700 in the case of noisy environments. It has been
experimentally shown [56,57] that the classical TS transition scenario is modified in the presence
of surface roughness. Specifically, Moradi and Floryan [20] found that grooves with large spacing
tend to stabilize the flow while small-wavelength riblets destabilize it. TS-like waves, modulated in
the spanwise direction by the riblets were found to be the primary source of instability. However, in
the case of riblets with large spacing, Mohammadi et al. [23] uncovered a new family of unstable

FIG. 3. Streamwise velocity component U of the base flow for the trapezoidal roughness and for s = 0.25
(left) and s = 4.5 (right), illustrating the two types of base flows.
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FIG. 4. Spectrum for the full system composed of n = 50 trapezoidal riblets for Re = 5000 and different
configurations of interest: s = 0.25 and α = 1 for the spectrum in (a) and the close-up in (b); s = 4.5 and
α = 0.3 for the spectrum in (c) and the close-up in (d). The eigenvalues are colored according to the normalized
phase θ j = arg(ρ j )/2π of their respective root of unity ρ j , whose value is reported in the legend. The detuned
instabilities are those with the “brightest” colors (yellow/light blue). Red and black are for fundamental ones
and green is for subharmonic.

modes associated with small streamwise wavenumbers, with a critical Reynolds number sensibly
smaller than the one obtained from the TS instability. This mode was linked to an inviscid Kelvin-
Helmholtz-like instability caused by the spanwise modulation of the base flow velocity in the center
of the channel.

In this work, linear stability analysis is investigated for a system composed of n = 50 riblets,
assuming nearest-neighbor coupling. In Jouin et al. [58] it has been demonstrated, for a very similar
flow system (i.e., the secondary instability of crossflow vortces in a boundary layer) that dropping
the hypothesis of nearest-neighbor coupling, and using Nu = n instead of Nu = 3 coupled units
(where n is the number of subunits) does not introduce any difference in the results. We are thus
confident that using this assumption does not induce strong differences in the results, while allowing
one to strongly reduce the computational cost of the stability analysis.

The eigenvalues spectra obtained for some notable cases are displayed in Fig. 4. The plots show
the temporal frequency of the instability modes on the abscissa, and the associated growth rate on the
ordinates. In case the dynamics remains laminar, the frequency and growth rate of the most unstable
modes might be observed in a temporal signal taken from a probe, at least in the presence of a very
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low turbulence/noise level to ensure a modal transition to turbulence. Notice that each spectrum,
obtained for a given value of s and α specified in the subcaptions, is composed of the merging
of n = 50 subspectra, obtained by solving the eigenvalue problems associated with the matrices
Â( j). Eventually, for systems with a sufficiently large number n of subsystems, the spatial branches
can be entirely reconstituted. The eigenvalues are colored according to the normalized phase θ j =
arg (ρ j )/2π = j/n of their respective root of unity (see legend within the figures). Note that only
half of the eigenvalues are visible as the eigenproblems associated with ρ j and ρn− j share the same
eigenvalues. This degeneracy of the eigenvalues stems from a symmetry of the three subunit group:
the coupling between the left and center is identical to the one between the right and center subunits
[24]. Following the secondary instability framework [59], the instability is said to be fundamental
if θ = 0 or θ = 1, in the sense that it shares the same spatial spacing as the original. Similarly,
instabilities with θ = 1/2 (that is twice the initial spatial wavelength) and 0 < θ < 1/2 (arbitrary
wavelengths) are respectively said to be subharmonic and detuned.

The spectra displayed in Fig. 4 are obtained for Re = 5000 and ε = 0.15 but for two different
configurations, corresponding to the two types of instability of the flow over rough surfaces. The
top-left spectrum is computed for α = 1 and s = 0.25 and exhibits a structure similar to the one
found for a two-dimensional Poiseuille flow. It is composed of three main parts, typical of the
plane Poiseuille flow, originally denoted by Mack [60] as (i) the A branch, characterized by wall
modes such as TS waves, (ii) the P branch, composed of Squire modes located in the center of
the channel and usually stable, and (iii) the S branch which represents the continuous part of the
spectrum [61]. In the present study, the term “branch” in these expressions will be replaced by the
word “family” while the word branch will be used to denote the ensemble of eigenmodes resulting
from the variation of the root of unity. Note that in this configuration, a smooth Poiseuille flow
of equivalent height is stable, indicating the destabilizing effect of the riblets as already found in
numerous studies [20,21,23].

For larger spacings and the same value of α, as shown in the top-right frame of Fig. 4, the
instability still arises from the TS branch. However, in this case, it appears divided into three
sub-branches [see the close-up in Fig. 4(b)], two of them being fully unstable while the other
only partially. The breaking of the continuity of the TS branch denotes a topological change of the
spectrum and a shift in the nature of the eigenmodes constituting the sub-branches. The maximum
growth rate, ωr = 0.016, is reached by two modes located on the tip of these branches. Interestingly,
one of the modes is subharmonic while the other is fundamental. If the height ε of the roughness
is reduced, the three sub-branches merge together and the most unstable mode reconnects with the
classic two-dimensional TS mode.

The spectrum obtained with s = 4.5 and α = 0.3 is displayed in Fig. 4(c). Several observations
can be made: the instability now arises from center Squire modes pertaining to the P family. This
is the instability mode that was discovered and investigated in the work of Mohammadi et al. [23].
To be accurate, the instability stems from two unstable branches: the most unstable one reaches its
maximum growth rate, ωr = 0.005, for ρ0, underlining the fundamental nature of the instability.
On the contrary, for the second branch, the maximum growth rate, ωr = 0.0013, is obtained with
a desynchronized mode (ρ12). Also note that the P family now looks like a succession of small
Poiseuille flow spectra. For small streamwise wavenumbers, the TS branch is now marginally stable
with its most unstable mode being subharmonic.

Figure 5(a) depicts a three-dimensional view of the streamwise velocity component of the most
unstable mode found for Re = 5000, s = 0.25, and α = 1. The most unstable mode is reminiscent of
the usual two-dimensional TS wave. In fact, the eigenfunction directly stems from the continuous
deformation of a TS wave induced by the riblets, which loses its spanwise modulation when the
roughness height ε tends towards 0. The modulation induced by the presence of the riblets, leads to
the formation of strong spanwise and wall-normal shears. Depending on the strength of the spanwise
velocity gradient, the flow is likely to be further destabilized by secondary Kelvin-Helmholtz-like
instabilities. The concentration of momentum at the tip of the roughness has been identified by
[8,14] as a necessary condition for the development of spanwise independent structures called
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FIG. 5. Three-dimensional representation of the streamwise velocity perturbation of the most unstable fun-
damental mode for Re = 5000, α = 1, and for different configurations. Isosurfaces are taken as u = ±0.75umax.
Only half the channel is displayed for visibility.

Kelvin-Helmholtz rollers. These structures are linked to a Kelvin-Helmholtz-like instability and,
despite having been originally identified in turbulent flows, may also emerge in transitional flows.
The roughness also causes the appearance of a spanwise velocity component near the tip of the
riblets. Despite being small, it could still play a significant role in supercritical transition scenarios
where transition happens through three-dimensionalization of the flow via secondary instabilities of
the TS wave [59].

Two of the unstable modes found for the same value of the streamwise wavenumber, but for
larger spacings (i.e., s = 4.5) are shown in Figs. 5(b) and 5(c). The fundamental mode, provided
in Fig. 5(c), bears some resemblance to the TS-like unstable mode observed for smaller spacings,
although it appears more deformed than the former, whereas, the desyncronized mode provided in
Fig. 5(b) presents not only a streamwise but also a spanwise alternation of low- and high-streamwise
velocity perturbations, having the same spacing of the roughness, and mostly localized on the flanks
of the roughness elements. This mode thus appears directly related to the geometry of the roughness,
differently from the previously discussed ones, which arise as a deformation of two-dimensional TS
modes.

Finally, for s = 4.5 and α = 0.3, the most unstable center modes of the two branches are
shown in Fig. 6. Streamwise and spanwise velocities are one order of magnitude higher than the
wall-normal component and share the same shape: counter-rotating rolls oriented across the channel
and propagating in the streamwise direction. In the fundamental case, rolls are centered at the
widest channel opening while they are placed in a staggered pattern for the ρ12 mode. The staggered
mode spans approximately four riblets. In both cases, instability arises from the modulation of the
centerline velocity which induces strong spanwise velocity gradients in the middle of the channel,
which may destabilize the flow through different mechanisms.

C. Transient growth analysis

Transient growth plays a fundamental role in the generation of streaks that lead to bypass
transition to turbulence and that sustain it [27,28,30,62]. In turbulent flows, the presence of riblets
weakens the lift-up mechanism that generates streaky structures, since the cross-flow motion,
necessary for the formation of the counter-rotating vortices, faces a greater resistance. In turn, the
generated vortices are weaker than in a smooth channel flow and are located further away from the
channel, eventually limiting the possibility of momentum transfer towards the streamwise velocity
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FIG. 6. Three-dimensional representation of the streamwise velocity perturbation for s = 4.5, Re =
5000, and α = 0.3 corresponding to center modes. Left: fundamental mode with complex frequency ω =
0.0053 − 0.2971i. Right: detuned mode with complex frequency ω = 0.0013 − 0.3020i.

component of the flow [6,12]. Although the effect of riblets on turbulent shear flows is by now well
known, it is still unclear how they affect transient growth in laminar flows.

Figure 7 displays the gain G as a function of time for Re = 5000, α = 0, and different spac-
ings s. As per the eigenvalues, the amplification curves are colored according to their respective
root of unity and only half of the curves are visible due to the coupling symmetry. In all cases, the
maximum energy growth, reached for detuned modes, as well as the time at which this maximum is
reached, remains close to the one found for a smooth channel flow. Only in the case of large spacing
do the riblets appear to induce an acceleration in the transient growth mechanism as the optimal
time goes from Topt = 385 to Topt = 150.

For small spacings [Figs. 7(a) and 7(b)], comparing the maximum transient growth obtained for
detuned modes (colored curves) to that with ρ0 (solid black curves), one can observe a difference
of more than one order of magnitude. Notably, if the transient growth analysis would have been
realized on a system composed of a single subunit, a much weaker optimal energy gain would have
been obtained. In fact, in this configuration, the size of a single subunit is too small to account
for a large-scale phenomenon such as the lift-up effect, underlining the necessity of considering a
system spanning multiple subunits. The amplification curves also appear to display a scaling with
respect to the fundamental spanwise wavenumber associated to the root of unity ρ j , namely, β j =
jπ/ns. In particular, the maximum gain scales as the square of β j , in agreement with the scaling
obtained by Gustavsson [64] for smooth channel flow. This is not too surprising: each amplification
curve represents an optimal perturbation whose spatial spacing is governed by the corresponding
root of unity.

For intermediate values of the riblet spacing, such as s = π/4 and s = π [Figs. 7(b) and 7(c)], the
energy amplification is significantly enhanced by the presence of the riblets, although in the former
case this is true only for detuned modes (compare the dashed black line with the solid ones). This
is likely a resonance effect as the riblet wavenumber is close to the spanwise wavenumber yielding
the maximum optimal gain βopt = π/s = 2 in a smooth channel flow [44]. As the riblet spacing
s is increased, the curves progressively superpose themselves. This phenomenon arises from a
degeneracy of the largest singular value of the exponential propagator exp(At ). However, this is not
a trivial effect of the n-periodic symmetry. Mathematically, through the orthogonality of the Bloch
modes, it can be demonstrated that the optimal perturbations are also orthogonal and thus form a
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FIG. 7. Gain as a function of time for Re = 5000, α = 0, and several riblet spacings. For clarity, the curve
associated with ρ0, corresponding to fundamental, spanwise invariant modes is denoted in black. Dotted line
represents the amplification curve for a smooth channel at Re = 5000, α = 0, and β = 2, which yields the
maximum optimal gain for this configuration [63]. The other curves are colored according to the normalized
phase θ j = arg(ρ j )/2π of their respective root of unity ρ j , whose value is reported in the legend. The detuned
instabilities are those with the “brightest” colors (yellow/light blue). Red and black are for fundamental ones
and green is for subharmonic.

basis of the eigenspace associated with the leading degenerate singular value. Physically, we now
have n optimal perturbations corresponding to different roots of unity and with different wavelengths
but sharing almost the same maximum gain Gmax and optimal time Topt and representing different
possible and equally probable paths in phase space. We can also notice that the trend of the energy
gain with respect to the riblets spacing is in contrast to that observed for turbulent channel flows (see,
for instance, Chavarin and Luhar [10], in which the gain initially decreases linearly with increasing
riblet size, and then increases). This suggests that, at least in the present configuration, riblets are
not suitable for transition delay.

We are now focusing our attention on the form of the optimal perturbations, which can be seen in
Fig. 8. Cross-flow dynamics of the optimal initial disturbances for Re = 5000, α = 0, and several
riblet spacing s are shown in Fig. 8. In all cases, the optimal perturbation(s) corresponds to counter-
rotating vortices (CV) similar to the ones observed in a smooth channel flow [63] as well as to
those observed in turbulent channel flow over riblets [10]. Streamwise velocity disturbance is one
order of magnitude weaker than the cross-flow components and is not represented. For s = 0.25,
the CV span approximately six riblets, giving a spanwise wavenumber equal to β = 2.09. This is
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FIG. 8. Cross-flow dynamics (v − w vectors) of the optimal perturbation at initial time for Re = 5000
and α = 0. For s = 4.5, the optimal perturbation associated with root of unity ρ12 has been arbitrarily chosen
between the n possible choices. Streamwise velocity disturbance is one order of magnitude weaker than the
cross-flow components and is not represented. The number of riblets visualized (n = 12) has been chosen for
accommodating approximately two wavelengths of the counter-rotating optimal vortices for s = 0.25. Vectors
are drawn every two points in the wall-normal direction and, in the spanwise direction, respectively, every nine,
five, and two points for (a), (b), and (c).
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quite close to the spanwise wavenumber yielding the maximum optimal gain βopt = 2 in the smooth
channel, indicating a limited influence of the riblets on the flow. If the riblet spacing is progressively
increased, the wavelengths of the CV observed depart from the optimal value for the smooth channel
and are closer to the riblets’ own wavelength, indicating a progressive synchronization of the optimal
perturbation wavelength with that of the roughness. A complete synchronization occurs for s = π/2
for which the CV exactly spans one riblet, and is observed in all the cases for which a fundamental
mode is the most amplified.

The last case considered is obtained with s = 4.5. One optimal perturbation among the n possible
is presented in Fig. 8(c), with a close-up in (d). CV are still visible; however, they appear localized
in regions with the widest channel opening and span only a third of a subunit. The corresponding
wavenumber is β = 2.11, again quite close to βopt. Differently from the two previously discussed
configurations, the amplitude of the CV now appears modulated in the spanwise direction as a
consequence of a beating phenomenon triggered by the superposition of two waves with incom-
mensurable spanwise wavelengths. The optimal perturbations associated with other roots of unity
are characterized by a similar shape, although with a different distribution of the CV as the spatial
wavelengths involved in this beating phenomenon are different.

The mechanism responsible for the energy amplification, commonly called the lift-up effect [62],
will lead to the formation of streamwise-independent coherent structures also known as streaks. The
streaks resulting from the development of the optimal disturbances presented in Fig. 8 can be seen
in Fig. 9. Physically, the lift-up mechanism is characterized by a transfer from the cross-flow ve-
locity components to the streamwise velocity component. The spanwise wavelength of the optimal
perturbations at the initial time remains the same no matter the spacing of the riblets. It is also
important to say that the coherent structures in the near-wall region tend to be almost universal for
wall-bounded turbulent flows, while in transitional flows there is not such a universality. However,
structures such as streaks arising through transient growth are indeed observed in all wall-bounded
shear flows during bypass transition (see [25,65] for boundary layer, Couette, and channel flows,
among others). Although in the channel flow the structures span the whole channel, almost identical
streaky structures are found in the boundary layer (of course, limited to the region in which the
shear is sufficiently high) as well as in the Couette flow, among many other shear flows. Thus, we
think that the present results can be easily extended to other shear flows in the framework of bypass
transition.

The nonmodal behavior of the considered flow is thus strongly affected by the spacing of the
roughness. For small s, the riblets’ influence on the shape of the optimal perturbations appears
limited as the initial optimal CV are characterized by a wavelength almost corresponding to that
of a smooth channel flow. The streaks are lifted above the riblets and the flow behaves as in a
smooth channel of smaller height. Riblets appear to have an impact limited to the near-wall zone,
extending approximately from the tip of the roughness to y = −0.9, and modifying the shape of
the optimal perturbations only locally. A close-up of the region in the vicinity of the roughness for
s = 0.25 is provided in Fig. 10 for the wall-normal and spanwise velocities at the initial time. In
this region, velocities are smaller than in the bulk of the channel but still non-negligible (around
10% of the maximum velocity) and exhibit a rather complex shape as shown by the spatial Fourier
spectrum provided in Fig. 10(d). This also sheds some light on one small shortcoming of the ROG
formulation: the assumption that the roughness shape can be accurately described by only a few
leading Fourier modes is usually verified either through the convergence of the growth rate of the
most unstable mode [15,20] or of the maximum gain [10,36]. However, even when these quantities
appear well converged, some regions of interest like the vicinity of the riblets may require a much
larger number of modes to be accurately described. For intermediate spacings, the CVs appear more
deformed and have a wavelength departing from that recovered in the smooth channel flow. These
optimal disturbances result from a competition between the natural, optimal wavenumber of the
streaks and the parametric forcing due to the riblet. Resonance can be observed when the riblet
wavenumber is equal to the optimal streak wavenumber or one of its subharmonics, yielding large
energy amplification.
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FIG. 9. Streamwise velocity component of the optimal perturbation at target time Topt for Re = 5000,
α = 1, and different spacings s.

For large spacings, riblets constrain the streaks wavelength and n possible optimal perturbations
could be found, having amplitude modulated in the spanwise direction. A similar mechanism has
already been described for phase-locked lasers and is denoted as geometric frustration [45] (i.e.,
the inability of an ordered system to find a unique optimal state). The analogy with the present
case appears quite clearly: competition arises between the lift-up mechanism generating CV and
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FIG. 10. Close-up in the near-riblet region of the cross-flow dynamics (v − w vectors) of the optimal
perturbation at initial time for Re = 5000, α = 0, and s = 0.25. Streamwise velocity disturbance is one order
of magnitude weaker than the cross-flow components and is not represented. The number of riblets visualized
(n = 12) has been chosen for accommodating approximately two wavelengths of the counter-rotating optimal
vortices. Bottom: spatial Fourier spectra of the wall-normal velocity disturbance taken at wall-normal positions
y = 0 (left) and y = −0.95 (right).

streaks at an optimal wavenumber βopt ≈ 2 and the riblets, which act as a geometric forcing with
wavenumber β f = π/s. In the domain of fluid mechanics, a similar phenomenon was observed in
the study of secondary flows in Rayleigh-Bénard convection with wavy walls [66]. More recently,
the works of Hossain and Floryan [67,68] also showed the existence of a beating phenomenon in
the secondary pattern and its link with a wavenumber lock-in phenomenon.

D. Resolvent analysis

A resolvent analysis allows the identification of high-energetic flow structures in both laminar
and turbulent flows through a singular value decomposition of the forcing-response transfer func-
tion, commonly called the resolvent operator [24,69]. For a smooth channel flow, the response to a
harmonic forcing is characterized by the presence of two pseudoresonances [44]: the strongest one
leads to the generation of the most unstable TS wave while the other is linked to a center Squire
mode.

Resolvent curves are displayed for Re = 5000, α = 1, and different spacings in Fig. 11. In
particular, the figures provide the evolution of the transfer function (the norm ratio of the response
to the norm of the forcing) as a function of the frequency � of the forcing, for different riblet
spacings s. The different colors of the curves indicate the root-of-unity value. The peaks in the
transfer function H (�) correspond to quasiresonances. For smooth Poiseuille flow, it is well known
that, for a nonzero value of the streamwise wave number α, there are two peaks, a first for � < 0.5
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FIG. 11. Resolvent norm for Re = 5000, α = 1, and different riblet spacings s. Dotted line represents the
resolvent norm for a smooth channel flow with Re = 5000, α = 1, and β = 0. The inset is a close-up on the
first pseudoresonance. Black curve is the curve associated with ρ0, corresponding to fundamental, spanwise
invariant modes. The other curves are colored according to the normalized phase θ j = arg(ρ j )/2π of their
respective root of unity ρ j , whose value is reported in the legend. The detuned instabilities are those with the
“brightest” colors (yellow/light blue). Red and black are for fundamental ones and green is for subharmonic.
The subplots represent a close-up of the quasiresonance regions of the resolvent norm.

corresponding to a quasiresonance with the A modes and a second for � 	 1 corresponding to a
quasiresonance with the P modes (see Schmid and Henningson [63]).

For small spacing s = 0.12, the two pseudoresonances found for the smooth channel flow
are retrieved. The distinction between the two mechanisms is quite clear: only the fundamental
mode experiences a pseudoresonance for ω = 0.27 while the subharmonic and detuned forcings
appear responsible for the excitation of the flow at larger frequencies. For these modes, the second
pseudoresonance disappears and is replaced by a plateau formed by the superposition of several
amplification curves associated with different roots of unity. In other words, as the frequency
is increased, the optimal energy amplification of the whole system remains quasiconstant through an
evolution of the forcings’ spatial spacing. Despite yielding responses one order of magnitude below
the pseudoresonance, these optimal forcings excite a very broad range of frequencies, making them
relevant in a noise-triggered transition scenario (like the bypass transition) for which the probability
to hit exactly the frequency of the pseudoresonance is small [70]. The mechanism associated with
these forcings is known as the Orr mechanism [71]. It relies on the two-dimensional deformation
of vortical structures by the mean flow. Structures which are initially aligned against the direction
of the flow tend to realign themselves with it and, in doing so, generate transient growth through
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FIG. 12. Top left: optimal forcing for a system with Re = 5000, α = 1, and s = 0.25. In the top frame, only
four riblets are represented for the sake of visualization. The corresponding root of unity is ρ2. The quiver plot
depicts the cross-flow dynamics (v − w). The contour plot depicts the streamwise velocity disturbance. For
simplicity, only one side of the channel is being shown. Top right: Fourier transform in the spanwise direction
of the optimal forcing. Bottom: optimal forcing for the same flow case. The isosurfaces of the streamwise
velocity perturbation are shown.

the concentration of vorticity [72]. This result is a consequence of the energy optimization rather
than a riblet-related effect, as is observed also for optimal perturbations in smooth channel flows.
For larger wavelengths s, a few observations can be made. Most importantly, the riblets induce a
desynchronization of the pseudoresonance: the maximum gain is now reached for a detuned mode
(ρ2 for s = 0.25), associated with a three-dimensional optimal forcing and response, as will be
shown later. The detuning appears to increase as s is increased: maximum responses are obtained
for ρ8 (s = 1) and ρ6 (s = 4.5). This three-dimensionalization is associated with a decrease of the
maximum gain for small s before it returns to its original level or higher for intermediate and large s.
A small shift in the pseudoresonance optimal frequency can also be seen as it goes from �opt = 0.27
to �opt = 0.31 for larger spacings. For s = 4.5, the amplification curves collapse, as previously
observed in the transient growth analysis. Again, this superposition results from a degeneracy of
the largest singular value of the resolvent operator which generates n equally amplified optimal
forcing and responses. Physically, this also indicates the presence of a lock-in phenomenon for the
forcings and their response in this range of frequency. In general, we can conclude that the riblet
spacing s and the root of unity (i.e., the phase shift between the periodicity of the basic flow and
the instability) strongly influence the form of the function of transfer H (�). In certain cases such as
s = 1 or s = 4.5 the quasiresonance with the A modes is amplified while for s = 0.25 or s = 0.12
the quasiresonance of the A modes is attenuated in favor of a more broadband response.

We now turn our attention to the optimal forcing and responses corresponding to the first
pseudoresonance. These are shown in Figs. 12–14 for increasing values of s. Notice that each
optimal forcing is associated with a given temporal frequency �, so the velocity field, which
should oscillate in time, is shown at an arbitrary phase. The velocity fields associated with the
optimal forcings are three-dimensional and are characterized by strong streamwise and spanwise
velocity components, while the wall-normal velocity component is one order of magnitude weaker.
The optimal forcings appear as oblique waves with varying spatial wavelengths which eventually
develop into deformed three-dimensional (3D) TS waves. With this in mind, it is important to
remember that detuned modes with root of unity ρ j do not exist by themselves but instead form a pair
with the disturbance associated with the conjugate root of unity ρ∗

j = ρn− j . The desynchronization
appears progressively: for small s the forcing couples 15 riblets and generates what resembles a 3D
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FIG. 13. Same as Fig. 12 for s = 1.

TS wave (see Fig. 12). Structures similar to the small vortices in the top corners of the riblets were
also observed numerically by Goldstein and Tuan [13]. The streamwise component of the response,
shown in a three-dimensional view in the bottom frames of the figure, is localized on top of the
riblets, and presents a positive/negative alternation in the streamwise direction. For larger s (see
Fig. 14), the influence of the riblets is stronger: the optimal forcing only spans five riblets and appear
more undulated. The response has a strong streamwise component localized on top of the riblets. In
all cases, the spanwise component takes the form of oblique waves. Lastly, in the case of s = 4.5,
the forcing wavelength becomes smaller than that of the riblets and now penetrates deeply into the
grooves. For all riblet spacing, the Orr mechanism is at play and appears through the realignment in
the spanwise direction of the coherent structures. The responses are oblique waves which are likely
to trigger oblique transition. The fact that the presence of streamwise riblets induces an optimal
forcing in the form of oblique waves is an important (although counterintuitive) observation. This
indicates that spatial spacing can trigger three-dimensional features of the flow response even in
a setup where the baseflow is two-dimensional. In the context of controlling laminar-turbulent

FIG. 14. Same as Fig. 12 for s = 4.5.
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transition, this observation is very compelling since the onset and development of oblique waves
may be problematic. Indeed, because of nonlinearities [73], this type of transition has been found to
be quicker and to require smaller initial energy than supercritical or even bypass transition [70,74].
Thus, it is crucial to consider the possibility of the development of three-dimensional oblique waves
during bypass transition in a channel flow on streamwise-elongated riblets.

VI. CONCLUSIONS

In this paper, the modal and nonmodal stability of the flow over longitudinal riblets have been
investigated. A technique based on the coupling between a two-dimensional stability problem,
obtained with a domain transform technique [20,21] and the computational framework introduced
by Schmid et al. [39] is proposed. This technique, through a Bloch wave formalism, allows the
computation of modes with different detuning factors and with wavelengths spanning several riblet
spacings at a reasonable numerical cost and is naturally extended to nonmodal stability analyses.

Modal instabilities are found to stem mostly from the deformation of a two-dimensional TS
wave as also reported in Moradi and Floryan [20]. In the case of large riblet spacing, the instability
arises from a center Squire mode for small streamwise wavenumbers [23]. For larger streamwise
wavenumbers, a subharmonic mode was also found to have a similar growth rate than the most
unstable, fundamental mode.

Transient growth is investigated and phenomena usually associated with spatially forced systems
are observed [75]. Three regimes can be observed: for small riblet spacings s, the presence of the
riblets slightly affects the transient energy amplification when detuned perturbations are considered,
whereas fundamental (small-wavelength) disturbances are strongly dampened. For intermediate
values of s, resonances leading to an increase of transient growth can be observed, at first for detuned
instabilities only, and then, as s increases, also for fundamental ones. In particular, it is observed that
this resonance is obtained when the riblet wavelength is imposed equal to the optimal streak size
in a smooth channel flow. Ultimately, large spacings are associated with a more rapid (although
slightly weaker) lift-up mechanism. In this case, the system does not select a unique ground state,
which is a condition associated with geometric frustration [45]. This wavenumber lock-in regime
arises from a degeneracy of the largest singular value of the exponential operator, which leads to the
superposition of the amplification curves for different roots of unity.

Resolvent analysis shows that the presence of riblets leads to the development of oblique waves
which may cause a quick transition to turbulence through nonlinear effects. The Orr mechanism
also appears to play a prominent role for every configuration. Spanwise-coherent rollers could not
be directly retrieved in this analysis. Two reasons may explain this: first, the chosen riblet shape is
not optimal for the development of Kelvin-Helmholtz rollers. Indeed, Endrikat et al. [14] found that
strong wall-normal shear was necessary to trigger the instability and that scalloped or triangular
riblets were better suited. Second, the Kelvin-Helmholtz roller could be a specific feature of the
turbulent flow and thus requires the use of a mean flow stability framework with turbulent viscosity
as in Chavarin and Luhar [10]. Moreover, since interesting analogies can be found between the
observed instabilities in a laminar regime and those obtained in a fully turbulent regime around a
mean field [10,38], it might be interesting to extend the analysis to the turbulent case.

As a final remark, the fact that the presence of streamwise riblets induces an optimal forcing in the
form of oblique waves is an important (although counterintuitive) observation, since it demonstrates
that spatial spacing can trigger three-dimensional flow responses even in a two-dimensional setup.
In the context of controlling laminar-turbulent transition, this observation is very compelling since
the onset and development of oblique waves may be problematic due to their rapid transition, which
is triggered for smaller initial energy than supercritical or even bypass transition. Thus, we conclude
that it is crucial to consider the possibility of the development of three-dimensional oblique waves
as a flow response to forcing also when considering the flow over streamwise-elongated riblets.

Future works will aim at determining the transition scenarios engendered by these modal and
nonmodal instabilities. Moreover, the influence of the shape of the riblets will be investigated as
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well. Finally, we must say that the numerical approach developed here is in principle not limited
to the case of the channel and can be extended to open flows such as a boundary layer. Of course,
the results are probably not directly transposable from one flow to another, since the channel flow is
homogeneous in the streamwise direction, whereas this is not the case for a boundary layer. Future
work will aim at investigating this case, which is most useful for possible practical applications of
riblets.
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APPENDIX: DOMAIN TRANSFORMATION

The physical domain x0 = [x0, y0, z0]T is mapped onto a computational domain x1 =
[x1, y1, z1]T , allowing the numerical treatment of both baseflow and stability problems through spec-
tral collocation methods. The transformation produces extra terms in the Navier-Stokes equations.
For the sake of clarity, the transformation [Eq. (4)] is recalled:

x1 = x0, z1 = z0, y1 = (1 − γ )y0 + γ , with γ = η(z0)/[η(z0) − 2], (4)

where η(z0) = ε arctan [2 sin π (z0 − zb)/δb]/π is defining the shape of the trapezoidal roughness.
Its height is denoted by ε while δb = 0.4 is a coefficient determining the slope of the roughness.
Relations between the derivative operators in the different systems are easily obtained from the
chain rule and are given as
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In a similar fashion, second-order derivatives can be obtained:
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Finally, the Laplacian with the new coordinates is defined as
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