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This work investigates impacting nanodroplets on pillared surfaces via molecular dy-
namics (MD) simulations, especially to understand the intrusion effect of liquid in pillar
gaps at the nanoscale, by comprehensively revealing outcome regimes and modeling the
maximum spreading factor (Bn.x)- A total of six outcomes, including first sticky (1S),
second sticky (2S), first nonbouncing (INB), second nonbouncing (2NB), first bouncing
(1B), and second bouncing (2B), are identified. The 1S, 2S, and 2B regimes take place on
monostable Wenzel surfaces with the Wenzel-to-Cassie dewetting transition and bouncing
boundaries separating them; the 1NB, 2NB, 1B, and 2B regimes occur on monostable
Cassie surfaces, distinguished by the Cassie-to-Wenzel wetting transition and bouncing
boundaries. By establishing criteria of all boundaries, a universal phase diagram of im-
pacting nanodroplets on pillared surfaces is constructed. Besides, to understand the altered
spreading dynamics by the liquid intrusion effect, 8.« is modeled. The bulk droplet above
pillared surfaces is found to have the same spreading dynamics as a nanodroplet on flat
surfaces, which decouples the effects of the bulk droplet and the liquid intruding into
pillar gaps. Subsequently, two intrusion regimes are classified based on different intrusion
morphology of the liquid front, and the scalings for intrusion volume in different intrusion
regimes are obtained with the corresponding transition criterion being proposed. Eventu-
ally, scaling laws of B.x for impacting nanodroplets on pillared surfaces are established
by incorporating the volume term of the bulk droplet, and are in good agreement with all
available MD data of S,.x, showing their strong robustness and universality.

DOI: 10.1103/PhysRevFluids.9.073602

I. INTRODUCTION

The phenomenon of a droplet impacting a surface is ubiquitous in natural life, for example,
rain droplets impacting roofs, and in technical applications, such as inkjet printing [1], anti-icing
surface design [2], spray spraying cooling [3], coating [4], and others. After impacting surfaces,
many outcomes could take place by impacting droplets, such as deposition, splashing, breakup, and
bouncing [5]. Identifying outcome regimes is a classical problem owing to its practical significance.
For instance, deposition is welcome in inkjet printing, while bouncing is favored in anti-icing surface
design. Besides identifying outcomes, modeling the maximum spreading factor, Bmax(=Dmax/Do),
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is also a classical problem since dominant forces and the mechanisms of viscous dissipation can
be effectively understood by modeling it, where Dy,,x is the maximum spreading diameter and
Dy is the initial diameter of impacting droplets. Many efforts have been devoted to studying the
two classical problems through experiments [6—12], numerical simulations [13—15], and theoretical
analyses [6,9-13,16,17].

As compared with the frequently studied millimeter-sized droplets, the impact dynamics of
nanodroplets has recently aroused increasing interest, owing to their use in emerging and rising
nanotechnologies like nanoscale inkjet printing [18], anti-icing surface design [19], synthesizing
high-entropy materials [20], accelerating drug discovery [21], and so forth. Therefore, understand-
ing the underlying mechanisms of impacting nanodroplets on surfaces is urgently desired. Within
this context, substantial recent numerical and theoretical studies have been reported to investigate
impacting nanodroplets in one decade. In the early research stage, the impact dynamics of nan-
odroplets is focused on flat surfaces with wettability ranging from hydrophilic to superhydrophobic
and it is considered to be controlled by the parameter group of We, Oh (or Re), and 6 [22-25],
where the Weber number (We = pD0V02 /v ) represents the ratio of inertial to capillary forces, the
Ohnesorge number, Oh = 1 /(pDyy)'/?, denotes the ratio of viscous to inertial-capillary forces, the
Reynolds number (Re = pDyVj/1t) stands for the ratio of inertial to viscous forces, and the intrinsic
contact angle, 6, is the angle at the three-phase contact line for a sessile droplet equilibrating on a
flat surface; p is the liquid density, Vj is the impact velocity, y is the surface tension, and u is
the liquid viscosity. With the help of molecular dynamics (MD) simulations which are effective
for investigating such small droplets, certain studies have claimed that the impact dynamics of
nanodroplets is distinct from millimeter-sized droplets due to various scale effects, where scale
effects are the key reasons that the dynamics across scales are different [22,23,26,27]. To our
best knowledge, three primary scale effects have been reported. First, when the droplet diameter
decreases from the macroscale to the nanoscale, Oh has a thousandfold increase, indicating that the
viscous force becomes important at the nanoscale [22]. Second, unlike viscous dissipation, which
mainly takes place in the boundary layer near solid walls for macroscale droplets, violent veloc-
ity gradients have been found in entire impacting nanodroplets, showing the viscous dissipation
mechanism has altered when decreasing the droplet diameter to the nanoscale [27]. Third, violating
the no-slip condition accepted for impacts of macroscale droplets, significant slip has been found
for impacting nanodroplets [28]. Because of the occurrence of scale effects, previous models for
millimeter-sized droplets must not be valid for nanodroplets, and, thereby, many studies revisited
the classical problems (identifying outcome regimes and modeling B,.x) of impacting nanodroplets
on flat surfaces [27,29-34]. For example, on modeling By.x, a low-viscosity millimeter-sized droplet
impacting on a superhydrophobic surface is attested to be controlled by only inertial and capillary
forces, i.e., in the capillary regime, and satisfies the We-dependent scaling law of Bpax ~ We!/* over
a three-order-of-magnitude-wide range of Weber numbers [35]; however, Wang et al. [22] indicated
that impacting nanodroplets in the capillary regime, controlled by inertial and capillary forces, do
not follow the scaling law of Bp.x ~ Wel/4 but Bax ~ We!/3, due to the similar dynamic behaviors
between impacting nanodroplets and Hertz balls. Besides, the capillary regime is significantly
reduced with We only ranging from 1 to =~ 40. Once We exceeds the narrow capillary regime,
the impacting nanodroplet falls into the crossover regime (which is also called transition regime), in
which the droplet is controlled not only by inertial and capillary forces but also viscous force, and
satisfies another scaling law of Bpa ~ We!/?0h!/3,

Despite the progress in revisiting classical problems by studies above, flat surfaces are, in
fact, ideal in a real impact process. Especially in the mentioned studies [22-25], even the impact
dynamics on flat superhydrophobic surfaces was investigated by MD simulations. There, indeed,
never exists a flat or intrinsic superhydrophobic surface, and decorating a flat surface with textures
is the only way to get a superhydrophobic surface [36]. The previous studies on millimeter-sized
droplets frequently ignored the effect of textures and considered the superhydrophobic surfaces
as flat ones with high intrinsic contact angles, which is ascribed to the condition that the size
ratio of textures to millimeter-sized droplets is extremely small [8—10,37]. However, the feature
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sizes of textures and nanodroplets are comparable so at the nanoscale, textured surfaces should be
considered as specific objects in the research of impact dynamics instead of arbitrarily simplifying
them as flat surfaces with high contact angles.

To match practical impact processes, instead of ideal flat surfaces, certain recent studies focused
on nanodroplets impacting pillared surfaces [38—41]. Here, three texture parameters, s, w (or p), and
¢, are additionally required to comprehensively describe the impact dynamics, where &, w, p, and
@(= w?/p?) are the height of pillars, the width of pillars, the distance between pillars, and the solid
fraction of pillars, respectively. On pillared surfaces, the classical problems (identifying outcome
regimes and modeling B.x) are further revisited. The first crucial mechanism for both millimeter-
sized and nanoscale impacting droplets on pillared surfaces is that there exist two wetting states of
droplets, i.e., the Cassie and Wenzel states, and the wetting transition between the two states may
occur during impact, adding the complexity of impact dynamics. In this work, the Cassie-to-Wenzel
wetting transition and Wenzel-to-Cassie dewetting transition are referred to as wetting transition
and dewetting transition, respectively, for better readability. Lv er al. [39] emphasized a second
mechanism especially for impacting nanodroplets on pillared surfaces. For millimeter-sized droplets
impacting surfaces with nanopillars, the volume ratio of the intruding liquid to the entire droplet is
negligible. However, this ratio is no longer negligible for nanodroplets because of violent intrusion
in pillars with comparable sizes of nanodroplets. Consequently, the energy dissipation mechanism
alters with the initial kinetic energy being dissipated not only by the violent internal flow inside the
bulk droplet atop pillars but also by the liquid intruding into pillar gaps. Therefore, they inferred that
bouncing is impossible to take place when impacting nanodroplets experience the wetting transition
because of the huge dissipation by overcoming the energy barrier of the dewetting transition and the
enhanced viscous dissipation of the liquid intruding into pillar gaps. On the basis of this insight, they
stated that there only exist four outcomes for nanodroplets on pillared surfaces, i.e., first sticky (1S),
first nonbouncing (INB), second nonbouncing (2NB), and first bouncing (1B), whose schematics
and descriptions are shown in Fig. 1. Here, the naming of sticky, nonbouncing, and bouncing,
representing the eventual state of impacting nanodroplets, follows the previous studies [42,43]; the
naming of first and second stands for the wetting transition feature.

Despite a phase diagram being constructed by Lv et al. [39], which claimed that the outcome
regimes on pillared surfaces have been comprehensively identified, the basal mechanism that
intrusion would enhance viscous dissipation is worth the doubt. Indeed, the viscous dissipation
must take place in pillar gaps; however, it is possibly not significantly enhanced for the following
several reasons. First, as liquid intrudes into pillar gaps, the sidewalls are wetted, which is a
free-energy-increasing process and thereby indicates that the kinetic energy of the intruding liquid is
not all dissipated to heat but is partly stored as surface energy, provided that the intrinsic wettability
of the sidewalls is hydrophobic. Second, the no-slip condition is violated at the nanoscale [28],
and therefore, the shear flow effect is reduced, which also adds to the possibility that the viscous
dissipation in the narrow pillar gaps is weakened. If the liquid intrusion effect does not enhance the
viscous dissipation significantly, an impacting nanodroplet after experiencing the wetting transition
still probably has enough energy to achieve the dewetting transition and even bounce off a pillared
surface. Thus, the second sticky (2S) and the second bouncing (2B), as shown in Fig. 1, are still
possible to be observed. A piece of evidence has recently been provided by the study of Gao
et al. [38] that the 2B outcome indeed appeared at a large enough We. As a result, the phase
diagram developed by Lv et al. [39] does not contain all outcome regimes, and hence it needs to be
reconstructed in wider ranges of Weber numbers, intrinsic surface wettability, and pillar geometry.
Additionally, the reconstruction of regime diagrams also helps us to further clarify the dissipation
mechanism occurring in pillar gaps and its effect on the impact dynamics of nanodroplets.

The other classical problem of modeling Biax for nanodroplets impacting pillared surfaces has
been revisited by recent studies [38,40]. Herein, new physical insights into the liquid intrusion effect
are desired to obtain by referring to the models. However, in their theoretical modeling, impacting
nanodroplets are assumed to be perfect Cassie droplets throughout the whole impact process, which
indicates that no liquid intrudes into pillar gaps and the nanodroplets only contact with the tops
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FIG. 1. The schematics of all possible outcomes for impacting nanodroplets on pillared surfaces, where
each outcome is described by three subfigures representing the maximum spreading state, the typical middle
state between the maximum spreading and final states, and the final state, respectively. The first sticky (1S)
notes that a nanodroplet experiences the wetting transition and is not able to transition back to the Cassie
state; the second sticky (2S) represents that the one experiences the dewetting transition after the wetting
transition but subsequently falls back to the Wenzel state. The first nonbouncing (1NB) stands for a nanodroplet
neither experiencing the wetting transition nor bouncing off surfaces; the second nonbouncing (2NB) shows
that a nanodroplet experiences the wetting transition and then returns to and stays in the Cassie state. The first
bouncing (1B) illustrates that an eventually bouncing nanodroplet does not experience the wetting transition,
while the second bouncing (2B) displays the finally bouncing nanodroplet that experiences both the wetting
transition and the dewetting transition before bouncing.

of pillars. As a result, the solid-liquid interfacial area is modified by the solid fraction, ¢, for
estimating the surface energy in their models. This assumption is acceptable for millimeter-sized
impacting droplets because the intrusion volume of liquid is small enough compared with the initial
droplet volume, which would not yield significantly distinct dynamic behaviors during spreading.
Nonetheless, the wetting transition can be triggered even if impact takes place at a low We of 8.24
at the nanoscale [38]; thus, the liquid intrusion effect must be taken into account for impacting
nanodroplets on pillared surfaces due to the large ratio of the intrusion volume to the initial volume
of nanodroplets. Within this context, the existing models ignore the possible wetting transition
and thus do not present the intrusion effect; accordingly, they may not be able to predict B of
impacting nanodroplets on pillared surfaces accurately when liquid intrusion is violent. Despite both
of the studies implementing the comparison between their models and MD results for claiming the
effectiveness of their models, only a set of data of impact on a pillared surface with fixed parameters
is used in each comparison, and therefore these models are not proven universal. As a result, all
current models of B« are far from satisfactory for interpreting the liquid intrusion effect on the
impact dynamics of nanodroplets on pillared surfaces.

Furthermore, it should be noted that the impacting nanodroplet has an unimaginably large impact
velocity at a similar Weber number with millimeter-sized droplets. For instance, as reported in a
real nanoscale printing, an impacting nanodroplet can have an extremely large impact velocity at
~250m s~! when We & 105 [18], indicating a correspondingly large Mach number (Ma = V;/Uy)
of ~0.74, where Us is the speed of sound. Zhang et al. [14] investigated the impact of argon
nanodroplets in an environment filled with argon vapor, reporting that the droplet volume can be
compressed by ~0.82% at Ma ~ 0.1. Based on this observation, they inferred that the volume
variation can rise to 7% at Ma = 0.24, which becomes worrisome. If this insight holds true, in
addition to the effect of solid surfaces, the impact dynamics of nanodroplets should be controlled by
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TABLE I. Simulation series list with descriptions of parametric ranges for each series.

Series Description (L = 1.96 A) We and % ranges

1 ¢ =44%,w =8L,0 = 105°, P =0

2 ¢ =44%, w =8L,0 =85°, P =0

3 ¢ =44%,w =8L,0 = 125°, P =0 We in 1.51 to 109.03

4 0 =44%,w =4L,0 =105°,P =0 h in OL to 22L with interval of 2L
5 ¢ =25%,w=4L,0 =105°,P =0

6 ¢ =44%, w = 8L, 6 = 105°, P ~ 1 atm (filled N,)

not only We and Oh (or Re) but also Ma. However, Galliker et al. [18] reported that the maximum
spreading factor is still expected to be predicted only by We and Re according to experiments.
Recent simulation studies on the maximum spreading factor also do not report the compressibility
effect as well. For example, Y. B. Wang et al. [23] and Y.-F. Wang et al. [22] considered both
a water nanodroplet system (nearly no gas) and an argon nanodroplet system (around by argon
vapor) and found the maximum spreading factor is identical for both water and argon nanodroplets
when We, Oh, and 6 are the same. In this work, more simulations are expected to validate that the
compressibility effect indeed does not take place for impacts of nanodroplets at O(100 ms~'), and
the underlying reason for the absence of the compressibility effect will also be discussed with the
help of simulations and literature.

This work investigates a nanodroplet impacting a pillared surface, aiming to identify outcome
regimes and model f,x. Six series of simulations covering wide parametric ranges of We, Oh, 6,
h, w, ¢, and P (gas pressure), as shown in Table I, comprehensively reveal outcome regimes. Each
series can reveal outcomes in wide ranges of We and /i, and comparing pairs of series data can
reveal the effect of other surface parameters (6, w, ¢, and P). It should be noted that, compared
with no additional gas molecules in series 1-5, the simulation system in series 6 is filled with
N, for investigating the effect of gas surrounding nanodroplets. Subsequently, the boundaries of
outcome regimes are established for developing a universal phase diagram. With the help of the
criteria of boundaries, the dissipation mechanism occurring in pillar gaps and its effect on the
impact dynamics of nanodroplets can be effectively understood. In modeling B.x, understanding
the detailed intrusion morphology of liquid is important when impacting on pillared surfaces. The
intrusion regimes are classified by different intrusion morphology, and the scalings of intrusion
volume in different intrusion regimes and the corresponding transition criterion are both established.
Combining the scalings of intrusion volume with the scaling laws of B¢ on flat surfaces leads to
the new scaling laws of S« on pillared surfaces.

II. SIMULATION METHOD

All simulations are implemented by the LAMMPS (large-scale atomic/molecular massively paral-
lel simulation) package. Figure 2(a) shows the schematics of the simulation system for an impacting
nanodroplet on a pillared surface in a box with dimensions 34x34x23 nm?. Periodic boundary
conditions are applied to the x and y directions and a fixed boundary condition is applied to the
z direction. The pillar parameters, including the height of pillars, 4, the width of pillars, w, and
the pitch between pillars, p, are exhibited in Fig. 2(b). The nanodroplet and the substrate in the
simulation system are generated, using the face-centered-cubic alignment. The lattice constant
for the substrate is ¢ = 3.92 A and a typical length L = a/2 = 1.96 A is adopted for evaluating
the sizes of pillar parameters later. In a real nanoscale printing process, the substrate does not
deform, and therefore, a virtual spring is imposed on each solid atom to its initial position to avoid
possible deformation of the substrate. The nanodroplet has a diameter of 10 nm and contains 17 474
water molecules. Initially, the droplet and the substrate are separated by 1.8 nm to avoid possible

073602-5



WANG, WANG, ZHANG, HE, YANG, WANG, AND LEE

w

(b)

Front view

at by
X
FIG. 2. The schematics of (a) the simulation system and (b) the pillar parameters, where s, w, and p, are
the height of pillars, the width of pillars, and the pitch between pillars, respectively.

interactions between them before impact. This separation distance is identical for all cases in this
work.

The monatomic water (mW) model, derived from the Stillinger-Weber silicon potential, describes
the interactions between water molecules [44]. As a coarse-grained model, the mW model can
significantly improve computational efficiency. Besides, the model can also accurately reproduce
most physical properties of water, such as surface tension, density, energetics, and others. However,
owing to the exclusion of the reorientation of hydrogen atoms, the viscosity of this model is three
times lower than the experimental value of water [44]. As tested by the previous study [44], the
properties of mW are p = 996kgm?, y = 0.066Nm~', and u = 851/3 = 283.7 uPas, which are
used to calculated We and Oh.

The interactions for s-s (solid atoms) and s-1 (solid atoms and mW molecules) pairs are described
by the Lennard-Jones 12—-6 potential model, expressed as

o6 ()]

where r is the distance of the atom pairs, ¢ is the depth of the potential well, o is the zero-crossing
distance, and ry is the cutoff distance which is adopted as 1 nm. In this work, the parameters,
&sss Oss, and oy, are fixed as 0.69375 eV, 0.247 nm, and 0.28155 nm, respectively [23]. The
energy parameter, &g, is considered to be an adjustable parameter for producing different intrinsic
wettability. The relationship between the intrinsic contact angle and the adjustable parameter, &g,
can be evaluated by placing a nanodroplet on a flat surface and estimating the contact angle after
the nanodroplet reaches equilibrium. With the help of calculating the time-average density profile,
the surface of droplets can be identified using a density threshold that is half of the liquid-phase
density. Subsequently, by circle fitting on the surface of droplets, the contact angle of droplets at &
is obtained by measuring the angle at the three-phase contact line. Based on this method, the contact
angles 6 =85°, 105°, and 125° correspond to g1 =0.0137, 0.0102, and 0.0068 eV, respectively [23].

No additional gas molecules are added in the simulation system in series 1-5, whereas N;
molecules are added to achieve P = 1 atm for investigating the effect of ambient gas on impacting
nanodroplets at an ordinary pressure in series 6. The interaction parameters between nitrogen atoms
are set as g = 0.0073 eV and oz, = 0.371 nm [45]. Each nitrogen molecule consists of two
nitrogen atoms connected by a fixed chemical bond. The interaction parameters for s-g (solid
and gas atoms) and l-g (mW molecules and gas atoms) are &, = 0.0386 eV, oy, = 0.335 nm,
&1 = 0.0063 eV, and 01, = 0.349 nm.
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MD simulations are launched with a time step of 2 fs. The equilibrium process runs in the N-V-T
ensemble (canonical ensemble) with relaxation for 2 ns and the center of mass of the nanodroplet
is fixed in the whole process. Using the Nosé-Hoover thermostat, the system temperature 7 is
controlled at 300 K. After reaching equilibrium, running in the N-V-E ensemble (microcanonical
ensemble), an additional velocity (Vp) along the negative z direction is imposed to the nanodroplet
to impact. The position and velocity of each mW molecule are recorded with an interval of 1 ps for
further analysis.

For validating the effectiveness of mW in investigating the impact dynamics of nanodroplets,
impacts by argon nanodroplets simulated by the Lennard-Jones 12—-6 potential model are also
implemented. As shown in Fig. S1 of the Supplemental Material [46], the maximum spreading
factor shows the same for both impacts of water and argon nanodroplets on flat surfaces, showing
the same effectiveness of this coarse-grained model as the full-atom model.

III. OUTCOME REGIMES
A. Effect of pillar height

In this section, the cases in series 1 (fixed ¢ = 44%, w = 8L, and 6 = 105°) are used for
revealing the effect of pillar height (h) and We. Since £ significantly affects liquid intrusion and also
generates distinct wetting features of surfaces, the outcome regimes of impacting nanodroplets are
discussed in two h-dependent groups: a low-h range (0 </ <4L) and a high-h range (6L <h <22L).

In the low-h range (0 < h < 4L), tested by a sessile droplet, all surfaces are found to favor
the Wenzel state; i.e., the droplet must equilibrate in the Wenzel state eventually regardless of its
initial wetting state being the Cassie or the Wenzel state. Thus, the Wenzel state is the globally
minimum energy state. Frequently, a surface with such a wetting feature is termed a Wenzel surface.
Nonetheless, it should be emphasized that the mechanism of the Wenzel surface at the nanoscale
is different from the one at the macroscale. At the macroscale, no matter how short the pillars are,
liquid could not spontaneously intrude into the pillar gaps to achieve the Wenzel state, provided
that the intrinsic wettability is hydrophobic. This is because the intrusion process for a sessile
droplet before the liquid touching the basal wall is a free-energy-increasing process according to
the macroscopic interfacial thermodynamics [47]. However, at the nanoscale, the extremely small
pillars render the liquid intrusion process spontaneous [48], which is possibly ascribed to the fact
that, before the liquid touches the basal wall, there has existed intermolecular attractive interactions
between the liquid and the basal wall, because the range of pillar height (from 0.392 to 0.784 nm)
discussed here is lower than the effective length of the van der Waals force [49]. As a result, the
liquid intrusion process can be free-energy decreasing and the pillared surfaces with enough low &
are Wenzel surfaces, despite the intrinsic wettability being hydrophobic.

The schematic of a free-energy-change path for a Wenzel surface is drawn in Fig. 3(a), based on
our previous work for nanoscale wetting transition on pillared surfaces [50]. On Wenzel surfaces,
there exists a spontaneously decreasing free energy path from the Cassie to the Wenzel state so
that an impacting nanodroplet would spread to the maximum spreading state with the inevitable
wetting transition (A — B — C), noting the possible 1S, 2S, and 2B regimes but impossible 1B,
INB, and 2NB regimes on Wenzel surfaces. At the maximum spreading state, all available kinetic
energy after overcoming the viscous dissipation during spreading is stored as surface energy. As an
impacting nanodroplet starts to retract by releasing the surface energy, there exists an energy barrier
(AFcw) resisting the dewetting from the Wenzel to the Cassie state, as shown in Fig. 3(a). Besides,
even if the impacting nanodroplet returns to the Cassie state, there is still another energy barrier
(AFcp) to hinder the bouncing, due to the adhesion between liquid and surface. By comparing
the available energy at the maximum spreading state with the energy barriers (AFcp and AFcw),
three possible outcome regimes could be speculated. If the initial kinetic energy of a nanodroplet
is low, the available energy stored at the maximum spreading state is correspondingly low, so
that the nanodroplet is not able to overcome AFcw and, finally, equilibrates in the Wenzel state
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FIG. 3. (a) The schematic of the free-energy-change path on Wenzel surfaces; (b) the extracted available
energy at important states, where the corresponding calculation method is shown in the Supplemental Material
[46]; and snapshots of nanodroplets with Oh = 0.35 impacting pillared surfaces with 7 = 4L at (c) We = 45.7,
(d) We = 63.8, and (e) We = 109.0, showing the impacting nanodroplets in the 1S, 2S, and 2B regimes,
respectively.

(C — D — C), showing the 1S regime. With intermediate initial kinetic energy, the nanodroplet
has more available energy at the maximum spreading state, and the dewetting transition is desired to
complete (C — D — E). At this time, if there is no sufficient residual energy to overcome AFcg, the
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nanodroplet will finally transition back and equilibrate in the Wenzel state (E — D — C), noting
the 2S regime. When the initial kinetic energy is high enough, there still exists enough residual
energy to overcome the adhesion after completing the dewetting transition (C - D — E — G),
illustrating the 2B regime. In summary, there theoretically exist three possible outcome regimes on
Wenzel surfaces, i.e., 1S, 25, and 2B regimes.

With the assistance of extracted available energy (kinetic energy plus surface energy) from MD
simulations at important states, i.e., the initial, maximum spreading, and eventual states, as shown
in Fig. 3(b), the outcomes on Wenzel surfaces are analyzed, where Ey;s in the figure represents the
viscous dissipation during spreading. As shown in Fig. 3(c), on pillared surfaces with 7 = 4L at
We = 45.7, the nanodroplet spreads to the maximum state at ¢t = 30 ps with the wetting transition.
Due to the relatively low initial kinetic energy, the stored energy at the maximum spreading state is
also small, as shown in Fig. 3(b), so that the nanodroplet is slightly lifted at the end of the retraction
and finally stays in the Wenzel state, showing the occurrence of the 1S regime. Among all possible
outcome regimes (1S, 2S, and 2B regimes) on Wenzel surfaces, Lv et al. [39] claimed that the
enhanced viscous dissipation due to the liquid intrusion effect and the huge energy barrier, AFcw,
render the 2S and 2B regimes impossible to take place, and there should only exist the 1S regime.
However, the viscous dissipation in pillar gaps may not be significantly larger than the one in the
bulk droplet because the significant slip has been reported for impacts of nanodroplets, reducing
the viscous dissipation in pillar gaps. The intrusion volume of liquid must increase with velocity;
however, the energy budget shows that the viscous dissipation proportion to the initial kinetic energy
decreases with increasing velocity, as shown in Fig. 3(b), which provides the evidence for the
statement that the velocity gradients in pillar gaps are possibly weaker than the ones in the bulk
droplet on Wenzel surfaces. On the other hand, the energy barrier for the dewetting transition is not
infinite but is determined by surface parameters (8, /i, w, and ¢); once all the parameters are fixed,
the energy barrier is constant. Therefore, increasing the initial kinetic energy can always enlarge
the available energy at the maximum spreading state for possibly overcoming AFcyw. As shown in
Figs. 3(b) and 3(d), at a larger We of 63.8, the impacting nanodroplet forms a thinner cylinder shape
with larger available energy at the maximum spreading state. As expected, the nanodroplet has a
more significant upward motion than the one at We = 45.7 at the end of retraction (t = 170 ps)
and the dewetting transition is achieved. Nonetheless, there is no more residual energy at the end
of retraction and, thereby, the nanodroplet returns to the Wenzel state and equilibrates eventually,
showing the emerged 2S regime. Fortunately, despite no bouncing behavior taking place at such
We, the contact area between the liquid and the top surface has become extremely low when the
dewetting transition is completed (# = 170 ps), implying that even the 2B regime is desired to occur
on Wenzel surfaces if We is further increased. As anticipated, at an extremely large We of 109.0,
enough available energy at the maximum spreading state not only promotes the dewetting transition
but also subsequently triggers the bouncing, as shown in Fig. 3(e), showing the occurrence of the
2B regime.

In the high-h range (6L < h < 22L), the surfaces prefer the Cassie state. Such surfaces have
globally minimum energy in the Cassie state; i.e., no matter whether a sessile droplet is in the
Cassie or the Wenzel state initially, it would finally equilibrate to the Cassie state. Accordingly, they
are referred to as Cassie surfaces. The free-energy-change path for a droplet on a Cassie surface is
illustrated in Fig. 4(a). In comparison with the existing energy barrier for the dewetting transition on
a Wenzel surface, here the energy barrier on a Cassie surface is altered to resist the wetting transition.
An impacting nanodroplet possibly fails to achieve the wetting transition (low We, A - B — A) or
experiences the wetting transition and spontaneously transitions back to the Cassie state (high We,
A — B — C — D — E). For each possible process above, the nanodroplet can either equilibrate in
the Cassie state (low We, no further motion) or bounce off surfaces (high We, A — F or E — Q).
Combining them in pairs, there theoretically exist four possible outcome regimes, i.e., INB, 1B,
2NB, and 2B regimes, on Cassie surfaces.

With the help of the extracted available energy shown in Fig. 4(b), the outcomes on Cassie
surfaces are discussed, where Egy;s in the figure stands for the viscous dissipation during spreading.
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FIG. 4. (a) The schematic of the free-energy-change path on Cassie surfaces; (b) the extracted available
energy at important states, where the corresponding calculation method is shown in the Supplemental Material
[46]; snapshots of nanodroplets with Oh = 0.35 impacting pillared surfaces with 4 = 12L at (c) We = 13.6,
(d) We = 45.7, and (e) We = 109.0, showing the impacting nanodroplets in the 1NB, 2NB, and 2B regimes,
respectively; and (f) snapshots of a nanodroplet with Oh = 0.35 impacting a pillared surface with & = 22L at

We = 63.8, noting the impacting nanodroplet in the 1B regime.
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On a pillared surface with &2 = 12L, the nanodroplet with low initial kinetic energy is not able to
achieve the wetting transition, so it remains on the top of surfaces and eventually equilibrates in the
Cassie state, as shown in Fig. 4(c), indicating the occurrence of the 1NB regime. With an increased
We of 45.7, the nanodroplet has more initial kinetic energy so the wetting transition is successfully
triggered; subsequently, it spontaneously transitions back to the Cassie state but no bouncing
behavior is observed, as shown in Fig. 4(d), demonstrating the presence of the 2NB regime. Lv
et al. [39] discussed that despite no extra energy being required to complete the dewetting transition
on Cassie surfaces, most of the initial kinetic energy has been used during the wetting transition
so the bouncing behavior could not take place after completing the dewetting transition. On the
basis of this insight, they claimed that the 2B regime could not occur on Cassie surfaces. However,
it is possible that they exaggerated the viscous dissipation by the liquid intrusion as discussed on
Wenzel surfaces before. Compared with pillared surfaces with low % (for which the 2B regime has
been observed), impacting nanodroplets store surface energy more easily during spreading by the
liquid intrusion when 4 is increased. For instance, an impacting nanodroplet can dissipate 90.6% of
the initial kinetic energy during spreading at We = 45.7 and h = 4L, as shown in Fig. 3(b), whereas
only 86.9% of the initial kinetic energy is dissipated at the same Weber number when # is increased
to 12L, as shown in Fig. 4(b), showing more initial kinetic energy is stored as surface energy
instead of being dissipated. As a result, more violent liquid intrusion does not strongly enhance
the viscous dissipation during spreading, and no doubt, the 2B regime is still possible to exist on
Cassie surfaces in high-We ranges. As anticipated, at a high We of 109.0, although the nanodroplet
undergoes both the wetting transition and the spontaneous dewetting transition, it bounces off a
surface eventually, presenting the 2B regime [Fig. 4(e)]. Herein, the INB, 2NB, and 2B regimes
are successfully observed for impacting nanodroplets on pillared surfaces with 4 = 12L. However,
the 1B regime does not appear at this 4. This can be ascribed to the fact that the energy barrier for
the wetting transition is relatively lower than the one of adhesion so the nanodroplet prefers the
wetting transition compared with the direct bouncing. It is well recognized that increasing & can
enlarge the energy barrier for the wetting transition [50], provided that the intrinsic wettability is
hydrophobic. Thus, when 4 is large enough, the energy barrier for the wetting transition can exceed
the one of adhesion, and hence the nanodroplet prefers bouncing instead of the wetting transition.
As expected, Fig. 4(f) shows that when impacting the pillared surface with a larger & of 22L, the
nanodroplet directly bounces off the surface without the wetting transition at We = 63.8, showing
the presence of the 1B regime. In summary, all theoretical outcome regimes are observed with the
1S, 25, and 2B regimes on Wenzel surfaces and the INB, 1B, 2NB, and 2B regimes on Cassie
surfaces.

By testing the wide We range, the richer outcome regimes compared with Lv et al. [39] are
identified with a total of six outcome regimes that are drawn in Fig. 5 as a phase diagram. On
Wenzel surfaces, there are 1S, 2S, and 2B regimes. The 1S-2S boundary is characterized by the
dewetting transition; the 2S-2B boundary is determined by bouncing on Wenzel surfaces. On Cassie
surfaces, INB, 1B, 2NB, and 2B regimes are observed; however, only two boundaries separate
the four regimes. The first is referred to as the wetting transition boundary and the second is
termed the bouncing boundary on Cassie surfaces. Specifically, the wetting transition boundary
separates the 1B and 1NB regimes from the 2B and 2NB regimes, whereas the bouncing boundary
on Cassie surfaces distinguishes the 1NB and 2NB regimes from the 1B and 2B regimes. Briefly,
four boundaries, i.e., the 1S-2S boundary and the 2S-2B boundary on Wenzel surfaces, as well as the
wetting transition boundary and the bouncing boundary on Cassie surfaces, separate all six outcome
regimes.

Focusing on the wetting transition boundary, the relationship between Wegi c.w and surface
parameters (0, h, w, ¢) is desired to be obtained, where We c.w is the critical Weber number
for trigging the wetting transition on Cassie surfaces. In an intrusion process, the intruding depth
of the liquid at the initial impact point is always the deepest and, once it touches the basal wall,
the wetting transition is achieved; thus, this deepest depth of the intruding liquid (%;) is considered
for revealing the wetting transition. Herein, the volume of the intruding liquid that would suffer
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FIG. 5. Phase diagram of nanodroplets with Oh = 0.35 impacting pillared surfaces with wide ranges of h
and We. Here, the red, green, and cyan solid lines and the blue bar represent the prediction results of Egs. (6),
(11), and (14) and Eq. (12), respectively. The blue solid line stands for the real bouncing boundary on Cassie
surfaces.

a strong resistance (capillary force) of F, ~ yw cos6 is Q; ~ (p? /D(Z))Dg = p?Dy. Therefore, the
acceleration of the liquid can be expressed as

o = (F./pS2i) ~ ypcos/(pwDy). (2)
Besides, another expression of «; which includes Vj and 4; is obtained from the kinematic view,
a; ~ —Vo/t;, 3)

where £ is the intrusion time, i.e., the time span from the beginning to the end of intrusion. In s
previous study [37], the characteristic time for an impact process dominated by inertial and capillary
forces is Do /Vy(We!/?), i.e., the famous inertial-capillary time, where the initial diameter, Dy, is the
characteristic length. However, the intrusion time does not simply scale as Dy /V,(We!/?) because it
should also rely on another characteristic length, i.e., ;. Intrusion takes place during the spreading
process of the droplet. When the intrusion length is small compared with the droplet diameter,
the intrusion time is significantly shorter than the spreading time; while the intrusion length is
comparable with the droplet diameter, the intrusion time also becomes comparable with the spread-
ing time. Based on this analysis, the intrusion time can scale as the scale ratio, h;/D, multiplied
by the spreading time. For the spreading of impacting droplets, the timescale is determined by
the inertial-capillary time (~We'’2 Dy /Vo). Therefore, the intrusion time, #, eventually scales as
(hi/Do)x(We'/2 Dy/Vy), i.e., t; ~ hi/VoWe!/?. Using this timescale, the kinematic expression of «;
is obtained as

ai ~ =Vi /(We'?hy). 4)

Combining Eqgs. (2) and (4), the relationship among We, A;, and other surface parameters (6, w,
and ¢) is obtained as

Wel’2 ~ ghi /w(—cosh). (5)
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Once h; equals the actual height of pillars, the wetting transition takes place; thus, replacing We
and /; by Wegi c.w and £, the criterion of the wetting transition is obtained as

Weir/i?c-w ~ @h/w(—cos0). (6)

This scaling law is also derived by Lv et al. [39] and agrees with the present MD data with a
prefactor of 27.5, as shown in Fig. 5.

On Cassie surfaces, the wetting transition needs to overcome an energy barrier but the dewetting
transition is spontaneous; inversely, on Wenzel surfaces, achieving the dewetting transition would
face an energy barrier, while the wetting transition is spontaneous. Increasing /# can enhance the
former energy barrier, leading to an increase in We c.w, whereas it would weaken the latter
energy barrier, resulting in a decrease in Wei w-c, where We,; w.c is the critical Weber number for
trigging the dewetting transition on Wenzel surfaces [50]. Here, a simple assumption is proposed
that, with increasing A, the rates of change in We,;j c.w and We; w-c are negatively correlated, i.e.,

d_1p d_ 1p
awecri,W—CN - @Wecri,c»W‘ (7

Substituting Eq. (6) in Eq. (7) yields

d 1
@Wecri,w-c ~@cosf/w. (8)
This shows agreement with Fig. 5 in which the critical Weber number on the 1S-2S boundary on
Wenzel surfaces decreases with increasing A. Intriguingly, the 2S-2B boundary (i.e., the bouncing
boundary on Wenzel surfaces) is parallel with the 1S-2S boundary, as shown in Fig. 5. This may be
ascribed to the fact that, on Wenzel surfaces, the transition from the Cassie state to bouncing only
requires to overcome the adhesion between the lifted Cassie nanodroplet and the top surface, like
the impacting nanodroplet from ¢t = 100 to 160 ps in Fig. 3(e). Therefore, the bouncing boundary
on Wenzel surfaces also follows the same expression,
d o ip»

—We

a7 Veariwp ~ ¢ cosO/w, 9)

where Wei w-p is the critical Weber number for triggering bouncing on Wenzel surfaces. Integrat-
ing Eq. (9) leads to a complete expression as

Weir/fw_B — Weir/fw_B lh=0 ~ @ cosOh/w, (10)

where Wegi w.sln—o is the critical Weber number for triggering bouncing on flat surfaces. Ma
et al. [24] have investigated the criterion of impacting nanodroplets on flat surfaces and obtained
a prediction model as Wegi w-Bln=0 = 172 4+ 188 cosf, where 172 and 188 are constant fitting
parameters. Combining this model into Eq. (10), the criterion for the bouncing on Wenzel surfaces
is obtained as

[We lwp — (172 + 188 cos 0)'/2]~¢ cos Oh/w. (11)

With a prefactor of 44, Eq. (11) shows good agreement with the actual boundary, as shown in
Fig. 5.

It should be noted that the bouncing boundaries on Wenzel and Cassie surfaces intersect at the
critical pillar height (h.) separating the Wenzel and Cassie surfaces, and the bouncing boundary on
Cassie surfaces is independent of 4 so that the criterion of it can be obtained by substituting /. in
Eq. (11), expressed as

[We!lcgy — (172 + 188 cos )'/?] ~ ¢ cos Oh./w, (12)

where Wei c.p is the critical Weber number for triggering the bouncing on Cassie surfaces. It
could be inferred that . must be between 4L and 6L in series 1, and here, taking 4. = 4L and 6L in
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Eq. (12), respectively, upper and lower values of WeifC_B are obtained as 7.3 and 8.6 (i.e., Wei c-B

equaling 53.3 and 74), which successfully covers the actual bouncing boundary on Cassie surfaces,
as shown in Fig. 5.

Besides the bouncing boundary on Cassie surfaces, the criterion of the 1S-2S boundary can also
be further expressed based on Eq. (11). As mentioned, the critical Weber number of bouncing on
Wenzel surfaces is larger than the one of the dewetting transition due to the additional energy barrier
of adhesion. As a result, We; c.p includes two parts, i.e., one part for triggering the dewetting
transition (We w-c) and the other part for inducing the bouncing of the Cassie nanodroplet (We,q).
Therefore, Eq. (11) can be rewritten as

[Wellw.c + Well> — (172 + 188 cos 0)'/?|~¢ cos 0h/w. (13)

Because the energy barrier of overcoming the adhesion must be proportional to the contact area
between the lifted Cassie nanodroplet and the top surface, and the contact area strongly depends on
the solid fraction (¢), the expression of We;éz is assumed as We,fllé2 ~ ¢ with a prefactor of 4.8 by
fitting. Finally, Eq. (13) is expressed as

[Welllw.c +4.8¢ — (172 + 188 cos 6)'/*]~¢ cos h/w. (14)

As anticipated, Eq. (14) also shows good agreement in Fig. 5.

The four scaling laws obtained above, i.e., Egs. (6), (11), (12), and (14), have been compared with
the boundaries in Fig. 5, showing good agreement between them, where Eq. (6) has a prefactor of
27.5 and others have a prefactor of 44. Thus, all outcome boundaries, including the 1S-2S boundary
and the 2S-2B boundary on Wenzel surfaces, and the wetting transition boundary and the bouncing
boundary on Cassie surfaces, are determined. Because the Weber number, intrinsic wettability, and
pillar parameters (¢, h, and w, by which the topology of pillared surfaces can be determined) are
included in these scaling laws, it is expected that they can be applied to other impact conditions.

B. Effect of other parameters

The outcome regimes and corresponding boundaries have been preliminarily revealed in the last
section by data of series 1 with fixed parameters of 6§ = 105°, w = 8L, and ¢ = 44% and varied
parameters of We and h. Although the phase diagram (Fig. 5) has covered all possible outcome
regimes and the models of all boundaries of the regimes are established, the models have not been
validated when changing 6, w, or ¢. Therefore, the phase diagrams of other series simulations
(series 3—06) are also constructed and illustrated in Fig. 6 for further tests. Here it is worth noting
that all surfaces in series 2 (8 = 85°) are Wenzel surfaces, and additionally, all impact cases in
this series fall in the 1S regime. This may be ascribed to the fact that the wetting process in pillar
gaps on an intrinsic hydrophilic pillared surface is naturally free-energy decreasing according to
the macroscopic interfacial thermodynamics [47] and such an intrinsic hydrophilic pillared surface
can significantly increase the energy barrier from the Wenzel to the Cassie state, compared with an
intrinsic hydrophobic pillared surface [50]. Therefore, series 2 is not drawn as a phase diagram for
further analysis of outcome regimes. Comparing Fig. 5 with Figs. 6(a), 6(b), and 6(d) can highlight
the effect of 6, w, and P, respectively; comparing Fig. 6(b) with Fig. 6(c) is able to reveal the effect
of ¢.

As shown in Figs. 6(a)-6(d), the proposed scaling laws predict most boundaries accurately;
however, two failures are found. The first is the applicability of the scaling law of the wetting
transition boundary when 6 is altered. As the dashed line shown in Fig. 6(a), this scaling law
shows a significant deviation from the actual wetting transition boundary. Unexpectedly, the actual
wetting transition boundary in Fig. 6(a) is identical to that in Fig. 5, which indicates that the wetting
transition is not significantly affected by the intrinsic contact angle, provided that the intrinsic
wettability is hydrophobic. This phenomenon violates the proposed 6-incorporated scaling law of
Weir/fc_w ~ @h/w(—cos0). A possible reason is that, during liquid intrusion, the capillary force
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FIG. 6. Phase diagrams of nanodroplets with Oh = 0.35 impacting pillared surfaces with parameter groups
of (a) p=44%, 6 =125°, and w=8L (series 3), (b) ¢ =44%, 0 =105°, and w = 4L (series 4), (c) ¢ = 25%,
6 = 105°, and w = 4L (series 5), and (d) ¢ = 44%, 6 = 105°, w = 8L, and P = 1 atm (series 6), in which the
bouncing nanodroplets on surfaces with 4 = 0 are also classified into the 2B regimes for convenience. Here,
the blue solid line stands for the real bouncing boundary on Cassie surfaces. The red dashed line, the green and
cyan solid lines, and the blue bar are the predicted results of Egs. (6), (11), and (14) and Eq. (12), respectively.
The red solid line stands for the prediction result of the revised model of the wetting transition, i.e., Eq. (15).

depends on the dynamic contact angle instead of the intrinsic contact angle, and there only exists
a small difference between the dynamic contact angles on different hydrophobic pillared surfaces
due to the strong inertial force. Certain studies have explored the relationship between the dynamic
contact angle and the velocity at contact lines at the nanoscale [51,52]. All of these studies found
that a contact line velocity of about 10m s~! at the nanoscale can lead to an upper dynamic contact
angle of 180° on surfaces with intrinsic contact angles from 20° to 140°. In most impact cases
in this work, the velocity at the contact line in pillar gaps is much larger than 10ms~! so the
dynamic contact angle almost maintains an extreme value at 180°. Due to the stably large dynamic
contact angle, both the intrinsic and dynamic contact angles possibly do not significantly affect
the liquid intrusion depth and also the intrusion shape. Therefore, the previous scaling law of
Welr/fc_w ~ @h/w(— cos 0) on Cassie surfaces should be revised to

WellZow ~ oh/w. (15)
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As expected, the revised scaling law with a new prefactor of 7.12 is able to predict all the wetting
transition boundaries shown in Fig. 5 and Figs. 6(a)-6(d).

The second failure is the prediction of the bouncing boundary on Cassie surfaces at a low ¢ of
25%, as shown in Fig. 6(c). The bouncing boundaries between 1NB and 1B regimes and between
2NB and 2B regimes are characterized by the same critical Weber number when ¢ is fixed as a
relatively high value of 44%, as shown in Fig. 5 and Figs. 6(a) and 6(b) so that the model is able to
predict both of them accurately. However, when ¢ is reduced to 25%, these bouncing boundaries no
longer have the same critical Weber number, and as a result, the model can only hold for the 2NB-2B
boundary but not for the INB-1B boundary with the latter having a lower critical Weber number, as
shown in Fig. 6(c). For INB-1B, the key energy needed to be overcome is the adhesion between the
liquid and the top surface of the pillars. When ¢ becomes smaller, the adhesion is decreased so that
the required energy is accordingly reduced. Therefore, the decreased critical Weber number can be
explained by the weaker adhesion due to the reduced ¢. Only this situation is out of the prediction
of our models. Compared with the predicted INB-1B boundary by Eq. (12), the actual boundary
shifts towards lower Weber numbers in phase diagrams.

Comparing Fig. 6(d) with Fig. 5, the effect of ambient gas can be discussed. It should be noted
that the We range from 1.51 to 109.03 corresponds to the Vj range from 100 to 850 ms~!, i.e.,
Mach number (Ma = V;/U,) can range from 0.29 to 2.5, where U,(~ 340ms~') is the speed
of sound. From the traditional concept, a significant compressibility effect will take place and
the motion of impacting nanodroplets will be strongly affected, altering the corresponding phase
diagram of outcomes. However, intriguingly, the phase diagram is almost not affected by the
filled gas because Fig. 6(d) is nearly the same as Fig. 5; furthermore, the maximum spreading
diameter at P = 0 and 1 atm also shows as identical, as shown in Fig. S2 of the Supplemental
Material [46], violating the expected violent effect of ambient gas. This may be ascribed to the
competition of compressibility and rarefaction effects. Indeed, increasing the Mach number usually
enhances the compressibility effect, which is a key issue for supersonic flight; however, as the
ratio of the mean free path of surrounding gas molecules (1) to the characteristic length (the
droplet diameter Dy here), i.e., the Knudsen number (Kn = A/Dy), becomes large enough, the
rarefaction effect also becomes important, which can counteract the mentioned compressibility
effect. Zarin [53] quantitively noted that, using the particle Reynolds number (Re, = psDoVo/ i1g),
the rarefaction-dominant and compressibility-dominant regimes can be distinguished, where p, and
i are the density and viscosity of the surrounding gas. For Re, < 45, the particle falls in the
rarefaction-dominant regime, whereas for Re, > 45, it transitions from the rarefaction-dominant to
the compressibility-dominant regime. Loth [54] proves that in the rarefaction-dominant regime the
incompressible theory still holds. Considering nanodroplets falling in an environment filled with
nitrogen gas (Ny), i.e., p, = 6.735kgm™ and u, = 17.8 107% Pas, the particle Reynolds number
is far below 45, implying that impacting nanodroplets are in the rarefaction-dominant regime so
that a violent compressibility effect will not take place during impact. In other words, the impact is
more affected by Kn instead of Ma. The mean free path can be calculated by A = kg7 /(2!/%2 nd? P),
where kg is the Boltzmann constant, and d is the effective diameter of molecules. Using T = 300 K,
d = 0.375 nm for N, [55], and P = 1 atm, X is obtained as 66.3 nm, leading to Kn = 6.63. At such
a value of Kn, the gas should not be treated as continuous fluid but is reasonable to be regarded
as molecular motion. Because less than one hundred N, molecules can collide with nanodroplets
during the whole impact owing to the extremely small scale of nanodroplets, the gas does not
show a significant effect on the impact of nanodroplets. This is a preliminary test, and with further
increasing P (i.e., strengthening the collision between nanodroplet and around gas) or using other
gas molecules who have larger molecular mass, the significant effect by ambient gas on the impact
dynamics may take place. Nonetheless, to a great extent, such a test proves that it is safe to ignore
the gas effect on the impact dynamics in N, environment (also in air) at a normal gas pressure
(1 atm) at the nanoscale.

Besides the issue of the compressibility effect, it is also important to further discuss the viscous
effect since the Ohnesorge number for impacting droplets in this work is not altered. The criterion
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FIG. 7. (a) The comparison between the proposed model of the wetting transition and the data from
previous studies with various Oh, where the solid symbols stand for cases of wetting transition and the open
ones represent the cases of no wetting transition. (b) Universal phase diagram with all possible outcome regimes
and corresponding outcome boundaries determined by the established model of Eq. (16).

of the wetting transition is one of the most concerned criteria due to its effectiveness in measuring
the liquid repellency of textured surfaces, and thereby, it is chosen for testing the viscous effect.
In the previous study by Lv et al. [39], it has been proved that Oh does not affect the criterion
of the wetting transition in Oh from 0.247 to 0.452. For further validating whether this transition
is truly not sensitive to the viscosity of nanodroplets, the data for different liquid viscosity by
TIP4P water (Oh = 0.52) [38] and argon (Oh = 0.49) [40] are drawn in Fig. 7(a) for comparison.
As anticipated, the proposed scaling law, i.e., Eq. (15), can successfully predict the boundary for
whether impacting nanodroplets experience the wetting transition or not, indicating the wetting
transition for nanodroplets is Oh independent in a considerable Oh range of Oh < 0.52. This
Oh-independent motion during liquid intrusion in pillar gaps can be attributed to the fact that the
slip effect of liquid at the nanoscale is important and even a free-slip condition is partly acceptable
[26,56], which can significantly reduce the shear rate and also viscous dissipation in pillar gaps. As a
result, the scaling laws for the boundaries of outcomes are expected to be universal for nanodroplets.

Eventually, the scaling laws can be summarized without any adjustable parameters, expressed as

Weir/i,zC-W = ciph/w(— cosb),

[Welr/fc.g — (172 + 188c0s 0)'/*] = cr¢ cos Oh/w,
[Welliwc +4.80 — (172 + 188 cos 0)'/?] = ca¢p cos Oh/w,

[Wellps — (172 + 188 cos 0)!/2] = ca¢p cos Oh/w, (16)

where ¢; = 7.12 and ¢, = 44. Based on the proposed model, a universal phase diagram for
nanodroplets could be constructed, as shown in Fig. 7(b). On Wenzel surfaces, the 1S, 2S, and
2B regimes are present, and on Cassie surfaces, the INB, 2NB, 1B, and 2B exist. Four outcome
boundaries, including the 1S-2S boundary (i.e., the dewetting transition boundary on Wenzel sur-
faces), the 2S-2B boundary (i.e., the bouncing boundary on Wenzel surfaces), the wetting transition
boundary on Cassie surfaces, and the bouncing boundary on Cassie surfaces, can be predicted by
the established model. The only indeterminate is that, when ¢ is high, the INB-1B regimes and the
2NB-2B regimes share the same boundary, whereas the boundary for the 1NB-1B regimes shifts
left with a reduced critical Weber number when ¢ is low.
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IV. THE MAXIMUM SPREADING FACTOR
A. Effect of liquid intrusion

In addition to constructing phase diagrams to identify outcome regimes, massive efforts have
been devoted to modeling the maximum spreading factor, because not only is B, itself is a crucial
parameter to evaluate the degree of spreading of impacting droplets on a solid surface, but also
modeling it can reveal the underlying energy conversion mechanism during impacts. In Sec. III,
liquid intrusion, especially the possible wetting transition between Cassie and Wenzel states,
has been attested to play an important role in the outcome regimes of impacting nanodroplets.
By modeling B, the altered spreading dynamics caused by liquid intrusion is desired to be
understood. Two kinds of methods have been proposed to predict Byax. One is to establish Biax
from the energy conservation equation; the other is to explore the scaling law of By« based on
theoretical analysis or experiment data. However, the former is almost impossible to adopt here
due to the significant liquid intrusion effect at the nanoscale. That is, the flow feature in pillar gaps
is difficult to generalize because it not only depends on the surface parameters but also relates to
whether the wetting transition takes place. Moreover, the irregular shape of the intruding liquid
in pillar gaps also makes expressing the surface energy at the maximum spreading state and the
viscous dissipation during spreading almost impossible. Therefore, finding the scaling law of Bax
is preferred.

The data of Bm.x are extracted from our MD simulations under various impact conditions to
attempt to find the scaling law of B.x. However, the data show that B,x depends on We, Oh,
0, and the topology of pillared surfaces (w, h, and ¢). Therefore, constructing a complete scaling
law of Bmax, relating all of these parameters, is a delicate task. Recently, the scaling laws of By,ax for
impacting nanodroplets on flat surfaces were proposed by Wang et al. [22]: Bmax ~ We'!/> at low We
(the capillary regime) or Bax ~ We'!/2 Oh!/3 at high We (the crossover regime), with the transition
between these scaling laws being determined by an impact number, Q(= We*/1° Oh!/3) = 2.1. The
scaling laws of Wang ez al. [22] show good agreement with not only their simulation data but also the
data from previous studies [23,27,34]. Therefore, the resolution of the delicate task would be readily
achieved if a bridge could be established to relate the scaling laws of By.x on pillared surfaces to
the ones on flat surfaces.

To build this bridge, the following analysis is implemented. The maximum spreading factor
characterizes the degree of spreading of impacting droplets. When nanodroplets impact pillared
surfaces with the volume of pillar gaps comparable to their volume, the violent liquid intrusion
effect can cause a significant reduction in the volume of the bulk droplet (the droplet atop the
pillars). Within this context, Bn.x only evaluates the degree of spreading of the bulk droplet. If this
assumption is valid, it can be speculated that B,,,x on pillared surfaces should be lower than the one
on flat surfaces under the same impact condition, and this speculation has been proven by the present
MD simulations. On the other hand, the MD simulations show that the intrusion volume (Vi) at
the maximum spreading state is sensitive to the topology of pillared surfaces (w, k, and ¢), and so
is the volume of the bulk droplet (Vyux = V —Viny). Here, V is the volume of the entire nanodroplet.
Extracting data of B« from the surfaces of different series in this work shows that B« is also
significantly dependent on all the topological parameters. Based on these clues above, Bpa.x on
pillared surfaces is expected to have certain relationships with the one on flat surfaces if the volume
of the droplet on flat surfaces is equal to the volume of the bulk droplet. The maximum spreading
factors and the volume of the bulk droplet in series 1 (8 = 105°, w = 8L, ¢ = 44%) with h = 22L
as well as We = 6.0, 18.5, and 63.8 are directly extracted from MD simulations. At the same time,
Bmax 18 also calculated by the scaling laws on flat surfaces with the extracted Vi /V, as shown in
Fig. 8, where W, /V is extracted by the ratio of the number of the molecules within pillar gaps and
the total number of molecules for nanodroplets. Astonishingly, the comparison of the extracted Byax
with the predicted By.x shows that they are almost the same, with the maximum relative deviation
less than 5%. Inspired by this result, the dominant parameter group can be rewritten as We, Oh,
0, and W,y /V . This indicates an effective analogy that only the kinetic energy of the bulk droplet
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FIG. 8. The schematic of an analogy between impacting nanodroplets on pillared and flat surfaces.

can effectively contribute to the spreading of droplets. Therefore, the kinetic energy for spreading
of nanodroplets impacting pillared surfaces is only (Vo /V)Ek i. Based on this analogy, replacing
the original initial kinetic energy, Ex ;, in the scaling laws of Wang et al. [22] by (Vouic/V )Exk i, new
scaling laws of By.x for nanodroplets impacting pillared surfaces can be obtained.

In a low-We range, Wang et al. [22] reported that the impact dynamics of nanodroplets follows
the Hertz shock theory. With the liquid intrusion effect, the initial kinetic energy is revised as
(Voui/V )Ex i; accordingly, the decreased height of an impacting nanodroplet from the initial to
maximum spreading states can be obtained from the theory of Hertz shock as [57]

,02V4 1/5
AH = DO[E—;’(vbulk/mz} : (17)

Here, Young’s modulus can be equivalent to £ = y/(Dy/2) [37], and then Eq. (17) can be
rearranged as

AH = %[Wewbulk/vnm. (18)

Using the relationship between the decreased height (AH) and the maximum spreading factor
(Bmax) on flat surfaces, i.e., B2, ~ AH/Dy [57], the scaling law of an impacting nanodroplet on
pillared surfaces in a low-We range can be obtained as

Binax ~ [WeWVourc/VIY? = Bunax/ Vour/V)'> ~ We'/2. (19)

Similarly, in a high-We range, Wang er al. [22] proposed another scaling law as Sp.x ~
We!/2Oh!/3, representing the energy conversion relation as

Oh*pD}Vi ~ yD?, .. (20)
Replacing the initial kinetic energy by (Voui/V )Ek. i, Eq. (20) is transformed to
(Voun/V)YON* oDV ~ y D}, @0

Rearranging Eq. (21) leads to the scaling law for impacting nanodroplets on pillared surfaces in
a high-We range as

Binax ~ [(Vouic/V IWel2Oh'? = Biax/ (Vour/V)'/* ~ We!/20n'/3. (22)

To validate these new scaling laws on pillared surfaces, the values of Vi, are extracted from
current MD simulations. As shown in Fig. 9, these two scaling laws agree with the present MD data
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FIG. 9. Comparisons between the proposed scaling laws of Bya.x, Egs. (19) and (22), and MD data in (a)
low- and (b) high-We ranges. The colors changing from red to purple represent 4 varying from OL to 22L with
an interval of 2L. The data of Vi, /V used here are all extracted from MD simulations.

in series 1-5 with a total of 960 data points, by prefactors of Egs. (19) and (22) being 0.78 and 0.31,
respectively, which are almost the same as the ones on flat surfaces [22].

B. Intrusion volume of liquid

The scaling laws of Eqgs. (19) and (22) applied to predict Bn.x leave a key problem of how
to obtain Vi instead of extracting it from simulations, i.e., how to quantitatively describe the
consumed initial kinetic energy by liquid intrusion during spreading. To solve this issue, the
concerned volume of the liquid intruding into pillar gaps (V —Vyuk) is modeled in this section.
Nonetheless, modeling this is extremely challenging work because it not only relates to the multiple
dominant parameters but also alters if the wetting transition takes place. Especially, for precisely
calculating it, the intrusion morphology is needed. However, previous studies by experiments are
difficult to provide detailed information on intrusion morphology owing to the small scale of surface
textures. Fortunately, MD simulations can provide not only evidence of the wetting transition
but also the opportunity to directly observe the detailed intrusion process. Nonetheless, despite
the progress in the impact dynamics on pillared surfaces by MD simulations in recent years, the
morphology of liquid intrusion and its dependence on the wetting transition has not been revealed.
In this section, the shape of the intrusion front will be classified, and based on the information on
intrusion morphology, the intrusion volume (V —Vyx) will be modeled.

Figure 10(a) shows the normalized intrusion volume of liquid, i.e., (V—Vouk)/V = 1—-Vou/V,
for all the cases in series 1 (fixed 6, w, and ¢, and varied h). Two distinct tendencies are ob-
served: (1) a scaling of 1 — Vi /V ~ We/* at relatively high 4 but low We and(2) another scaling
of 1—Vpu /V ~ We!/# at relatively low & but high We. Based on the snapshots shown in Fig. 10(b),
these two significant tendencies are found to be distinguished by the specific shapes of the intrusion
front. In the first intrusion regime, the intrusion front in most cases does not touch the basal wall,
leading to an ellipsoidal intrusion front. In the second intrusion regime, the wetting transition does
occur so that a Wenzel droplet with the circular-truncated-cone intrusion front is formed. Using
different shape assumptions in these intrusion regimes, i.e., an ellipsoidal-front assumption for
the first intrusion regime and a circular-truncated-cone-front assumption for the second intrusion
regime, the expressions of intrusion volume are expected to be established.

Based on the ellipsoidal-front assumption, the scaling of 1—V,/V in the first intrusion regime
is obtained as

1= Vourc/V ~ D{hi [ D5, (23)

073602-20



IMPACT DYNAMICS OF NANODROPLETS ON PILLARED ...

0.5 T T (b)
(@ ° WL o e
© h=4L © h=16L We=37.7
h=6L © h=18L '
h=8L o h=20L
=100 o h=22L
. —
E: oo a’oos-c\;]'em Ell 1)
Z 005 - 009000 1 ipioicat front 1= (V)~[ D21 D]
~ 00°°
—
Parameters
9=44% We=84.9
0=105°
w=8L
0.005 ! .
1 10 100 Cir
We ~cone front 1=V 1V)~h[ D} +(D,~1)*+ D,(D,~1)]
d
1% intrusion regime | 2" intrusion regime
6 : : 0.5 :
3
(© — (d)
. in
O p=44%, 6=105°, w=SL _ Q — 20 — ]
A 9=44%, 6=125°, w=8L 3
T p=44%, 0=105°, w=4L an En
O ¢=25%, 6=105°, w=4L in)
= 4 =30% [37] :
) O 9=3086% [39] o P 00 E 0.05 1
Ny D 9=25% [40] ¢ —-
_—g;o.:; a— 5_5 f _ E_; 7o Parameters
— -crom bB-— 5 p=44%
.- &g | = o
= D/D=C;We'® = =105
w=8L
0.005 : '
06, m 100 1 10 100
We We'wi(ph)
1% intrusion regime 2" intrusion regime
10 :
(e)

0.1

1=V, V) [EWe/(pDy)]

0.01 E
A o p=44%, 6=105°, w=8L
4 °  =44%, 6=85° , w=8L
0.001 & 9=44%, 6=125° w=8L 5
v 9=44%, 6=105° w=4L
o p=25%, 6=105°, w=4L
0.0001 L
1 10 100
Welwi(ph)

FIG. 10. (a) Normalized intrusion volume of liquid (1—V,,/V') for the cases in series 1 varying with We;
(b) the schematics for impacting nanodroplets in the first and second intrusion regimes; (c) normalized intrusion
diameter (D;/D,) varying with We for the current data at 7 = 22 L and for the data in the previous study of
Gao et al. [38] at ¢ ~ 30%, Sun et al. [40] at ¢ = 30.86%, and Li et al. [41] at ¢ =~ 25%; [(d), (e)] different
normalized forms of intrusion volume of liquid varying with Q;, where the colors changing from red to purple
represent i varying from 2L to 22L with an interval of 2L, which are the same as the rainbow color legend

shown in Fig. 10(a).
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where h; and D; are the intrusion depth and the intrusion diameter when the volume of the bulk
droplet reaches minimal, respectively, as shown in Fig. 10(b). For the intrusion diameter, Lv et al.
[39] proposed a scaling as D;/Dy ~ We!/4; however, this scaling does not agree with the present
MD results, as shown in Fig. 10(c). The intrusion diameter is indeed found to rely on We; however,
the dependence of D;/Dy on We is weaker than the one assumed by Lv et al.[39], with a scaling
of D;/Dy ~ We'/3, Besides, D;/Dy almost does not depend on w and 6 but it is reduced when
¢ is large. This is attributable to the fact that large ¢ can hinder the intrusion of liquid. Since
¢ represents the ratio of area whereas D;/Dy is a dimensionless number of lengths, D;/Dy is
expected to negatively correlate with ¢!/2, which is proven in Fig. 10(c). As a result, D;/Dy scales
as We!/8/¢p!/2. Substituting h; ~ wWe!'/?/¢ and D;/Dy ~ We'/8/p!/? into Eq. (23), the scaling
of 1=Vour/V ~ wWe/*/(¢? Dy) is obtained, which shows the same tendency as the scaling of
1—Vour/V ~ We¥/* in Fig. 10(a).

In the second intrusion regime, the wetting transition has been completed so that 4; no longer
varies with We but always equals A. In such circumstances, there is a circular-truncated-cone
intrusion front and the normalized volume of intruding liquid is obtained by

1 — Voui/V~hID;* + (D; — 1)* + Di(D; — 1)1/D3, (24)

where [ is the difference between the diameters of the circular truncated cone at the upper and lower
ends. The relationship of I <« D; proved by the snapshots shown in Fig. 10(b) allows Eq. (24) to
be simplified as 1—Vyy /V ~ hDi2 /Dg. Using D;/Dy ~ Wel/8 /o172 the scaling in this intrusion
regime is obtained as 1—Vipu /V ~ hWe!/*/(pDy), which meets the scaling of 1—Vipu/V ~ Wel/4
shown in Fig. 10(a).

The scalings in the first and second intrusion regimes are preliminarily obtained as 1 —Viyu /V ~
wWe¥*/(¢? Dy) and 1—Vipu /V ~ hWel/* /(9Dy), respectively. At the critical transition state, the
intrusion volume can be predicted by both these scalings, and thereby the transition criterion
between these two regimes can be easily achieved by equating these two scalings, i.e.,

WellZw

wWeli! /(9*Do) ~ hWell', [ (pDy) = T = b, (25)
where b is a constant. Intriguingly, Eq. (25) has the same form as Eq. (15), proving the assumption
that the intrusion mechanisms in the first and second regimes strongly depend on whether the
wetting transition takes place. For convenience, an intrusion number for the transition from the
first to second intrusion regime is proposed as Q; = We!/2 w/(¢h). Replacing the horizontal axis
as Q; and rescaling the vertical axis by the scaling in the second intrusion regime, expressed as
(1=Vour/V)/[hWe'/* /(¢ Dy)], a normalized coordinate system is proposed, as shown in Fig. 10(d).
Using this coordinate system, the slope of data should be one when Q; < b, indicating the scaling of
1—Vou /V ~ wWe/4 / (<p2 Dy), whereas such a slope transits from one to zero as Q; > b, showing
the scaling of 1—Viu/V ~ hWe!/4/(pDy). Therefore, b can be easily by observing the slope
change of data in this normalized coordinate. As anticipated, the data in Fig. 10(a) are all collapsed
together, as shown in Fig. 10(d), and b is obtained as 18.2. The prefactors of the scalings in the first
and second intrusion regimes are 0.17 and 0.0095, respectively. Besides the data of (1—Vyux/V)
in series 1, the other data in series 2—4 are also drawn in such a coordinate system, as shown
in Fig. 10(e). Despite no complete collapse, a satisfactory agreement is achieved. Eventually, the
model of intrusion volume is obtained as

0.17wWe¥/4 /(¢*Dy), if Qi < 18.2

= Vour/V = {0.0095hWe'/4/(<pDo), if 0 > 18.2. 20

It should be noted that it does not include additional fitting parameters when incorporating
other series data of intrusion volume and it also does not have any adjustable parameters. Besides,
since the intrusion volume strongly depends on the wetting transition, the dominant parameters for
intrusion volume should be the same as the criterion of the wetting transition. Here, the model
of intrusion volume includes We, w, h, ¢, and Dy and therefore covers We, w, h, and ¢, which
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FIG. 11. Comparisons of the MD data extracted from both the present and previous studies with the
proposed model, Egs. (19), (22), and (26), showing good agreement between them in both (a) low- and (b)
high-We ranges. The open symbols represent the data in the present work and their colors changing from
red to purple represent s varying from OL to 22L with an interval of 2L, which are the same as the rainbow
color legend shown in Fig. 9. The red solid symbols stand for the data in the previous studies on pillared
surfaces with fixed & = 18.1 [38], 14.5 [40], and 17.5 A [41], respectively, covering other parametric ranges
11% < ¢ < 56%,87° <6 < 157°,5.9L < w < 12.2L, and 0.49 < Oh < 0.85.

are incorporated in the criterion of the wetting transition. Therefore, Eq. (26) covers all dominant
parameters and is reasonable to be universal for nanodroplets. If holding the texture parameters at the
nanoscale but altering the droplet diameter to be millimeter sized, Eq. (26) gives (1—Vpux/V) — 0,
which agrees with the previous studies that ignored the intrusion effect of micro- and nanoscale
textures during the impact of millimeter-sized droplets [8—10,37].

As a result, substituting Eq. (26) in Eqgs. (19) and (22) leads to a complete model of Byax. First,
Bmax are predicted by the model for a total of 960 cases in series 1-5 and compared with Bax
extracted from MD simulations. As shown in Figs. 11(a) and 11(b), the model predictions show
good agreement with the present MD simulations, with a mean relative deviation of 6.01%. Second,
the data of B« in the previous MD studies [38,40,41] are also used to compare with the model pre-
dictions, and good agreement is achieved, as shown in Figs. 11(a) and 11(b). The validation above
not only proves the universality of the proposed model but also indicates that the model can hold
in extremely wide parametric ranges: 0.22 < We < 109.0, 0.350 < Oh < 0.846, 85° < 6 < 157°,
7.88 <w < 27.11A,3.942 < h < 43.36A, and 0.11 < ¢ < 0.56, and for at least four kinds of
liquids (mW, SPC/E water, TIP4P water, and Ar).

V. CONCLUSIONS

This study comprehensively discusses impact processes of nanodroplets on pillared surfaces,
controlled by the parameter group of We, Oh, 6, h, w, and ¢. Six outcomes are identified, including
1S, 25, INB, 2NB, 1B, and 2B. The 15, 2S, and 2B regimes can coexist on Wenzel surfaces with the
1S-2S boundary (i.e., the dewetting transition boundary) and the 2S-2B boundary (i.e., the bouncing
boundary on Wenzel surfaces) separating them. The 1NB, 2NB, 1B, and 2B regimes take place on
Cassie surfaces, which can be distinguished by the wetting transition boundary and the bouncing
boundary on Cassie surfaces. The equations of these four boundaries are established, by which a
universal phase diagram with six outcome regimes for impacting nanodroplets on pillared surfaces
is therefore proposed.

The principal difference between the spreading dynamics on flat and pillared surfaces is ascribed
to the significant liquid intrusion effect. With an assumption that only the initial kinetic energy of
the bulk droplet contributes to spreading, the effect of the bulk droplet and the liquid intruding into
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pillar gaps is successfully decoupled. This assumption is verified by replacing the initial kinetic
energy term, Ej ;, in the scaling laws of the maximum spreading factor (Bmax) on flat surfaces by
Ex iVouk/V , which successfully predicts Byax on pillared surfaces.

Here, the normalized intrusion volume (1—Viux/V) is modeled for obtaining the expression
of the bulk volume (V). There exist two intrusion regimes with an ellipsoidal intrusion front
and a circular-truncated-cone intrusion front. Based on these morphologies, the scalings of in-
trusion volume are established as 1—Viu/V ~ wWe**/(¢? Dy) in the first intrusion regime and
1—Vour/V ~ hWel/*/(¢Dy) in the second intrusion regime. Subsequently, by equaling these scal-
ings, a criterion for the transition from the first to the second intrusion regime is proposed as
Qi = We!”2w/(¢ph) = 18.2. The model of intrusion volume shows good agreement with all the
present MD results of 1—Vyyx/V. Eventually, scaling laws of S« in the capillary and crossover
regimes for impacting nanodroplets on pillared surfaces are derived by substituting the model of
intrusion volume in the scaling laws on flat surfaces above. The developed scaling laws of B, not
only fit well with all the present MD results of Bi,.x but also show a strong ability to predict Bmax,
provided that the pillared parameters and the intrinsic contact angle are known.
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