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Modeling a spheroidal squirmer through a complex fluid
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We simulate a spheroidal swimmer through a complex fluid, modeled by the Giesekus
constitutive equation incorporating fluid inertia. We develop a spheroidal swimmer model
and exert it in a direct-forcing fictitious domain method framework. This model ex-
tends the conventional spherical “squirmer,” representing a microswimmer generating
self-propulsion through tangential surface waves at its boundaries. We vary the swimmer’s
aspect ratio (AR) and Weissenberg number (Wi; the ratio of fluid elastic force to viscous
force), respectively, in the range of 1.5 � AR � 8 and 0.5 � Wi � 10. Our results show
that, an inertial spheroidal puller with a small |β| (a swimming intensity parameter) swims
faster than the counterpart subjected to the Stokes flow regime—a departure from the
observed pattern in spherical pullers. Within the Giesekus fluid medium, an augmented
mobility factor α correlates with an increased squirmer velocity, while a larger AR con-
tributes significantly to the speed enhancement of a neutral squirmer in the presence of
fluid inertia. Meanwhile, we explore the squirmer’s energy expenditure and hydrodynamic
efficiency, finding that a slenderer, inertial squirmer with a vigorous swimming intensity
expends more energy, contrasting with the reduced energy expenditure associated with
a smaller intensity. Notably, a larger AR positively correlates with squirmer efficiency,
displaying an advantageous relationship with swimming speed.

DOI: 10.1103/PhysRevFluids.9.073303

I. INTRODUCTION

Locomotion of microswimmers in complex (nonlinear) fluids causes considerable attention due
to their relevance in various biological processes, medicine, and technological applications [1–5].
Examples of such typical problems include the mammalian sperm swimming in the fallopian tubes
[6], the diffusion and reproduction of algae in lakes [7], and utilizing micro/nanorobots for directed
drug delivery and precision surgery [8]. Specifically, the active system composed of a large number
of microswimmers exhibits remarkable nonequilibrium phenomena and emergent behavior like
swarming [9], turbulence [10,11], and activity-induced clustering and phase transitions [12,13].
A comprehensive grasp of the hydrodynamics of individual microswimmers within complex fluids
holds significance in advancing scientific understanding by elucidating collective behaviors and, in
practical terms, designing efficient swimming devices in various applications.

Many natural microswimmers utilize synergistic oscillating flagella and cilia (short flagella)
for locomotion. For example, Chlamydamonas (green algae) uses its cilia to generate thrust from
the front, performing a breast-stroke-like motion. Escherichia coli employs the oscillating flag-
ella to generate thrust from the rear for self-propelling. These microswimmers can be classified
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into pullers (Chlamydamonas) and pushers (E. coli) based on their different thrust types. The
“squirmer,” a classical microswimming model established by Lighthill [14] and extended by Blake
[15], is widely adopted to mimic the self-propulsion of a swimmer with a dense array of cilia
on its surface. This model can reoccur the flow field around both the puller and the puller-type
microswimmers by adjusting a swimming parameter [16–20], and it has successfully simulated
many microswimming scenarios, including the microorganisms’ nutrient uptake [21,22], their
swimming in a non-Newtonian fluid [23], swirling motion [24], hydrodynamic interactions with
a wall [25,26], the two-body hydrodynamic interactions [27–30], and the collective swimming
dynamics [13,31,32].

While the squirmer model is adequate for microswimmers like Volvox, many organisms such
as E. coli, Chlamydomonas, Paramecium, and Tetrahymena appear as nonspherical shapes in
nature. Hence, to better represent the ciliates of these microswimmers, an appropriate extension
of the squirmer model adapted to the spheroidal objects is desirable. To investigate the effect of
geometrical shape on ciliary locomotion, Keller and Wu [33] first generalize the squirmer model
to a prolate spheroidal body of arbitrary eccentricity. This model can mimic the swimming of bio-
logical microswimmers such as Tetrahymenapyriformis, Spirostomum ambiguum, and Paramecium
multimicronucleatum. Subsequently, a force-dipole mode has been incorporated into the spheroidal
model, successfully simulating other types of swimmers. Ishimoto and Gaffney [25] have theoreti-
cally explored the boundary behavior of axisymmetric squirmers in an inertialess Newtonian fluid
near a no-slip interface and also a free surface, demonstrating the stable and unstable limit cycles.
Theers et al. [34] implement the spheroidal squirmer model into the multiparticle collision dynamics
approach and study the cooperative swimming in a narrow slit, finding that two pullers can swim
cooperatively, forming a wedgelike conformation with a small constant angle. Pöhnl et al. [35]
study the motion of a spheroidal and axisymmetric squirmer in an unbounded fluid analytically.
They conclude that the squirming modes beyond the second can be as important as the first two
concerning the contributions to the velocity and stresslet of the particle. More recently, van Gogh
et al. [36] examined the effect of geometrical shape upon locomotion in a shear-thinning fluid using
the prolate spheroidal squirmer model, finding that the spheroidal squirmers have advantages over
spherical ones in terms of both swimming speed and energetic efficiency. In contrast, a recent work
[37] indicates that a swimmer with a large aspect ratio (AR; a larger AR indicates a slenderer body)
yields a slow swimming speed, and an aspect ratio of 2 is found to be the most hydrodynamically
efficient. This controversy requires clarification.

While numerous studies have explored the swimming behavior of spheroidal squirmers in a
Newtonian fluid, it is noteworthy that these investigations have primarily focused on the limit of
the Stokes flow regime (the problem is linear, neglecting the effect of fluid inertia). In nature, many
micron-sized aquatic microorganisms swimming in their escape from predators achieve a finite
Reynolds number ranging from 1 to10 [38–43]. Larger microorganisms, such as the millimeter-sized
copepods and Pleurobrachia, commonly achieve Re(10) [40]. This swimming is beyond the Stokes
flow regime, and the fluid inertia can remarkably affect the microswimmers’ motion, both enhancing
or hindering their speed [44–47], unstabilizing the puller-type swimmers [17,48], modifying the
contact time between a swimmer with solid boundaries and another swimmer [49,26], and weak-
ening the collective dynamics [50]. Consequently, a need arises to comprehend how finite fluid
inertia (a typical nonlinear behavior of fluids) and the geometric configuration of microswimmers
may interact competitively or synergistically, impacting their swimming speed and hydrodynamic
efficiency.

The investigation of squirming dynamics in non-Newtonian fluids has garnered significant atten-
tion recently, primarily driven by its relevance to numerous physiological processes. For instance,
the bacteria E. coli resides in the mucus of the intestine [51] and Borrelia burgdorferi traverses the
extracellular matrix of mammalian skin [52]. The fluids where the microswimmers are immersed
commonly exhibit another typical nonlinear behavior—viscoelasticity. Recent efforts indicate that
fluid viscoelasticity can significantly modify the microswimmers’ speed [53], the flow structure
near the body [37], and the rheological behavior of the fluid [54]. More importantly, there is
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controversy over whether fluid elasticity increases or hinders the movement of microorganisms.
For instance, the bacteria Chlamydomonas reinhardtii and E. coli appear to swim significantly
faster in viscoelastic fluids or a polymer solution than in a Newtonian fluid [55], in contrast to
the hindrance of the viscoelasticity for the algal cell C. reinhardtii [56]. Researchers have tried
to clarify this controversy using the spherical squirmer model, in which the induced wake behind
the neutral squirmer may lead to a slower speed in a viscoelastic fluid than in a Newtonian fluid
[37]. However, a contrary result can be achieved by adding a swirling motion at the squirmer
[24]. In summary, the coupling effects of microswimmers’ geometrical features and the fluid
viscoelastic nature complicate their swimming. Moreover, hydrodynamic interactions with diverse
self-propulsion modes exert a substantial impact on swimming velocity, energy consumption, and
hydrodynamic efficiency [57,58]. Thus, further exploration into the intricate relationship between
fluid viscoelasticity and microswimmer geometry is warranted. Understanding how these factors
competitively or synergistically alter the hydrodynamic interaction between the squirmer and fluids
is crucial for comprehending variations in swimming speed and hydrodynamic efficiency.

This paper utilizes a direct-forcing fictitious domain (DF-FD) method to examine the propulsion
dynamics of a spheroidal swimmer in the presence of both viscoelastic and fluid inertia effects.
We aim to elucidate how the fluid inertia, elasticity, and the microswimmers’ geometrical shape
competitively or synergistically affect the swimmer’s hydrodynamics. To achieve this objective,
we initially derived the solution for the flow within the spheroidal squirmer by incorporating the
tangential velocity boundary condition, thereby adapting the model to the current DF-FD method
framework. The remainder of this paper is organized as follows. Section II briefly states the DF-FD
method and the dynamics of the spheroidal squirmer. Following this, we meticulously validate the
steady speed of our spheroidal squirmer model against existing analytical solutions and establish
the parameters for calculations in Sec. III. Section IV presents the results, including the squirmers’
swimming speeds, the force decoupling analysis, energy expenditure, and hydrodynamic efficiency.
In Sec. V, some concluding remarks are finally given.

II. NUMERICAL SCHEME AND SPHEROIDAL SQUIRMER MODEL

An interface-resolved DF-FD method proposed by Yu and Shao [59] is employed here to simulate
a spheroidal squirmer through a fluid. The basic strategy of this method is that the interior of the
body (e.g., solid squirmer) fills with a fictitious fluid, and a pseudo-body force is considered over the
body’s inner domain to enforce the fictitious fluid to satisfy the rigid-body motion constraint when
dealing with hydrodynamic interactions between the body and the fluid. Briefly, we demonstrate
the following nondimensional FD formulation for an incompressible fluid which contains three
parts. Let P0 denote the solid domain and � the entire domain including the interior and exterior of
the solid body. We adopt the following scales for the nondimensionalization: H for length, U0 for
velocity, H/U0 for time, ρ f U 2

0 for the pseudo-body force with ρ f being the fluid density. For the
present problem, the following equation must be coupled and solved in full.

(a) Fluid momentum equations

∂u
∂t

+ u · ∇u = ηr∇2u
Re

− ∇p + (1 − ηr )∇ · B
Re Wi

+ λ in �, (2.1)

where u and p are the fluid velocity and pressure, respectively; λ is the vectorial Lagrange multiplier
(pseudo-body force); the Reynolds number is defined by Re = ρ f U0H/η0 (η0 denoting the total
zero-shear-rate viscosity of the fluid η0 = ηs + ηp, and U0 representing the characteristic velocity
of a spheroidal squirmer which we will introduce later). ηs and ηp are, respectively, the fluid solvent
viscosity and polymer viscosity, and ηr denotes the ratio of the solvent viscosity (ηs) to the total
zero-shear-rate viscosity of the fluid (η0). When ηr = 1, the medium degenerates into Newtonian
fluids. For a viscoelastic fluid, the Weissenberg number Wi = λtU0/H (λt being the fluid relaxation
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time) is adopted here. B denotes the polymer configuration tensor related to the polymer stress
tensor τ = ηp(B − I)/λt . The fluids in the solid domain satisfy the rigid-body motion constraints:

u = U + ωs × r + us in P0, (2.2)

(ρr − 1)V ∗
s

dU
dt

= −
∫

P0

λ dx, (2.3)

(ρr − 1)J∗ dωs

dt
= −

∫
P0

r × λ dx, (2.4)

where r is the position vector concerning the spheroidal squirmer’s mass center; U and ωs are its
translational and angular velocities; us denotes the velocity distribution for the spheroidal squirmer
dynamics which we will introduce later; ρr is the squirmer-fluid density ratio, ρr = ρs/ρ f , here ρr =
1; V ∗

p is the dimensionless volume defined by V ∗
p = Vp/H3 with Vp being the squirmer’s volume,

and J∗ is the dimensionless moment of inertia with J∗ = J/ρsH5.
(b) Continuity equation:

∇ · u = 0 in �. (2.5)

(c) For a viscoelastic fluid, we employed the Giesekus constitutive model here:
∂B
∂t

+ u · ∇B − B · ∇u − (∇u)T · B + α

Wi
(B − I)2 + B − I

Wi
= 0 in �, (2.6)

where α is the mobility parameter to quantify the shear-thinning effect (α = 0 gives the Oldroyd-B
constitutive model with constant viscosity). We decouple Eqs. (2.1)–(2.6) into the fluid, particle,
and viscoelastic subproblems using a fractional-step time method. For more details on the discrete
schemes, one can refer to the work of [59,60]. Note that for a high Wi problem, numerical instability
or low-accurate results may occur, mainly due to the lack of symmetry and positive definiteness of
the configuration tensor B when calculating Eq. (2.6). Hence, we employ the scheme proposed
by Vaithianathan and Collins [61] to solve Eq. (2.6), using the usual Cholesky analysis for a real
symmetric and positive-definite matrix. One can refer to our previous work for more details of our
code’s implementation and validations [23]. In this study, we discretize the convection term using
the MUSCL (a high-precision monotone upstream-centered scheme for conservation laws) scheme,
and the fourth-order Runge-Kutta method is employed for time integration.

In the spherical squirmer model, a progressive waving envelope is introduced to mimic both
radial and angular oscillations at the boundary of a microswimmer with arrays of cilia like
Volvox [18]. A reduced-order squirmer, which only considers the steady tangential motion on its
surface, has been extensively adopted to investigate the microswimming mechanisms under various
background flows. This reduced-order squirmer model gives a tangential boundary condition at a
spherical body’s surface (in the framework of reference moving with the body) for self-propelling,
and it reads

ub
s = us

θ (θ )eθ = (B1 sin θ + B2 sin θ cos θ )eθ , (2.7)

where θ is the angle concerning the swimming direction, and B1 and B2 are the first two squirming
modes (parameters). eθ is the unit vector along the polar direction. The squirmer can be categorized
into a puller (β > 0, e.g., Chlamydomonas), pusher (β < 0, e.g., E. coli), and neutral squirmer
(β = 0), respectively, based on the values of β = B2/B1 (B1 > 0) [31]. In the Stokes flow regime,
the steady swimming speed of a squirmer through a Newtonian fluid is U0 = 2B1/3 [14]. In the
framework of the present DF-FD method, a solenoidal volumetric velocity us is derived [using the
boundary condition, Eq. (2.7)] and exerted at the whole spherical solid domain (inside) to realize
the self-propelling of the body [47,48,50,62], and it reads

us =
[( r

a

)m
−

( r

a

)m+1
](

us
θ cot θ + dus

θ

dθ

)
er +

[
(m + 3)

( r

a

)m+1
− (m + 2)

( r

a

)m
]

us
θeθ , (2.8)
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FIG. 1. Schematic of a spheroidal squirmer swimming in an infinite flow (the gray arrow indicates the
swimming direction).

where a is the radius of the spherical squirmer, r is the distance from the squirmer’s center, and er

is the unit vector along the radial direction; m is an arbitrary positive integer, and usually m = 5 is
adopted.

Similarly, we employ the tangential boundary condition of the spherical squirmer with the first
(B1) and second (B2) modes and generalize to the spheroidal squirmer model. The tangential
boundary condition at the surface of the spheroidal squirmer reads [34]

ub_e
s = −B1(s · ez )s − B2ζ (s · ez )s

= −B1τ0(1 + βζ )

√
1 − ζ 2

τ 2
0 − ζ 2

eζ , (2.9)

where unit tangent vectors on the spheroidal surface are given by the basis vector as s = −eζ , and ez

denotes the unit vector in the z-axis direction. Here, we define τ0 = 1/e (e = c/bz is the eccentricity
with c = √

b2
z−b2

x) with τ > τ0 corresponding to the fluid domain exterior to the surface (τ = τ0)
of the squirmer (see Fig. 1). In the spherical limit s → eθ , the present squirming velocity [Eq. (2.9)]
reduces to the spherical squirmer boundary condition [Eq. (2.7)]. To implement the spheroidal
squirmer model in our DF-FD method, one needs to derive the solenoidal volumetric velocity
within the spheroidal body [similar to Eq. (2.8)] based on the boundary condition, Eq. (2.9). Having
meticulously addressed the flow problem, we have successfully obtained the velocity results within
the reference framework moving with the body (see the Appendix for the details of the derivation).
It reads

ue
s = v, (2.10)

where v is denoted as Eq. (A6). We employ the periodic boundary conditions at all the boundaries
to simulate the infinite flow field, and it reads

f (x, t ) = f (x + K, t ), (2.11)

where f (x) denotes any physical quantity, and K is the period length of the flow field (see Fig. 1;
K = W , R, and L in the x, y, and z axis, respectively). The motion of a spheroidal squirmer is
governed by Eqs. (2.3) and (2.4). One can refer to our previous work [23,50,62,63] for the details
of the squirmer dynamics in the framework of the DF-FD method.

III. VALIDATION OF A SPHEROIDAL SQUIRMER

The present DF-FD method has shown to be accurate in coping with the swimming of a spherical
squirmer in a Newtonian fluid at Re = 0 [50] and the finite Re [62], as well as in the Giesekus
viscoelastic fluids [23] when compared with the available theoretical solution and the numerical
results. This section first validates a spheroidal squirmer through a Newtonian fluid. For a spherical
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FIG. 2. Comparing the steady swimming speed of a spheroidal squirmer with AR (Re = 0.01).

squirmer, a computational domain with R×W ×L = [−16a, 16a]×[−16a, 16a]×[−16a, 16a],
is shown to be convergent in simulating a viscoelastic and infinite flow field [23]. Accordingly,
we adopt the adjustable calculation domains to ensure that the flow field in each axial direction of
the spheroidal squirmer is greater than 16ae, in which ae denotes a radius in the corresponding
axis. Note that the squirmer’s translation and rotation in the x and y axes are restricted, if not
otherwise specified. For this squirming problem, the spheroidal squirmer’s equivalent radius a
and the self-propelling parameter B1 [see Eq. (2.9)] are adopted as the characteristic length and
velocity, respectively. Hence, the Reynolds and Weissenberg numbers are respectively defined by
Re = ρ f aB1/η0 and Wi = λt B1/a. Upon enforcing the force-free condition for steady swimming,
the speed of a spheroidal squirmer in a Newtonian fluid is given as [33,34]

U0 = B1τ0
[
τ0 − (

τ 2
0 − 1

)
coth−1τ0

]
, (3.1)

where τ0 = 1/e with e being the eccentricity of the squirmer [see Eq. (2.9)]. Note that this expres-
sion is derived in the Stokes flow regime, and it applies to the swimming of a neutral spheroidal
squirmer (β = 0) in an inertial flow since it generates no vorticity [48]. The swimming Reynolds
number here is set to Re = 0.01 at which the effects of the inertia on the swimming speed can be
neglected [44]. The spheroidal squirmer is initially released at the center (origin of the coordinate
system) of the domain with its orientation directed along the z axis, and its velocity reaches a steady
state after the initial transient dynamics. A mesh size of more than 18�x across the spheroidal
squirmer’s radius of the rotational axis and a time step �t = 5×10−4 are adopted here. As shown in
Fig. 2, the steady swimming speeds of the squirmer with AR agree well with the theoretical result.

Subsequently, we consider the effect of the mesh resolution on a neutral squirmer through the
Giesekus viscoelastic fluids at Wi = 2, employing the maximum aspect ratio (AR = 8) utilized in
this study. The viscosity ratio ηr = 0.5 and mobility factor α = 0.2 are employed, if not otherwise
specified. Figure 3 presents the transient dynamics, demonstrating excellent agreement in the
evolution of the squirmers’ speed across two different resolutions (the relative error is less than 1%).
This observation suggests that a resolution of 18�x across the radius of the rotational axis of the
spheroidal squirmer, which is employed as a minimum requirement in subsequent calculations,
yields convergent results.
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FIG. 3. (a) Comparing the transient speed of a spheroidal squirmer (AR = 8) with different mesh resolu-
tions (Re = 0.01; Wi = 2); (b) steady velocity contour lines around the spheroidal squirmer in the swimming
direction velocity (top half: ar = 9�x; bottom half: ar = 18�x). ar denotes the spheroidal squirmer’s radius
of the rotational axis.

IV. RESULTS AND DISCUSSION

In this section, we simulate the swimming of a spheroidal squirmer under the influence of fluid
inertia and/or elasticity. The AR and Wi are varied within the respective ranges of 1.5 � AR � 8
and 0.5 � Wi � 10. The calculation parameters outlined in Sec. III are applied unless otherwise
specified. In the subsequent subsections, we initially examine the effect of fluid inertia on the
swimming behavior of a spheroidal squirmer. Subsequently, we investigate the hydrodynamics of a
spheroidal squirmer through the Giesekus fluids. The force contributions on the squirmer are later
decoupled and analyzed. Finally, we discuss the energy expenditure and hydrodynamic efficiency.

A. Fluid inertia can speed up a spheroidal puller with a small swimming intensity β

The steady swimming speed of the squirmers in an unconfined flow is achieved after transient
dynamics, as shown in Fig. 4. As the Navier-Stokes equations are resolved fully in this study, Re
determines the nonlinearity of the Newtonian fluids. The theoretical solutions and our results show
that the increased AR results in a monotonic increase in a squirmer’s speed at the Stoke flow regime
(all the squirmers have an identical volume). However, in the work of Zhu et al. [37], the spheroidal
squirmer with a larger AR yields a slower speed. This is because their definition of the tangential
velocity distribution on the spheroidal body for self-propelling is different from ours (their model
is not based on a generalization under the strict ellipsoidal coordinate systems, and the velocity
distribution of the swimmer surface may not guarantee that it is tangent to the surface), while both
the spheroidal squirmers degenerate to the classical spherical squirmer as the AR tends to be 1.
With the inclusion of fluid inertia (e.g., Re = 5), the speed of the spheroidal puller (pusher) with
|β| = 3 is hindered (enhanced), in contrast to the behavior observed in the Stokes flow regime (no
variation for all squirmers). This pattern is similar to that of a spherical squirmer [17,62]. The main
finding in this section is that the inertial puller (Re = 5) with a small swimming intensity (β = 0.5)
swims faster than the counterpart subjected to the Stokes flow regime (compared to the theoretical
solution). To illustrate the possible mechanism for this result, we plot a schematic, as shown in
Fig. 5. Generally, an inertial puller is “pulled” by the flows it induced earlier [denoted by the solid
arrows as in Fig. 5(b)], leading to the hindrance in its speed [48]. This contrasts with a puller falling
into the Stoke flow regime [see Fig. 5(a)]. This mechanism applies to the spherical puller regardless
of β. Note that for a spherical puller with a small β (e.g., β = 0.5), the flows inside the body should
be more significant than those with a large β (but the inside flows are still weaker than the induced

073303-7



OUYANG, LIU, LIN, AND LIN

FIG. 4. Steady swimming speed of a spheroidal squirmer through a fluid at Re = 5. (a) Effect of the AR;
(b) effect of the puller’s swimming intensity β. The red curve in (a) denotes Eq. (3.1); the dotted curves in (b)
indicate the specified values of Eq. (3.1) at different AR.

flows near the boundaries [as shown in Fig. 5(c), the effect of the green arrows is still weaker than
that of the solid blue arrows]) since the flows should be similar to that of a neutral squirmer (β = 0).
However, with the stretch of the body, the flows inside the spheroidal puller become more significant
than the induced flows [see Fig. 5(d); the effect of the green arrows is more significant than that of
the solid blue arrows]. Hence, the total effect of fluid inertia on the speed of a puller with a large
AR but small β is positive. This answers why the spheroidal inertial puller with a small β can swim
faster than the inertialess counterpart.

FIG. 5. Schematic to compare the swimming mechanisms for an inertial puller swimming in a fluid. (a) A
spherical puller at the Stokes flow regime; (b) a spherical puller swimming in an inertial flow; (c) a spherical
puller with a small swimming intensity (β ) at an inertial flow; (d) a spheroidal puller with a small swimming
intensity (β ) at an inertial flow. The dashed and solid squirmers, respectively, denote them at the previous and
current instants. All the blue and dashed arrows indicate the flows induced at the previous instant, and the blue
and solid arrows denote the flows affecting the squirmers at the current instant. The green arrows denote the
flows inside the pullers when the swimming intensity (β ) is small, and the black arrows indicate the swimming
direction.
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FIG. 6. Vorticity contours around the spheroidal squirmers at Re = 5. (a) AR = 1.5, β = 3; (b) AR = 4,
β = 3; (c) AR = 4, β = 0.5; (d) AR = 1.5, β = −3; (e) AR = 4, β = −3; (f) AR = 4, β = −0.5.

To further understand this finding, we plot the different spheroidal pullers’ steady speeds with
β, as shown in Fig. 4(b). It is seen that an inertial puller with a higher AR swims slower than
the counterpart theoretical solution (under a Stokes flow) in a larger range of β. Based on this
pattern, it is reasonable to predict that the speeds of the spherical (AR = 1), inertial puller with
different β are entirely below its theoretical solution at Re = 0, in agreement with the available
results [17,44]. Interestingly, with the increase of β (e.g., β � 3), the speeds are restored after
dropping into the valleys, especially for a large AR. This finding indicates the different inertial
hydrodynamics between a spheroidal and spherical squirmers, in which the spherical one’s speed
decreases monotonically with β. This phenomenon could be attributed to the more pronounced
enhancement in the ratio of flows within the body with β compared to the induced flows in the
outer region [see Fig. 5(d); the solid green arrows may become stronger than the counterpart solid
blue ones with β]. Moreover, the significance of this mechanism becomes more pronounced with
increasing AR.

Figure 6 presents the vorticity distributed around the spheroidal squirmers at Re = 5. It is recalled
that a spherical squirmer with different self-propelled modes (depending on β) displays divergent
speeds with finite fluid inertia [48,62]. This leads to the conclusion that, with increasing Re, a puller
“pulls” the vorticity (generated by the puller) to accumulate around the body, hence hindering its
speed. In contrast, a pusher “pushes” the vorticity (generated by the pusher) downstream, speeding
up its speed. This mechanism applies to the present spheroidal squirmers [see Figs. 6(a), 6(b), 6(d),
and 6(e); the vorticity bubbles at the rears of the pullers are expanded more significantly than
that of the pushers]. Note that this mechanism only applies to inertial swimming since the fluid
inertia breaks the fore-and-aft symmetry of the induced flows (velocity and vorticity) around the
bodies. Referring back to Fig. 4, we find that a larger AR may be more beneficial to strengthening
(weakening) the effect of fluid inertia in speeding up (hindering) a pusher (puller). For example, the
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FIG. 7. Steady swimming speed of a spheroidal squirmer through a viscoelastic fluid with Wi (Re = 0.01).

speed of a pusher (puller) with β = −3 (β = 3) and AR = 4 increases (decreases) approximately by
68% (9%) from Re = 0 to 5; in contrast to that, the counterpart squirmer with AR = 1.5 increases
(decreases) by 43% (16.8%). This may be because the slender-shaped body is more beneficial in
the convection of the vorticity than the blunt-shaped one [see Figs. 6(a), 6(b), 6(d), and 6(e)].
Figures 6(c) and 6(f) show the vorticity around the squirmers with |β| = 0.5. The vorticity around
the pusher and puller is not very notable, similar to that of the neutral squirmer. This indicates the
possible mechanism for the finding above that the inertial puller (Re = 5) with β = 0.5 swims faster
than at Re = 0, as the inside flows may become more significant than the outer ones.

B. How do fluid inertia and elasticity jointly affect the swimming of a spheroidal squirmer?

This section first considers a squirmer through the Giesekus fluids, excluding the influence of
fluid inertia (Re = 0.01). We employ the viscosity ratio ηr = 0.5 and mobility factor α = 0.2, if
not otherwise specified. As shown in Fig. 7, the speed of the neutral squirmer (β = 0) increases
monotonically with Wi (the puller, not shown, also adheres to this pattern). Regarding the pusher
with β = −3, its speed exhibits a decrease followed by a subsequent recovery with Wi. These
patterns are similar to that of a spherical squirmer swimming in the Giesekus fluids [37], indicating
the qualitative rationality of the present results. A unified increase of their speeds at a high Wi
(e.g., Wi � 6) is due to the elongation effect of a viscoelastic shear-thinning medium at the rear of
the squirmer, leading to a reduced elastic resistance with Wi [37]. In a viscoelastic shear-thinning
fluid (Re = 0.01), the squirmer with a larger AR yields a faster speed, consistent with the pattern
observed in a Newtonian fluid. When altering the mobility factor α, the tendency of the speeds
with Wi persists. But, a larger α results in a faster speed. For example, by increasing α from
0.05 to 0.2, the speed of a neutral squirmer (pusher with β = −3) increases in a range of 2%–3%
(8%–15%) according to different Wi adopted here. This pattern is similar to the result that the
speed of a neutral squirmer (β = 0) increases with α at a relatively high Wi (Wi = 3) [24]. We
have also conducted a simulation in the Oldroyd-B fluid (α = 0), yielding results that exhibit
strong consistency with decreasing α. This observation suggests that Giesekus fluids effectively
capture the fundamental characteristics of Oldroyd-B fluids when simulating microswimmers within
viscoelastic shear-thinning fluids.
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FIG. 8. Velocity magnitudes and vorticity contours around the spheroidal squirmers with AR=1.5
(Re=0.01, Wi = 6). (a) and (b) Velocity magnitude around the neutral squirmer (β = 0); (c) and (d) vorticity
contours around the spheroidal pusher (β = −3). (a) and (c) α = 0.2; (b) and (d) α = 0.05. Note that the
velocity is normalized with B1.

To illustrate the possible mechanism for the effect of α on the speed, we plot the velocity
magnitudes and vorticity contours around the spheroidal squirmers, as shown in Fig. 8. For a neutral
squirmer (AR = 1.5), it is seen that the fluid elasticity breaks the front-back symmetry of flows, a
pattern that typically holds when swimming in a Newtonian fluid [17]. This front-back asymmetry is
more pronounced for the case with a smaller α [see Figs. 8(a) and 8(b); a smaller α yields a longer
extended wake at the rear of the body]. This longer extended wake may result in more lagging
stresses generated at the rear of the squirmer for driving the flow toward the body [37], leading to a
lower speed. On a larger α yielding a faster speed for the counterpart pusher, we expect to illustrate
the mechanism by analyzing the vorticity distribution around the squirmer, as shown in Figs. 8(c)
and 8(d). Previous works indicate that the efficient downstream advection of the vorticity generated
on the squirmer’s surface increases its speed [47,62]. This physics is applicable to the current pusher
scenario, where an increase in α leads to a greater accumulation of vorticity at the rear of the body
(a larger α leads to better convection). Simultaneously, we observe a small yet discernible vorticity
bubble at the rear of the pusher, a phenomenon not previously reported in a Newtonian fluid context.

This could be attributed to the extensional polymer stress behind the swimmer, and the stronger
the shear thinning characteristics (the larger α) of the fluid, the smaller the impact of this stress. The
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FIG. 9. Component of polymer stress τzz distribution around the neutral squirmers (β =0, Wi=0.5,
Re=0.01, AR = 1.5). (a) α = 0.2; (b) α = 0.05.

polymer stress is reported to be responsible for speed hindrance [37], suggesting that its diminution
leads to an increase in swimming speed [24]. This conclusion is also beneficial in understanding
our results when changing α. Figure 9 illustrates the contours of the polymer stress component
τzz around the neutral squirmers with AR = 1.5. It is seen that the larger α yields the smaller
extensional polymer stress tail, confirming our discussion.

Since the increasing fluid inertia leads to divergent speed variations for a spherical squirmer
with different self-propelled modes [48], one may then ask how do fluid inertia and elasticity
jointly impact the swimming of a spheroidal squirmer? For a neutral squirmer (β = 0), as shown
in Fig. 10(a), its speed increases with Wi when fluid inertia is considered (Re = 5). This pattern
bears similarities to the swimming behavior of an inertial, spherical neutral squirmer in a Giesekus
fluid [23], even though pure fluid inertia exerts no net effect on the neutral squirmer’s speed [44].
Furthermore, we find that a larger AR results in a more substantial enhancement in the speed
of a neutral, inertial squirmer. For example, at the specified Wi = 2, the speed of the neutral
squirmer with AR = 4 (1.5) increases by 17% (6%) from Re = 0.01 to 5. This may be because
the fluid inertia amplifies the asymmetry of the flow field (around the squirmer) caused by the
fluid elastic stress [23], and a larger AR contributes to a more pronounced amplification. Regarding
the spheroidal pullers at Re = 5, as shown in Fig. 10(b), their speeds initially exhibit a decrease
with Wi (starting from Wi = 0.2), followed by a subsequent restoration with further increases in
Wi. This contrasts with the pattern of a counterpart puller swimming at Re = 0.01, in which its
speed increases monotonically. Recalling that an inertial puller (pusher) is “pulled” (“pusher”) by
the flows it induced earlier, leading to the hindrance (enhancement) in its speed [48]. This pattern
applies to the swimming in a viscoelastic fluid with inertia here, as shown in Figs. 10(b) and 10(c).
Moreover, with the increase of Re (from 0.01 to 5), a larger AR leads to a more significant increase
in a pusher’s speed (e.g., at Wi = 2, it increases by 52% for AR = 1.5 and by 89% for AR = 4) but
not a very appreciable decrease in a puller’s speed.

Figure 11 illustrates the steady swimming speed of a squirmer through a Giesekus fluid (α = 0.2)
with Re. The observed pattern of speed variation aligns consistently with the results depicted in
Fig. 10. Notably, our investigation reveals intersecting data points when considering two distinct
Wi of 0.5 and 2. Chaudhury [64] employed Taylor’s swimming sheet model [65] to simulate
the locomotion of a microorganism, revealing that fluid elasticity can either positively enhance
(0 < Re < 15) or hinder (15 < Re < 60) propulsion. It is noteworthy that the Taylor swimming
sheet model resembles a pusher-type self-propelling mechanism, hence exhibiting a similar speed
tendency to that of our pusher (β = −3) within the range of (1 < Re � 5). However, discrepancies
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FIG. 10. Comparing the steady speed of inertial and inertialess spheroidal squirmers in the Giesekus fluids.
(a) β = 0; (b) β = 3; (c) β = −3.

FIG. 11. Effect of fluid inertia on steady swimming speed of a squirmer through a Giesekus fluid (α = 0.2).
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emerge when Re < 1. Chaudhury [64] reported that the solution converges to unity regardless of
fluid elasticity at Re = 0. In contrast, our results indicate that a higher Wi leads to a reduction in
pusher speed at Re = 0.01. Zhu et al. [37] have carefully investigated divergent speeds at different
Wi (Re = 0), and they concluded that different swimming modes for a squirmer generate different
polymer dynamics (by modifying the polymer stretching) around the swimmer and this, in turn,
influences the swimming speed. At Re = 0.01, we also find that the neutral squirmer maintains a
faster speed at a larger Wi. For a puller, its speed contrasts to that of a pusher, in agreement with the
results of Zhu et al. [37]. Chaudhury [64] suggested that fluid elasticity reverses its role and hampers
propulsion (reduces induced velocity) when the Reynolds number is sufficiently increased, that is,
the flow is of the boundary-layer type. However, owing to the constraints of the current algorithm,
analyzing the particle boundary layer presents a considerable challenge. Our future endeavors will
focus on implementing body-fitted grids to facilitate the examination of flow dynamics in the
vicinity of the boundary layer.

C. Force decoupling analysis

To better understand the possible mechanism underlying the above findings, we decouple the
forces acting on the surface of the squirmers with steady swimming. Swimming through a Giesekus
fluid, the net force on the body can be decomposed into pressure, viscous, and polymeric contri-
butions, and it has Fz = F pres

z + F visc
z + F poly

z = 0 (force-free) in the swimming direction (z axis).
Specifically, the pressure, the viscous, and the polymeric forces are respectively calculated in the
following forms:

F pres
z = −

∫
∂P0

nz p dS, (4.1)

F visc
z = ηs

∫
∂P0

[
2nz

∂uz

∂z
+ nx

(
∂uz

∂x
+ ∂ux

∂z

)
+ ny

(
∂uz

∂y
+ ∂uy

∂z

)]
dS, (4.2)

F poly
z =

∫
∂P0

[nzτzz + nyτyz + nxτxz]dS, (4.3)

where ηs denotes the fluid viscosity and n is the unit normal outward of the surface S of the body.
In Eq. (4.3), the polymer force can be further decomposed into the normal polymeric force, F poly

zn ,
and the polymeric shear force, F poly

zs :

F poly
zn =

∫
∂P0

nzτzzdS, (4.4)

F poly
zs =

∫
∂P0

[nyτyz + nxτxz]dS. (4.5)

Figure 12 presents the force contributions for an inertial squirmer swimming in a Newtonian
fluid, in which the forces can only be decomposed into the pressure and viscous contributions
(normalized by η0U0a). It is seen that the viscous force F visc

z decreases monotonically with the AR
and maintains negative contributions. This suggests that a slenderer squirmer is more prone to break
the fore-and-aft symmetry of the flows around the body, and the positive pressure (not shown)
may be significant in speeding up a squirmer (recalling that the spheroidal squirmer with a larger
AR yields a faster speed in Fig. 4). We infer that the viscous force contribution is associated with
the squirmer’s surface area as a larger AR corresponds to a larger surface area. Interestingly, in
the case of an inertial puller with AR � 2, the magnitude of the viscous force contribution is
larger than that of the counterpart pusher. This pattern is particularly pronounced for scenarios
with a strong swimming intensity (|β|). This mechanism can be elucidated by examining the
distinct characteristics between the swimming modes of a pusher and a puller in an inertial flow.
The pusher is more significantly affected by fluid inertia than the puller [17]; hence the effect of
fluid viscosity on a pusher is weaker than the counterpart puller. However, this conclusion does
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FIG. 12. Effect of aspect ratio (AR) on an inertial squirmer’s force contribution in a Newtonian fluid
(Re = 5).

not hold for a squirmer with AR = 1.5, as a relatively large body curvature may subtly alter the
pressure distribution and, consequently, the contributions of viscous forces for the pusher and
puller.

Regarding a neutral squirmer swimming in the Giesekus fluids, we find that viscous force,
F visc

z , and polymeric forces, F poly
z , maintain negative contributions, as shown in Fig. 13. As the

neutral squirmer swims within the viscous flow regime (Re = 0.01), it is evident that the negative
contribution is predominantly dominated by the viscous force. This pattern is more pronounced for
a neutral squirmer with a larger AR. For the polymeric forces, F poly

zs exhibits a more considerable
negative contribution than F poly

zn , in agreement with the results of Binagia et al. [24].

FIG. 13. Effect of aspect ratio (AR) on a neutral squirmer’s force contribution in the Giesekus fluids
(Wi=0.5, Re = 0.01).
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FIG. 14. Energy expenditure for the steady swimming of a spheroidal squirmer through a fluid. (a)
Newtonian medium; (b) Giesekus medium.

D. Energy expenditure and hydrodynamic efficiency

Finally, we would like to discuss the spheroidal squirmer’s energy expenditure and hydrodynamic
efficiency in a fluid. The rate of work P can be written as

P = −
∫

∂P0

u · σ · n dS, (4.6)

where n is the unit normal outward of the surface S of the swimmer, and σ denotes the total stress
tensor. Figure 14 presents the energy expenditure for the steady swimming of a spheroidal squirmer
through a fluid, in which P is normalized with PN. PN = 12π (normalized by 4B2

1aη0/9) denotes the
energy expenditure for a neutral spherical squirmer (β = 0) in a Newtonian fluid, and it is obtained
by integrating Eq. (4.6) in Stoke flow [44]. The main finding in this section is that, as shown in
Fig. 14(a), a slenderer inertial squirmer (Re = 5) with a large swimming intensity (|β| = 3) expends
more energy in a Newtonian fluid. This contrasts with the inertial squirmer with a small swimming
intensity (|β| = 0.5). Since the power expended by the squirmer is dissipated viscously by the fluid,
the decoupling of integrating Eq. (4.6) may provide insight into understanding the mechanism.
At steady swimming, the dimensionless viscous dissipation rate in the flow around a tangentially
deforming body and P are equivalent, and it involves the contributions of the vorticity and surface
velocity [66,67]. At a large |β| (e.g., |β| = 3), the vorticity around the body dominates the energy
expenditure as the right second term (B2) of Eq. (2.7) is responsible for vorticity generation [17].
This explains why a larger |β| expends more energy for the squirmers with the same geometry.
Moreover, a slenderer body indicates a larger surface area, thus expending more energy. At a small
|β| (e.g., |β| = 0.5), the hydrodynamics of a squirmer resembles that of a neutral squirmer (β = 0).
In this scenario, the effect of vorticity is relatively weak, with the remaining contribution of velocity
around the body accounting for energy expenditure. Keller and Wu [33] have derived the energy
expenditure of the neutral spheroidal squirmer in a Newtonian and Stokes flow, and it reads

P = 4π
(
τ 2

0 − 1
)[(

1 + τ 2
0

)
coth−1τ0 − τ0

]
τ0

. (4.7)

This analytical solution is plotted in Fig. 14(a), showing a monotonic decrease with the AR.
We have simulated the neutral squirmers at Re = 0.01 to validate our calculation results further.

The energy expenditure of the neutral spheroidal squirmers agrees well with the analytical solution.
In the presence of finite fluid inertia (e.g., Re = 5), it is observed that a spheroidal pusher expends
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FIG. 15. Hydrodynamic efficiency for the steady swimming of a spheroidal squirmer through a fluid. (a)
Newtonian medium; (b) Giesekus medium.

more energy than the counterpart puller. This pattern is similar to an inertial squirmer across a
shear-dependent fluid [46]. The result may be relevant to their swimming speeds [see Fig. 4(a)],
where the faster counterpart squirmer tends to expend more energy. Comparing Figs. 14(a) and
14(b), it is seen that a neutral squirmer in a Giesekus fluid (Wi = 0.5) expends less energy than
its Newtonian counterpart. A similar conclusion has been reported for a squirmer dumbbell and
swirling squirmer swimming in a viscoelastic fluid [23,24].

We extend our investigation to the spheroidal squirmer’s hydrodynamic efficiency η = P∗/P, as
shown in Fig. 15, where P∗ denotes the power necessary to move a counterpart spheroidal body
at its swimming speed U. Note that P∗ is obtained numerically using our DF-FD code. For a
neutral spheroidal squirmer, its hydrodynamic efficiency in a Newtonian and Stokes flow follows
this expression [33]:

η = 2τ 2
0

[
τ0 + (

1 − τ 2
0

)
coth−1τ0

]2

(
τ 2

0 − 1
)[

τ0 − (
1 + τ 2

0

)
coth−1τ0

]2 . (4.8)

In Eq. (4.8), η converges to 0.5 as τ0 → ∞ [see Fig. 15(a)], corresponding to the hydrodynamic
efficiency of a neutral spherical squirmer, which has been derived by Wang and Ardekani [44].
Since the hydrodynamic efficiency of a neutral squirmer increases monotonically with Re [17], η

at Re = 5 should be above the plotted curve [Eq. (4.8)] in Fig. 15(a). This concludes that a neutral
squirmer is more efficient than other squirmers at Re = 5, as it expends the least energy due to its
generation of no vorticity [17]. A pusher is more efficient than the counterpart puller in a Newtonian
and inertial flow [see Fig. 15(a)]. This is because the fluid inertia speeds up a pusher but hinders a
puller [48]. Meanwhile, a larger AR leads to a higher efficiency, highlighting a positive correlation
with the swimming speed of the corresponding swimmers.

V. CONCLUSION

We have numerically investigated the hydrodynamics of a spheroidal squirmer within a complex
fluid characterized by nonlinear behaviors, encompassing both fluid inertia and viscoelasticity
(using the Giesekus model). Through a systematic examination of the swimmer’s speed, energy
expenditure, and hydrodynamic efficiency, our aim is to provide insights into how the combined
influence of the fluid’s nonlinear behaviors and the swimmer’s geometry modify its hydrodynamic
behaviors. We first develop a spheroidal swimmer model based on a spherical squirmer model,
which imparts a specified tangential velocity at its boundaries to achieve self-propulsion. To
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integrate the model into the current DF-FD, we have derived the solution for flows within the
spheroidal squirmer based on the tangential velocity boundary condition.

Our results indicate that, a spheroidal puller in a Newtonian and inertial flow swims faster than its
counterpart subjected to the Stokes flow regime when its swimming intensity is weak. This pattern
differs from the behavior observed in spherical counterparts. This phenomenon can be attributed
to the fact that a slender body enhances the flows inside the spheroidal puller more significantly
than in the case of a spherical one. On swimming in the Giesekus fluids, a greater mobility factor α

results in a faster squirmer, and a larger AR yields a more significant enhancement in the speed of
a neutral squirmer when fluid inertia is considered. This may be because the fluid elasticity breaks
the flow’s front-back symmetry, which holds the pattern when swimming in a Newtonian fluid. The
front-back asymmetry is more pronounced for the case with a smaller α, leading to lagging stresses
that hinder the body. Moreover, the fluid inertia amplifies the asymmetry of the flow field (around
the squirmer) caused by the fluid elastic stress, and a larger AR contributes to a more pronounced
amplification. We further decouple the net force acting on the body, finding that the viscous force in
a Newtonian fluid decreases monotonically with the AR. Regarding a neutral squirmer swimming
in the Giesekus fluids, viscous and polymeric forces maintain negative contributions. This pattern
is particularly accentuated with a larger AR.

Our observations reveal that a slenderer, inertial squirmer swimming in a Newtonian fluid with
a vigorous swimming intensity (|β| = 3), expends more energy. However, it expends less energy
when the swimming intensity is small (|β| = 0.5). The disparate patterns may arise from the distinct
dominance of contributions, where the generation of vorticity and the friction between the fluid and
the body respectively determine the energy expenditure of a squirmer with a large and small |β|.
Our findings suggest that a neutral squirmer swimming in a Giesekus fluid expends less energy
than in a Newtonian fluid. Additionally, we observe that an inertial pusher is more efficient than
the counterpart puller in a Newtonian fluid. This is attributed to the fact that fluid inertia speeds
up a pusher but hinders a puller. Furthermore, a larger AR results in higher efficiency, displaying a
positive relationship with the corresponding swimmers’ speed.

The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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APPENDIX: IMPOSED SOLENOIDAL VOLUMETRIC VELOCITY

In this part, we have carefully derived the analytical solution for the solenoidal volumetric
velocity inside a spheroidal squirmer, enabling the model to be implemented in our DF-FD method
framework. In Cartesian coordinates (x, y, z), the surface equation of a spheroid is

x2 + y2

b2
x

+ z2

b2
z

= 1, (A1)

where bz and bx denote the semimajor and semiminor axis, respectively (bz � bx; see Fig. 16). Here,
we define τ0 = 1/e (e = c/bz is the eccentricity with c = √

b2
z−b2

x) with τ > τ0 corresponding to
the fluid domain exterior to the surface (τ = τ0) of the squirmer. In terms of spheroidal coordinates
(τ, ζ , ϕ), the Cartesian coordinates denote

x = c
√

τ 2 − 1
√

1 − ζ 2 cos ϕ,

y = c
√

τ 2 − 1
√

1 − ζ 2 sin ϕ, (A2)

z = cτζ ,
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FIG. 16. Schematic of normal and tangent vectors of a spheroidal squirmer. The self-propulsion (in the
z direction) is achieved by a prescribed tangential surface velocity in the direction of the tangent vector s.

where 1 � τ � ∞, −1 � ζ � 1, and 0 � ϕ � 2π . All points with τ = τ0 lie on the spheroid’s
surface. The intersection of the spheroid and a meridian plane, where φ is constant, is an ellipse.
For simplicity, a sketch of the normal (eτ ) and tangent (−eζ ) vectors of a spheroidal squirmer in
this plane is shown in Fig. 16. The Lamé metric coefficients for prolate spheroidal coordinates are

hζ = c

√
τ 2 − ζ 2√
1 − ζ 2

, hτ = c

√
τ 2 − ζ 2

√
τ 2 − 1

, hϕ = c
√

τ 2 − 1
√

1 − ζ 2. (A3)

The Jacobian determinant is defined as J = hζ hτ hϕ = c3(τ 2 − ζ 2). The internal flow field v of
a spheroidal squirmer is governed by the Stokes equation and incompressibility condition. On the
surface of the swimmer, the boundary condition satisfies Eq. (2.9). We note that the steady internal
flow results in a zero translational and rotational velocity as∫∫∫

vJ dζ dτ dϕ = 0, (A4)∫∫∫
r × vJ dζ dτ dϕ = 0. (A5)

Assuming the squirmer’s motion is axisymmetric, the internal flow field can be expressed by the
stream function � as [68]

v(ζ , τ, ϕ) = curl

(
1

hϕ

�(τ, ζ )eϕ

)
. (A6)

The stream function itself satisfies the equation

E4�(τ, ζ ) = 0, (A7)

where the operator has the following form [69]:

E2 = 1

c2(τ 2 − ζ 2)

[
(τ 2 − 1)

∂2

∂τ 2
+ (1 − ζ 2)

∂2

∂ζ 2

]
. (A8)
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TABLE I. Value of the constants ak in Eqs. (A13) and (A14).

AR 1.5 2 3 4 6 8

a0 −105.9B1 −739.6B1 −8222.8B1 −41284.3B1 −375334.5B1 −1781709.3B1

a1 −105.9B1 −739.6B1 −8222.8B1 −41284.3B1 −375334.5B1 −1781709.3B1

a2 117.3B1 855.8B1 9726.5B1 49156.9B1 448890.7B1 2134042.4B1

a3 −13.4B1 −119.5B1 −1509.9B1 −7881.8B1 −73571.9B1 −352356.6B1

a4 8.3B2 26.9B2 118.3B2 321.6B2 1278.9B2 3370.0.3B2

a5 8.3B2 26.9B2 118.3B2 321.6B2 1278.9B2 3370.0.3B2

a6 −4.9B2 −20.8B2 −106.4B2 −303.5B2 −1246.9B2 −3322.6B2

The velocity components can be derived from (A6)–(A8) as

vτ = 1

hζ hϕ

∂�

∂ζ
= c−2(τ 2 − 1)

−1/2
(τ 2 − ζ 2)

−1/2 ∂�

∂ζ
, (A9)

vζ = 1

hτ hϕ

∂�

∂τ
= −c−2(1 − ζ 2)

−1/2
(τ 2 − ζ 2)

−1/2 ∂�

∂τ
. (A10)

The general solution of Eq. (A7) is given as [70]

�(τ, ζ ) = g0(τ )G0(ζ ) + g1(τ )G1(ζ ) +
∞∑

n=2

[gn(τ )Gn(ζ ) + hn(τ )Hn(ζ )]. (A11)

In Eq. (A11), Gn and Hn are the Gegenbauer functions of the first and second kind, respectively.
gn(τ ) and hn(τ ) are τ -dependent functions given by certain linear combinations of Gk (τ ) and Hk (τ )
[70]. For the present problem, the functions gn�2 will be of interest, and Eq. (A11) can be simplified
as

�(τ, ζ ) = g2(τ )G2(ζ ) + g3(τ )G3(ζ ). (A12)

The functions g2(τ ) and g3(τ ) respectively have the following forms:

g2(τ ) = a0G0(τ ) + a1G1(τ ) + a2G2(τ ) + a3G4(τ ), (A13)

g3(τ ) = a4G0(τ ) + a5G1(τ ) + a6G3(τ ), (A14)

where the constants ak will be further calculated by requiring that the solution satisfies the boundary
condition and the condition of no-net force and torque [i.e., Eqs. (A4) and (A5)] discussed below.
For the squirmer problem, the boundary conditions of the stream function in the body-fixed frame
satisfy

�(τ0, ζ ) = 0, (A15)

∂�

∂τ

∣∣∣∣
τ=τ0

= (B1 + B2ζ )c2τ0(1 − ζ 2). (A16)

Note that Eq. (A15) ensures vτ = 0 at the squirmer’s surface. Since Eqs. (A4) and (A5) involve
elliptic integrals, the values of ak in Eqs. (A13) and (A14) are given below (Table I) for specific
aspect ratios by a numerical method. Finally, we obtain the imposed solenoidal volumetric velocity
field by Eqs. (A9) and (A10) in the prolate spheroidal coordinates.
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