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The second moment correlations between thermodynamic fluctuations in incident shock
wave/turbulent boundary layer interaction flows at Mach 2.25 are systematically investi-
gated by direct numerical simulation. The concerned fluctuations are those of pressure,
entropy, temperature, and density {p′, s′, T ′, ρ ′}. Effects of wall temperature and Reynolds
number are studied. Kovásznay decomposition is introduced to decompose the fluctuations
into acoustic and entropic modes. It is shown that all the six concerned correlations are
determined by merely two parameters, which are interpreted as intermodal competition
and intermodal correlation, respectively. Accordingly, the flow field is divided into several
zones, each with distinct physical properties, to analyze the contributing factors to the
correlations. In addition, a model is proposed where the correlations are deemed as
functions of the root-mean-square values of thermodynamic fluctuations, as in Gerolymos
and Vallet [J. Fluid Mech. 851, 447 (2018)] but simpler. The formula for each correlation
has the same form. The accuracy of the model is validated in boundary layers where the
intermodal correlation is weak.

DOI: 10.1103/PhysRevFluids.9.073401

I. INTRODUCTION

Shock wave/boundary layer interaction (SWBLI) is ubiquitous in aerodynamic and thermody-
namic engineering applications. It usually has detrimental impacts on the performance of industrial
designs, including efficiency loss, supersonic inlet surge, thermal and structural fatigue, and
increased drag [1–3]. SWBLI induces abundant flow features, including unsteady shock motion, tur-
bulence amplification and recovery, vortex shedding, flow separation and free shear layer, etc. [4–7].
After over 70 years of extensive research [8], it is still an active field. Take turbulence amplification
as example, on which many experimental and numerical efforts have been made [9–13]. Pirozzoli
and Grasso [10] conducted a direct numerical simulation (DNS) of incident SWBLI at Mach 2.25
to investigate the turbulence amplification process and the large-scale low-frequency unsteadiness.
They ascribed the amplification to the formation of mixing layer. Likewise, Fang et al. [11] studied
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the mechanism of near-wall turbulence amplification by conducting a DNS at Mach 2.25. They
showed that the amplification upstream is due to interaction of decelerated mean flow and fluctuating
streamwise velocity, while the amplification downstream is induced by the shear layer. Yu et al. [12]
studied the postshock turbulence recovery by conducting a DNS with similar flow conditions. They
found that the amplification of turbulence induced by mixing layer and far-wall large-scale struc-
tures decay at different rates. Guo et al. [13] numerically investigated the amplification of turbulent
kinetic energy and temperature fluctuations in a ramp-induced SWBLI at Mach 6. They found that
the amplification can be attributed to the low-frequency unsteadiness and the free shear layer.

Despite the progress made by previous studies, several fundamental problems remain not sat-
isfactorily resolved, which require a better understanding of the underlying physics of the flow
features. One of such problems is to establish well-performed and physics-based models for
Reynolds-averaged Navier-Stokes (RANS) simulation and large eddy simulation (LES) [14–16].
To improve the performance of RANS and LES, and to deepen the understanding of the interac-
tion between different flow variables as well, there is urgent need to investigate the correlations
between thermodynamic variables, as pointed out by many previous studies [17–21]. Gerolymos
and Vallet [19] carried out DNSs of compressible turbulent channel flows at various Mach num-
bers to investigate the fluctuations of thermodynamic variables and discussed their scaling with
Reynolds and Mach numbers. The correlations between the variables have been also systematically
investigated. Their subsequent study [20] further discussed the range of validity of leading order
approximations of the exact correlation formulas. Xu et al. [21] conducted DNSs of hypersonic
turbulent boundary layer flows and thoroughly studied the correlation between thermodynamic
variables by introducing Kovásznay decomposition. They decomposed the correlations into modal
contributions. Adams [22] numerically investigated a ramp-induced SWBLI at Mach 3 and reported
enhanced pressure-involved correlations in the shock-interaction region. However, to the best of
our knowledge, systematic analyses on the correlations have never been conducted on SWBLI
flows. Such analyses are of extraordinary importance, because as mentioned earlier, the intensities
of turbulent and thermodynamic fluctuations are considerably enhanced in the shock-interaction
region, which may have a profound impact on the correlations.

Apart from analyzing the contributing factors to the correlations, we also establish models
for them for practical applications. The applicability of such models may be extended to various
compressible thermodynamic turbulence in addition to SWBLI flows. As mentioned above, Geroly-
mos and Vallet [20] have developed the leading-order approximation model for the correlations.
In their model, the correlations are deemed as functions of the root-mean-square (r.m.s.) values
of thermodynamic fluctuations. This approach has many benefits. First, abundant observations
and conclusions of r.m.s. values make those of correlations readily obtained. Second, combined
with strong Reynolds analogy (SRA) theory or others, the correlations between thermodynamic
variables can be extended to velocity-thermo correlations, which is meaningful for turbulence
modeling. Third, it helps in fast prediction of correlations, without the bother of calculating
second moment statistics. Last, the model may provide a different perspective to understand the
nonlinear interaction between thermodynamic variables. Despite the advantages, the complexity of
their formulas, especially of those related to entropy, hinders their application. Also, there are three
inputs in their formulas, while the degree of freedom of thermodynamic r.m.s. values reduces to
two if pressure and entropy are weakly correlated, as supposed by Kovásznay [23] and verified by
many researchers [20,21]. The redundancy of inputs indicates a lesser important variable and not
fully understood mechanism. It also suggests the possibility of simpler models.

One of the key control parameters in SWBLI is wall temperature, whose effect has been widely
studied in supersonic and hypersonic wall-bounded flows [21,24–30]. The wall temperatures are
typically lower than the recovery temperature, especially for high Mach numbers, due to consider-
able radiative cooling and internal heat transfer within the wall. However, it should be noted that
under specific circumstances, a heated wall should instead be considered [3], whose effect on the
flow properties may differ from a cooled wall in some respects. Bernardini et al. [25] carried out
DNSs of SWBLI flows at Mach 2.28 with various isothermal wall conditions to investigate the
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heat transfer and the effect of wall temperature. Two cooled-wall cases and two heated-wall cases,
together with an adiabatic-wall case, were simulated. They observed that the interaction properties,
including separation length, distribution of wall Stanton number and wall pressure fluctuations, etc.,
are greatly affected by wall temperature. A similar study conducted by Volpiani et al. [26] showed
that wall temperature effect on the interaction region is mainly due to its effect on the incoming
boundary layer. They also showed that wall cooling can be an effective means for flow control
to reduce separation. Moreover, Xu et al. [21] showed that the correlations, at least those in the
vicinity of the wall, are largely influenced by wall temperature. Therefore, it is of great importance
to investigate wall temperature effect on the correlations in SWBLI flows.

The main objective of this study is to systematically investigate the second moment corre-
lations between thermodynamic fluctuations in SWBLI flows. The concerned fluctuations are
those of pressure, entropy, temperature, and density {p′, s′, T ′, ρ ′}. The concerned correlations are
{Rp′s′ , Rp′T ′ , Rp′ρ ′ , Rs′T ′ , Rs′ρ ′ , RT ′ρ ′ }. To achieve this objective, we propose an approach to quantify
the contributing factors to the correlations and accordingly divide the flow fields into several zones
to characterize their behaviors. Furthermore, we propose a simplified model to readily calculate
the correlations using r.m.s. values of the fluctuations. The remainder of this paper is organized as
follows. The governing equations and simulation parameters are listed in Sec. II. The results and
analyses of the correlations are presented in Sec. III. The model for the correlations using r.m.s.
values is derived and validated in Sec. IV. Finally, conclusions are given in Sec. V.

II. GOVERNING EQUATIONS AND SIMULATION PARAMETERS

The three-dimensional compressible Navier-Stokes equation can be nondimensionalized using
free stream density ρ∞, free stream velocity u∞, reference length L∞, free stream temperature T∞,
reference pressure p∞ = ρ∞u2

∞, reference energy per unit volume ρ∞u2
∞, free stream viscosity

μ∞, and thermal conductivity κ∞. Three dimensionless parameters are thus composed to govern
the flow, namely, free stream Reynolds number Re∞ = ρ∞u∞L∞/μ∞, free stream Mach number
Ma∞ = u∞/c∞, and free stream Prandtl number Pr∞ = μ∞Cp/κ∞, where c∞ = √

γ RT∞ is the
free stream sound speed and Cp is the specific heat at constant pressure. γ , R, and Cp, together with
Cv , specific heat at constant volume, are linked by relations γ = Cp/Cv and R = Cp − Cv . Pr∞ is
assumed to be 0.7, while γ is assumed to be 1.4.

Correspondingly, the dimensionless Navier-Stokes equation in a Cartesian coordinate system can
be written as [21,31]

∂ρ

∂t
+ ∂ (ρu j )

∂x j
= 0, (1)

∂ (ρui )

∂t
+ ∂ (ρuiu j )

∂x j
= − ∂ p

∂xi
+ 1

Re

∂σi j

∂x j
, (2)

∂E

∂t
+ ∂[(E + p)u j]

∂x j
= − 1

α

∂

∂x j

(
κ

∂T

∂x j

)
+ 1

Re

∂ (σi jui )

∂x j
, (3)

p = ρT

γ Ma2
∞

, (4)

where ρ, ui, p, E , and T are the dimensionless density, velocity, pressure, total energy per unit
volume, and temperature, respectively. The parameter α is defined as α = (γ − 1)Re∞Pr∞Ma2

∞.
The viscous stress σi j is defined as σi j = μ( ∂ui

∂x j
+ ∂u j

∂xi
) − 2

3μθδi j , where θ = ∂uk
∂xk

is the velocity
divergence and δi j is the Kronecker delta tensor. The dimensionless viscosity μ is calculated using
Sutherland’s law: μ = T 3/2[(1 + S/T∞)/(T + 110.4K/T∞)]. The dimensionless thermal conduc-
tivity κ is determined by the same formula as μ, assuming constant Pr and Cp. The total energy per
unit volume E is defined as E = p

γ−1 + 1
2ρukuk .
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FIG. 1. A schematic of the flow.

The dimensionless equations (1)–(4) are directly solved using OpenCFD-SC code developed by
Li et al. [32], which has been validated by many researchers in compressible flat plate boundary
layer flows [21,33,34], compression ramp flows [35–37], and incident shock wave/boundary layer
interaction flows [38–40]. The inviscid terms of the governing equations are discretized using
a seventh-order weighted essentially nonoscillatory scheme [41], while the viscous terms are
calculated by an eighth-order central differential scheme. A third-order total variation diminishing
Runge-Kutta scheme is applied for time advancement. The simulation is conducted under the
following boundary conditions: an inflow and an outflow condition, an upper far-field condition,
a lower wall condition, and a spanwise periodic condition [38]. The schematic of the boundary
conditions, along with the upstream boundary layer, the incident and reflected shock waves, the
separation zone, and the reattached boundary layer, are shown in Fig. 1. The inflow condition is
widely used in previous studies [11,38,42], where the free stream temperature T∞ = 169.44 K and
the free stream Mach number is Ma∞ = 2.25. According to Duan et al. [43], the wall recovery
temperature Tr is defined as Tr = T∞[1 + r(γ − 1)Ma2

∞/2] with recovery factor r = 0.9. The
wall-to-recovery temperature ratio S is further defined as S = Tw/Tr . To investigate the effect of
wall temperature, three widely accepted isothermal wall conditions are selected: S = 0.5, 1.0, 1.9,
labeled with “S05,” “S10,” and “S19,” respectively [24–26,44]. A supplementary case with higher
Reynolds number is conducted to expand the parameter space, labeled with “S10Re.”

The fundamental computational parameters of the cases are listed in Table I, where the stream-
wise, wall normal, and spanwise directions are denoted by x, y, and z, respectively. Since the
characteristics of the separation region are greatly affected by the upstream boundary layer [24,26],
different free stream Reynolds numbers Re∞ are selected to ensure comparative friction Reynolds
numbers Reτ in all the cases except case “S10Re.”A nonslip velocity condition is applied at
the lower wall boundary. Wall pressure is interpolated by inner points, and wall density is thus

TABLE I. Computational parameters.

Case Re∞ Lx×Ly×Lz Nx×Ny×Nz S Tw/T∞ ximp xref

S05 7800 137.7×25.0×4.4 3799×380×256 0.5 0.956 101.6 90.0
S10 25 200 137.7×25.0×4.4 3799×380×256 1.0 1.91 101.6 90.0
S19 66 000 137.7×25.0×4.4 3799×380×256 1.9 3.63 101.6 90.0
S10Re 32 000 240.1×18.0×6.2 5409×500×500 1.0 1.91 200.0 180.0
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FIG. 2. Sketch of the computational meshes.

determined by Eq. (4). A nonreflecting condition is applied at the upper boundary and the
outlet. The single-point Rankine-Hugoniot relations are applied at the upper boundary, so that
an incident shock wave is induced at an angle α = 33.2◦ to the main flow, with nominal shock
impingement point at ximp. The corresponding deflection angle (wedge angle) is ϕ = 8.1◦. At the
outflow boundary, flow variables are interpolated by inner points.

The incoming flow generates a laminar boundary layer as it passes the wall. To induce laminar-
to-turbulent transition, a wall-blowing-and-suction disturbance is implemented on the wall-normal
velocity component v in a region between xa = 7.62 and xb = 20.32 [21,39]. Its detailed form
can be found in Xu et al. [45]. After transition, the turbulent boundary layer continues to evolve
for a distance and is impinged by the incident shock wave. The shock wave exerts a drastic
adverse pressure gradient on the boundary layer, alters the turbulent structures, and for strong
interaction, causes flow separation [46]. The strong shear on the separation bubble induces a shear
layer. Downstream of the separation bubble is the reattachment region where the main flow is
compressed by the shock waves. A sketch of the computational meshes for the first three cases is
plotted in Fig. 2. Coarse grid is used for the boundary layer in laminar, transitional, and developing
states, while fine meshes are applied for the fully developed boundary layer, the separation region,
and the reattachment region [39,40]. Progressively refined resolution is applied between the two
meshes. Moreover, a progressively coarse grid is implemented downstream of the fine meshes
to avoid the reflection of disturbance caused by the numerical treatment at the outlet. Along the
wall-normal direction, the grid spacing is exponentially increased, clustering about 192 nodes within
the boundary layer. The spanwise grid is uniformly discretized. The meshes for the supplementary
case are additionally refined. Validation of our database is presented in the Appendix.

To characterize the mean field and the turbulent fluctuations, Reynolds average (time and
spanwise average) f and Favre average (density weighted average) f̃ = ρ f /ρ are introduced.
The fluctuating components are f ′ = f − f and f ′′ = f − f̃ , respectively. The averaged global
characteristics are thus defined and listed in Table II. The viscous length scale δν is defined as
δν = μw/ρwuτ , where subscript “w” denotes variables at the wall, uτ = √

τw/ρw is the friction
velocity, and τw = ( ∂u

∂y )y=0 is the wall shear stress. Variables normalized using δν and uτ are denoted
with superscript “+.” Furthermore, the semilocal scaling proposed by Huang et al. [47] is defined
as y∗ = y/δ∗

ν , where δ∗
ν = μ/ρu∗

τ and u∗
τ = √

τw/ρ. The boundary layer thickness δ is defined
as the wall-normal distance between the wall and the location where the averaged streamwise
velocity u attains 0.99u∞. The displacement thickness and the momentum thickness can be written

TABLE II. Global characteristics at xref .

Case δ δ∗ θ Reτ Reθ Reδ2 x+ y+
w z+

S05 1.57 0.311 0.145 547 1132 1179 5.9 0.44 6.0
S10 1.36 0.340 0.102 521 2580 1516 6.5 0.49 6.6
S19 1.32 0.402 0.0752 511 4966 1861 6.6 0.49 6.7
S10Re 2.96 0.650 0.247 1290 7904 2902 7.0 0.56 5.5
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as [48] δ∗ = ∫ δ

0 (1 − ρ u
ρ∞u∞

) dy and θ = ∫ δ

0
ρ u

ρ∞u∞
(1 − u

u∞
) dy, respectively. Accordingly, the scaled

interaction coordinate proposed by Volpiani et al. [26] is defined as xδ = (x − ximp)/δref .
The friction Reynolds number Reτ is defined as Reτ = ρwuτ δ/μw. It has been reported by

Sillero et al. [49] that Reτ can also be treated as δ+ = δ/δν in the scaling of spatially developing
turbulent boundary layers. The Reynolds number based on momentum thickness is defined as
Reθ = ρ∞u∞θ/μ∞, while the Reynolds number based on momentum thickness and wall viscosity
can be written as Reδ2 = ρ∞u∞θ/μw, which represents the ratio of the highest momentum to the
wall shear stress. Also, the semilocal Reynolds number is defined as Re∗

τ = δ/(δ∗
ν )e, where subscript

“e” denotes variables at the edge of the boundary layer [21]. The flow variables mentioned above are
extracted at an upstream reference station xref , where the turbulent boundary layer is fully developed,
and the downstream influence of SWBLI is negligible. Moreover, all the averages in our study
are calculated using 270 instantaneous flow fields uniformly sampled in a time period of about
t = 290δref/u∞.

III. RESULTS AND ANALYSES OF THE CORRELATIONS

As mentioned in the introduction, Xu et al. [21] have decomposed the correlations into modal
contributions by introducing Kovásznay decomposition. They have pointed out that the modal
contributions are dependent on the relative intensity of the two modes. However, in their study, there
is neither quantitative analysis on how the relative intensity affects the correlations, nor remarks on
whether other factors could possibly influence the correlations.

In this section, we first show that there are only two parameters that determine the correlations,
i.e., the intermodal competition � = s′

rms/(p′
rms/p) and the intermodal correlation � = Rp′s′ . Then,

according to modal intensities p′
rms/p and s′

rms, we divide the flow fields of SWBLI into several
zones with distinct physical properties to analyze the contributing factors to the correlations. After
that, the spatial distributions of the two parameters � and � are displayed. Finally, the distributions
of the other five correlations {Rp′T ′ , Rp′ρ ′ , Rs′T ′ , Rs′ρ ′ , RT ′ρ ′ } are presented and discussed.

A. Derivation of the formulas

Our approach is based on Kovásznay decomposition [23,50], by which the fluctuations of
thermodynamic variables can be decomposed into two modes, acoustic modes (denoted by subscript
“I”) and entropic modes (denoted by subscript “E”). The acoustic modes, linearly correlated with
pressure fluctuations, are given by [31,51,52]

p′
I = p − p,

s′
I = 0,

ρ ′
I = ρp′

I

γ p
,

T ′
I = (γ − 1)T p′

I

γ p
. (5)

The entropic modes, which are supposed to be linearly (or at least strongly) correlated with entropy
fluctuations, are defined as

p′
E = 0,

s′
E = s − s,

ρ ′
E = ρ − ρ − ρ ′

I ,

T ′
E = T − T − T ′

I , (6)
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where the dimensionless entropy per unit mass s is defined as s = 1
γ (γ−1)Ma2 log(T/ργ−1) [19,31].

Using DNS data, the supposed linear correlations between s′ and the entropic modes are verified
in the entire boundary layer (including the shock-interaction region) with magnitudes of Rs′T ′

E
and

Rs′ρ ′
E

higher than 0.99 (not shown for brevity), consistent with previous studies [21]. Alternatively,
the entropic modes of density and temperature can be defined as ρ ′

E = −(γ − 1)Ma2s′
E and T ′

E =
(γ − 1)Ma2s′

E . This definition ensures the linear correlation but results in residue, so hereinafter we
adopt Eq. (6) to avoid the residue unless otherwise stated. This alternative definition is used only to
explicitly express the coefficients.

The correlation coefficient between two fluctuating thermodynamic variables φ′ and ψ ′ is
given by

Rφ′ψ ′ = φ′ψ ′√
φ′2

√
ψ ′2

. (7)

Applying Kovásznay decomposition, the correlation coefficient can be written as

Rφ′ψ ′ = (φ′
I + φ′

E )(ψ ′
I + ψ ′

E )√
φ′2

√
ψ ′2

= Mφ′
I ψ

′
I
+ Mφ′

I ψ
′
E

+ Mφ′
E ψ ′

I
+ Mφ′

E ψ ′
E
, (8)

where Mφ′
I ψ

′
I
= φ′

I ψ
′
I√

φ′2
√

ψ ′2
and other three terms are the modal contributions, as in Xu et al. [21].

Take Mφ′
I ψ

′
I

as an example; it can be further written as

Mφ′
I ψ

′
I
= φ′

Iψ
′
I√

φ′2
I

√
ψ ′2

I

√
φ′2

I√
φ′2

√
ψ ′2

I√
ψ ′2

≡ Rφ′
I ψ

′
I
IφI IψI , (9)

where Rφ′
I ψ

′
I
= φ′

I ψ
′
I√

φ′2
I

√
ψ ′2

I

is the correlation coefficient between φ′
I and ψ ′

I , and IφI ≡
√

φ′2
I√

φ′2
is the ratio

of modal r.m.s. to total r.m.s.
For convenience, write the intermodal correlation Rp′s′ ≡ � and let ρ ′ appear only at the position

of ψ ′. Assume the entropic modes of density and temperature are linearly correlated with fluctuating
entropy [21], Rs′ρ ′

E
= −1 and Rs′T ′

E
= 1, then Eq. (8) can be rewritten as

Rφ′ψ ′ = IφI IψI ± �IφI IψE + �IφE IψI ± IφE IψE , (10)

where the plus-minus sign takes negative if ψ ′ is ρ ′. Here Rφ′ψ ′ can be seen as a function of the
r.m.s. values and �. A defect of this formula is that there are too many input variables. From
Eqs. (5) and (6) we know IpI = 1, IpE = 0, IsI = 0, and IsE = 1. Thus, Eq. (10) can be simplified
and specified as

Rp′s′ = �,

Rp′T ′ = IT I + �ITE,

Rp′ρ ′ = IρI − �IρE ,

Rs′T ′ = �IT I + ITE,

Rs′ρ ′ = �IρI − IρE ,

RT ′ρ ′ = IT I IρI − �IT I IρE + �ITEIρI − ITEIρE . (11)

Applying Kovásznay decomposition again, the r.m.s. values of density and temperature satisfies

ρ ′2
rms = ρ ′2

Irms + ρ ′2
Erms − 2�ρ ′

Irmsρ
′
Erms,

T ′2
rms = T ′2

Irms + T ′2
Erms + 2�T ′

IrmsT
′

Erms. (12)
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Therefore, the four r.m.s. ratios which appear in Eq. (11) can be further written as

IρI (�,�) = [1 − �2 + (kρ� − 2�)2]−1/2,

IρE (�,�) = [1 − �2 + (1/kρ� − 2�)2]−1/2,

ITI(�,�) = [1 − �2 + (kT � + 2�)2]−1/2,

ITE(�,�) = [1 − �2 + (1/kT � + 2�)2]−1/2, (13)

where � ≡ s′
rms/(p′

rms/p) represents the intermodal competition, and kρ = (ρ ′
Erms/ρ

′
Irms)/� and

kT = (T ′
Erms/T ′

Irms)/� are coefficients dependent on γ and Ma. If we apply the alternative definition
of entropic modes mentioned above (just in order to express the coefficients explicitly), then
kρ = γ (γ − 1)Ma2 and kT = γ Ma2. It can be seen that the r.m.s. ratios, and thus the correlations,
are functions of merely � and �, while the magnitudes of the r.m.s. values have no direct influence
on the correlations. Also the input variables are the same for different correlations. In the remainder
of this section, we apply Eqs. (11) and (13) to analyze the influence of � and � in different zones
of the flow on the concerned correlations.

B. Division of the flow

According to Eqs. (11) and (13), the concerned correlations are functions of � and �, the
former of which is the ratio of p′

rms/p to s′
rms. Therefore, to investigate the underlying mechanism of

the correlations, there is need to analyze first the spatial distributions of these two r.m.s. values.
In this subsection, we try to divide the flow fields of SWBLI into several zones with distinct
physical properties. Such a division helps in determining the major flow feature that results in
the correlations. The profiles of normalized r.m.s. values of pressure fluctuations p′

rms/p and r.m.s.
values of entropy fluctuations s′

rms in inner scaling are plotted in Fig. 3. Two streamwise locations,
x = xref and x = ximp, are selected to characterize the flow in the upstream boundary layer and in
the shock-interaction region. It can be seen that in the upstream boundary layer, consistent with
previous studies [21], p′

rms/p is intense near the wall and weakens as wall distance increases.
In contrast, in the interaction region, the peak value of p′

rms/p drifts away from the wall, which
indicates the presence and influence of free shear layer [11]. Note that p′

rms/p is largely intensified
in the interaction region. Cases with distinct wall temperatures are merely quantitatively different.
The higher the wall temperature, the weaker the fluctuation intensity. Reynolds number has a minor
effect on p′

rms/p.
The distributions of s′

rms are more complex. In the upstream boundary layer, consistent with
previous studies [21], s′

rms is quite weak in the viscous sublayer in all cases. This can be attributed
to the hindrance of the strong viscosity exerted by the wall to turbulent heat transfer. Note that
the thickness of this layer is merely several viscous length units. In the adiabatic and wall-heating
cases, upon this layer is a buffer layer (at about y∗ = 10), followed by a layer with intense s′

rms,
the formation of which can be attributed to high turbulent heat transfer. In the wall-cooling case,
however, there is no space for the buffer layer. From the profiles of wall-normal gradient of mean
temperature ∂T /∂y and r.m.s. of wall-normal velocity fluctuations v′

rms (not shown for brevity) it can
be seen that the high s′

rms layer is where the levels of both ∂T /∂y and v′
rms are high, which indicates

that the intense s′
rms results from turbulent heat transfer. It should be noted that the high s′

rms layer in
case “S05” is separated into two by a layer where s′

rms is relatively low. This can be attributed to the
fact that there is an inflection point (at about y∗ = 20) in the temperature profile in the wall-cooling
case, where ∂T /∂y = 0.

In the interaction region, similarly, the distribution of s′
rms in case “S05” is also different from

those in other cases. It can be seen later in Fig. 4 that the flow separation in case “S05” is much
weaker than in other cases, which results in the difference in s′

rms. In case “S05,” due to weak
flow separation, the trend of s′

rms is not substantially different from that upstream. The near-wall
high s′

rms layer is thickened and augmented to a large extent but still attached to the wall, and the
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FIG. 3. Profiles of (a), (b) p′
rms/p and (c), (d) s′

rms. (a), (c), In the upstream boundary layer x = xref ; (b), (d),
in the shock-interaction region x = ximp.

low s′
rms layer upon it is slightly elevated. The bottom low s′

rms layer and the outer high s′
rms layer

remain almost unaffected. Note that the outer high s′
rms layer is weaker than the inner one due to

weak separation. In the adiabatic and wall-heating cases, the separation bubbles are obvious and the
strong s′

rms layers are highly elevated (see Fig. 4). In the separation bubble, the temperature gradient
∂T /∂y is relatively small, which results in substantially thickened wall-attached low s′

rms layer. The
main difference in the wall-heating case is that the buffer layer is remained in the separation bubble
due to larger temperature gradient. The Reynolds number effect on s′

rms is mainly reflected in the
separation bubble, where s′

rms is weak in case “S10” but strong in case “S10Re” (see Fig. 4). This
may be ascribed to the fact that the shocks can reach closer to the wall in case “S10Re.”

The distributions of p′
rms/p in xy plane in outer scaling are depicted in Fig. 5. As can be seen,

the intensity of pressure fluctuations are strong near the incident and reflected shocks, which can
be ascribed to the unsteady shock motion [11]. Strong compression and dilatation are also observed
near the tip of the incident shock, the deflection point of the shear layer, and the expansion fan. Inside
the boundary layer, the peak of p′

rms/p coincides with that of the turbulent Mach number and that of
the mean shear (not shown), which indicates that the high p′

rms is caused by the free shear layer [11].
As the shear layer dissipates downstream, p′

rms/p also weakens. As wall temperature increases,
the streamwise length of interaction region is increased. Increasing Reynolds number results in
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FIG. 4. Distributions of s′
rms in xy plane in outer scaling. (a) Case “S05”; (b) case “S10”; (c) case “S10Re”;

(d) case “S19”.

a similar phenomenon. In specifics, the reflected shock foot and the onset of free shear layer reach
farther upstream. Also, as wall temperature increases, the peak values of p′

rms/p in both the upstream
boundary layer and the free shear layer are weakened. Note that the presence of flow separation
seems to have little influence on the distributions of p′

rms/p. The distributions of s′
rms in the xy plane

in outer scaling are illustrated in Fig. 4. The above analyses of s′
rms are confirmed. It is observed that

the peak value of s′
rms is farther from the wall than that of p′

rms/p (the core of free shear layer). It
should also be noted that the temperature of the cooled wall is close to the free stream temperature
(Tw = 0.956T∞), and as a result, the temperature gradient is stronger as wall temperature increases.
This further results in stronger entropic modes in cases with higher wall temperatures.

We have displayed above the distributions of p′
rms/p and s′

rms. The distributions of other two
normalized r.m.s. values, i.e., that of density ρ ′

rms/ρ and that of temperature T ′
rms/T , are omitted for

brevity. The omission is because ρ ′
rms/ρ and T ′

rms/T are dependent variables, which are determined,
at least in regions where Rp′s′ is weak, by p′

rms/p and s′
rms, according to Eq. (12).

It can be concluded that, in terms of the distributions of p′
rms/p and s′

rms, the flow field in the
wall-cooling case without separation can be divided into (I) a near-wall viscous sublayer where
p′

rms/p is strong but s′
rms is relatively weak, (II) an inner high s′

rms layer, which is thickened and
augmented in the interaction region, (III) a relatively low s′

rms layer where p′
rms/p attains its peak and

starts to decline, (IV) an outer high s′
rms layer where p′

rms/p is weak, (V) a (not much elevated) free
shear layer where p′

rms/p attains its peak, and (VI) an area around the shocks and the expansion fan
where p′

rms/p is intense. The upstream layers are not much affected in the shock-interaction region.
In contrast, flow fields in the adiabatic and the wall-heating cases with remarkable separation can be
divided into (I) a similar near-wall viscous sublayer, (II) a buffer layer where s′

rms increases rapidly,
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FIG. 5. Distributions of p′
rms/p in xy plane in outer scaling. (a) case “S05”; (b) case “S10”; (c) case

“S10Re”; (d) case “S19”.

(III) a thick layer with declining p′
rms/p but high s′

rms, (IV) the separation bubble and its downstream
areas where p′

rms/p is strong but s′
rms is weak, (V) the (much elevated) free shear layer with peak

p′
rms/p, (VI) the even higher elevated strong s′

rms layer, and (VII) area around the shocks and the
expansion fan.

C. Intermodal competition and intermodal correlation

As mentioned above, the two factors that function in the r.m.s. ratios, and thus in the correlations,
are the intermodal competition � and the intermodal correlation �. Analyses based on � and � are
clearer than those based on the four r.m.s. values, due to less and uniform input variables. Hence,
the distributions of log� and � are illustrated in this subsection. The reason for taking logarithm
is because � is the ratio of the intensities of two modes and should not be biased towards any one.
Negative log� represents the dominance of acoustic modes, while positive log� indicates that of
entropic modes.

The distributions of log� in inner and outer scalings are plotted in Fig. 6. It can be seen that
the effect of wall temperature is remarkable. In the upstream boundary layers, due to the uniform
distribution of p′

rms/p near the wall, the profile of log� near the wall is basically that of s′
rms [see

Figs. 3(a) and 3(c) and 6(a)]. In the far-wall region, log� is much increased due to the decline
of p′

rms/p and the enhancement of s′
rms. In the interaction region, the wall-normal distributions of

log� are also different with different wall temperatures. The dominance of entropic modes is more
prominent as wall temperature increases. In case “S05,” almost the entire flow field is dominated
by acoustic modes, while in case “S19,” it is the other way around. In all the cases, acoustic modes
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FIG. 6. Distributions of log� in (a), (b) inner scaling and (c)–(f) outer scaling. (a) In the upstream boundary
layer x = xref ; (b) in the shock-interaction region x = ximp; (c) case “S05”; (d) case “S10”; (e) case “S10Re”;
(f) case “S19”.

predominate in the viscous sublayer. In case “S05,” it is followed by the attached inner high s′
rms

layer where the intensity of the two modes is comparable. Above it are the low-temperature gradient
layer and the “not much elevated” free shear layer, where acoustic modes predominate. On top of
them is the outer high s′

rms layer, where the entropic modes are slightly stronger than below but
still weaker than acoustic modes. In cases with higher wall temperatures, the separation bubbles
are larger, in which the acoustic modes are in the ascendancy. It is interesting to notice that in
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FIG. 7. Distributions of � in (a), (b) inner scaling and (c)–(f) outer scaling. (a) In the upstream boundary
layer x = xref ; (b) in the shock-interaction region x = ximp; (c) case “S05”; (d) case “S10”; (e) case “S10Re”;
(f) case “S19”.

these cases, weak � does not appear in regions where p′
rms/p is the strongest but where s′

rms is
the weakest. As mentioned above, the profile in the wall-heating case differs with those in adiabatic
cases by a near-wall entropy-dominating layer. This layer is also vaguely observed in case “S10Re”.
Therefore, the effect of increasing Reynolds number is to some extent similar to that of increasing
wall temperature.

The distributions of � in inner and outer scalings are shown in Fig. 7. Note that the correla-
tions outside the boundary layer caused by the intermittent behavior of the turbulent/nonturbulent
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interface (TNTI) [21] are not addressed in our study. It can bee seen that large values of � mainly
appear in the vicinity of the wall and near the edge of the boundary layer, which is consistent
with previous studies [21]. Near the edge of the boundary layer, the correlation is strenthened to
around −0.5. In the shock-interaction region, there is only a small area near the tip of the incident
shock, the deflection point of the shear layer, and the expansion fan where � is also slightly strong
(this is also where p′

rms/p is intense, as mentioned earlier). It should also be noted that Rp′s′ tends
to −1 at the wall due to strictly isothermal wall condition (since T ′ = T ′

I + T ′
E = 0, T ′

I = −T ′
E ).

Other conclusions with isothermal wall condition include Rp′ρ ′ = 1 and Rs′ρ ′ = −1 (see Figs. 10
and 12 below) [19]. The affected area is limited to y∗ < 2 in the upstream boundary layers, but the
layer may be thickened by several viscous units in the interaction region. As wall distance increases,
� recovers rapidly from −1 at the wall to about −0.2 outside the viscous sublayer. In the separation
bubble and near the shocks, � can be weakly positive. In most regions of the flow, p′ and s′ are
weakly negatively correlated. Wall temperature and Reynolds number have minor impacts on the
distributions of �. Their effects are mainly on the streamwise interaction length, the presence of
separation bubble, and the weak � inside the bubble.

D. Other five correlations

To visually present the effects of � and �, maps for the correlations in �-� space are illustrated
in Fig. 8, according to Eqs. (11) and (13). � is plotted in logarithmic scale and only results in
0.1 � � � 10 are shown. In this subsection, we draw conclusions according to the maps with �

and � varying in this selected range. It should be noted that it is unlikely for every point in �-�
space to appear in experiments and simulations. For example, strongly positive � is not detected
in our databases. The map for Rp′s′ is omitted since Rp′s′ = �. The distributions of the other five
correlations in inner and outer scalings are depicted in Figs. 9–13, respectively. In different zones of
the flow fields identified earlier, (�,�) varies to a large extent. Therefore, the spatial distributions
of the correlations serve as excellent benchmarks to examine the correctness of the conclusions
drawn from the maps.

It can be seen that the maps for Rp′T ′ and Rp′ρ ′ are similar to each other, with one turned upside
down. In most areas of �-� space, Rp′T ′ increases as � decreases and as � increases, while Rp′ρ ′

increases as � decreases and as � decreases. Note that in most regions of the flow, the two modes
are weakly negatively correlated. Therefore, Rp′T ′ is supposed to be weak [see Fig. 9(a)] unless
acoustic modes are overwhelmingly stronger than entropic modes [see area near the reflected shock
in Fig. 9(c)]. A similar conclusion can be drawn for Rp′ρ ′ , with the difference that acoustic modes do
not have to be that dominant to yield strong Rp′ρ ′ (see Figs. 9 and 10 where Rp′ρ ′ is generally stronger
than Rp′T ′). The observation that acoustic modes have larger influence on density than temperature
is consistent with previous studies [21,31].

As mentioned above, � is also possible to be strongly negative, in the vicinity of the wall or near
the edge of the boundary layer. In such regions, Rp′ρ ′ is supposed to be strongly positive, regardless
of � [see Fig. 10(a)]. In contrast, Rp′T ′ is largely dependent on �. In the near-wall case, due to
the strictly isothermo wall condition, the value of � is not arbitrary as � tends to −1. Applying
the alternative definition of entropic modes yields log� = log(1/γ Ma2) ≈ −0.85 [see Figs. 6(a)
and 6(b)]. It is interesting to notice that (log�,�) = (−0.85,−1) is exactly a singular point where
kT � = 1 and thus Rp′T ′ = 0. Therefore, Rp′T ′ in this extremely thin layer is supposed to be highly
sensitive to � and � and disparate in different cases [see Figs. 9(a) and 9(b) where the correlations
in viscous sublayer in different cases are diverse]. Such a singular point also exists in the map for
Rp′ρ ′ , where kρ� = 1 and � = 1, but as mentioned above, � is unlikely to be strongly positive in
our databases. Near the edge of the boundary layer, due to the dominance of entropic modes, Rp′T ′

is supposed to be strongly negative [see Figs. 9(c)–9(f)]. The chances are that � will be weakly
positive, for instance, in the separation bubble and near the shocks. Rp′T ′ is slightly strengthened
there, while Rp′ρ ′ is slightly weakened [see the separation bubbles in Figs. 9(f) and 10(f)].

The maps for Rs′T ′ and Rs′ρ ′ are also similar to each other, with one turned upside down. It can
be seen that in the selected range of �, Rs′T ′ is most likely to be strongly positive (see Fig. 11), and
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FIG. 8. Maps for the correlations in �-� space.
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FIG. 9. Distributions of Rp′T ′ in (a), (b) inner scaling and (c)–(f) outer scaling. (a) In the upstream boundary
layer x = xref ; (b) in the shock-interaction region x = ximp; (c) case “S05”; (d) case “S10”; (e) case “S10Re”;
(f) case “S19”.

Rs′ρ ′ strongly negative (see Fig. 12). The map for Rs′T ′ is more extreme, where weak and negative
correlations appear only when both log� and � tend to −1 [see the viscous sublayer in Fig. 11(a)].
In most regions of the flow where � is weakly negative, it is hard to change the signs of Rs′T ′ and
Rs′ρ ′ even when acoustic modes are quite strong [see Figs. 11(a) and 11(b) and 12(a) and 12(b)].

It should be noted that Rs′T ′ = −Rp′T ′ and Rs′ρ ′ = −Rp′ρ ′ when � = −1. Therefore, in the
regions with strongly negative � mentioned above, Rs′ρ ′ is strongly negative, regardless of � [see
Fig. 12(a)]. For Rs′T ′ , the singular point (log�,�) = (−0.85,−1) is also where the correlation is
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FIG. 10. Distributions of Rp′ρ′ in (a), (b) inner scaling and (c)–(f) outer scaling. (a) In upstream boundary
layer x = xref ; (b) in shock-interaction region x = ximp; (c) case “S05”; (d) case “S10”; (e) case “S10Re”; (f)
case “S19”.

most sensitive to � and �. Predictably, in the vicinity of walls with different temperatures, Rs′T ′

differs to a large extent [see Figs. 11(a) and 11(b)], while Rs′ρ ′ is almost the same [see Figs. 12(a)
and 12(b)].

The map for RT ′ρ ′ is different from those above, where the neutral line is straight and both the
singular points (�,�) = (1/kT ,−1) and (�,�) = (1/kρ, 1) function. It is predictable that RT ′ρ ′

differs largely in the vicinity of walls with different temperatures [see Figs. 13(a) and 13(b)].
Since kT = γ Ma2 is larger than kρ = γ (γ − 1)Ma2, the neutral line is slightly inclined. As a result,
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FIG. 11. Distributions of Rs′T ′ in (a), (b) inner scaling and (c)–(f) outer scaling. (a) In upstream boundary
layer x = xref ; (b) in shock-interaction region x = ximp; (c) case “S05”; (d) case “S10”; (e) case “S10Re”; (f)
case “S19”.

positive RT ′ρ ′ is a little more likely to appear when � is positive. Moreover, since kρ and kT are larger
than unity, the current �-� space is occupied by mostly negative RT ′ρ ′ . This bias is exacerbated as
Mach number increases.

In conclusion, with the aid of the maps, the behavior of the correlations between thermodynamic
fluctuations in flows with abundant and complicated features can be predicted and explained
by analyzing the local � and �. The effects of wall temperature and Reynolds number on the
correlations are also reflected in those on � and �, as analyzed earlier.
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FIG. 12. Distributions of Rs′ρ′ in (a), (b) inner scaling and (c)–(f) outer scaling. (a) In upstream boundary
layer x = xref ; (b) in shock-interaction region x = ximp; (c) case “S05”; (d) case “S10”; (e) case “S10Re”;
(f) case “S19”.

IV. MODEL FOR THE CORRELATIONS USING R.M.S. VALUES

In Sec. III, the correlations have been shown as functions of � and �. However, the formulas
shown above are too complicated for applications. Besides, one of the variables � itself is a second
moment correlation, which is difficult to accurately simulate using a coarse grid. Fortunately, it has
been shown that � is relatively small in a considerable area of the flow, which implies that it could
be possible to discard the effect of � on the correlations.
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FIG. 13. Distributions of RT ′ρ′ in (a), (b) inner scaling and (c)–(f) outer scaling. (a) In upstream boundary
layer x = xref ; (b) in shock-interaction region x = ximp (c) case “S05”; (d) case “S10”; (e) case “S10Re”; (f)
case “S19”.

In this section, we first propose a simplified model for the correlations, which are deemed as
functions of merely the r.m.s. levels of the fluctuations, as in Gerolymos and Vallet [20]. Then, the
accuracy of the model is examined using DNS data.

A. Derivation of the model

In Eq. (11), the correlations are functions of the r.m.s. values and �. However, it should be noted
that � is a function of three r.m.s. values, according to Eq. (12). To reduce the number of inputs,
the influence of � has to be eliminated.
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Equation (12) also implies the following equations:

I2
ρI + I2

ρE − 2�IρI IρE − 1 = 0, (14)

I2
T I + I2

TE + 2�IT I ITE − 1 = 0. (15)

We try to reduce the number of inputs by taking (10)2 − (14) × (15) and get

R2
φ′ψ ′ = 1 − (1 − �2)(IφI IψE ∓ IψI IφE )2, (16)

where the minus-plus sign takes positive if ψ ′ is ρ ′. Furthermore, we assume �2 
 1 so the O(�2)
term can be discarded, i.e., R2

φ′ψ ′ ≈ 1 − (IφI IψE ∓ IψI IφE )2. If we apply the alternative definition of
entropic modes mentioned above (just in order to express the coefficients explicitly), Eq. (16) can
be rewritten as

R2
p′s′ ≈ 0,

R2
p′T ′ ≈ 1 − I2

TE = 1 − (γ − 1)2Ma4 s′2
rms

(T ′
rms/T )2

,

R2
p′ρ ′ ≈ 1 − I2

ρE = 1 − (γ − 1)2Ma4 s′2
rms

(ρ ′
rms/ρ )2

,

R2
s′T ′ ≈ 1 − I2

T I = 1 − (γ − 1)2

γ 2

(p′
rms/p)2

(T ′
rms/T )2

,

R2
s′ρ ′ ≈ 1 − I2

ρI = 1 − 1

γ 2

(p′
rms/p)2

(ρ ′
rms/ρ )2

,

R2
T ′ρ ′ ≈ 1 − (IρI ITE + IρE IT I )2 = 1 − (γ − 1)2Ma4 (p′

rms/p)2s′2
rms

(T ′
rms/T )2(ρ ′

rms/ρ )2
. (17)

Accordingly, the magnitudes of the correlations are functions of the normalized r.m.s. values.
From Eq. (17) it can be seen that the number of variables are 2 in Rp′T ′ , Rp′ρ ′ , Rs′T ′ and Rs′ρ ′ .

This indicates that a redundant variable in Gerolymos and Vallet [20] is eliminated. The mechanism
of the complex interaction between thermodynamic fluctuations becomes clearer as the number of
variables is reduced. Interestingly, the p′-involved correlations are functions of s′

rms, and vice versa.
p′

rms (or s′
rms) has only a minor influence on Rp′T ′ and Rp′ρ ′ (or Rs′T ′ and Rs′ρ ′ ), and the influence is

only implicitly functioning in T ′
rms and ρ ′

rms.
Note that there are actually three independent variables in RT ′ρ ′ , which, in the sense of number

of variables, has no advantage over Eq. (11) or the formula proposed by Gerolymos and Vallet [20].
It is retained here for it shares the same form as other formulas.

It should be noted that Rp′s′ , although assumed to be weak, is not always negligible in com-
pressible wall-bounded turbulent flows, especially in the vicinity of the wall or near the edge of
the boundary layers, as is shown in Sec. III. The validity of Eq. (17) in such regions is questioned
and should be examined by DNS data. The validation is in the next subsection. In such regions, we
suggest Rp′s′ to be calculated by Eq. (12) instead for higher accuracy.

A weakness of Eq. (17) is that it is capable only of estimating the magnitudes of the cor-
relations. This is not a problem when the variables are strongly correlated, because the signs
can be readily obtained, by Eq. (11) or the maps. However, considerable deviations might ap-
pear when the correlations are weak. Particularly, the calculated 1 − (IφI IψE ∓ IψI IφE )2 might be
negative if the correlation is weak, resulting in a complex correlation R. We suggest R ≡ 0 if
1 − (IφI IψE ∓ IψI IφE )2 < 0.
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FIG. 14. Profiles of errors (a), (b) Ep′T ′ , (c), (d) Ep′ρ′ , (e), (f) Es′T ′ , (g), (h) Es′ρ′ , and (i), (j) ET ′ρ′ in inner
scaling. On the left (a), (c), (e), (g), (i), in upstream boundary layer x = xref . On the right (b), (d), (f), (h), (j),
in shock-interaction region x = ximp.
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FIG. 14. (Continued.)

B. Validation of the model

Since Eq. (17) estimates only the magnitudes of the correlations, we propose the absolute error
of absolute correlations Eφ′ψ ′ = ||R̂φ′ψ ′ | − |Rφ′ψ ′ || to characterize its validity, where R̂φ′ψ ′ is the
estimate calculated by Eq. (17) and Rφ′ψ ′ is the measurement obtained using DNS data.

As shown in Fig. 7 in Sec. III, the assumption �2 
 1 fails to be correct mainly near the edge
of the boundary layer and in the vicinity of the wall. Therefore, it is predictable that Eq. (17)
loses its validity in such regions. The distributions of errors Ep′T ′ , Ep′ρ ′ , Es′T ′ , Es′ρ ′ , and ET ′ρ ′ in
inner and outer scaling are plotted in Figs. 14 and 15, respectively. Two streamwise locations, x =
xref and x = ximp, are selected to characterize the flow in the upstream boundary layer and in the
shock-interaction region. For results in outer scaling, only those from case “S10” are shown, while
those from other cases are similar and omitted for brevity. It can be seen that, in this extremely
near-wall layer (y∗ < 2) mentioned above, the predictions of all five correlations except for Rp′ρ ′ are
remarkably deviated from the measurements. Also, there are considerable errors in the predictions
for Rp′T ′ and Rp′ρ ′ near the edge of the boundary layer, and in the prediction of RT ′ρ ′ at y∗ = 10 ∼
100 in the interaction region. Otherwise, the predictions of Eq. (17) are reliable. It should be noted
that considerable errors are usually generated where the correlations are quite weak or even change
their signs. Therefore, it is acceptable that Eq. (17) is not very accurate in these regions.

It can be seen from Fig. 15(a) that Eq. (17) is valid for Rp′T ′ in the near-wall regions of upstream
and reattachment boundary layers (excluding the y∗ < 2 layer) and in the shock-interaction region.
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FIG. 15. Distributions of errors (a) Ep′T ′ , (b) Ep′ρ′ , (c) Es′T ′ , (d) Es′ρ′ , and (e) ET ′ρ′ in the xy plane in outer
scaling. Only results from case “S10” are shown.

The error is up to 0.45 near the edges of the upstream and reattachment boundary layers, which
may be a direct result of the failure of assumption �2 
 1, and further results from TNTI. The
distribution of Ep′ρ ′ , shown in Fig. 15(b), is similar to that of Ep′T ′ . The error is up to 0.2, indicating
higher accuracy of Eq. (17) for Rp′ρ ′ than for Rp′T ′ . It can be seen from Figs. 15(c) and 15(d) that
Eq. (17) has an even higher accuracy for Rs′T ′ and Rs′ρ ′ , with the error less than 0.05. The validity
for these two correlations is verified in the whole boundary layer. Figure 15(e) shows that except
near the tip of the incident shock or in the separation bubble, the estimation of RT ′ρ ′ is also quite
accurate, with the error less than 0.05. In conclusion, Eq. (17) is valid in most of the regions inside
the boundary layer, except for a very limited area where �2 
 1 fails. Since errors in the shock-
interaction region are not larger than those in upstream boundary layer, it can be inferred that our
model is applicable in not only SWBLI flows but also other compressible wall-bounded flows.

V. CONCLUDING REMARKS

In this paper, the second moment correlations between thermodynamic fluctuations in shock
wave/turbulent boundary layer interaction is systematically investigated. DNSs of three isothermal
wall conditions and two friction Reynolds numbers are conducted.
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FIG. 16. Van Driest transformed velocity profile at xref .

Based on Kovásznay decomposition, an approach is proposed to quantitatively characterize the
contributing factors to the correlations. It is shown that all six concerned correlations are determined
by merely two parameters, which are interpreted as intermodal competition and intermodal correla-
tion, respectively. The effects of wall temperature and Reynolds number on the two parameters are
different. According to the modal intensities, the flow field is divided into several zones, each with
distinct physical properties. The two parameters vary to a large extent in different zones of the flow.
By analyzing the local parameters, the behavior of the correlations affected by complicated flow
features can be predicted and explained.

In addition, a simplified model is proposed where the correlations are deemed as functions of
the r.m.s. values of thermodynamic fluctuations. The model is much simpler than that in previous
studies. The formula for each correlation has the same form. The accuracy of the model is validated
in boundary layers where the intermodal correlation is weak.

In this paper, the correlations between thermodynamic fluctuations are investigated. The under-
lying physical mechanisms are revealed. A practical model is proposed. The main limit in our study
is limited parameter space. The effects of Mach number and wedge angle are left for future studies.
It would also be interesting to investigate the near-wall correlations without strictly isothermo wall
conditions or the correlations near rough walls.
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FIG. 17. Density-scaled Reynolds stresses R+
i j in (a) inner scaling and (b) outer scaling.

APPENDIX: VALIDATION OF THE DNS DATABASE

To validate the accuracy of the database, the van Driest transformed velocity profile at reference
station is shown in Fig. 16. The profile performs a linear scaling at y+ < 5 and a logarithmic scaling
at 30 < y+ < 150 (the range is 30 < y+ < 300 for case “S10Re”). Moreover, the density-scaled
Reynolds stresses R+

i j = ρũ′′
i u′′

j
+
/ρw in inner and outer scaling at xref are plotted in Fig. 17,

respectively. For brevity, only results in the adiabatic cases are shown. The results are compared
with those of supersonic data by Fang et al. [11]. The difference is small in most of the regions in
the boundary layer.

Besides, Fig. 18 shows the streamwise distribution of p∗
w = (pw − p∞)/(p1 − p∞), averaged

wall pressure normalized as suggested by Fang et al. [11], where p1 is the far-field pressure
downstream of the incident shock. Results in all the cases are shown, of which results in case

FIG. 18. Normalized wall pressure.
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FIG. 19. Normalized skin friction coefficient.

“S10” are compared with the measurement of Dupont et al. [53] and the simulation of Fang et al.
[11]. Qualitative agreements are achieved between our database and the two references. Figure 19
represents the normalized skin friction coefficient C∗

f = Cf /Cf ,ref , where Cf = 2τw/ρ∞u2
∞. The

curves are compared with those of Bernardini et al. [25]. The trends of the curves are similar, and
the separation lengths are comparable. A minor quantitative difference can be ascribed to different
Reynolds numbers and wall boundary conditions. The Reynolds number effect on C∗

f is consistent
with Volpiani et al. [26].
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