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Bubble dynamics in an inclined Hele-Shaw cell
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We report experimental results on the dynamics of large bubbles in a Hele-Shaw cell
subject to various inclination angles with respect to gravity. Low Reynolds number cases
are studied by injecting bubbles in a stagnant water/UCON mixture in three different
Hele-Shaw cell geometry. The leading order rise speed vb follows the Taylor-Saffman limit
which is inversely proportional to the viscosity η, but directly proportional to the square
of the cell gap h and the effective gravity, accounting for cell tilt angle θ . However, when
the cell is increasingly inclined, the bubble buoyancy in the cell gap leads to a substantial
decrease in the rise speed, as compared to the Taylor-Saffman speed. Buoyancy pushes
the bubble toward the top channel wall, whereby a difference between the lubrication film
thickness on top of and underneath the rising bubble occurs. We attribute these observations
to the loss of symmetry in the channel gap, due to cell inclination. Nonetheless, the top
lubrication film is observed to follow the Bretherton scaling, namely, (ηvb/σ )2/3, where σ

is the liquid surface tension while the bottom film does not exhibit such a scaling. Finally,
we illustrate that a model incorporating a friction term to the power balance between
buoyancy and viscous dissipation matches well with all experimental data.

DOI: 10.1103/PhysRevFluids.9.073601

I. INTRODUCTION

Bubbly flows in a liquid or in a suspension involve many fascinating physics [1,2] and are widely
present in nature [3–5] and industrial applications [6,7]. Among these multiphase flows, bubbles in
a confined channel arise in numerous practical applications, like bioreactors, heat exchangers, gas
absorption chambers, etc. In order to understand the complex flow situations in the presence of
bubble swarms, it is necessary to obtain a thorough knowledge of the rising motion of a single
bubble, and the bubble-induced flow in its surrounding. For this purpose, many studies were
dedicated to the hydrodynamic behavior of a large bubble in a Hele-Shaw cell, i.e., a thin, wide
rectangular channel. In the high Reynolds number regime, they focus on the planar oscillatory
motion of a large bubble and its relation to shape deformation in a vertical cell, as for example in
experiments by Bush and Eames [10], Roig et al. [11], Filella et al. [12], Pavlov et al. [13], Kelley
and Wu [8], Bush [9], and in numerical simulation of Wang et al. [14]. Comparatively, in the low
Reynolds number regime, they study the dynamics of air bubbles driven by a viscous liquid within
a horizontal Hele-Shaw channel, with [15,16] or without [17–20] the presence of a centered depth
perturbation. Following the work of Taylor and Saffman [21], Collins [22], and Maxworthy [23],
lately Monnet et al. [24] proposed a mechanistic model for the bubble rise speed when the Reynolds
number is increased from viscous to inertial conditions in a vertical Hele-Shaw cell. In summary,
these previous works focused mainly on two specific conditions for bubble dynamics, namely,
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FIG. 1. Sketch of the inclined Hele-Shaw cell with a single rising bubble in a liquid confined between two
glass plates such that the gap h is small compared to the cell height Hc and width Lc of the apparatus (not to
scale). (a) Projection on the yz plane. The CCS Prima OP 10000 optical pen locally measures the thickness of
the lubrication film above or below the bubble (see Sec. III C). (b), (c) Projection on the xz plane (b) and the xy
plane (c). a and b indicate the bubble size in the direction and perpendicularly to the movement.

due to buoyancy-induced or flow-imposed bubble motion in a vertical or horizontal Hele-Shaw,
respectively.

The effect of non verticality on the rise of a bubble has been explored in different confined
environments such as tubes [25–29] and near an inclined wall [30–34]. However, there are only
a few recent works on quasiplanar bubble rise in a tilted Hele-Shaw cell. In particular, Tihon and
Ezeji [35] experimentally explored the bubble rise velocity through an inclined, thin rectangular
channel with strong lateral confinement and inertia effects. They illustrated that the classical large
Reynolds number bubble speed

√
gcos θ� [22,36] remains valid in the case of inclined flat Hele-

Shaw cells, if one accounts for the effective gravity gcos θ due to cell inclination θ with respect
to the vertical, and a characteristic length � of the problem geometry. However, in the presence of
a tilt angle, a rising bubble is generally not expected to stay along the center line of the cell gap.
So, it is neither well established nor straightforward whether an effective gravity correction is fully
sufficient in the case of bubble motion in the viscous regime, at a low Reynolds number. While such
inhomogeneities along the cell gap coordinate might not be important in the inertial regime, it could
strongly impact the viscous dissipation in a Hele-Shaw cell. This is the precisely the object of the
present investigation.

In this context, this work proposes to investigate the dynamics of a bubble rising in a tilted
Hele-Shaw cell (Fig. 1). The appropriate Reynolds number comparing inertial and viscous effects
in this configuration is [37]

Re2h = ρvbd2

η

(
h

d2

)2

,

where ρ is the liquid density, η the liquid dynamic viscosity, vb the bubble speed, and d2 =
2(A/π )1/2 the equivalent diameter computed from A, the area occupied by the bubble in the plane
of the plates (xz). Taylor and Saffman [21] and Maxworthy [23] proposed that, at a low Reynolds
number (Re2h � 1), a very large elliptical bubble d2 � h rises at a constant speed

vM = v�
M

a

b
, with v�

M ≡ 	ρ(gcos θ )h2

12η
, (1)
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TABLE I. Existing experimental works on single bubble motion in Hele-Shaw cells filled with a Newtonian
fluid. Note that, in the case of an imposed flow, a large variety of bubble shapes can be observed, including
non-elliptical shapes as in Kopf-Sill and Homsy [19], and bubble splitting as in Gaillard et al. [15] when the
cell gap is perturbed.

Imposed Angle Reynolds number Lubrication Aspect
Reference flow θ Re2h film ratio

Eck and Siekmann [38] no 80◦−90◦ 10−5 − 101 no χ < 1
Maxworthy [23] no 70◦−86◦ 10−3 − 10−2 no χ > 1
Filella et al. [12] no 0◦ 101 − 103 no χ < 1
Monnet et al. [24] no 0◦ 10−4 − 102 no χ > 1 and χ < 1
Kopfsill and Homsy [19] yes 90◦ 10−6 − 10−3 no −
Gaillard et al. [15] yes 0◦ 10−2 − 100 yes −
This work no 0◦−80◦ 10−3 − 10−1 yes χ > 1

where a and b are the length of the bubble in the direction and perpendicularly to the movement,
respectively [see Fig. 1(b)], 	ρ = ρ − ρg with ρg the density of the gas in the bubble, g the
gravitational acceleration and θ the tilt angle between the cell and the gravity [Fig. 1(a)].

In vertical cells (θ = 0◦), the theoretical velocity given by Eq. (1) was experimentally recovered
[24,39,40]. Eck and Siekmann [38] and Maxworthy [23] reported the first experimental data on large
bubbles freely rising in tilted Hele-Shaw cells. However, the cells used in their investigations were
often quasihorizontal, with θ > 80◦. Eck and Siekmann [38] obtained a steady rising of large single
bubbles that are all oval but flattened in their direction of motion. On the other hand, Maxworthy
[23] reported large bubbles which are elongated along the rising direction. In the absence of any
theory to predict the bubble shape, characterized by its aspect ratio χ = a/b, so far Monnet et al.
[24] observed that χ > 1 in the viscous regime. Also, it does not significantly vary with any physical
parameter, including the viscosity, the surface tension or the volume of the bubble. As of now, to
the best of our knowledge, no other experimental evidence exists for oval bubbles that are flattened
in the rising direction (χ < 1) as in [38]. In other experimental conditions, i.e. at an imposed flow
rate, also close to the horizontal configuration, a wide variety of bubble shapes [19] with a larger
range of aspect ratios was observed.

Lubrication films provide additional information on bubbles in a confined environment. Table I
presents previous experimental works on lubrication film of single bubble motion in Hele-Shaw
cells. To our knowledge, no film thickness measurement has ever been performed for bubbles
in a vertical or inclined Hele-Shaw cell in the absence of counterflow. Note that previous works
have quantified the lubrication films for falling drops in the same geometry [41–43]. The scope of
the present work is to focus in particular on freely rising bubbles in an inclined Hele-Shaw cell
(Table I). Park and Homsy [17] developed a theoretical analysis for the lubrication films, based on
the Bretherton analysis [44], in the case of a quasi-horizontal configuration with an imposed flow.
From this perspective, film thickness measurement could not only help to fill the gap in the existing
literature, but also provide founding stones for future theoretical work.

In the midst of these previous results, the present paper aims at a systematic study of a bubble
rise in an inclined Hele-Shaw cell, in the low Reynolds number regime (Re2h � 1). In particular,
we will characterize the bubble velocity and shape, as well as the lubrication film thickness, as a
function of the inclination angle, cell gap, liquid viscosity, and bubble size.

II. EXPERIMENTAL SETUP

The experimental setup consists of a Hele-Shaw cell made of two glass plates of height Hc and
width Lc separated by a thin gap h, which can be inclined by an angle θ between 0◦ and 80◦ in respect
to the vertical (Fig. 1). Table II lists the physical properties of the three different cells and various
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TABLE II. Cell and liquid properties. Three different cells of height Hc, length Lc and gap h0 = h(θ = 0◦)
are used in this work. eg is the glass plates’ thickness. η, γ and ρ are the liquid viscosity, surface tension
and density, respectively. For each cell, the maximum Reynolds number and the range of inclination angle θ

explored in the experiments are given.

Hc Lc h0 = h(θ = 0◦) eg η γ ρ Re2h θ

(cm) (cm) (mm) (mm) (mPa s) (mN m−1) (kg m−3) (max) (◦) Symbol

Cell 1 28.5 23.5 2.19 3.9 {145, 219} {51, 51} {1048, 1055} 0.10 [0-75] ◦
Cell 2 30 20 2.29 5 145 51 1048 0.12 [0-80] �
Cell 3 30 20 5.21 5 580 47 1068 0.17 [0-80] ♦

liquids used in the present study. The width-to-length ratio is chosen in such a way that lateral
confinement is negligible in experiments reported here [13,45]. Cell 1 and Cell 2 are comparable
in size and gap, but the glass plate thickness and the gas injection system are slightly different.
For a given cell at a fixed inclination angle θ , h is approximately uniform. However, measurements
using an optical sensor, and/or by filling the cell with a known quantity of water, indicate a slight
dependence of the cell gap h with the tilt angle θ , up to 3% (see Appendix A). The bubble terminal
velocity predicted in the viscous regime varies as h2 (see Eq. (1)) and a slight variation of the cell
gap may play a significant role. Therefore, for each experiment, we have carefully measured h(θ )
and systematically used the experimental value for each angle. In the following, h0 indicates the cell
gap at θ = 0◦ (vertical cell).

All experiments are performed at room temperature. In our setup, water-UCON mixtures are
used to vary the liquid viscosity η. The viscosity of these mixtures depends on temperature, and
the ambient temperature can slightly vary. Therefore, for each experiment, the room temperature
was measured and we determined the associated fluid viscosity at the same temperature (±0.5 ◦C)
by means of a Kinexus Ultra+ rheometer. For the sake of clarity, throughout the manuscript, all
viscosity values are given at 20 ◦C, but the temperature dependence was properly accounted for in
the calculations that involve the liquid viscosity η. The surface tension γ and liquid density ρ are
quantified using the pendant drop method with an ATTENSION THETA tensiometer (Biolin Scientific)
and an ANTON PAAR DMA 35 densimeter, respectively.

Bubbles are generated at the center of the cell’s bottom with the help of a millimetric-sized pipe
attached to a manually controlled 50 mL syringe. For each run, the cell is backlit uniformly with an
LED panel while a computer-controlled camera (Basler acA2440, 2048 × 1024 pixels) records the
rising motion of the bubble at 5 to 30 fps, depending on the bubble velocity. Note that although we
are able to visualize the whole cell, the bubble motion is analyzed in a region of interest far from
the cell boundaries (≈4 cm from the top and bottom, and 8 cm from the sides as the bubble roughly
rises vertically). This ensures that the bubble is in the stationary regime and rises at a constant speed.
Images are then binarized (the threshold of binarization induces an error of less than 1% on the
bubble characteristics) and standard techniques in MATLAB® are performed to identify the bubble
contour, define the equivalent ellipse and compute the bubble speed vb and aspect ratio χ = a/b. We
recall that a and b are the bubble axes parallel (longitudinal) and perpendicular (transverse) to its
motion, respectively. The equivalent planar bubble diameter is therefore d2 = √

ab. In the following,
only bubbles with d2 > h are investigated in order to stay in the quasi-2D approximation wherein
the Taylor-Saffman bubble speed Eq. (1) is valid.

III. EXPERIMENTAL RESULTS

A. General observations

Figure 2 shows four chonophotographies of individual bubbles rising in Cell 1 (see Table II) for
different inclination angles θ . Here, the bubble equivalent diameter (d2 = 22 ± 1 mm) and viscosity
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FIG. 2. Chronophotographies of four distinct bubbles rising in the same cell (Cell 1, h0 = 2.19 mm, see
Table II). Their equivalent diameter is identical (d2 = 22 ± 1 mm) and the tilt angle θ is varied from 0◦ to 80◦.
Dashed lines represent the observed bubble trajectories. Note that they are all straight lines, corresponding
to a constant rise speed vb. Solid lines indicate the trajectories estimated from the theoretical bubble speed
Eq. (1) considering the effective gravity gcos θ (see Sec. III B for more details). The discrepancy with the real
trajectory increases with the tilt angle. All images are at the same scale.

(η = 145 mPa s) are kept identical for the sake of comparison. Dashed lines correspond to the
trajectory of each bubble’s center of mass. For a given bubble, we notice that the speed and the
bubble shape remain constant. No shape or velocity oscillations were observed in our experiments
as is often the case in the inertial regime [12]. This observation is in agreement with the fact that the
viscous time scale τη = h2ρ/(4η) [12], which is lower than 1 ms in our study, is small compared
to the rising time of the bubble or the time between two images. So, in what follows, we consider
only time-averaged values of the bubble speed and aspect ratio. Error bars are provided to show the
standard deviation from such averages. Figure 2 illustrates that the rise speed of the bubble decreases
monotonically from 35 mm/s to 3.85 mm/s when the tilt angle θ is increased from 0◦ to 80◦. In all
our experiments, a typical bubble attains a terminal velocity and displays an elongated oval shape
along the rising direction, characteristic of the viscous regime. As expected, its rise speed decreases
when the Hele-Shaw cell is tilted toward the horizontal axis. Interestingly, although the theoretical
bubble speed considering the effective gravity gcos θ , Eq. (1) predicts well the bubble dynamics in
a vertical cell (Fig. 2, θ = 0◦), it overestimates the bubble velocity when inclining the cell (solid
lines, Fig. 2), and this discrepancy increases when increasing θ .

B. Bubble aspect ratio and speed

In order to compare its rise speed to the theoretical value given by Eq. (1), it is necessary to
measure the bubble aspect ratio. In this section, we first report and comment on the bubble aspect
ratio χ and then present the evolution of the time-averaged bubble speed with the tilt angle θ .

Figure 3(a) shows instantaneous photographs of bubbles in Cell 2 (h0 = 2.29 mm) for a bubble
diameter d2 = 25 ± 1 mm at four different cell tilt angles θ = {0◦, 60◦, 75◦, 80◦}. A small bulge is
observed at the rear end of the bubbles for the highest θ values. Figure 3(b) displays bubbles with
the same apparent diameter d2 in Cell 3 with a larger gap (h0 = 5.21 mm), for the same inclination
angles than Fig. 3(a). Note here that the viscosity has been changed so that the Reynolds number
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FIG. 3. (a)–(b) Instantaneous photos of bubbles with the same size d2 = 25 ± 1 mm for various tilt angles
θ . The viscosity is varied from (a) to (b) to keep the Reynolds number smaller than 1 (Re2h � 1). (a) Cell 2
(h0 = 2.29 mm), η = 145 mPa s); (b) Cell 3 (h0 = 5.21 mm), η = 580 mPa s). Dashed lines (blue) correspond
to an elliptical fit over the bubble contour. All the images have the same scale. (c)–(e) Time-averaged aspect
ratio of bubbles against their normalized diameter d2/h(θ ) for θ = {0, 60, 75, 80}◦ in Cell 1 (c), Cell 2 (d) and
Cell 3 (e).

Re2h in both cells is comparable for a given angle θ , for the sake of comparison. In the cell of
larger gap, the bulge is less pronounced and the aspect ratio remains approximately constant over
different tilt angles [Fig. 3(b)]. Although at present the bulge origin cannot be explained, we can
see from experimental observations that the bubble contour is well fitted by an elliptical shape
[dashed blue lines, Figs. 3(a) and 3(b)]. Those results are consistent with most of the previous
works [23,24,40], which report elongated bubbles in the direction of motion (χ > 1) in the viscous
regime without imposed flow (see Table I). Note that Eck and Siekmann [38] observed flattened
bubbles (χ < 1) in water/isopropanol mixtures. Figures 3(c)–3(e) display the evolution of the time-
averaged aspect ratio 〈χ〉t = 〈a/b〉t against the normalized diameter d2/h(θ ) for Cells 1, 2 and 3,
respectively. The choice of d2/h has been made to distinguish between bubbles that are fully in the
2D approximation (d2 � h) and bubbles for which 3D effects are not negligible anymore (d2 ∼ h).
Here, colors indicate different tilt angles θ = {0, 60, 75, 80}◦. At a given tilt angle θ , the aspect ratio
is almost the same for each bubble. This implies that 〈χ〉t only weakly depends on the equivalent
bubble diameter d2, except for larger bubbles (d2/h > 15 for Cell 1 and d2/h > 8 for Cell 3) for
which the values of 〈χ (t )〉t are higher. This augmentation has already been observed by Madec [46].
However, as inferred previously from the photographs, the aspect ratio seems to slightly increase
with θ for the smallest gaps h0 = 2.19 mm and h0 = 2.29 mm, while no dependence on the angle
is observed for h0 = 5.21 mm in our experiments. Note that the data, especially for h0 = 2.29 mm
[Fig. 3(d)], are scattered, which perhaps arises from a less controlled injection system. Nonetheless,
despite the scattering, the evolution of 〈χ〉t with θ is statistically reproducible.

Figure 4(a) displays the time-averaged bubble rise speed as the bubble size is increased to-
ward the theoretical limit d2 � h. All data correspond to experiments in Cell 1 (h0 = 2.19 mm,
η = 145 mPa s). For each data point, the normalized velocity ṽb is computed via a time-average of
the ratio of the instantaneous bubble speed over the Taylor-Saffman speed i.e., ṽb = 〈vb(t )/vM (t )〉t ,
where vM (t ) = v�

Mχ (t ) remains almost constant as the variations of χ (t ) are small, as seen in
Sec. III A. For a given tilt angle θ , the non-dimensional speed ṽb increases with the normalized
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FIG. 4. (a) Evolution of the non-dimensional bubble velocity ṽb = 〈vb(t )/vM (t )〉t , where vM (t ) = v�
Mχ (t ),

with d2/h(θ ) for different inclination angles θ (see colorbar) [Cell 1, h0 = 2.19 mm, η = 145 mPa s]. The
maximum value of Re2h reached is 0.10. The vertical dashed line indicates d2/h(θ ) = N = 13, the threshold
used to define the plateau value α (see text). The horizontal dashed line indicates the theoretical value ṽb = 1.
(b) Plateau value α defined by Eq. (2) as a function of the tilt angle θ . The black dashed line indicates the
theoretical value α = 1. The errorbars represent the standard deviation of the values used to compute α.

bubble size d2/h(θ ). Furthermore, measurements strongly suggest that ṽb tends toward a plateau
value α corresponding to the limit when d2/h(θ ) � 1. These observations are valid for each cell
inclination, with the plateau value depending on the tilt angle, α = α(θ ). The plateau value is
defined as the mean normalized bubble speed ṽb for all bubbles which satisfy d2/h(θ ) > N i.e.

α(θ ) = 〈ṽb〉d2/h(θ )>N , (2)

where N is chosen arbitrarily large and independent of θ , here N = 13. The variation of the
maximum normalized rise speed α with tilt angle θ is presented in Fig. 4(b). The plateau value α

decreases steadily with the inclination angle, despite the explicit dependence of the Taylor-Saffman
speed on θ via the effective gravity gcos θ . It results in a relative variation of α of around 30%
between 0◦ and 80◦. In other words, the bubble speed given by Eq. (1) does not predict accurately
the dependence of the bubbles’ velocity with θ . Note that the theoretical rise speed is not recovered
for the vertical configuration i.e, α(θ = 0◦) ≡ α0 = 1.20 ± 0.03 �= 1. We attribute this observation
to the fact that the cell gap h and liquid viscosity η are precisely measured in the present setup.
Nonetheless, this result does not change the conclusions of previous articles on the impact of the
Reynolds number Re2h, or the presence of grains in the vertical configuration [24,40]. As this
work focuses on the dependence on the inclination angle θ , in the following we will consider the
normalized plateau value, α/α0 = α(θ )/α(θ = 0◦). Note that the value of α0 is not the same for the
three cells but it depends neither on η nor h.

Figure 5(a) displays α/α0 as a function of θ for two water/UCON mixtures of different viscosity
(η = 145 mPa s and η = 219 mPa s). Within the error bars, α/α0 does not depend significantly
on the fluid viscosity. Figure 5(b) compares the variations of α/α0 in Cell 1 (◦) to different cell
geometry (� Cell 2, h0 = 2.29 mm and ♦ Cell 3, h0 = 5.21 mm). In contrast to the liquid viscosity,
the variation of the plateau values between different cells is readily discerned at a fixed θ . Such
differences are further amplified in the limit when θ tends toward 90◦. Thus, all data confirm the
dependence of the maximum speed limit on the gap h and the tilt angle θ when a large bubble rises
in a tilted cell. By definition α = ṽb/vM , wherein v�

M ∝ gcos θh2 [23,24,38,40] and so, these results
cannot be accounted by the Taylor-Saffman limit Eq. (1). However, the normalized maximum speed
α0 for large bubbles d2 � h0 in a vertical Hele-Shaw cell is independent of cell gap h0 and viscosity
η. It can be expected that the symmetry about the y-axis is not maintained anymore when a bubble
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FIG. 5. Normalized plateau value α/α0 = α(θ )/α(θ = 0◦) as a function of the cell inclination angle θ

(a) for two different viscosities (Cell 1, h0 = 2.19 mm), (b) for different cell gap h0. Dashed lines correspond
to α/α0 = (1 − κ tan θ ) Eq. (5), where κ is obtained from best fit: κ = (6.5 ± 0.5) × 10−3 for Cell 1, κ =
(4.5 ± 1.5) × 10−3 for Cell 2, and κ = (1.9 ± 0.4) × 10−3 for Cell 3.

rises in an inclined Hele-Shaw cell. This could lead to the observed dependence of the bubble rise
speed on the cell gap h and tilt angle θ . The next section is dedicated to the quantification of this
asymmetry, via lubrication films measurements.

C. Lubrication films

In the previous section, we have considered the bubble shape in the plane xz of the cell plates.
In this section, we will discuss the bubble shape in the gap i.e., in the yz plane (Fig. 1). For this
purpose, the lubrication film on the upper side and on the bottom side of a rising bubble has been
measured by a Chromatic Confocal Sensing (CCS) Prima OP 10000 optical pen (STIL) located
above or below the cell, respectively [Fig. 1(a)]. The CCS optical pen is designed to send light at
different wavelengths at well-defined time intervals. It then measures the distance to an interface by
identifying the wavelength (color) of the reflected signal. Since the rising bubble is in steady motion
with respect to the laboratory frame where the CCS optical pen is fixed, the pen initially measures
the glass plate thickness, at, say t = t0, by analyzing the light reflected at the liquid/glass interface
(see Fig. 6(a) for illustration in the frame of the bubble). When a bubble intercepts the light sent by
the optical pen, say at t1 > t0, the presence of air/liquid interface is instantaneously detected and the
CCS optical pen measurement is accordingly modified. By properly taking the difference between
these two outputs from the CCS optical pen, it is possible to compute the liquid film thickness
between the bubble wall and glass plate. In the following, the top and bottom lubrication film
thicknesses are referred to as δt and δb, respectively. Note that no simultaneous measurement of
δt and δb is possible with a single optical pen. However, the measurements are reproducible, and it
is easy to produce bubbles with identical diameter d2, which makes it possible to investigate the joint
behavior of the top and bottom lubrication film as a function of the other experimental parameters.

Two typical signals from the CCS optical pen, one above (δt , black line) and the other below (δb,
red line) are displayed in Fig. 6(b). As stated above, these signals were collected from two different
trials with the same bubble diameter d2 = 20 ± 1 mm in the same experimental configuration (Cell
2). They are plotted both as a function of time t (upper axis) and of z − zb (lower axis), with zb

the bubble center so that the signal falls to zero when |zb − z| > d2/2 = 11 mm. At the edges of
the bubble, when |zb − z| ≈ 11 mm, the signal from the pen is noisy because of the curvature of the
air-liquid interface. Otherwise, the thickness measured by the pen is approximately constant across
the bubble size |zb − z| < d2/2, apart from a small electrical noise.
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FIG. 6. (a) Sketch in the frame of the rising bubble center of mass (z = zb), in the yz plane. The CCS
optical pen is fixed in the laboratory frame, here located at the cell bottom [see Fig. 1(a)]. It initially measures
the glass wall thickness only (t = t0). When the bubble rises in front of the pen (t = t1), it measures both the
glass plate thickness and the lubrication film (times t0 and t1 are given as examples). δt and δb indicate the top
and bottom lubrication film thickness, respectively. (b) Typical signals of the CCS optical pen for δt and δb as a
function of time t (upper axis) or z − zb (lower axis), with zb the z-coordinate of the bubble center. The signals
are obtained by subtracting the glass thickness for two different bubbles with the same apparent diameter
(d2 = 22 ± 1 mm, Cell 2, θ = 80◦, η = 145 mPa s).

Bretherton [44] was the first to propose a theoretical expression for the thickness of the lubrica-
tion film formed by a bubble rising in a cylindrical tube. Park and Homsy [17] later extended this
study to bubbles in a Hele-Shaw cell with an imposed flow, showing that the lubrication films should
scale as δb/h(θ ) = δt/h(θ ) = 1.337 Ca2/3 for Ca � 1, where Ca = ηvb/γ is the capillary number.
In a recent work by Gaillard et al. [15] in a horizontal Hele-Shaw cell with an imposed flow, by
assuming the top and bottom lubrication films are equal, the above results were experimentally
recovered and extended to all Ca with the empirical relation

δb

h0
= δt

h0
= c1Ca2/3

1 + c1c2Ca2/3 , (3)

where c1 and c2 are constants and estimated with best data fit. Based on these previous in-
vestigations, it is convenient to present the evolution of top film thickness δt/h(θ ) against the
capillary number Ca = ηvb/γ . Figures 7(a)–7(c) presents such graphs for Cell 1 (h0 = 2.19 mm),
Cell 2 (h0 = 2.29 mm), and Cell 3 (h0 = 5.21 mm), respectively. In each figure i.e., at a fixed cell
geometry, data over various tilt angles fall on a straight line in the log-log plot. Therefore, for
inclined Hele-Shaw cells, the ratio δt/h(θ ) also seems to scale well with Ca2/3. However, a closer
look shows that the range of the y-axis varies from one cell to the other. In addition, the prefactor of
the Ca2/3 scaling clearly depends on the cell characteristics.

We observed no such trivial scaling of δb/h(θ ) with Ca2/3 (see Appendix B) for the lubrication
film underneath the bubble. In fact, the symmetry in the yz plane is broken as soon as the cell is
tilted, and there is no reason that the lubrication film on the top and bottom of the bubble remains
identical. Therefore, the capillary number is not sufficient to characterize the bottom film thickness.
Such an observation also suggests that the Bretherton problem for at least one of the lubrication films
of a rising bubble between rigid walls cannot be perhaps simplified to an analogous Landau-Levich
drag-out problem in the frame of reference of a rising bubble.
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FIG. 7. Nondimensional top lubrication film thickness δt/h(θ ) as a function of the capillary number Ca =
ηvb/γ for different inclination angles θ (see colorbar). (a) Cell 1 (h0 = 2.19 mm), (b) Cell 2 (h0 = 2.29 mm)
and (c) Cell 3 (h0 = 5.21 mm).

To quantify the symmetry breaking in the yz plane, we represent in Fig. 8(a) the ratios
δt/(δt + δb) and δb/(δt + δb) as a function of various tilt angles, for two different bubble diameters
(d2 = 22 ± 1 mm and 33 ± 1 mm, Cell 2). The relative contribution of the bottom lubrication film
δb (filled symbols) to the total film thickness (δt + δb) increases as the inclination angle θ increases.
This evolution is irrespective of the bubble size. Figure 8(b) compares the same parameters, namely,
δt/(δt + δb) and δb/(δt + δb), for two different cells (Cell 2 and 3). Here, the bubble equivalent
diameter is fixed (d2 = 33 ± 1 mm). The relative size of the bottom lubrication film, as compared
to the top one, is always more important in Cell 3 where the cell gap is at least twice larger than for
Cell 2. We also report that the gap effect is amplified when the cell tilt angle θ is increased. Note that
these trends are similar to the observations on the bubble rise speed in the previous section. So, we
can conclude similarly that the cell inclination θ accentuates the influence of gravity perpendicular
to the cell walls since sin θ increases. Therefore, a rising bubble in a tilted cell experiences a stronger
push toward the upper wall. It is then expected that such an effect could draw partially the liquid
into the bottom lubrication film and explain the observed behavior. In a larger cell, the quantity of
air per surface unit (i.e., the pressure applied on the liquid film) that tries to go up is more important,
resulting in an even larger difference between the liquid films.

Figure 8(c) shows the evolution of the normalized total lubrication film (δt + δb)/h(θ ) versus the
cell inclination θ for two different bubble diameters db = 22 mm and db = 33 mm (Cell 2). The sum
of both lubrication films thickness decreases by a factor of 3 between θ = 0◦ and 80◦, irrespective
of the bubble size. Similar to the observations on the bubble speed, this drop of the normalized total
lubrication film with θ is more significant at higher angles. Now, the effect of cell gap h can be
further explored if the same quantity is compared for two different cells (Cell 2 and 3) at a given
bubble diameter. This is shown in Fig. 8(d) for d2 = 33 mm. The lubrication films occupy a more
important part of the cell for the larger gap (♦, Cell 3, h0 = 5.21 mm), reaching 30% even for the
vertical case (θ = 0◦). This can be explained by the capillary number effect, as expected from the
Bretherton scaling. Indeed, Ca = ηvb/γ is larger for a larger gap since bubbles rise faster when cell
gap is increased. As the cell is further inclined, the total film thickness drops faster in Cell 2 (�,
h0 = 2.29 mm) as compared to the one in Cell 3 (♦, h0 = 5.21 mm).

IV. DISCUSSION

In this section, we discuss the possible origin of the departure of the measured bubble rise speed
from the Taylor-Saffman limit Eq. (1) as well as the loss of symmetry between the top and bottom
lubrication films when the cell is inclined. Indeed, although the Taylor-Saffman speed accounts for
the effective gravity by introducing gcos θ instead of g in Eq. (1), the buoyancy force perpendicular
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FIG. 8. Ratio of the top (δt , open symbols) and bottom (δb, filled symbols) film thickness to the total
film thickness (δb + δt ) as a function of tilt angle θ (a) in Cell 2, for two bubble sizes d2 = 22 mm (green)
and d2 = 33 mm (purple); (b) for d2 = 33 mm in Cell 2 (�, h0 = 2.29 mm) and Cell 3 (♦, h0 = 5.21 mm).
(c) Variation of the total lubrication film thickness (δt + δb) by the cell gap h(θ ) as a function of the inclination
angle for two different bubble size d2 (Cell 2). (d) (δt + δb)/h in Cell 2 and 3 (bubble size d2 = 33 mm).

to the channel walls was not considered when using the quasi-2D Hele-Shaw approximation. This
buoyancy component is nonzero as soon as θ > 0 and increases when increasing θ .

We propose here a toy model based on the analogy between a bubble rising and a solid body
sliding down a plane (Fig. 9). The additional power dissipation due to friction Pf can be written as
proportional to the bubble velocity vb and the force orthogonal to the plate, Pf = κ (ρπabh sin θ )vb

where κ is dimensionless and can be interpreted as the analog of a friction coefficient. The injected
power Pb = ρ(πabh cos θ )vb is therefore dissipated not only by the classical term of bulk dissipation
for a Poiseuille flow, leading to Eq. (1), but also by this additional friction Pf :

ρ(πabh cos θ )vb = 12ηv2
bπb2

h
+ κ (ρπabh sin θ )vb, (4)
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FIG. 9. Sketch of the analogy between a rising bubble and a solid block sliding down a plate. The forces
due to gravity are in black and while the ones from the surrounding media are in red.

which can be rewritten as

vb = vM (1 − κ tan θ ) ⇔ α(θ ) = 1 − κ tan θ. (5)

This phenomenological model agrees well with the experimental data (see dashed lines in Fig. 5),
with κ depending on the cell gap h. We find κ = (6.5 ± 0.5) × 10−3, (4.5 ± 1.5) × 10−3 and (1.9 ±
0.4) × 10−3 for Cell 1, 2, and 3 respectively, meaning that κ decreases when h increases. It is
interesting to note that this model implies the existence of a critical angle θc = arctan(1/κ ) beyond
which the bubble should not rise anymore. Unfortunately, θc is close to 90◦ (θc > 89◦ for all cells
presented in this work) and therefore cannot be reached experimentally.

The role of the component of the buoyancy force along the cell gap coordinate y can then be
interpreted as a pushing force on the bubble toward the upper plate of the cell (Sec. III C), analog to
the ground reaction for the solid body sliding down a plane (Fig. 5). The frictional losses are related
first to the asymmetric local flow next to the bubble due to the top and bottom lubrication films;
second to the matching between this local flow and the symmetric Poiseuille flow in the far field.
However, this analogy cannot explain the observation that the top lubrication film δt/h(θ ) scales
with Ca2/3 while the bottom film thickness does not present any Capillary number scaling. Note
that these discussions are nevertheless heuristic and further theoretical investigation is needed to
justify experimental observations.

V. CONCLUSION

In this paper, we investigated experimentally the time-averaged bubble speed and aspect ratio of
freely rising bubbles in an inclined Hele-Shaw cell, as well as the associated lubrication films. Our
experiments focused on low Reynolds numbers (Re2h � 1), so that the dynamics were governed by
viscous and pressure forces alone. We demonstrated that taking this problem as being the same as
the vertical one with an effective gravity g → gcos θ is not adequate. Indeed, bubbles rise slower
than expected with an effective gravity and the discrepancy grows with the angle θ . We also showed
that this difference depends on the cell gap while the liquid viscosity does not influence this effect.

We attribute this decrease in bubble rise speed to the component of the buoyancy force along
the cell gap, orthogonal to the cell walls. A bubble in an inclined Hele-Shaw cell experiences a
force toward the top wall and hence, it does not occupy the channel gap as it would if the channel
were vertical. In fact, by rewriting Taylor and Saffman [21]’s results based on the Hele-Shaw
approximation in terms of the power balance between buoyancy and viscous dissipation, we suggest
that the above rise speed discrepancy should arise from an additional term, analog to the friction
coefficient of a solid body down an inclined plane. This may result in a nonzero wall-normal
component of velocity in the bubble’s neighborhood whose magnitude increases with the tilt
angle θ . Thereby, we propose that the rise velocity of a large elliptical bubble obtained with an
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FIG. 10. Evolution of the cell gap h(θ ) normalized by h0 = h(θ = 0◦) with the cell tilt angle θ .

effective gravity gcos θ should be corrected by a factor 1 − κ tan θ , which fits well the experimental
data.

By measuring the lubrication films, we reported a strong difference between the film on top
of and underneath a rising bubble. The latter becomes significantly larger than the former and
this difference increases as the tilt angle is further increased toward 90◦, leading to a bottom film
thickness as much as four times larger than the top one. This phenomenon seems to be independent
of the bubble diameter in our experiments. However, the asymmetry is stronger in a larger cell,
and so there is a definite dependence on the channel gap size h. The top lubrication film follows
the Bretherton law at low capillary number, δt/h ∝ Ca2/3, over various tilt angles θ . But the
proportionality factor depends on the cell gap and it is perhaps not as universal as suggested by
previous results in vertical/horizontal Hele-Shaw cells or cylindrical tubes. Moreover, our data for
the bottom film thickness does not present such a power-law scaling. In summary, the liquid drainage
from the top film and its relation to the buoyancy force along the wall-normal coordinate, i.e., along
the cell gap, is crucial to the understanding of bubble dynamics and its associated lubrication films
in an inclined thin channel. This symmetry breaking between the top and bottom lubrication films
could be due to a flow generated by the bubble in the cell gap, which is a possible explanation of
the factor 1 − κ tan θ for the bubble velocity. Further theoretical investigation would be required to
understand this relation and shed light on the physical mechanisms driving the bubble velocity and
lubrication films in inclined configurations.

APPENDIX A: CELL CHARACTERISTICS

The characteristics of the three cells used in this work (gap and plate thickness) have been
carefully measured. We used a Chromatic Confocal Sensing (CCS) optical pen (STIL) to quantify
either the thickness of the glass plate only, or the thickness of the glass plate and the gap when the
pen is close enough to the cell plate. This technique enabled us to measure h(θ ) locally along all the
path that the rising bubbles take for Cell 2 and Cell 3. Unfortunately, this was not possible for Cell
1 because of the optical pen range of measurement. We have therefore used an additional technique
and determined the cell gap by filling the cell with a known quantity of water, which provides a
global measurement of h(θ ).

The variation of the cell gap h with the tilted angle θ is presented in Fig. 10 for the three cells
used in our experiments. The gap decreases as θ increases for Cells 1 and 2, while no noticeable
variation is reported for Cell 3. The cell gap is imposed by spacers glued to the glass plates. When
tilting the cell, due to gravity, the upper glass plate weights on the glue and tends to slightly squash
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FIG. 11. Nondimensional bottom lubrication film thickness δb/h(θ ) as a function of the capillary number
Ca = ηvb/γ for different inclination angles θ (see colorbar). (a) Cell 1 (h0 = 2.19 mm), (b) Cell 2 (h0 =
2.29 mm) and (c) Cell 3 (h0 = 5.21 mm).

and stretch it, resulting in a slight decrease of the spacing between both plates. When the inclination
angle θ increases, this effect is expected to become stronger. In addition, plate mechanical bending
may also play a role. This might explain why the most important gap variation is observed in the
thinner cell (Cell 1), which has the lowest plate thickness (eg = 3.9 mm instead of 5 mm for cells
2 and 3, see Table II). Although the cell gap variations only go up to 3%, it is important to account
for their precise value as the predicted bubble terminal velocity in the viscous regime Eq. (1) is
expected to vary as h2 (see Sec. II).

APPENDIX B: BOTTOM LUBRICATION FILMS

Figures 11(a)–11(c) shows the evolution of the normalized bottom lubrication film δb/h against
the capillary number for Cells 1-3. Colors indicate the inclination angle θ . Data from Cell 1 and
Cell 2 present a strong scatter but, at a given angle, δb/h decreases monotonically with the Capillary
number. The same trend is observed for the case of Cell 3. Note that the order of magnitude of δb/h
is not the same between Cell 3 (h0 = 5.21 mm) and the other two thinner cells. We further observe
2/3-scaling in Cell 3 such that δb/h = c(θ )Ca2/3, where c(θ ) differs for each inclination. However,
no such scaling is discovered for data from Cells 1 and 2.

[1] D. Lohse, Bubble puzzles: From fundamentals to applications, Phys. Rev. Fluids 3, 110504 (2018).
[2] T. Dauxois, T. Peacock, P. Bauer, C. P. Caulfield, C. Cenedese, C. Gorlé, G. Haller, G. N. Ivey, P. F.

Linden, E. Meiburg, N. Pinardi, N. M. Vriend, and A. W. Wood, Confronting grand challenges in
environmental fluid mechanics, Phys. Rev. Fluids 6, 020501 (2021).

[3] B. D. Johnson, B. P. Boudreau, B. S. Gardiner, and R. Maass, Mechanical response of sediments to bubble
growth, Marine Geology 187, 347 (2002).

[4] J. Oppenheimer, A. C. Rust, K. V. Cashman, and B. Sandnes, Gas migration regimes and outgassing in
particle-rich suspensions, Front. Phys. 3, 60 (2015).

[5] S. Vergniolle and N. Métrich, An interpretative view of open-vent volcanoes, Bull. Volcanol. 84, 83
(2022).

[6] G. N. Kawchuk, J. Fryer, J. L. Jaremko, H. Zeng, L. Rowe, and R. Thompson, Real-time visualization of
joint cavitation, PLoS ONE 10, e0119470 (2015).

[7] L. Du and K. J. Folliard, Mechanisms of air entrainment in concrete, Cem. Concr. Res. 35, 1463 (2005).
[8] E. Kelley and M. Wu, Path instabilities of rising air bubbles in a Hele-Shaw cell, Phys. Rev. Lett. 79, 1265

(1997).

073601-14

https://doi.org/10.1103/PhysRevFluids.3.110504
https://doi.org/10.1103/PhysRevFluids.6.020501
https://doi.org/10.1016/S0025-3227(02)00383-3
https://doi.org/10.3389/fphy.2015.00060
https://doi.org/10.1007/s00445-022-01581-5
https://doi.org/10.1371/journal.pone.0119470
https://doi.org/10.1016/j.cemconres.2004.07.026
https://doi.org/10.1103/PhysRevLett.79.1265


BUBBLE DYNAMICS IN AN INCLINED HELE-SHAW CELL

[9] J. W. M. Bush, The anomalous wake accompanying bubbles rising in a thin gap: a mechanically forced
Marangoni flow, J. Fluid Mech. 352, 283 (1997).

[10] J. W. M. Bush and I. Eames, Fluid displacement by high Reynolds number bubble motion in a thin gap,
Int. J. Multiphase Flow 24, 411 (1998).

[11] V. Roig, M. Roudet, F. Risso, and A.-M. Billet, Dynamics of a high-Reynolds-number bubble rising within
a thin gap, J. Fluid Mech. 707, 444 (2012).

[12] A. Filella, P. Ern, and V. Roig, Oscillatory motion and wake of a bubble rising in a thin-gap cell, J. Fluid
Mech. 778, 60 (2015).

[13] L. Pavlov, M. V. d’Angelo, M. Cachile, V. Roig, and P. Ern, Kinematics of a bubble freely rising in a
thin-gap cell with additional in-plane confinement, Phys. Rev. Fluids 6, 093605 (2021).

[14] X. Wang, B. Klaasen, J. Degrève, B. Blanpain, and F. Verhaeghe, Experimental and numerical study of
buoyancy-driven single bubble dynamics in a vertical Hele-Shaw cell, Phys. Fluids 26, 123303 (2014).

[15] A. Gaillard, J. S. Keeler, G. Le Lay, G. Lemoult, A. B. Thompson, A. L. Hazel, and A. Juel, The life and
fate of a bubble in a geometrically perturbed Hele-Shaw channel, J. Fluid Mech. 914, A34 (2021).

[16] J. Keeler, A. Gaillard, J. Lawless, A. Thompson, A. Juel, and A. Hazel, The interaction of multiple bubbles
in a Hele-Shaw channel, J. Fluid Mech. 946, A40 (2022).

[17] C.-W. Park and G. Homsy, Two-phase displacement in Hele Shaw cells: theory, J. Fluid Mech. 139, 291
(1984).

[18] S. Tanveer, New solutions for steady bubbles in a Hele–Shaw cell, Phys. Fluids 30, 651 (1987).
[19] A. R. Kopf-Sill and G. Homsy, Bubble motion in a Hele-Shaw cell, Phys. Fluids 31, 18 (1988).
[20] S. Tanveer, Analytic theory for the selection of Saffman-Taylor fingers in the presence of thin film effects,

Proc. R. Soc. London, Ser. A 428, 511 (1990).
[21] G. Taylor and P. Saffman, A note on the motion of bubbles in a Hele-Shaw cell and porous medium, Q. J.

Mech. Appl. Math. 12, 265 (1959).
[22] R. Collins, A simple model of the plane gas bubble in a finite liquid, J. Fluid Mech. 22, 763 (1965).
[23] T. Maxworthy, Bubble formation, motion and interaction in a Hele-Shaw cell, J. Fluid Mech. 173, 95

(1986).
[24] B. Monnet, C. Madec, V. Vidal, S. Joubaud, and J. J. S. Jerome, Bubble rise in a Hele-Shaw cell: bridging

the gap between viscous and inertial regimes, J. Fluid Mech. 942, R3 (2022).
[25] E. Zukoski, Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in

closed tubes, J. Fluid Mech. 25, 821 (1966).
[26] D. P. Cavanagh and D. M. Eckmann, Interfacial dynamics of stationary gas bubbles in flows in inclined

tubes, J. Fluid Mech. 398, 225 (1999).
[27] P. Aussillous and D. Quéré, Quick deposition of a fluid on the wall of a tube, Phys. Fluids 12, 2367 (2000).
[28] C. E. Shosho and M. E. Ryan, An experimental study of the motion of long bubbles in inclined tubes,

Chem. Eng. Sci. 56, 2191 (2001).
[29] E. Massoud, Q. Xiao, and H. El-Gamal, Numerical study of an individual Taylor bubble drifting through

stagnant liquid in an inclined pipe, Ocean Eng. 195, 106648 (2020).
[30] P. Aussillous and D. Quéré, Bubbles creeping in a viscous liquid along a slightly inclined plane, Europhys.

Lett. 59, 370 (2002).
[31] B. Podvin, S. Khoja, F. Moraga, and D. Attinger, Model and experimental visualizations of the interaction

of a bubble with an inclined wall, Chem. Eng. Sci. 63, 1914 (2008).
[32] A. J. Griggs, A. Z. Zinchenko, and R. H. Davis, Creeping motion and pending breakup of drops and

bubbles near an inclined wall, Phys. Fluids 21, 093303 (2009).
[33] C. Dubois, A. Duchesne, and H. Caps, Between inertia and viscous effects: Sliding bubbles beneath an

inclined plane, Europhys. Lett. 115, 44001 (2016).
[34] C. Barbosa, D. Legendre, and R. Zenit, Sliding motion of a bubble against an inclined wall from moderate

to high bubble Reynolds number, Phys. Rev. Fluids 4, 043602 (2019).
[35] J. Tihon and K. Ezeji, Velocity of a large bubble rising in a stagnant liquid inside an inclined rectangular

channel, Phys. Fluids 31, 113301 (2019).
[36] R. Davies and G. Taylor, The mechanics of large bubbles rising through extended liquids and through

liquids in tubes, Proc. R. Soc. London A 200, 375 (1950).

073601-15

https://doi.org/10.1017/S0022112097007350
https://doi.org/10.1016/S0301-9322(97)00068-2
https://doi.org/10.1017/jfm.2012.289
https://doi.org/10.1017/jfm.2015.355
https://doi.org/10.1103/PhysRevFluids.6.093605
https://doi.org/10.1063/1.4903488
https://doi.org/10.1017/jfm.2020.844
https://doi.org/10.1017/jfm.2022.618
https://doi.org/10.1017/S0022112084000367
https://doi.org/10.1063/1.866369
https://doi.org/10.1063/1.866566
https://doi.org/10.1098/rspa.1990.0046
https://doi.org/10.1093/qjmam/12.3.265
https://doi.org/10.1017/S0022112065001131
https://doi.org/10.1017/S002211208600109X
https://doi.org/10.1017/jfm.2022.361
https://doi.org/10.1017/S0022112066000442
https://doi.org/10.1017/S0022112099006230
https://doi.org/10.1063/1.1289396
https://doi.org/10.1016/S0009-2509(00)00504-2
https://doi.org/10.1016/j.oceaneng.2019.106648
https://doi.org/10.1209/epl/i2002-00204-2
https://doi.org/10.1016/j.ces.2007.12.023
https://doi.org/10.1063/1.3206995
https://doi.org/10.1209/0295-5075/115/44001
https://doi.org/10.1103/PhysRevFluids.4.043602
https://doi.org/10.1063/1.5123043
https://doi.org/10.1098/rspa.1950.0023


BENJAMIN MONNET et al.

[37] G. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 2000).
[38] W. Eck and J. Siekmann, On bubble motion in a Hele-Shaw cell, a possibility to study two-phase flows

under reduced gravity, Ingenieur-Archiv 47, 153 (1978).
[39] A. Eri and K. Okumura, Viscous drag friction acting on a fluid drop confined in between two plates, Soft

Matter 7, 5648 (2011).
[40] C. Madec, B. Collin, J. John Soundar Jerome, and S. Joubaud, Puzzling bubble rise speed increase in

dense granular suspensions, Phys. Rev. Lett. 125, 078004 (2020).
[41] L. Keiser, K. Jaafar, J. Bico, and E. Reyssat, Dynamics of non-wetting drops confined in a Hele-Shaw

cell, J. Fluid Mech. 845, 245 (2018).
[42] B. Reichert, I. Cantat, and M.-C. Jullien, Predicting droplet velocity in a Hele-Shaw cell, Phys. Rev. Fluids

4, 113602 (2019).
[43] C. Toupoint, S. Joubaud, and B. R. Sutherland, Fall and break-up of viscous miscible drops in a Hele-Shaw

cell, Phys. Rev. Fluids 6, 103601 (2021).
[44] F. P. Bretherton, The motion of long bubbles in tubes, J. Fluid Mech. 10, 166 (1961).
[45] P. Gondret, N. Rakotomalala, M. Rabaud, D. Salin, and P. Watzky, Viscous parallel flows in finite aspect

ratio Hele-Shaw cell: Analytical and numerical results, Phys. Fluids 9, 1841 (1997).
[46] C. Madec, Dynamique de bulles isolées et interactions de bulles multiples dans des suspensions granu-

laires confinées entre deux plaques, Ph.D. thesis, Université de Lyon, 2021.

073601-16

https://doi.org/10.1007/BF01047407
https://doi.org/10.1039/c0sm01535k
https://doi.org/10.1103/PhysRevLett.125.078004
https://doi.org/10.1017/jfm.2018.240
https://doi.org/10.1103/PhysRevFluids.4.113602
https://doi.org/10.1103/PhysRevFluids.6.103601
https://doi.org/10.1017/S0022112061000160
https://doi.org/10.1063/1.869301

