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Investigating the effect of turbulence on hemolysis through cell-resolved
fluid-structure interaction simulations of individual red blood cells
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Existing hemolysis algorithms are often constructed for laminar flows that expose red
blood cells (RBCs) to a constant rate of shear. It remains an open question whether such
models are applicable to turbulent flows, where there is a significant variation in shear rate
along cell trajectories. To evaluate the effect of turbulence on hemolysis, we perform cell-
resolved simulations of isolated RBCs in turbulent channel flow at Reτ = 180 and 360 and
compare them against the results obtained from laminar flow simulations at an equivalent
wall shear stress. The RBCs are modeled as isolated cells in an unbounded domain with
the viscosity of the bulk fluid used for the surrounding fluid. This comparison shows that,
while the laminar flow generally induces greater stretch in the cell in a time-averaged sense,
cells experience an overall larger deformation in turbulence. This difference is attributed
to extreme events in turbulence that occasionally create bursts of high shear conditions,
which, consequently, induce a large deformation in the cells. Associating damage with the
most extreme deformation regimes, we observe that, in the worst case, the turbulent flow
can produce deformation in the cell that is higher than the absolute maximum value in
the analogous laminar case approximately 14% of the time. Additionally, the Reτ = 180
universally induced greater deformation in the cells than the Reτ = 360 case, suggesting
that increasing the range of scales in the flow does not necessarily yield greater deformation
when all other parameters are kept constant. A strong direct correlation (R > 0.8) between
shear rate and deformation metrics was observed in turbulence. The correlation against Q-
criterion is inverse and weaker (R ≈ −0.26), but once the shear contribution is subtracted,
it improves in terms of areal dilatation (R ≈ −0.6).

DOI: 10.1103/PhysRevFluids.9.073102

I. INTRODUCTION

The damage induced by implanted cardiovascular devices and surgical treatments on red blood
cells (RBCs), known as hemolysis, plays a major role in the design process for the risk that it
poses to patient health. To mitigate such risks, various computational fluid dynamics (CFD) based
techniques have been introduced to predict the amount of damage a certain design will inflict on
RBCs [1–9]. From a mechanistic point of view, hemolysis is a complex process, spanning from
small pores forming in the membrane, leading to permeabilization of the membrane [10,11], to
large-scale fragmentation of the cells [12], and it depends on factors such as the history of the cells
as well as individual cell properties. As a result, hemolysis prediction remains an active area of
research.

One particular area of research where disagreement persists is the effect turbulent flows have
on RBCs. Some pioneering experiments have shown that turbulent flows tend to inflict more
damage than laminar flows on RBCs under similar conditions [13]. More specifically, these early
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experiments are performed by running RBCs through a pipe at different Reynolds number and
measuring the level of plasma-free hemoglobin after a certain period of time. The key point in
these experiments is that the Reynolds number is altered by adjusting the fluid viscosity through
the addition of Dextran-40. This way, the pressure drop across the pipe is kept the same between
turbulent and laminar experiments, thereby ensuring that, on average, RBCs experience the same
shear stress as they pass through the pipe. While these early experiments indicate greater hemolysis
in the presence of turbulence, more recent experiments that are currently underway have been
inconclusive in this regard (personal communications with collaborators attempting to replicate the
results of Kameneva et al.). Therefore, more experimental observation is needed to establish the
effect of turbulence on hemolysis.

Computationally, many existing hemolysis algorithms are empirical and fitted based on data from
laminar flows. Given that the cells experience fundamentally different conditions in a laminar and
turbulent flow, these laminar-based algorithms can be unreliable if applied incorrectly to turbulent
flows. Some algorithms have been introduced to characterize hemolysis in turbulence [14–17];
however, these algorithms still lack consensus and a mechanistic approach to systematically model
the underlying physics causing damage. Many of these algorithms use the Reynolds stress to
characterize the amount of damage to the cells. However, as pointed out by Quinlan [18], these
stresses are macroscopic averages that do not take into account the microscopic details of the flow
and do not represent a physical stress experienced by the cells.

Looking in greater detail at the cells’ actual responses to the flows could provide insights into
how best to incorporate the effects of turbulence into these types of algorithms, or as a means to
evaluate hemolysis in itself in a way that is agnostic to whether the flow is laminar or turbulent. The
purpose of the current work is to investigate the question of how RBCs respond to turbulence from a
cell-resolved point of view and compare that response to RBCs deforming under similar conditions
in laminar flow to gain a mechanistic understanding of the differences between these flow types at
a cellular level. Since these mechanisms are not well understood, cell-resolved simulations could
provide insights by showing the full profile and history of the deformation of the cell.

There have been attempts to characterize the effect of turbulent flows on RBCs in previous studies
[19,20], which provide some useful order-of-magnitude arguments on the importance of some
stresses. However, these studies relied on simplified representations of the cell or turbulent flow. For
example, the first of these studies is performed in two dimensions (2D) using a circular membrane
and idealized, circular eddies, and the second uses estimates of the scalar stress in turbulent flow to
obtain estimates of the tension in the RBC membrane. In the latter case, direct simulations are not
performed. Both of these studies lack a direct representation of the chaotic motion of turbulence,
instead using an artificially created flow, and a well-resolved representation of the cell membrane. To
the best of our knowledge, the present study is the most faithful reconstruction of a RBC’s response
to turbulence in macroscale flows.

The paper is outlined as follows: First, the methods for the study are introduced in Sec. II.
Largely, the computational methods in this study are based on previous works [21]. The flow
conditions are modeled after the experimental work of Kameneva et al. [13]. Next, results are
presented in Sec. III, with comparisons drawn between the laminar and turbulent cases. Results
are presented primarily in terms of probability density functions showing the likelihood of the
maximum deformation a cell will experience at any given point in time. In Sec. IV, the results
are discussed and analyzed. Future work is discussed, and conclusions are presented in Sec. V.

II. METHODS

To facilitate the comparison of these flows, we will use a multiscale computational framework
for resolving individual RBC behavior in macroscale flows outlined in a previous work [21]. In
short, this simulation relies on three separate solvers: first to simulate the large-scale fluid dynamics,
second to model trajectories of the cells in the flow, and third to solve for the response of the RBCs to
the flow in their immediate vicinity. These individual steps are outlined in Fig. 1: (a) the fluid flow of
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FIG. 1. The steps involved in the numerical framework to simulate the response of individual RBCs to a
macroscale flow. First, direct numerical simulation is used to resolve the fluid dynamics in the macroscale flow
of interest (a). Here, a turbulent channel flow is simulated. Next, particles are randomly seeded in the channel,
and the velocity gradient is tracked as the particles move through the flow (b). These velocity gradients are
used as an input into a boundary integral solver to solve for the velocity of the individual RBCs (c).

interest is simulated using direct numerical simulation; (b) Lagrangian particles are tracked through
the flow, and the velocity gradient is tracked; and (c) the velocity gradient, which represents the
flow field surrounding RBCs, is employed as an input to simulate RBC dynamics using a boundary
integral solver. In the following three sections, these three steps are explained in detail.

A. DNS of channel flow

The general setup for comparing the effect of laminar and turbulent flows on RBCs follows the
methodology of Kameneva et al. [13], who were among the first to experimentally study this effect

073102-3



GRANT RYDQUIST AND MAHDI ESMAILY

FIG. 2. Snapshots of the streamwise velocity magnitude of the turbulent and laminar cases used in this
study. The turbulent cases are for Reτ = 180 and 360. Note that the laminar case displays a parabolic velocity
profile.

quantitatively. The key element in their methodology in performing this comparison was to keep the
wall shear stress the same between laminar and turbulent flows. This way, the effect of turbulence
on hemolysis can be studied independently of the shear stress.

Even though the early experiments mentioned above are performed in a pipe, we consider a
channel flow configuration in the present study. This entails two infinite parallel plates with periodic
boundary conditions imposed on the streamwise and spanwise directions and no-slip boundary con-
ditions imposed on the walls. This canonical configuration was selected for its historical significance
as it is the simplest wall-bounded turbulent flow that one can generate. Since the smallest scales of
motion in the fluid are likely to be important to the deformation of the RBCs, we employ direct
numerical simulation (DNS). This step corresponds to Fig. 1(a). Similar to Kameneva et al., the
flow in these simulations is taken to be Newtonian. The flow simulations are performed using an
in-house solver, which has been extensively employed for modeling particle-laden turbulent duct
flow subjected to radiations in the past [22–27]. This solver is formulated based on the finite volume
method. It permits simulations on staggered rectilinear nonuniform grids. It is second order in
space, utilizes the fractional step method with a fourth-order Runge-Kutta time integration scheme,
employs fast-Fourier transformation for solving the Poisson’s system, and is massively parallelized
using message passing interface (MPI). The results obtained from this solver are compared against
results in the literature [28] and validated against experiments [29]. Details regarding the overall
formulation and solution strategy can be found in [28]. The implementation and parallelization
strategies are also described in detail in [30].

For the laminar case, a parabolic flow profile was utilized. Fluid simulations were not run for this
case as laminar channel flow has a known analytical form of u(y) = [1 − (y/h)2]τwh/2μ. Here, h
is the channel half-height and τw is the wall shear stress. Two turbulent cases are run: one at friction
Reynolds number Reτ = 178.12 and another at Reτ = 356.24, where Reτ = uτ h/ν. Here, ν is the
kinematic viscosity, uτ = √

τw/ρ is the friction velocity, and ρ is the density. We refer to these two
simulations by their nominal Reynolds number, namely Reτ = 180 and 360, respectively. Snapshots
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TABLE I. Numerical parameters used in the turbulent simulations.

Reτ = 180 Reτ = 360

Lx × Ly × Lz 2π × 2 × π 2π × 2 × π

Nx × Ny × Nz 192 × 128 × 128 384 × 256 × 256
�t+ 4.86 × 10−2 5.18 × 10−2

Range of �y+ 0.418 − 5.74 0.407 − 5.83
�x+ 5.89 5.89
�z+ 4.42 4.42

of the laminar and turbulent cases are displayed in Fig. 2. Simulations are compared at wall shear
stresses of 10, 20, 30, and 40 Pa.

Numerical parameters for the turbulence simulations are listed in Table I. Here, x, y, and z are
the streamwise, wall-normal, and spanwise directions, respectively. The grid is stretched in the
wall-normal direction for increased resolution near the wall, and the range of grid spacing �y in
this direction is provided. In this table, �t is the time step size, N is the number of grid points in
a direction, and L is the length of the channel nondimensionalized by the channel half-height h.
Parameters reported in wall units are distinguished by a plus superscript+, e.g., x+ = xuτ /ν and
t+ = tτw/μ. To start, we run these simulations to ensure they are statistically converged. After
that, they are continued for 1 000 000 and 100 000 time steps at Reτ = 180 and 360, respectively,
to produce a sufficiently long temporal window from which velocity gradient statistics can be
collected.

From these calculations, the bulk Reynolds number ReB = Uh/ν is computed for these two
cases to be 2826 and 6241, respectively, where U is the mean velocity in the streamwise direction.
To obtain a measure of Kolmogorov length scale η, we can rely on the mean dissipation in the entire
channel ε = ρ−1UP,x, where P,x is the prescribed pressure gradient in the streamwise direction. Us-
ing these values, η+ = Re−1/4

B Re1/2
τ = 1.83 and 2.12 at Reτ = 180 and 360, respectively. Similarly,

the Kolmogorov time scale in wall units is t+
η = Re−1/2

B Reτ = 3.35 and 4.51 for these simulations,
respectively. Thus, the volumetric-averaged viscous length and time scales are roughly two times
larger and four times slower than those in the viscous sublayer.

There are some differences between the current work and the experiments of Kameneva et al.
[13], which is one of the seminal papers detailing these differences in hemolysis between laminar
and turbulent flows under similar conditions. First, as mentioned earlier, that work examined pipe
flow, whereas the current work is examining channel flow. We do not anticipate this change in
geometry to significantly affect our conclusions as the comparison between turbulent and laminar
flow cases is performed on a relative basis. The bulk Reynolds number based on average streamwise
velocity and full channel height was 5680 and 12 470 for Reτ = 180 and 360 cases, respectively.
This range is comparable to, albeit moderately greater than, the range of bulk Reynolds numbers
(2230–5100) that were considered in the experiments by Kameneva. Secondly, the wall shear
stresses that are used in this work are significantly lower than those used in the experiments
by Kameneva et al. (100–400 Pa), and in fact they are lower than the typical threshold stresses
under which hemolysis typically occurs (above roughly 100–200 Pa) [31]. The RBC solver had
issues with long-term stability above a wall shear stress of approximately 40 Pa, after which a
small but significant portion of the simulations failed. In this range, the RBCs underwent extreme
deformations and took on complex shapes, which in reality may indicate cell rupture. Provided that
our computational framework does not model rupture, and that attempting to resolve the behavior
of the RBCs in the regime where they hemolyze would not faithfully reproduce their behavior, we
consider a lower shear stress to avoid such conditions. Thus, 40 Pa marks the largest value of wall
shear stress used in this study. It is anticipated that differences between flow types will be visible in
simulations below the stresses in which the cells begin to hemolyze.
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FIG. 3. Portions of the trajectory of a few selected particle paths as viewed from the streamwise (left) and
wall-normal (right) directions.

B. Lagrangian particle tracking

The channel flow simulations are followed by Lagrangian particle tracking to obtain the flow
conditions experienced by the cells [corresponding to Fig. 1(b)]. In the below simulations, 200
massless tracers are randomly seeded in the DNS channel flow and tracked, using the same time
step as the fluid simulation. The particles are located each time step using an algorithm described
in a previous work [32]. The velocity gradient at the location of the tracers is recorded, and this is
used as an input for the cell-resolved simulations. Velocity gradient information is outputted every
10 time steps of the DNSs. In total, the velocity gradient is recorded for approximately 500 000 and
50 000 wall unit time at Reτ = 180 and 360, respectively, although this entire range is not used for
the cell-resolved simulations. Figure 3 shows an example of the portion of a few particle trajectories.

By conservation of mass, the tracers should remain uniformly distributed throughout the flow
over time. Note that, although RBCs develop the well-known cell-free layer in capillaries [33], this
effect is not relevant in the current framework, as the intended geometries of this framework are
much larger than where this effect is noticeable. Indeed, to even make the assumption of unbounded
flow around the cells, the flow geometry must be many times larger than the cells. To ensure this
uniform distribution, 10 000 particle tracers were tracked over multiple time steps for the Reτ = 180
simulation, and their distance from the wall was recorded. Note that this number of particle tracers
was only used to ensure there was no numerically induced nonuniformity in the distribution of the
particles, and it did not represent the number of cells in the cell-resolved simulation. The channel
was split into 50 evenly spaced bins, and the average number of particles in each bin, normalized
by the total number of particles divided by the total number of bins, is reported in Fig. 4. Under this

FIG. 4. The average distribution of particles as a function of y+ for the Re = 180 case. The channel is split
into 50 equally spaced bins, and each marker represents the number of particles in each bin normalized by the
mean number of particles per bin.
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FIG. 5. A probability density function of the velocity gradient inputs into the boundary integral solver,
normalized by the wall shear stress. The turbulent PDFs mirror the turbulent viscous stress, which is largest
at the wall, instead of the Reynolds stress. The mean value of γ̇ + in the turbulent PDFs is much less than that
in the laminar PDF due to this concentration near the wall. The inset shows the same plots in a log-log scale,
where velocity gradients above a value of γ̇ + = 1 are much less frequent.

normalization, all bins would have a value of 1 under a perfectly normal distribution. As massless
particles, one would expect the distribution of these particles to remain uniform over time. Indeed,
the distribution does remain fairly uniform. This is especially true when compared against scenarios
in which the particles are expected to migrate towards the wall, such as a phenomenon seen in
inertial particles in turbulent channel flow where the particles migrate towards the wall, known as
turbophoresis [29,32,34].

Figure 5 shows a measure of the inputs into the RBC simulations gathered from this particle
tracking: a probability density function (PDF) of the norm of the velocity gradient tensor, given
as γ̇ = √∇iu j∇iu j , normalized by the characteristic strain rate in the flow, τw/μ, such that γ̇ + =
γ̇ μ/τw. Repeated indices i and j in this equation imply summation. γ̇ was selected as the parameter
to characterize the flow because it provided a general measure of the flow strength. However, other
parameters such as shear or elongational magnitude could provide a more direct relationship to the
cells’ deformation, and the effect of these flow types is examined further in Sec. III. These PDFs are
provided for the three cases under investigation: two turbulent cases at friction Reynolds numbers
Reτ = 180 and 360, and the laminar case. These PDFs are constructed by sampling the value of γ̇ +
at all particles across the duration of the simulation. These PDFs are universal across all values of
the wall shear stress. One interesting feature of these PDFs is the fact that the norm of these velocity
gradients is concentrated at significantly smaller values in the turbulent cases, with this being more
pronounced in the higher Reynolds number case. This is because these values are dominated by the
viscous stress, as they are collected via a temporal ensemble average where the time-average value
of ∇iu j diminishes quickly outside the viscous sublayer. Some variation is also introduced via the
Reynolds stress. Viewed another way, at a higher Reynolds number, the relative average magnitude
of the velocity gradient at the wall increases compared to other regions of the flow. At the same
time, the size of this near-wall region decreases, meaning fewer cells are exposed to these high-shear
regions over long periods of time, resulting in the lower frequency of high shear at higher Reynolds
number. Additionally, a log-log scale has been provided, which makes the tails of the distribution
more apparent. While there are some locations where the magnitude of the shear rate is greater than
at the wall in the turbulent case, the frequency drops off particularly rapidly above γ̇ + = 1. Running
a simulation with a channel that is twice as long produced almost no difference in this distribution
of γ̇ +.
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C. Cell-resolved simulations

Similar to previous works by the authors [21,35], the RBCs are considered to be in unbounded
flow. The flow produced by only a velocity gradient along the RBC’s trajectory from the macroscale
flow is imposed as the far-field velocity, or equivalently the flow field that would be present in the
absence of the cell, to simulate the RBC deformation. This step is completed using a boundary
integral method coupled to a structural solver [corresponding to Fig. 1(c)]. Because the time steps
did not line up between the recorded velocity gradient files and cell-resolved simulations, quadratic
interpolation was used when obtaining the velocity gradient for the RBC simulations. Although the
solver is capable of handling cell-cell interactions and periodic boundary conditions, the simulations
are run for isolated cells in an unbounded domain, as a previous work has shown that the first-order
effects of cell-cell interactions in shear-dominated flows can be captured by properly adjusting the
fluid viscosity to reflect the suspended RBC phase [35]. The results of this work have shown that, as
long as many potential orientations of the RBC are simulated and averaged over, and the viscosity
is taken to be the effective viscosity of the fluid, these single-cell simulations well-approximate
the deformation of RBCs in multiple-cell, periodic simulations [35]. As such, when seeding the
RBCs into the flow, the orientation is taken to be random with respect to the shearing direction. The
hematocrit of the experiments of Kameneva et al. was 24%, corresponding well to the simulations
in this upcoming work [35]. This process provides a well-resolved picture of the RBCs’ response to
the flow, while also providing a complete history of the cells’ deformation, which could be useful
for processes such as pore formation, leakage, and full-scale rupture.

The RBC solver is described in a previous work, with details deferred to that paper [21]. In brief,
the solver represents the RBC membrane as a two-dimensional continuum in three-dimensional
space, an assumption made due to the thinness of the RBC membrane relative to its other char-
acteristic lengths. The commonly used Skalak constitutive model [36] is used to model the cell’s
resistance to shear and dilatation, in combination with the Helfrich model [37] to represent the cell’s
resistance to bending. The cell is prestressed, with an oblate spheroidal unstressed state for shear
and dilatation, and the biconcave shape of the cell is obtained via a deflation process [21]. This,
along with a low-Reynolds-number assumption in the direct neighborhood of the cell, facilitates the
use of a boundary integral method to solve for the motion of the RBC, given internal membrane
stresses and the surrounding fluid velocity. This method is relatively inexpensive, since only the
motion of the RBC membrane needs to be resolved, and not that of the surrounding fluid. The shape
of the RBC is represented using spherical harmonic basis functions, which allow fast and accurate
evaluation of some of the integrals required in the boundary integral method. Validations of this
method have been performed for spherical droplets in shear flow and optical tweezer experiments,
and it has shown good qualitative agreement with other RBC simulations [21,35].

Simulations are run at a spherical harmonic order of p = 12. The RBC simulations are run using
a time step equal to �t+ = 0.01. To remain consistent across cases, the wall shear stress is used to
nondimensionalize the problem, which enters into the Capillary number, a measure of the relative
strength of the flow to the cell’s resistance to deformation, as Ca = τwa/G. Here, a = 2.82 µm is
the characteristic radius of the cell, defined as the radius of a sphere with equivalent volume, and
G = 2.5 µN/m is the cell’s shear elastic modulus.

The viscosity ratio used for this work is λ = μin/μout = 1, where μin is the interior cytoplasm
viscosity and μout is the effective viscosity of the surrounding medium. Commonly, a cytoplasm
viscosity μin of approximately 6 cP is used for the interior cytoplasm viscosity, although there is
little experimental work and some uncertainty regarding this value [7,38–40]. The effective viscosity
of the solution given in experiments by Kameneva et al. is 6.3 ± 0.1 cP for the laminar case and
2.0 ± 0.1 cP for the turbulent case. Thus, this value of the viscosity ratio corresponds approximately
to the laminar case in the experiments. Note that since the turbulent experimental cases utilized
a lower effective viscosity of the surrounding fluid, this would correspond to a greater value of
the viscosity ratio. However, the decision to use the same viscosity ratio for both the laminar and
turbulent cases was made deliberately to facilitate a more direct comparison between the results and
eliminate this parameter as a possible confounding variable.
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TABLE II. The ranges of nondimensional parameters used in the cell-resolved simulations. The depicted
range corresponds to varying the wall shear stress from 10 to 40 Pa.

Reτ = 360 Reτ = 180 Laminar

Ca = τwa/G 11.3–45.1 11.3–45.1 11.3–45.1
Caη = μa/Gtη 2.51–10.0 3.37–13.5 5.77–23.1
C = Ed/G 451.2–1810 451.2–1810 451.2–1810
λ = μin/μout 1 1 1

Table II shows the ranges of the nondimensional parameters used for the RBC simulations, along
with their definitions. Also included in this table is Caη = μa/Gtη, the Capillary number defined
with respect to the Kolmogorov timescale, which provides a second measure of the RBCs’ properties
relative to those of the flow. For turbulent cases, this value can be derived directly from Ca using
t+
η Caη = Ca. This value can also be computed for the laminar case using Caη = Ca

√
μUb/τwh.

Given that our calculations are performed using nondimensional numbers, one has to define a
specific case before assigning dimensions to flow variables. For this purpose, let us consider a left
ventricular assist device with a cannula diameter of 15 mm that generates a flow with bulk velocity
of 1 m/s [41]. Taking the viscosity of blood to be 4 × 10−3 Pa s, then ReB based on the cannula’s
radius will be 1875, which is roughly similar to that of the Reτ = 180 case that was considered in
this study. Assuming a one-to-one correspondence between two flows, the Kolmogorov and viscous
sublayer length scales will be 77 and 42 µm, respectively. Those are roughly five to ten times larger
than the diameter of a RBC.

Note that there is some disagreement about the value of the RBC shear elastic modulus, which is
an essential component used to nondimensionalize this problem. For example, the 2014 review by
Tomaiuolo, which compiled geometric and mechanical properties of healthy RBCs, listed a range
of the shear elastic modulus of 5.5 ± 3.3 µN/m [40]. Selection of the value of this parameter can
thus have a significant impact on the interpretation of the results. For example, Ca = 10 could
correspond to a value of τw = 7.80 − 31.21 Pa. The current value of 2.5 µN/m was selected based
on the analysis of Dimitrakopoulos on the Skalak constitutive model used in this work [42].
Dimitrakopoulos suggests that differences in the measurements of this parameter can be explained
by differences in the particular constitutive model being used to fit the experimental measurements
(for example, fitting measurements with a neo-Hookean constitutive model might not yield the same
value of G as measurements fit with the Skalak model). This value is on the lower end of the above
range, however. Other works have used a larger value of this parameter and obtained results that
match well with experiments and computational benchmarks [38,43,44].

The main parameter of interest to be reported below in the Results section is max(λ1/λ2), where
λ1,2 are the principal stretches on the surface of the cell, thus providing a measure of local stretch.
Here, the max is taken over the entire surface of an individual cell at a given point in time. This
parameter is represented by

S ≡ max(λ1/λ2). (1)

Additionally, the parameter max(λ1λ2) is investigated, representing the maximum local area di-
latation ratio on the surface of the cell. The maximum of these parameters is of particular interest
because it is assumed that hemolytic events will occur at these locations.

It should be noted that the values of max(λ1λ2) are likely elevated compared to what would be
observed in reality. This is because the value of the dilatation ratio C used in these simulations is
smaller than in actual RBCs. C is the ratio of the dilatation modulus Ed to the shear elastic modulus
G. This parameter represents the cell’s resistance to local area changes. In reality, RBCs strongly re-
sist changes in area, but the large value of this parameter causes the underlying equations to become
particularly stiff. As a result, a lower value of this parameter is typically used in computational
studies [21,38,39,45]. However, it has been shown that using a smaller value of this parameter,
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FIG. 6. The value of γ + as a function of time as experienced by a single cell, as well as the deformation of
the cell at selected points (left), and the values of S and A of this cell (right).

even decreasing its value by more than two orders of magnitude, produces well-converged behavior
of large-scale RBC dynamics that match well with some experimental observations [21,39,43,46].
Thus, it is assumed that comparisons of max(λ1λ2) will be valid across simulations at the same
wall shear stress. This value is also salient, as it is often used as a parameter of interest in cell-scale
hemolysis [47,48]. Additionally, as the wall shear stress is increased, the stiffness of the problem
becomes less severe. This is because the relevant timescales of the flow approach the timescale
associated with the area dilatation. Thus, the area dilatation ratio is scaled linearly with the Capillary
number. At a Capillary number of Ca = 1, a value of C = 40 is used. This is comparable to
previous works [38,39] when accounting for the nondimensionalization of this parameter. At the
higher end of the values of Ca used, the value of C begins to approach, but does not yet reach, the
physiological value of approximately 105. A second practical consequence of this scaling, however,
is that max(λ1λ2) also displays relatively less change as the wall shear stress is increased than
would be expected in reality, as the resistance to area change is higher in flows with greater wall
shear stress. To make some accommodation for this, the value

A ≡ C

C0
[max(λ1λ2) − 1] (2)

is reported below, where C0 = 105 is the physiological value of the dilatation ratio, and C is the
value actually used in the simulations.

In summary, simulations are performed at three Reynolds numbers (laminar, and turbulence
at Reτ = 180 and 360) and four wall shear stresses (τw = 10, 20, 30, and 40 Pa) for a total of
12 flow conditions experienced by the RBCs. In what follows, we describe the outcome of these
calculations.

III. RESULTS

As a representative example of the conditions experienced by a typical cell, Fig. 6 displays some
results for a single cell as it progresses along its trajectory. The figure displays the value of γ + as
a function of time and the cell deformation at selected points in time, as well as the values of S
and A.

Our computations are performed over time for many cells. To process the results, multiple types
of averages are utilized. First, an average can be performed across all cells, denoted 〈•〉c. This
operation produces a time-varying average of the parameters of interest. Additionally, an average
across a single cell over all time, denoted 〈•〉t , could be performed, which would produce a single
value for each cell. This operation is not used explicitly in these results. Finally, an average over all
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FIG. 7. A sample history of the deformation parameters S (left column) and A (right column) on a collection
of cells, superimposed with the time-varying ensemble average of these individual cells 〈S〉c and 〈A〉c, at a wall
shear stress of τw = 30 Pa. Results are plotted for the Reτ = 360 (top row), Reτ = 180 (middle row), and
laminar cases (bottom row).

cells and all time can be performed, denoted simply 〈•〉 ≡ 〈〈•〉c〉t , which produces a single value
for the entire simulation.

Figure 7 displays samples of the history of S and A for all cells for the three cases de-
scribed above: Reτ = 360, Reτ = 180, and the laminar case. These simulations are run at a wall
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FIG. 8. The time-varying ensemble average 〈S〉c (a) and 〈A〉c (b) for the results shown in Fig. 7 at τw =
30 Pa displayed on a single figure.

shear stress of τw = 30 Pa. The time-varying ensemble average 〈•〉c is superimposed on these
plots.

Figure 8 displays the time-varying ensemble averages in Fig. 7 on the same figure.
The above figures display a trend that is present across all values of the wall shear stress: The

average values of the parameters S and A match at least somewhat well at the same value of τw across
flow types, with some variation. However, the defining feature of the turbulent simulations relative
to the laminar simulations is the greater content of cells that have particularly large deformation.
To view this phenomenon from a more quantitative perspective, Fig. 9 displays PDFs for S and A.
These PDFs are constructed using the sum total of all individual time points from the individual
cells. Since the RBCs enter the simulation undeformed from their biconcave resting shape, these
PDFs are constructed based on the data after t+ > 30 to ensure they are independent of the initial
conditions. To verify this criterion, a second PDF was constructed using half the window size to
confirm that the features of the PDF did not change significantly.

In Fig. 8(b), 〈A〉c appears to decrease with time somewhat for the Reτ = 180 case. To ensure
that this trend is temporary, we continued this specific simulation up to t+ = 400. This calculation
shows that 〈A〉c plateaus after the depicted range in Fig. 8(b), thus reaching a statistically stationary
condition. Additionally, to ensure the reported results are not affected by a short integration time, we
compared PDFs that were constructed over a time range of 30 < t+ < 100 against those constructed
for 65 < t+ < 100. This comparison, and also an additional comparison made against data extracted
from the extended simulation, showed that all PDFs are very similar to one another, particularly in
the tails. Therefore, the integration period has a negligible effect on the results reported below.

To obtain a measure of the RBC relaxation period to the background flow state, we employed 〈S〉c

and 〈A〉c to construct a timescale for the RBCs. More specifically, a least-squares fit was performed
with 〈•〉c and the function

f (t+; τ+) = (1 − e−t+/τ+
)(a∞ − a0) + a0, (3)

where τ+ is the associated timescale nondimensionalized by the wall timescale τw/μ, a0 is the
initial value of the parameter, and a∞ is the converged value of the parameter. This function is fitted
with both A and S.

The values reported in Table III have a few implications.
(i) They provide additional support for the fact that the simulations have been integrated for a

sufficiently long time to allow the RBCs to adjust to changes in the flow. That is so since τ+ < 10
in all cases, whereas computations are continued to t+ = 100.

073102-12



INVESTIGATING THE EFFECT OF TURBULENCE ON …

FIG. 9. PDFs of the parameters S (left column) and A (right column) as a function of wall shear stress.
Results are plotted for the Reτ = 360 (top row), Reτ = 180 (middle row), and laminar cases (bottom row).

(ii) τ+ may serve as a relevant timescale for normalization of the residence time, which, in
conjunction with shear rate, is often taken as an input parameter to Eulerian hemolysis algorithms.
The fact that τ+ = O(1) for all cases studied here suggests that the dissipation (or Kolmogorov)
timescale may be an appropriate choice for this purpose.

(iii) τ+ is generally shorter for the turbulent than the laminar case. This is particularly true for
A where τ+ is two to three times shorter in turbulent than laminar flow. One potential explanation
for this gap can be obtained by considering a damped vibrating system, which settles quicker when
subjected to an oscillatory external force than a uniform force. In the present case, turbulent flow

073102-13



GRANT RYDQUIST AND MAHDI ESMAILY

TABLE III. The timescale τ+ associated with the RBCs at all values of τw for the three Reynolds numbers
of interest and the shear S and area dilatation A parameters. Results are obtained from a least-squares fit to a
curve expressed by Eq. (3).

τ+

Reτ = 180 Reτ = 360 Laminar

τw (Pa) S A S A S A

10 1.9 0.55 2.6 0.42 2.9 1.2
20 2.1 0.93 3.0 0.88 3.3 2.4
30 2.3 1.1 3.3 1.1 3.5 2.6
40 2.6 1.2 3.6 1.2 3.8 2.6

subjects RBCs to a time-varying far-field boundary condition, thus permitting RBCs to come to an
equilibrium state faster than if they were to be subjected to a uniform laminar flow.

(iv) A direct relationship between τ+ and τw is observed. This direct dependence is explained
by the fact that increasing τw reduces the flow timescale, which in turn increases the Capillary
number, which can be conceptualized as the ratio of the membrane response time to a characteristic
flow time. At lower values of τw, i.e., between τw = 10 and 20 Pa, the membrane response time is
almost a constant, hence producing a direct relationship between τ+ and τw. At higher values of
τw, the membrane strain hardens. This reduces the timescale associated with the membrane, thereby
reducing the growth rate of τ+ with τw.

Figure 9 displays a series of probability density functions for S and A for each value of Reynolds
number as a function of the wall shear stress. We observe a shift rightward for each case as the
wall shear stress is increased. The increase in content of high deformation in the turbulent cases is
present in the relatively long tails of these cases. Due to the relatively large peaks at lower τw, the
PDFs of A are scaled to be approximately the same height across values of τw in order to compare
these distributions at different values of τw and prevent the front distributions from obscuring those
in the back.

To compare these values quantitatively, Table IV lists the percentages of the deformation values
in Fig. 9 for the turbulent cases that are greater than the absolute maximum values in the corre-
sponding laminar case.

Finally, Fig. 10 displays several features of S and A as a function of wall shear stress. This figure
displays for these parameters the ensemble average across all time and RBCs, the ensemble average
of the variance of the individual cells, and the absolute maximum value reached across all cells.
The variance for a single cell is given as the average deviation from the mean, squared, described

TABLE IV. The percentage of deformation values in the turbulent cases that are greater than the absolute
maximum of the corresponding laminar case, calculated from the above PDFs.

% of ensembles above absolute maximum laminar value

Reτ = 180 Reτ = 360

τw (Pa) S A S A

10 8.51 11.5 1.83 3.34
20 6.49 13.6 1.54 4.18
30 6.48 12.7 1.57 4.01
40 5.25 11.6 1.15 3.76
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FIG. 10. Several features of S (left column) and A (right column) as a function of wall shear stress. The
rows display, respectively, the ensemble average across all cells and time, their variance, and their absolute
maximum value across all ensembles. Calculations are performed based on the data acquired at t+ > 30.

as 〈•′ 2〉t . Note that the mean here is across all time and cells, such that •′ = • − 〈•〉. As before,
calculations are only performed at t+ > 30.

Empirical relationships for hemolysis typically rely on a bulk flow quantity (e.g., shear rate)
to model hemolysis. Next, we investigate what will be relevant parameters from the flow that
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TABLE V. The ranges of Pearson correlation coefficients between RBC deformation and bulk flow param-
eters across values of τw .

Pearson correlation coefficient R

Reτ = 180 Reτ = 360

S A S A

S +1.00 ± 0.00 +0.92 ± 0.02 +1.00 ± 0.00 +0.90 ± 0.02
A +0.92 ± 0.02 +1.00 ± 0.00 +0.90 ± 0.02 +1.00 ± 0.00
γ̇ + +0.87 ± 0.02 +0.97 ± 0.01 +0.82 ± 0.02 +0.95 ± 0.01
Q −0.24 ± 0.01 −0.27 ± 0.01 −0.24 ± 0.02 −0.26 ± 0.01
‖E‖ +0.85 ± 0.02 +0.95 ± 0.01 +0.80 ± 0.02 +0.93 ± 0.02
‖�‖ +0.88 ± 0.02 +0.98 ± 0.01 +0.83 ± 0.01 +0.97 ± 0.02

determine S and A in turbulence. For this purpose, the Pearson correlation coefficient is calculated
between S and A and multiple features of the velocity gradient in what follows. In practice, bulk
flow parameters are often extracted from flow solvers that do not resolve small dissipation scales in
the flow. These RANS or LES-type solvers at best produce quantities that are averaged over time
and space, thus filtering out the fine scale from the solution. To imitate this filtering process in our
data, which contain those fine scales present in the DNS data, we subaveraged quantities over a
period of 15 in-wall time units of μ/τw before treating them as independent points.

The resulting correlation coefficients are reported in Table V. For bulk flow parameters we
considered γ̇ + and the Q-criterion Q = 0.5(||�||2 − ||E||2). Here, Ei j = 0.5(∇ jui + ∇iu j ) and
�i j = 0.5(∇ jui − ∇iu j ) are the symmetric and antisymmetric components of the velocity gradient
tensor. Correlation coefficients are also calculated against ‖E‖ and ‖�‖. Note that γ̇ + = ‖∇u‖
and ‖E‖2 + ‖�‖2 = ‖∇u‖2. These calculations are performed at different values of τw. The range
displayed in Table V is selected to encompass the correlation coefficients at all values of τw.

The results shown in Table V indicate the change in τw has a minimal effect on R since the range
is less than ±0.02 for all cases. A strong correlation between RBC deformation with γ̇ +, ‖E‖, and
‖�‖ is also observed. The results also indicate a poor correlation of S and A with Q. We must note
that the majority of ensembles fall near Q ≈ 0, including large deformation incidents, suggesting
that the regions where the the most intense bursts in velocity gradient occur are primarily shear flow.

The laminar flow considered here exposes RBCs to pure shear where γ̇ + �= 0 and Q = 0. To
better understand the effect of incidents with Q �= 0 on cell deformation, we must rely on turbulence
data. Since turbulence data are also dominated by shear incidents, doing so requires adjusting S
and A so that the effects of γ̇ + are removed from S and A. This way, we can remove the first-order
effects of γ̇ + from the S or A signals so that the secondary effect of Q can be teased out. To establish
the first-order baseline, we can rely on the laminar simulations data where Q = 0, allowing us to
measure the effect of γ̇ + �= 0 on S and A. The full process is as follows. First, a linear fit with the
laminar simulations was constructed for S and A with γ̇ +, such that, for A, fA(γ̇ +) = c1γ̇

+ + c0.
For A, this range was taken over the entire range of γ̇ + available for the laminar flow. For S, it was
found that a good fit was obtained for fS (γ̇ +) at approximately γ̇ + < 0.2, with an average value of
R = 0.91. Thus, only this range was used for constructing the linear fit. Second, the adjusted value
A − fA(γ̇ +) is computed. This adjusted value represents the new signal, which “excludes” the effect
of γ̇ +. Third, the correlation between this adjusted A − fA(γ̇ +) and Q is computed. The result of
these calculations is displayed in Fig. 11, where the individual ensembles are shown as a scatter
plot. This plot is displayed for τw = 30 Pa. However, the correlation coefficients are displayed for
the range of τw. In this plot, the positive and negative values are displayed in separate colors, as
these values correspond to incidents of rotational and extensional flows, respectively.
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FIG. 11. Scatter plots of the adjusted values of A and S as a function of Q. Plots are for Reτ = 360 (top)
and Reτ = 180 (bottom). The linear fit is superimposed on the data, with the constants of this line in the upper
right. The Pearson correlation coefficient R here refers to the range over all values of τw tested. Note that
positive and negative Q are differentiated here, as these values correspond to regions in the flow dominated by
rotation and extension, respectively.

A few observations can be made based on the results shown in Fig. 11. First, in all cases, the
adjustment made above improved the correlation against Q. This is particularly true in the case of
A where R improves from approximately −0.26 to around −0.6. Second, S and A are negatively
correlated against Q. That is true regardless of whether those parameters are adjusted or not. Third,
the adjusted S has a worse correlation than the adjusted A. This is despite the fact that the ensembles
associated with high shear (γ̇ + > 0.2) were excluded for S. This worse correlation, which also
appears in Table V, can be explained by more complex behavior of S relative to A. This complex
behavior of S is not exclusive to turbulence and also appears in the laminar case under consideration,
where it produced nonlinear behavior versus γ̇ + that prompted us to exclude data at γ̇ + > 0.2 in
performing this secondary analysis.

IV. DISCUSSION

While Eulerian hemolysis algorithms typically take both the residence time and fluid stress as
predictors of hemolysis severity [1,49], many cell-resolved hemolysis algorithms are formulated
in terms of the level of strain experienced by the cell [7,47,48], where cells do not experience
damage until they reach a certain strain. Accumulated damage is typically a time-dependent function
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of the strain once damage begins to occur, however. We quantified strain experienced by the cell
through S and A, the PDFs of which were shown in Fig. 9. The peaks of these PDFs occur at fairly
similar values of S and A, with the laminar cases typically peaking at larger strain than the turbulent
cases. However, one recurrent feature of the turbulent cases relative to the laminar case is the fact
that the turbulent cases have a longer tail that extends into higher deformation values, whereas the
laminar case has a more concentrated PDF. Under many models of cell-resolved hemolysis, the
RBCs will reach the threshold strain and begin to undergo damage in the turbulent cases faster than
in the laminar case. In fact, if this threshold were, for example, at the maximum strain experienced
in the laminar case, damage would be occurring in 14% of the cells on average in the turbulent
case when examining the worst-case scenario of Table IV. These differences are partially described
by the low variance in the laminar case relative to the turbulent cases, as seen in Figs. 10(c) and
10(d). While the mean values of the parameters in the turbulent case are generally less than or
comparable to the laminar case, the variances are higher in the turbulent cases, leading to periods
of elevated deformation and greater maximum stretch as seen in Figs. 10(e) and 10(f). As described
above, these periods of relatively large strain are likely to have an outsized effect on RBC damage
relative to the periods of lower, more constant strain that the cells undergo in the laminar flow
case.

One interesting feature of the turbulent cases that persists across values of τw is the fact that
the Reτ = 180 case consistently produces larger strains than the Reτ = 360 case, in terms of both
peak strain and tail thickness. This is also shown in Fig. 10, in which the Reτ = 180 case causes
more deformation than the Reτ = 360 case across all values of τw and in all measures. This is
somewhat counterintuitive: one might expect that with increasing turbulence intensity, there would
be increasing damage. While the relative spikes in velocity gradient would be expected to be higher
in the case where the turbulence intensity is higher, in order to obtain the same values of τw, other
parameters would need to be adjusted in an experiment that could potentially impede damage to
the RBC. For example, keeping other variables such as channel width and bulk channel velocity
constant, this higher turbulence intensity could be achieved by lowering the viscosity, which would
cause a resultant drop in shear stress experienced by the cells in the fluid. So while the turbulence
intensity will cause larger spikes in the magnitude of the velocity gradient, this relationship has a
less straightforward translation to the strain experienced by the RBC. Experimentally, increasing the
Reynolds number is often associated with an increase in flow rate, and thus an increase in wall shear
stress; however, the fact that the wall shear stress is held constant between simulations at different
Reynolds numbers produces some slightly counterintuitive results. What appears to be important
when comparing laminar to turbulent flow, however, is the fact that the latter contains rare bursts
of high-velocity gradient that cause relatively large strains in the cells that are absent in the former.
This relationship is present in Fig. 5, in which the average cell experiences a smaller normalized
value of the velocity gradient at higher Reynolds flow on average.

As has been mentioned previously [18], the wall shear stress may not necessarily provide a direct
analogy between turbulent and laminar flows. As seen in Fig. 5, the average value of the stress is
significantly smaller in the case of the turbulent flows than the laminar flow, and this average value
decreases with increasing Reτ . However, one would expect this difference to result in an increase in
deformation in the laminar case relative to the turbulent case, all else being equal. Despite this, the
turbulent simulations still produce more deformation than the laminar simulations when considering
maximum deformation.

Also of note in the results is the fact that the cells undergo relatively smaller changes as the
wall shear stress is increased, particularly for S. Doubling the wall shear stress did not double RBC
deformation. This is likely a result of the strain-hardening nature of RBCs, in which the cells’
resistance to deformation increases the more they are deformed. As a result, a small increase in
strain causes a large increase in stress at large deformation, and a small increase in stress causes a
large increase in strain at low deformation.

The large values of the correlation coefficient with respect to γ̇ +, particularly for A, suggest that
the largest deformation in the flows studied here occurs in strong shear. This observation justifies the
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use of γ̇ + as a primary parameter in hemolysis models that rely on bulk flow parameters for similar
types of flows to those studied here. Additionally, a moderate correlation emerged between cell
deformation metrics and Q after excluding the effects of γ̇ +. This observation suggests that taking
in Q as an independent input in those hemolysis models can improve their predictability of cell
deformation in turbulent flows. That is particularly true if such models rely on A rather than S for its
better secondary correlation that applied to a broader range of conditions. Furthermore, the fact that
the secondary correlation was negative suggests that a deviation from shear flow toward extensional
flow will cause more deformation than a deviation toward rotational flow. We reiterate that Q is
of secondary importance in modeling A or S in turbulence as most of the large deformation events
here are associated with shear events in the turbulent simulations. Given that in the laminar case
considered here Q = 0, the differences between the laminar and turbulent cases can be attributed to
the spikes in velocity gradient and also the secondary effects discussed above.

A. Future work

Multiple facets of turbulent interactions with RBCs still remain to be studied. For example, the
nature of channel flow (and indeed the pipe flow studied in experiments by Kameneva et al. [13])
means that the cells in the laminar flow are locally exposed only to a constant shear flow. This could
potentially be responsible for some differences between the laminar and turbulent simulations, as
the RBCs in the turbulent simulations are exposed to a range of different velocity fields. It would
be valuable to expose the cells to different stress configurations in the laminar flow case, e.g.,
extensional flow, and compare those results to analogous turbulent cases.

Additionally, simulations of RBCs under large strain rates for extended periods of time are
necessary to study hemolysis from a cell-resolved perspective. Much of the study of RBCs using
mesoscopic methods has centered on Capillary numbers too small to create cell damage. Thus,
extending simulations to higher values of shear rate is a next step in the study of cell-resolved
hemolysis.

Finally, a model linking these deformation parameters to RBC damage should be implemented.
While studies such as this one allow comparison of RBC deformation in a relative sense between
different cases (e.g., comparison of similar flows at equivalent or slightly different wall shear stress),
implementing a damage model will allow geometries to be evaluated in an absolute sense in terms
of how much damage they actually produce. Models of RBC damage do exist, and they typically
model leakage of hemoglobin through formed pores to obtain an index of hemolysis [5,7,50]. Such
models will likely need to be empirical, but the framework used in the current work for obtaining
data on the deformation of a large number of cells is invaluable for indirect measurement of cell
deformation from experiments in complex flow conditions. These models will also likely require
time-dependent data, as hemolysis can depend on the exposure time of the cells to certain levels
of stress. While not necessarily presented in this work, as PDFs such as Fig. 9 do not contain
time-dependent behavior, the framework presented here tracks RBCs over their trajectory, and thus
provides a complete temporal picture of the RBC as it moves through the flow, making it a natural
choice for calculating RBC damage.

V. CONCLUSIONS

We investigated the effect that turbulence had on RBCs traversing a channel flow. This com-
parison was facilitated using a boundary integral solver, which took in the Lagrangian velocity
gradient from the channel flow simulation as an input. Inspired by the experiments by Kameneva
et al. [13], who showed that turbulence can cause an increase in hemolysis when compared to
laminar flows at the same wall shear stress, laminar and turbulent simulations were compared at
equivalent wall shear stress. Additionally, the turbulent simulations were run at two values of the
friction Reynolds number, Reτ = 180 and 360. Although simulations were run at lower values of
the wall shear stress than the experiments, the experiments were corroborated by the simulations
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in some key ways. First, the cells experienced greater maximum deformation in the turbulent than
in the laminar simulations. On average, however, the red blood cells did not deform as much as
in the laminar flow. On the other hand, the PDFs of the deformation in the turbulent simulations
still had a wider tail than the laminar simulation, indicating a greater frequency of extreme events.
Interestingly, the Reτ = 360 simulations did not produce more deformation than the Reτ = 180
simulations, indicating that turbulence intensity does not equate to greater cell damage when all
other parameters are held equal. Filtered results extracted from turbulence cases showed that while
γ̇ + is the primary parameter that correlates well with the cell deformation in this type of flow,
one must also consider the Q-criterion as a secondary parameter to build a refined model of cell
deformation from the bulk flow parameters in turbulence.
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