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Biofilament-motor protein complexes are ubiquitous in biology and drive the transport
of cargo vital for many fundamental life processes at the cellular level. As they move,
motor proteins exert compressive forces on the filaments to which they are attached.
If the filament is clamped or tethered in some way, this force leads to buckling and a
subsequent range of dynamics. The follower force model, in which a single compressive
force is imposed at the filament tip, is a simple filament model that is becoming widely
used to describe an elastic filament, such as a microtubule, compressed by a motor
protein. Depending on the force value, one can observe different states including whirling,
beating, and writhing, though the bifurcations giving rise to these states are not completely
understood. In this paper, we utilize techniques from computational dynamical systems to
determine and characterize these bifurcations. We track emerging time-periodic branches
and identify quasiperiodic states. We investigate the effect of filament slenderness on the
bifurcations and, in doing so, present a comprehensive overview of the dynamics which
emerge in the follower force model.

DOI: 10.1103/PhysRevFluids.9.073101

I. INTRODUCTION

Biopolymer filament-motor protein complexes, such as actin-myosin, microtubule (MT)-dynein,
and MT-kinesin, are essential for driving transport at the cellular level [1,2]. These systems have
importance in cell division [3–5] and intracellular transport such as axoplasmic transport in neurons
[6–8] and can, in the case of MT-dynein, collectively form complex superstructures such as the
axoneme in cilia [9,10]. Cilia control fluid flow at the microscale, for instance, to allow for cellular
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propulsion [11–14], or can coordinate to pump fluids such as cerebrospinal fluid around the brain
[15–19] and mucus in our airways [20,21].

Molecular motors are activated by ATP, which is hydrolized to provide the motor proteins with
sufficient energy to carry cargo along a filament [22,23]. As these motor proteins carry cargo, they
experience a drag force from the surrounding fluid. By Newton’s third law, they exert a compressive
force, equal in magnitude, back on the filament. Experimentally, this force has been found to be in
the range 1–10 pN [22,24,25]. In an unbounded domain, this compressive force would cause the
filament to slide in the direction of the force. However, if the motion of the filament is restricted in
some way, for instance, if the filament is attached to a cellular body, or if it reaches an obstacle,
this forcing can lead to filament buckling. Such buckling has been observed in motility assays
where filaments (actin or MTs) are driven by ATP-fueld motor proteins (myosin or kinesin/dynein
respectively) fixed to rigid surfaces [26–32]. Undisturbed, the filaments are observed to glide along
the surface. However, in the presence of an obstacle or surface defect, such as a defective motor
protein, part of the filament will become pinned or clamped into place. Then continued forcing
from the motors will cause the filament to buckle.

In another context, it has been observed that collections of motor-driven MTs can coordinate their
motions to generate fluid flows in a process called cytoplasmic streaming [33–35]. An example of
this occurs within Drosophila oocytes [36–38], which are lined internally with kinesin-driven MTs.
Kinesin motors induce compressive forces along each MT, which in turn causes each MT to buckle.
The dynamics of neighboring MTs are coupled through the flow within the cell, which allows the
filaments to coordinate their motion to generate an overall steady state, in which each MT is bent
in the same direction. This directs the fluid around the cell, hence allowing for the transportation of
important organelles and molecules.

The mathematical models of motor protein-filament complexes usually treat the MT as an elastic
filament driven by internal active stresses that represent the forces generated by the motor proteins.
A simple incarnation of such a model considers a single "follower force" at the free end of a filament
that is clamped at its base to a rigid surface [39–42]. The follower force is a compressive force
directed along the tangent to the filament centerline and thus changes direction if the filament bends
[41–43]. This model neglects the opposite force the motor protein exerts on the surrounding fluid.
For an initially straight filament, when the magnitude of the follower force exceeds a critical value,
the filament buckles and gives rise to a time-dependent state. If motion is restricted to a plane, planar
beating [41] is observed, whereas if the filament is allowed to move in three dimensions, buckling
gives rise to whirling [42]. At higher values of the follower force, whirling transitions to planar
beating, while for the highest force values, writhing is observed. This basic follower force model
has been extended to distributions of follower forces along the filament length, corresponding to
a continuous array of motor proteins [40,44], as well as the inclusion of motor motion through an
opposite force on the fluid [38,44], or a filament surface velocity [45]. Further extensions of the
model vary the boundary conditions and initial configuration of the filament [46–49], replicating
buckling dynamics observed experimentally in motility assays [46,47]. Collections of MTs have
been modeled using the follower force model, capturing the collective bending of MTs in cytoplas-
mic streaming in Drosophila oocytes [38], and providing a potential mechanism for the onset of
ciliary beating [40,50].

Despite being used to model complex phenomena, a complete understanding of the basic case
of a single filament, clamped at its base to a no-slip planar surface and subject to a follower force
at its tip, is still outstanding. While the different states corresponding to filament whirling, beating,
and writhing have been identified, studies have relied primarily on solving initial value problems
for different follower force values to determine when these states might arise. As a result, the
precise nature of the bifurcations producing these states and a clear understanding of state stability
remain outstanding. While stability of the trivial, straight filament has been studied quantitatively by
assessing the eigenvalues of the linear operator at the bifurcation [41,42], the differences in emergent
states given by the 2D and 3D analyses have yet to be reconciled. The transition between whirling
and beating has not yet been explored, and a characterization of the complex writhing behavior
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observed at higher forcing has not been performed. Furthermore, previous studies have focused on
how the whirling, beating, or writhing vary with the follower force, leaving the dependence of the
emergent state on the filament aspect ratio, a key parameter related to the balance of the viscous and
elastic forces, largely unexplored.

In this paper, we use techniques from computational dynamical systems to examine in detail
the bifurcations that give rise to the beating, whirling, and writhing states, exploring how the
solutions change as both the strength of the follower force and filament aspect ratio are varied. In
Sec. II we present the follower force model and describe the numerical methods we use to compute
filament dynamics. We then perform a series of simulations to ascertain the final state achieved for
different follower force strengths and filament aspect ratios by allowing the filament to evolve from
a straight configuration with a small perturbation. The resulting state space is provided in Sec. III. In
Sec. IV A we describe the dynamical systems approach we use to move beyond solving initial value
problems and determine directly the time-periodic branches corresponding to whirling and beating.
We ascertain state stability along these branches and categorize the bifurcations of the steady, trivial
state, and the time-periodic solutions. Using this approach, we show that buckling of the trivial
state is a double Hopf bifurcation and link planar beating found to emerge in two dimensions to
whirling that emerges in fully 3D dynamics. This is presented in Sec. V. In Sec. VI we explore the
transition between whirling and beating and identify a quasiperiodic state that connects these two
solution branches. Finally, in Sec. VII we study the writhing regime and demonstrate that it can
be decomposed further into a transitional regime, where a menagerie of quasiperiodic, chaotic, and
time-periodic solutions are observed, and a regime where only a quasiperiodic solution arises where
filament motion can be characterized by a whirling base and a beating tip. In performing this study,
we present a thorough overview of the state space in this fundamental model.

II. FOLLOWER FORCE MODEL

A. Model description

We begin by describing the model for a filament clamped to a rigid, no-slip planar surface that
is driven by a follower force at its free end, as depicted in Fig. 1(a). We consider a single filament
of length L and cross-sectional radius a, such that the filament aspect ratio is given by α = L/a.
The filament has bending and twisting moduli KB and KT , respectively, and is surrounded by a
fluid of viscosity η. As a result of the small velocities and length scales associated with filament-
motor protein systems, the Reynolds number is small and the dynamics can be considered in the
overdamped limit. Accordingly, in the follower force model the effects of fluid and filament inertia
are ignored.

To model the filament dynamics, we employ the methods outlined in [51] which we now
summarize. The filament centerline position is denoted by Y (s, t ), which is a function of arc length,
s ∈ [0, L], and time, t ∈ [0,∞) [see Fig. 1(a)]. Residing at each point along the filament centerline
is the orthonormal local basis {t̂ (s, t ), μ̂(s, t ), ν̂(s, t )}, where t̂ (s, t ) is constrained to be the unit
tangent to the filament centerline through

∂Y
∂s

= t̂ . (1)

The force and moment balances along the filament are given by
∂�

∂s
+ f H = 0, (2)

∂M
∂s

+ t̂ × � + τH = 0, (3)

where �(s, t ) and M(s, t ) are the internal forces and moments on the filament cross section, and
f H (s, t ) and τH (s, t ) are the hydrodynamic forces and torques per unit length. The internal forces
enforce the kinematic constraint, (1), and the internal moments are given by the constitutive relation
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(a) (b)

FIG. 1. (a) Diagram depicting the follower force model. The filament has radius a and length L. The
bending and twisting moduli are KB and KT , respectively. The filament base is clamped to a rigid planar wall at
z = 0 and surrounded by a fluid with viscosity η. Also shown is the compressive follower force of strength f
at the filament’s distal end. (b) Diagram describing the numerical method used to compute filament evolution.
The filament is discretized into N segments of length �L. Segment i has position Y i and local basis {t̂ i, μ̂i, ν̂i}
where t̂ i is constrained to be the tangent of segment i. The hydrodynamic mobility of the segments is given by
the RPY tensor with hydrodynamic radius a.

[51],

M(s, t ) = KB

(
t̂ × ∂ t̂

∂s

)
+ KT

(
ν̂ · ∂μ̂

∂s

)
t̂ . (4)

The filament is clamped at one end to a infinite, no-slip planar surface located at z = 0, fixing
the position and tangent of the base as Y (0, t ) = 0 and t̂ (0, t ) = ẑ, along with the twist angle at the
base. At the free end, the moment is zero, M(L, t ) = 0, and the inclusion of the follower force to
the tip provides the condition

�(L, t ) = − f KB

L2
t̂ (L, t ), (5)

where f is the nondimensional parameter controlling the magnitude of the follower force.

B. Numerical discretization

Following [51], we discretize the filament into N segments of length �L such that segment i has
position Y i and frame {t̂ i, μ̂i, ν̂i}, as sketched in Fig. 1(b). After applying central differencing to (1),
(2), and (3) and multiplying by �L, we obtain the force and moment balance for each segment i,

FC
i + FH

i = 0, (6)

T E
i + TC

i + T H
i = 0, (7)

and the discrete version of the kinematic constraint,

Y i+1 − Y i − �L

2

(
t̂ i + t̂ i+1

) = 0. (8)
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Here T E
i = M i+1/2 − Mi−1/2 is the elastic torque, FC

i = �i+1/2 − �i−1/2 and TC
i = (�L/2)t̂ i ×

(�i+1/2 + �i−1/2) are the constraint forces and torques, respectively, and FH
i = f H

i �L and T H
i =

τH
i �L are the hydrodynamic force and torque on segment i. The internal moments, M i+1/2, are

provided by a discrete version of the consitutive law, and �i+1/2, enforces (8).
Due to the negligible effects of fluid inertia, the fluid velocity is governed by the Stokes equations,

and as a result, the forces and torques on the segments will be linearly related to their velocities and
angular velocities via the mobility matrix, M. Explicitly, we will have(

V
�

)
= M

(−FH

−T H

)
, (9)

where V and � are, respectively, 3N × 1 vectors containing the components of the translational
and angular velocities of all segments, and FH and T H are the corresponding 3N × 1 vectors
containing the hydrodynamic forces and torques on all segments and given by Eqs. (6) and (7).
For the 6N × 6N mobility matrix, M, we employ the Rotne-Prager-Yamakawa (RPY) tensor [52]
that is adapted to include the no-slip condition at z = 0 [53]. The explicit form that we use can be
found in Appendix A. We set the hydrodynamic radius in the RPY tensor to be a, the cross-sectional
radius of the filament. We ensure also that �L is comparable to 2a, as sketched in Fig. 1(b).

After solving the mobility problem for the velocities and angular velocities, we integrate
the system forward in time and update the segment positions and frame vectors subject to the
kinematic constraints. Since filament deformation is fully three dimensional and so can involve
both bending and twisting, we employ unit quaternions, q = (q0, q1, q2, q3) with ‖q‖ = 1 [51,54],
to track the rotations of the frame vectors. The unit quaternion for segment i, qi(t ), maps the
standard basis, (x̂, ŷ, ẑ), to the segment’s frame vectors at time t, (t̂ i(t ), μ̂i(t ), ν̂i(t )), through
R(qi(t )) = (t̂ i(t ) μ̂i(t ) ν̂i(t )), where R(q) is the rotation matrix,

R(q) =
⎛
⎝1 − 2q2

2 − 2q2
3 2(q1q2 − q3q0) 2(q1q3 + q2q0)

2(q1q2 + q3q0) 1 − 2q2
1 − 2q2

3 2(q3q2 − q1q0)
2(q1q3 − q2q0) 2(q3q2 + q1q0) 1 − 2q2

2 − 2q2
1

⎞
⎠. (10)

The segment positions and quaternions evolve according to the differential-algebraic system

dY i

dt
= V i, (11)

dqi

dt
= 1

2
(0,�i ) • qi, (12)

Y i+1 − Y i − �L

2

(
t̂ i + t̂ i+1

) = 0, (13)

for each i, where • is the quaternion product, defined for two quaternions p = (p0, p̃) and q =
(q0, q̃) as p • q = (p0q0 − p̃ · q̃, p0q̃ + q0 p̃ + p̃ × q̃). We discretize these equations in time using
a second-order, geometric BDF scheme described in [51], which preserves the unit length of the
quaternions as they are updated. The resulting equations along with the kinematic constraints given
by (8) provide a nonlinear system that we then solve iteratively using Broyden’s method [55], again
following the scheme presented in [51].

C. Simulation parameters

In this paper, the segment length is �L = 2.2a and the bending modulus is taken to be equal to the
twist modulus, KB = KT . We justify this choice, and discuss the effect of varying the twist modulus
on our results, in Appendix E. We investigate the effect of varying two nondimensional parameters;
the nondimensional follower force, f , as defined in Eq. (5), and the aspect ratio, α = L/a. The
aspect ratio is adjusted while keeping the bending modulus fixed, corresponding to varying the
filament length. This results in changing the hydrodynamic response to the filament, while keeping
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its elastic response fixed. All timescales are reported with respect to the filament’s relaxation
time, τ , the characteristic timescale associated with a bent filament returning to its undeformed
configuration. We note that the relaxation time varies with the aspect ratio. We obtain this timescale
numerically as described in Appendix B.

III. STATE SPACE

Before performing a detailed bifurcation and stability analysis, we first solve a series of ini-
tial value problems using the methods outlined in Sec. II to provide a general overview of the
( f , α) state space and demonstrate that our code reproduces the results found in previous studies.
Unless otherwise stated, in each simulation the filament is initially straight and untwisted, i.e.,
(t̂ i(0), μ̂i(0), ν̂i(0)) = (êz, êx, êy) for all i, and a perturbation is introduced in the form of a small,
random force applied to three of the segments at the first timestep. If the random forces are coplanar,
the resulting dynamics will be in that plane, otherwise, the dynamics can be fully 3D.

With the filament aspect ratio fixed at α = 44, we obtain results consistent with those from
previous studies of planar [41] and fully 3D [42] filament motion. For planar perturbations, we
observe that below a critical follower force value, f ∗, the perturbation decays with time and the
filament returns to its vertical equilibrium. Above the critical value, however, we observe the onset
of self-sustained symmetric oscillations which we call planar beating. When motion is fully 3D, we
observe buckling at the same critical value, f ∗, but instead of planar beating, a fully 3D whirling
motion emerges. Whirling can be characterized as a rigid body rotation of the filament centerline,
with the filament tip tracing out a circle in the (x, y) plane. Increasing the forcing, we find evidence
of a second bifurcation as the filament instead performs the same planar beating observed in the
2D model. At very high force values, filament motion enters a writhing regime where it undergoes
nonperiodic oscillations, frequently changing direction and beat shape. These four distinct behaviors
are depicted in Fig. 2(a).

Exploring the state space further for higher values of α, we find that new solutions emerge. The
state space when dynamics is restricted to two dimensions is shown in Fig. 2(b). Here we see that
for f > 400, planar beating transitions to a regime where one encounters a mix of quasiperiodic
solutions and time-periodic solutions more complicated than planar beating. The force value where
this transition occurs decreases as α increases. The state space for fully 3D dynamics is shown in
Fig. 2(c). Here we find the existence of a quasiperiodic solution (QP1) that emerges for a small
range of f between the whirling and the beating solutions. Furthermore, we see that the region
broadly described as writhing can be further divided into two distinct domains of behavior. The first
is a transition region where beating becomes unstable and gives rise to a diverse array of behaviors
highly dependent on α. In the second, occurring at higher f , we find a second quasiperiodic solution
[QP2 in Fig. 2(c)].

In the subsequent sections, we explore these solutions and study the bifurcations that produce
them. A limitation of solving initial value problems is that they only reveal behaviours that are
stable. In studying the solutions and bifurcations, we move beyond initial value problems by using
a Jacobian-Free Newton Krylov (JFNK) method to track the time-periodic solutions of beating and
whirling into regions where they are unstable and perform a linear stability analysis to classify
observed bifurcations. We also analyze the new quasiperiodic solutions in depth, using Poincaré
sections to elucidate their time dependence and further illustrate how the solution space changes
with filament aspect ratio.

IV. JACOBIAN-FREE NEWTON KRYLOV METHOD AND STABILITY ANALYSIS

A. Computation of time-periodic solutions

To understand the bifurcations yielding the different states, we need a method to track solutions
on either side of the bifurcation. We can track time-periodic solutions, even at forcing values
where they unstable, using an adapted Newton-Raphson approach described in [56,57]. For the
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(b)

(c)

(a)

FIG. 2. (a) Images showing the steady, whirling, planar beating, and writhing states for α = 44 (from left
to right). Views of the (x, z) plane (side) and (x, y) plane (above) are provided, and the passage of time is
indicated by the increasing boldness of the lines. (b) The state space of solutions over a range of α and f when
dynamics are restricted to 2D. (c) The state space of solutions over a range of α and f for fully 3D dynamics.
In panels (b) and (c), the black lines are drawn to indicate the approximate boundaries of the solutions regions.

state variable that describes the filament configuration at any given time, we utilize the Lie algebra
elements, v1, ..., vN , that generate the quaternions of each segment with respect to the vertical
equilibrium. Accordingly, for each segment i, qi is related to vi through the expression

qi = exp(vi ) • qV E , (14)

where qV E = 1√
2
[1, 0, 1, 0] is the quaternion corresponding to a vertically upright filament, and the

exponential map is

exp(u) =
(

cos

( ||u||
2

)
, sin

( ||u||
2

)
u

||u||
)

. (15)
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Thus, from qi, we can extract the corresponding Lie algebra element vi = ||vi||v̂i, through

v̂i = [qi • q∗
V E ]R3

||[qi • q∗
V E ]R3 || , (16)

||vi|| = 2 arccos ((qi • q∗
V E ) · ê1), (17)

where ê1 = [1, 0, 0, 0] and [q]R3 = (q1, q2, q3).
In this setup, the trivial state, v1 = ... = vN = 0, corresponds to the steady vertically upright

filament. We note also that due to the clamped end condition, we have v1(t ) = 0 for all time.
As a result, any admissible filament configuration can be reached using the state variable U (t ) =
(v2(t ), ..., vN (t )).

With the state variable in hand, to implement the JFNK method from [56–58], we must now
define how it evolves in time. At the temporally continuous level, the time evolution can be
summarized as follows. We first transform the vi(t ) contained in U (t ) into their corresponding qi(t )
via Eq. (14). From the quaternions, we determine the filament configuration at time t and solve (8),
(11), and (12) to advance the qi(t ) to time t + t ′. Finally, we compute vi(t + t ′), and hence U (t + t ′)
using (16) and (17). This process corresponds to applying the continuous flow map, ϕ(U , t ), which
describes the evolution of the state variable over an interval of time. Specifically, we have

U (t + t ′) = ϕ(U (t ), t ′), (18)

for all times t , t ′.
Using the flow map, time-periodic solutions are then solutions to

G(U , T ) = ϕ(U , T ) − U = 0 (19)

for some nonzero period, T . The nonlinear system (19) for U and T provides 3N − 3 equations and
is therefore underdetermined. An additional equation is necessary and following [56–59], we will
include it as part of the Newton iteration.

For this purpose, we define a new variable X = (U , T ). We denote the initial guess for the
solution as X 0 = (U0, T0) and seek to determine its update X 0 + X̃ , where X̃ = (Ũ , T̃ ). Linearizing
(19) about the initial guess yields

G(X 0) + JG(X 0)X̃ = 0, (20)

where

JG(X 0) = ∂G
∂X

∣∣∣∣
X 0

(21)

is the Jacobian of G(X ) evaluated at X 0. Following [56], we incorporate the additional equation by
insisting that Ũ is perpendicular to its velocity at T , preventing any update of the solution along its
periodic orbit. Specifically, the additional equation is

Ũ · U̇0 = 0, (22)

where˙= d/dt . Equations (20) and (22) combine to provide the linear system

AX̃ = b (23)

that we need to determine X̃ at iteration k, where

AX̃ =
[

JG(X k )X̃
U̇ k · Ũ

]
, (24)

and

b =
[−G(X k )

0

]
. (25)

073101-8



BIFURCATIONS AND NONLINEAR DYNAMICS OF THE …

We solve this linear system using the Generalized Residual Method (GMRES). The application of
the Jacobian is done using the matrix-free difference formula,

JG(X k )X̃ = 1

ε

(
G(X k + εX̃ ) − G(X k )

) + O(ε), (26)

where ε � 1 is a small parameter and U̇ k is evaluated using a first-order forward difference. Once
GMRES converges, the solution is updated via X k+1 = X k + X̃ , which we accelerate further using
a locally constrained optimal hook step as described in [56,59]. Once the Newton method converges
and we obtain a time-periodic solution, we use continuation to track the solution for different values
of f , including values of f for which the solution may be unstable.

B. Linear stability analysis

Along with finding time-periodic solutions, we analyze their stability, as well as the stability of
the trivial steady state. To do so, we first express the continuous-time system given by (8), (11), and
(12) for the state variable as

dU (t )

dt
= f (U (t )). (27)

Consider a small perturbation δU about a base state U0, such that U = U0 + δU . The linearized
dynamics for the small perturbation from (27) is given by

dδU (t )

dt
= AδU , (28)

where A = ∂ f /∂U |U0 . The general solution to (28) is given by δU (t ) = �(t ;U0)δU (0), where
	(U0) is the state transition operator (or impulse response). When U0 is a steady solution,

�(t ;U0) = etA. (29)

When U0 is time-periodic with period T , U0(t ) = U0(t + T ), Floquet’s theorem gives

�(t ;U0) = P(t )etB, (30)

where P(t ) = P(t + T ) with P(0) = I and B is the Floquet matrix exponent.
The stability of steady and time-periodic solutions in this study is examined by computing

the eigenvalues of �(T ;U0), where T is an arbitrary short time interval for a steady solution, or
the time period for a periodic solution. For this purpose, time integration is combined with the
Arnoldi method to extract the approximate eigenvalues of �(T ;U0) (say, μ) by advancing the initial
condition U0(0) + δU (0) to time T . From μ, the eigenvalues, λ, of A or B can then be determined
from

λ = 1

T
log(μ). (31)

We provide further details of this method in Appendix C.

V. DOUBLE HOPF BIFURCATION

By solving the initial value problem, we have seen that above a critical forcing, f ∗, the filament
buckles. In two dimensions buckling leads to beating, while in fully 3D simulations whirling is
observed. To reconcile these observations, we perform a linear stability analysis of the trivial state
(vertically upright filament) using the Arnoldi method described in Sec. IV B. This computation
yields the dominant eigenmodes, which correspond to the least stable states. We extract the
dominant eigenvalue, i.e., the eigenvalue with the largest real part and hence the fastest growing
mode, and its associated eigenvector. The eigenvector provides the filament shape that will grow in
amplitude with time.
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FIG. 3. (a) The dominant eigenvalue from the linear stability analysis of the trivial steady state for f ∈
[0, 60] and three values of α. The steady state becomes unstable at f ∗ ≈ 35.3 regardless of the aspect ratio.
The eigenvalues are purely imaginary at the bifurcation. (b) The difference between the solution and its the
projection onto the eigenspace at the bifurcation, Eprojection := minax ,ay∈C||U − Re(axζx) − Re(ayζy)||, grows
like f − f ∗ close to the bifurcation. (c) The difference between the whirling frequency and the imaginary part
of the eigenvalue at the bifurcation, Efrequency := ||2π/T − ω||, for α = 44. The difference grows like f − f ∗

near the bifurcation.

Performing this analysis for different α, as shown in Fig. 3(a), indicates modest increases in
the real part of the dominant eigenvalue as α increases. We note, however, that the real part of
the eigenvalue becomes positive at f ∗ ≈ 35.3 for each α, demonstrating that the critical value for
buckling is independent of α. The imaginary part of the eigenvalue that provides the frequency of
the unstable solution near the bifurcation increases slightly with the aspect ratio.

To connect the differences in the 2D and 3D solutions at the bifurcation, we first find the
2D unstable modes using a perturbation δU (0) that restricts motion to the (x, z) plane. At the
bifurcation, the dominant eigenvalues are purely imaginary, and so can be expressed as λ± = ±iω.

Their associated eigenvectors are the complex conjugate pair, say, ζx, ζ̄x. We note that by rotational
symmetry, an orthogonal set of eigenvectors, ζy, ζ̄y, which correspond to beating in the transverse
plane, exist with the same eigenvalues.

Turning our attention now to the full 3D problem by removing any restrictions on δU (0), we find
that the dominant eigenvalues are identical to those found in two dimensions, λ± = ±iω. However,
we now find that there is not only one, but two, complex conjugate pairs of unstable eigenvectors.
While we do find that the eigenvectors depend on the initial perturbation used to compute them,
they can always be written as linear combinations of the two sets of planar eigenvectors. Hence we
can express the unstable eigenmodes at the bifurcation as

(iω, ζx ), (−iω, ζ̄x ),

(iω, ζy), (−iω, ζ̄y).
(32)

A bifurcation with two pairs of imaginary eigenvalues is defined as a double Hopf, or Hopf-Hopf,
bifurcation [60], as opposed to a Hopf bifurcation where only a single pair is present. While in
general for a double Hopf bifurcation the eigenvalue pairs can be different, in our specific problem,
we obtain repeated pairs due to the rotational symmetry that is present. Bifurcations in the presence
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of symmetry have been analyzed previously using group theoretic techniques [61]. We also note
that a double Hopf bifurcation occurs in systems with two parameters. The fact that we encounter a
double Hopf bifurcation here while varying only the follower force suggests the presence of another
hidden parameter already at its critical value. Variation of the hidden parameter must break the
rotational symmetry of the two unstable modes, or in other words, the isotropy of unstable motion
in the plane normal to the filament tangent. Given that the instability is related to buckling, such a
hidden parameter may be bending modulus anisotropy, for example. Anisotropy would then allow
buckling to occur in one direction at a lower follower force value compared to the other, resulting in
Hopf bifurcations at different critical values of the follower force. Only when the bending moduli
in both directions are equal would we see the double Hopf bifurcation.

To better understand the system near the bifurcation, we propose a form of the solution just after
it occurs following standard weakly nonlinear analysis [62–64] [for the details in the context of
fluid mechanics, see Eq. (5.48) in [64]]. The solution near the bifurcation is spanned by the unstable
eigenvectors with amplitudes that vary over a slow timescale associated with the small growth rate
of the instability. When the amplitudes have steady values, as in the beating and whirling states in
this study, the solution may be written as

U ≈ U∗ + A1

√
f − f ∗ζxeiωt + A2

√
f − f ∗ζyeiωt + c.c. + O( f − f ∗), (33)

for | f − f ∗| � 1, where U∗ is the unstable steady state solution and A1 and A2 are constant complex
amplitudes. Indeed, we find that the error in the projection of the numerical whirling solution onto
the eigenspace scales like ∼ f − f ∗, as shown in Fig. 3 B. Equation (33) is also consistent with the
observation that the growth of the solution scales like

√
f − f ∗ (not shown) and that the error in

the frequency scales like f − f ∗ [see Fig. 3(c)]. We note that for a standard Hopf bifurcation the
solution would only contain a single mode and its associated amplitude (along with its complex
conjugate). Here, for the double Hopf bifurcation that we encounter, we have two modes. The
additional dimensions in which solutions live allow for both beating and whirling to emerge at a
single bifurcation. From the rotational symmetry of the basic state (i.e., the straight filament), once
the filament is saturated into the whirling state we have |A1| = |A2| as confirmed by our numerical
simulation. The precise values of the complex amplitudes are, however, to be determined from the
initial conditions as well as from nonlinear interactions between the two modes.

The double Hopf bifurcation with a solution of the form (33) implies that for the 2D case, either
A1 or A2 must be zero and the filament would beat in the corresponding plane with angular frequency
ω. Based on the stability analysis, we expect beating to be unstable to orthogonal perturbations.
However, in three dimensions, the filament may execute rotational motion about z axis, as both
A1 and A2 are expected to be nonzero and incorporate the phase difference needed to achieve the
whirling state. Saturation to any state would require a nonlinear mechanism to balance the growth in
the unstable modes; however, the lack of preferential direction in the problem suggests that solutions
that do emerge, in this case circular whirling, must reflect this symmetry. Since the eigenvectors are
geometrically orthogonal and their size may be normalized arbitrarily, suppose the location of the
filament tip in (x, y) plane is given by two sets of eigenvectors, (1, 0) and (0, 1), respectively. Then
(33) implies that that tip location in time would be

(x, y)tip ≈ (B1, B2)
√

f − f ∗eiωt + c.c., (34)

where B1 and B2 are complex constants with |B1| = |B2|. Equation (34) indicates that the tip location
is, in general, an ellipse with its characteristic angular frequency ω. The whirling state observed in
Sec. III is admitted when B1 and B2 have a particular phase difference: |Arg(B1) − Arg(B2)| = π/2.
This suggests that there is a nonlinear interaction between the two linear instability modes in (33)
(e.g., resonance) to form the rotationally invariant whirling state.

The whirling state can be viewed as a steady state in a rotating frame where separate components
of the follower force are balanced by the other forces that are present. The vertical (surface normal)
component of the follower force is resolved mostly by the internal stresses in the filament, resulting
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FIG. 4. (a) The period of the whirling (blue) and planar beating (red) solutions for f ∈ [ f ∗, 600] and α =
44. Solid (dashed) lines correspond to stable (unstable) solutions. Inset: A close-up showing the range f ∈
[130, 150] indicating that two bifurcations occur. (b) Eigenvalues from the Floquet analysis of the whirling
solution for f ∈ [80, 200]. Whirling becomes unstable at f = 137.3. (c) Eigenvalues from the Floquet analysis
of the beating solution for f ∈ [80, 200]. Beating becomes stable at f = 140.0.

in the filament’s nontrivial centerline shape without changing in time. The horizontal component,
however, is instead balanced mostly by the viscous stresses from fluid on the filament, which
may further deform the filament, but more importantly establishes the constant angular velocity
associated with the whirling solution. In other words, for the whirling state, the follower force
is weak enough, such that its horizontal component does not require large internal stresses to
achieve force and moment balance, resulting in a rotational motion with a constant angular velocity.
However, if the follower force is increased further, the viscous stresses alone are not able to resolve
it. In this case, relatively large amounts of internal stresses along the filament would be required to
form a balance with the follower force. This presumably generates an instability, which ultimately
leads to an unsteady motion with larger bending along the filament, i.e., the beating state, as we
discuss below.

VI. FROM WHIRLING TO BEATING

We now consider the next bifurcation in the 3D problem, where the whirling state becomes
unstable. Previous work [42,43] based on solving initial value problems points to a sharp transition
between the whirling and beating behaviors at f ≈ 137.5 for α = 44. In order to elucidate this
bifurcation, we track the beating and whirling branches as f increases using the JFNK approach
described in Sec. IV A. We track the whirling and beating branches for f ∈ [ f ∗, 600]. Figure 4(a)
shows how the period of these solutions varies with f for α = 44. Changing α produces the same
qualitative behavior, and the quantitative differences that arise are due differences in the bifurcation
points, and the period decreases with α. In performing this continuation, we see that the planar
beating branch can be tracked back to the initial buckling. We can assess the stability of these time-
periodic solutions by computing their corresponding Floquet exponents for f ∈ [ f ∗, 600] using the
methods from Sec. IV B. The Floquet exponents shown in Fig. 4 reveal that for α = 44, whirling
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FIG. 5. (a) The maximum norm of the Lie algebra elements, ||U ||, for the whirling, beating, and quasiperi-
odic solutions as a function of f . Inset: Close-up of the quasiperiodic branch connecting with the whirling and
beating branches. The three markers indicate the solutions shown in (b) and (c). (b) Images of the filament in
the quasiperiodic regime for three values of f . The passage of time is indicated by an increasing in the boldness
of the lines. The eccentricity of the ellipse traced by the filament tip decreases with increasing f . (c) A Poincaré
section of the whirling and beating solutions and QP1 for different f . (d) The (α, f ) state space in the region
where QP1 exists. The range of f for which QP1 exists increases with α.

becomes unstable at f = 137.3 [see Fig. 4(b)], while beating becomes stable at f = 140.0 [see
Fig. 4(c)]. Thus, there is a region of f where both behaviors are unstable.

Indeed, there is a stable solution that connects the beating and whirling solutions [see Fig. 5(a)],
and thus there are two bifurcations. As this solution is stable, we track this branch by solving initial
value problems. We observe that this stable solution appears as a mixture of the whirling and beating.
Two distinct frequencies, one for beating and one for whirling, are associated with this solution, and,
in the correct rotating frame, the filament tip traces out an ellipse with an eccentricity that increases
continuously with f [see Fig. 5(b)]. The two periods are not integer divisors, implying that this
solution is quasiperiodic. Accordingly, we refer to this solution as QP1.

To study QP1 in more detail, we construct Poincaré sections using a time series of the x coor-
dinate of the filament tip. We label successive local maxima of this signal as M1, M2, ..., and then
plot consecutive maxima against each other. We note that when the filament dynamics are planar,
the plane of beating is arbitrary, and hence, without loss of generality, we take the beat plane to be
the (x, z) plane. Time-periodic solutions, such as whirling and beating, appear as single points on
the Poincaré section, as shown in Fig. 5(c). Quasiperiodic solutions, on the other hand, appear as
curves. In Fig. 5(c) we see that QP1 yields closed curves, consistent with its quasiperiodic behavior
and also characterizing the solution as a 2-torus. As the forcing increases, the diameter of the 2-torus
trace increases due to the increasing eccentricity of the ellipse traced by the tip.

Using Floquet analysis further, we can classify the two bifurcations that occur. Figure 4(b) reveals
that the eigenvalue from the whirling branch is imaginary at the bifurcation and is distinct from the
period of the whirling solution. Thus, the emergence of the quasiperiodic branch corresponds to a
supercritical Hopf bifurcation. On the other hand, we observe that the eigenvalue from the planar
beating branch is purely real [see Fig. 4(c)]. This indicates that the second bifurcation is a pitchfork
bifurcation, whereby the two stable solutions (corresponding to the quasiperiodic solution rotating
clockwise or anticlockwise) cease to exist after beating becomes stable. We investigate how α affects
these bifurcations. Increasing α delays the onset of the first bifurcation and broadens the domain of
f for which QP1 exists [Fig. 5(d)].
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FIG. 6. (a) Eigenvalues from the 2D Floquet analysis of the planar beating state for f ∈ [440, 600]
for different α. Planar beating becomes unstable at f = 578.9, 523.7, and 498.1 for α = 44, 66, and 88,
respectively. (b) Eigenvalues from the 3D Floquet analysis of the planar beating state for f ∈ [400, 500]
for different α. The planar beating becomes unstable at f = 462.8, 434.4, and 422.4 for α = 44, 66, and 88,
respectively. (c) The transition region between the planar beating (red crosses) and QP2 (blue stars) solutions.
Solutions in the region are divided into three types: chaotic (green squares), intermittent (green diamonds),
and time-periodic (green circles). (d–g) Filament motion in the transition region as viewed from the side and
above for four of the observed behaviors. The passage of time is indicated by an increase in line boldness. (d)
Intermittence between beating with a growing out-of-plane component (left) and a combination of beating and
whirling near the base and waving at the tip (right). (e) Periodic solution with beating at the base and waving
at the tip. (f) Periodic solution where the filament beats while bent in the direction normal to the beat plane. (g)
Chaotic solution corresponding to erratic beating at the filament tip.

While ascertaining the precise reasons for the onset of QP1 requires a more detailed analysis,
we can gain some understanding of this bifurcation by examining the unstable eigenmode just after
the whirling solution becomes unstable. In particular, we find that this mode has an approximate
wavelength, l2 � l1/2, where l1(= L/2) is the wavelength of the unstable mode at buckling of the
vertical equilibrium. Given that the critical force for the classical buckling of an Euler beam is
inversely proportional to square of the buckling wavelength, it is reasonable that the dimensionless
critical follower force for the instability of whirling may be estimated as f ∗∗ ≈ 4 f ∗(= 141.2). This
value of f ∗∗ is fairly close to the measured values of f ∗∗ across all α [see Fig. 4(b)], in particular
f ∗∗ = 137.3 for α = 44. This suggests that secondary buckling is a potential physical mechanism
for this bifurcation.

VII. FROM BEATING TO WRITHING

By solving initial value problems, we have shown that beating is unstable at high follower
force values, with the transition occurring at smaller f as α increases. This occurs both when
the dynamics are restricted to two dimensions [Fig. 2(b)], as well as in three [Fig. 2(c)]. This
picture is confirmed by the Floquet analysis of the beating solution, shown in Fig. 6(a), where
we see that the critical follower force in two dimensions decreases from f ≈ 578.9 for α = 44 to
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f ≈ 498.1 for α = 88. In three dimensions, we have f ≈ 462.8 for α = 44 decreasing to f ≈ 422.4
for α = 88 [Fig. 6(b)]. The Floquet analysis further reveals that at this bifurcation, in both two and
three dimensions, the eigenvalues are imaginary. Focusing on the fully 3D dynamics and revisiting
the initial value problem just above the critical follower force, we observe that the solution enters a
transition region that contains a whole host of behaviors including intermittency, periodic motion,
and chaotic beating as shown in Fig. 6(c). The intermittent dynamics are a subset of the chaotic
solutions, exhibiting irregular bursts of nearly periodic motion interrupted by chaotic beating [see
Fig. 6(d)]. At ( f , α) = (410, 132), we observe a transient period of intermittency that ultimately
returns to the planar beating solution.

These numerical experiments reveal that the observed dynamics are highly sensitive to f and α.
Immediately after the bifurcation we observe intermittency for lower α. For high α, however, we
find a periodic solution where the filament is beating while bent in the direction perpendicular to the
beat plane [shown in Fig. 6(f)]). Additionally, we find that filaments with a smaller α can produce
solutions, such as the periodic state shown in Fig. 6(e), that are not observed by filaments with a
larger α, and vice versa. In general, at higher forces values, a greater variety of periodic solutions
are observed. For instance, as shown in Fig. 6(e), the filament base, broadly speaking, beats in one
plane, while the tip oscillates in the transverse plane. Near the final bifurcation [the upper black line
in Fig. 6(c)], we observe chaotic beating where the filament is rotating near the base while the tip
waves aperiodically [Fig. 6(g)].

We find that this transition region exists for a finite range of the forcing values. Regardless of
filament aspect ratio all filaments undergo the same quasiperiodic behavior at the highest force
values. We refer to this solution as QP2. The transition to QP2 occurs at lower force values as
α increases. For the QP2 solutions, the bottom half of the filament appears to be whirling while
the upper half beats with a different frequency [see Fig. 7(a)]. We find that QP2 arises for the
variety of initial conditions that we have explored, including those generated by perturbing the
trivial equilibrium, the asymptotically stable state in two dimensions, and the unstable whirling
state. This implies that that QP2 is presumably a stable attractor robust to perturbations and initial
configurations. To analyze the nature of this solution, we compute its Poincaré section, which reveals
several disconnected curves [see Fig. 7(b)], confirming the quasiperiodicity of the solution.

To further investigate the effect of the forcing and aspect ratio on QP2, we compute the horizontal
distance from the vertical equilibrium,

r(s, t ) = ||(I − ẑẑT )Y (s, t )||. (35)

After allowing the solution to reach its asymptotically stable state, we determine the minimum
and maximum horizontal distance over time, rmin(s) = mint�0 r(s, t ) and rmax(s) = maxt�0 r(s, t ),
respectively, and plot their difference �r(s) = rmax(s) − rmin(s). The results are shown for fixed
aspect ratio and forcing in Figs. 7(d) and 7(e), respectively. For small values of the arc length, i.e., for
s/L below s∗ [the local minimum of �r(s) for ( f , α) = (560, 44)], the difference in the horizontal
distance remains small, corresponding to whirling. Above s∗, the difference rapidly increases as
the beating amplitude increases with s. Increasing the follower force decreases the difference in
the radius near the filament tip [Fig. 7(d)], while increasing the aspect ratio has the opposite effect
[Fig. 7(e)]. Additionally, the local maximum in �r appearing at s/L < s∗ decreases in value as
the aspect ratio increases. This implies that as the filament becomes more slender, the horizontal
distance approaches a constant value. Hence, the motion near the filament base more closely
resembles whirling as α increases, where each segment trajectory lies on a circle of constant radius.
Although QP2 is quasiperiodic, meaning the dynamics are a combination of multiple behaviors
with periods that are not integer divisors, we can analyze how varying ( f , α) affect the dynamics
temporally by comparing dominant frequencies using the fast Fourier transform. See Appendix F
for more details.
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FIG. 7. (a) Filament motion in the QP2 regime. The passage of time is indicated by an increase in line
boldness. Top: A view from above showing the dynamics projected in the (x, y) plane. The dashed lines indicate
the minimum and maximum horizontal distance at s = L, and �r(s) = rmax(s) − rmin(s). Below: A view from
the side showing the dynamics projected in the (x, z) plane. The dashed line corresponds to s/L = s∗ ≈ 0.3
from panels (d) and (e). (b) The Poincaré section corresponding to the QP2 solution for f = 560 and α = 44.
(c) The time series of the filament tip displacement for f = 560 and α = 44 showing periodic oscillations
in the z component and irregular oscillations in the x, y components. D(d) The variation in radius, �r(s)/L,
against the arc length, s/L, for α = 44 and various f . (e) The variation in radius, �r(s)/L, as a function of s/L
for f = 560 and various α.

VIII. DISCUSSION

In this paper, we performed a thorough computational bifurcation analysis of the follower force
model for an active filament clamped to a no-slip wall. Along with verifying the findings of [41,42],
we have extended these studies to pinpoint and classify bifurcations, and identify new solutions. By
performing a linear stability analysis of the trivial state, we have established the presence of a double
Hopf bifurcation at buckling, reconciling previous results from 2D and 3D studies of the model and
establishing the connection between the eigenmodes in two dimensions with those in three. Turning
our attention to the transition between whirling and planar beating occurring at higher force values,
we show that there is not only one, but rather two, bifurcations that occur, with a stable quasiperiodic
solution (QP1) that exists for a small range of f between the two bifurcations. Finally, we examine
the solutions at high force values. Here we show there are two distinct regions: a transition region
where a range of periodic and chaotic behaviors are observed, and a second quasiperiodic regime
(QP2) where the filament exhibits rotation at the base and waving at the tip. In performing these
analyses, we have also established the role of α, the filament aspect ratio, providing a full picture
of the parameter space governing the solutions that may arise. In particular, we have shown how
increasing α expands the QP1 region, decreases the force where beating becomes unstable, and
produces different solutions observed in the transition regime.

It is interesting to note that while it is reasonable to assume MTs are actuated by more than
one motor protein at any given time, the follower force model predicts that only a single motor
protein is required to induce buckling, producing the filament motion explored in this work. The
length of MTs are variable, but can be between 1 µm to 100 µm [42,65,66]. Taking the typical MT
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length to be L ≈ 20 µm, the MT bending modulus as KB ≈ 10−23Nm2 [67], and the motor forcing
as 6pN (molecular motors exert forces ranging between 1 and 10pN [22,68]), the corresponding
nondimensional follower force is f ≈ 240. This value lies squarely in the planar beating regime,
firmly suggesting that a single dynein provides sufficient force to cause the onset of self-sustained
MT oscillations. Due to the large distribution of parameter values reported experimentally, it is
likely that even higher values of the nondimensional forcing could also be attained.

While the follower force model considered in this paper provides the simplest representation of
a motor protein driven filament, alternative models that provide more features of the biophysical
system have been proposed. These include models with follower forces distributed along the entire
filament length, or further, the direct effect of the motors on the surrounding fluid, either through
an equal and opposite force on the surrounding fluid [38,41,44], or through a slip flow on the
filament surface [45]. Previous studies [42,44] indicate that the distributed follower force case
has qualitatively similar dynamics to the single follower force at the tip, also exhibiting whirling
and beating behaviors as we vary the forcing. Moreover, the initial buckling from the vertical
equilibrium, to whirling in the 3D case and beating in two dimensions, appears to also be a double
Hopf bifurcation. The same argument from Sec. V could apply in this case to explain the connection
between 2D and 3D buckling, suggesting that this initial buckling bifurcation may be generic to
follower-force-driven filament systems. Other variants of the model discussed in this work consider
how changing the boundary conditions enforced on the filament can affect the resulting dynamics,
for instance, clamping both ends (s = 0 and s = L) a distance l < L apart [48,49]. In these cases
buckling still occurs, but the resulting dynamics are different from those observed for the clamped
and free conditions we consider throughout this paper.

Fully classifying the emerging dynamics for variants of this model and comparing the possible
differences in the bifurcation diagrams could allow for an effective qualitative comparison of these
models with actual MT dynamics and hence, better ascertain the correct models for predicting
more complicated MT-motor protein related phenomena, such as collective dynamics. As MT-motor
protein complexes often arise in localised groups, hydrodynamic interactions between neighboring
filaments couple their motion, leading to important biological phenomena, such as cytoplasmic
streaming. The model including both follower forces distributed along the filament length and the
opposite forces exerted on the fluid has been used to replicate this streaming, yielding a nontrivial
steady state where all filaments are bent in the same direction if the filament density is sufficiently
large [38].

The follower force model can also be extended to describe more organized collections of MTs,
such as the axoneme within cilia. While the follower force does not replicate the shear-driven
actuation in cilia, the dynamics exhibited by the basic follower force model studied in this paper
is qualitatively similar to that observed for cilia. Nodal cilia that play a vital role in symmetry
breaking during embryogenesis undergo tilted whirling, pumping fluid unidirectionally [69–71].
Motile cilia elsewhere, such as respiratory cilia which use this motion to transport mucus in the lungs
[72], typically perform planar beating. Consequently, some studies employ a follower force model
as a surrogate model to examine related ciliary motions, for instance, coordination on spherical
surfaces [43], or the effect of fluid rheology on the pumping ability of cilia [73,74]. Recent studies
have incorporated the follower force model into an axoneme-like configuration of filaments, where
equal and opposite follower forces are exerted on neighboring filaments [40,50] to demonstrate
that oscillations can arise by instabilities similar to those studied in this paper. This provides an
additional mechanism for cilia actuation alongside active dynein force regulation based on the
geometric clutch hypothesis [75–77], local curvature of the axoneme [78–82], or via other feedback
mechanisms [50,83–85]. A comparison between the bifurcations that arise in these different models
could provide insight into the actuation process of cilia. In particular, applying the computational
tools employed in this paper to models with different regulatory feedback loops, or indeed with
no such feedback mechanism, will help to uncover whether active feedback between axoneme
geometry and motor activity is required to reproduce experimental results. This important direction
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as well as the more fundamental studies of follower force model variants will be the focus of our
future work.
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APPENDIX A: HYDRODYNAMICS: THE RPY TENSOR

Due to the linearity of the Stokes equations, the mobility tensor in Eq. (9) can be decomposed
into two parts, corresponding to the mobility tensor for the collection of particles in an unbounded
domain, superposed with the corrections due to the presence of the wall [53]. We can write this
explicitly, by first using Eq. (9) to express the mobility for particle n as(

V n

�n

)
=
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nm
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T m
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nm are 3 × 3 subtensors. As the mobility matrix is symmetric, we
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The subtensors associated to the particle’s self-mobility (i.e., for n = m) are given by [53](
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where hn = Y n · êz/a is the height of the particle above the wall, normalized by the particle’s radius.
The first terms for (MV F

nn )i j and (MT
nn )i j correspond to the contributions considering the particles

in unbounded flow, and the subsequent terms arise from considerations of the wall. Terms from the
final subblock, (MV T

nn )i j , can be obtained using symmetry.
To express the tensors corresponding to particle-particle interactions (n �= m), we first define

terms related to the difference in displacements of particles n and m, Y nm = Y n − Y m, rnm = ||Y nm||
and Ŷ nm = (Ŷ 1

nm, Ŷ 2
nm, Ŷ 3

nm) = Y nm/rnm, as well as terms related to the difference in displacements of
particle n and the reflected image of particle m, R = (Y n − Y m + 2hmδ3)/a, R = ||R|| and e =
R/R. Also defining ĥ = hm/(aR · êz ), these interaction terms are given by [53](
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FIG. 8. (a) The tip displacement x, (solid line) as a function of time for α = 44. The dashed line
∼ exp(−t/τ ), where τ is the relaxation timescale determined through fitting the displacement data. The
schematic depicts how the computation of the relaxation timescale is performed. (b) The relaxation timescale
computed numerically for our model as a function of aspect ratio, compared to the timescale arising from
resistive force theory.

(
MF

nm

)
i j = 1

8πηr2
nm

εi jkŶk − 1
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The first term in each expression originates from considerations of the hydrodynamics in an
unbounded domain, while the following terms correspond to the presence of the no-slip wall, as
derived in [53]. Again, the terms from the final subblock, (MV T

nm )i j , can be obtained using symmetry.

APPENDIX B: THE RELAXATION TIME

Due to the dependence of the relaxation time on the hydrodynamic model and the boundary
conditions on the fluid domain, we calculate the relaxation time, τ, numerically. To do this, we
measure the tip displacement of a force-free filament as it relaxes back to the vertical equilibrium
from a deformed state. As the initial deformation is small, we are in the linear regime and so expect
the tip displacement to decay like ∼ exp(−t/τ ). After using this to fit the decay data, we can extract
τ (see Fig. 8). As this timescale depends on filament aspect ratio, α, this process must be repeated
for filaments with different aspect ratio.

From [86], the relaxation time for a filament is

τRFT = ζ⊥L4

(1.875)4KB
(B1)
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where ζ⊥ is the perpendicular drag per unit length given by resistive force theory [87],

ζ⊥ = 4πη

log(2L/a) − 1/2
. (B2)

Comparing with τ given by our model, we find a similar dependence on the filament aspect ratio
with the approximate relation τ ≈ 1.1τRFT (see Fig. 8).

APPENDIX C: EIGENVALUES OF THE TRANSITION OPERATOR

In order to establish the stability of steady and time-periodic states, we compute the eigenvalues
of �(T ;U0), where T is an arbitrary, but short, time interval for a steady solution, or the time period
for a periodic solution. The matrix �(t ;U0) is defined by δU (t ) = �(t ;U0)δU (0). To compute its
eigenvalues, we combine our numerical solver, which advances the filament configuration in time,
with the Arnoldi method. The effect of multiplying a vector δU (0), with ||δU (0)|| = ε � 1, by the
state transition operator for the time interval T , is approximately given by

�(T ;U0)δU (0) = δU (T ) (C1)

= ϕ(U0(0) + δU (0), T ) − U0(T ) (C2)

= ϕ(U0(0) + δU (0), T ) − U0(0), (C3)

where the first equality is the definition of �(T ;U0), and the second equality follows from the
definition of ϕ, Eq. (18), for U = U0 + δU . The final equality follows as U0 is either steady
or time-periodic with period T . Defining x̂ = δU/ε, we can apply the Arnoldi method using the
approximation of the matrix-vector multiplication between the transition operator and a unit vector,
x̂,

�(T ;U0)x̂ ≈ 1

ε
(ϕ(U0 + εx̂, T ) − U0). (C4)

This is equivalent to solving the initial value problem with initial condition U0 + εx̂, extracting the
configuration after a time T , subtracting the steady or time-periodic configuration, U0, and dividing
by the magnitude of the perturbation, ε.

At iteration k, the Arnoldi method decomposes the transition operator into

�(T ;U0) ≈ Qk+1HkQ∗
k . (C5)

Here Qk+1 ∈ C3(N−1)×(k+1) is an orthogonal matrix, the column space of which spans a Krylov sub-
space of �(T ;U0), and Hk ∈ C(k+1)×k is an upper Hessenberg matrix. For large k, the eigenvalues
of H̃k , the first k × k subblock of Hk , approximate those of �(T ;U0). As the extremal eigenvalues
of H̃k will be the first to converge, the most unstable mode can be determined directly from H̃k after
several iterations when the matrix is typically small in size and standard eigenvalue solvers can be
used. The eigenvalues of H̃k (say, μ) approximate those of �(T ;U0). Then we can determine the
eigenvalues, say, λ, of A or B through

λ = 1

T
log(μ), (C6)

following from (29) and (30). The corresponding eigenmode can then be computed by applying Qk
to the eigenvector of H̃k .

APPENDIX D: EIGENMODES OF THE UNSTEADY WHIRLING STATE

Floquet analysis revealed that the whirling state becomes unstable at f ≈ 137.2 for α = 44 [see
Fig. 4(b)]. Our linear stability analysis yields the eigenvalues and eigenvectors for each state, which
we can then use to provide insight into the nature of the instability. At f = 137.4 (i.e., soon after
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(a) (c)(b)

FIG. 9. The filament shapes for (a) the whirling solution, Uwhirl for f = 137.4 and α = 44 and (b, c) the
sum of the whirling solution and a linear combination of the unstable eigenvectors, Uwhirl + β(ζ ± ζ̄), for
β = 3/2.

the bifurcation) and α = 44, we see the whirling solution has two unstable eigenvalues, λ, λ̄, and
two corresponding eigenvectors, ζ, ζ̄.

In Fig. 9 we plot Uwhirl + β1ζ + β2ζ̄, the sum of the whirling solution, Uwhirl (left panel) and a
linear combination of the two associated unstable eigenmodes, for the cases β1 = β2 = 3/2 (center
panel), and β1 = −β2 = 3/2 (right panel). From these figures, we can see that the wavelength
stemming from the eigenmode is approximately half that of the wavelength of the unstable mode at
buckling.

APPENDIX E: EFFECT OF TWIST

In this work, we set the bending and twisting moduli to be equal. The appropriate choice of γ =
KT /KB in our simulations is nontrivial as these parameters are difficult to measure experimentally
and their values appearing in the literature can vary significantly. Even the parameters which can be
used to estimate these moduli, such as the Young’s modulus and shear modulus, have experimental
estimates spanning several orders of magnitude [88,89].

For the purpose of this work, we can generate a rough estimate of these parameters by making
the assumption that the MT is isotropic. Then the shear modulus can be expressed in terms of
the Young’s modulus, E , and Poisson’s ratio, ν, by μ = E/2(1 + ν). Experimentally, the Young’s
modulus of MTs is suggested to lie in the range 3.1 MPa to 1.4 GPa [88], and, following [90], we
can estimate Poisson’s ratio as ν = 0.3. This gives an estimated range of the shear modulus: μ ∈
(1.2, 540) MPa. By approximating the MT as a cylindrical shell with internal/external diameters
2ri = 15nm and 2re = 25 nm respectively [91], the bending and twisting moduli are then given by
[92]

KB = πE

4

(
r4

e − r4
i

)
, KT = πμ

2

(
r4

e − r4
i

)
, (E1)

respectively. Using our parameters, this gives broad estimates in the range KB ∈ (5.2 × 10−26, 2.3 ×
10−23) Nm2 and KT ∈ (4.0 × 10−26, 1.8 × 10−23) Nm2. Experimental evidence suggests the bend-
ing modulus of MTs could vary between around 2 × 10−24 Nm2 [93] and 2 × 10−23 Nm2 [67]. This
implies that γ can range between approximately 1.7 × 10−3 and 350 for MTs; over five orders of
magnitude. In [94] calculations that take into account the anisotropy of MTs suggest this ratio to be
around γ ≈ O(0.01).

To investigate the effects of the twisting modulus on our model, we compare results for γ ∈
{0.01, 1, 100}. We run initial value problems for f ∈ {0, 300} and observe that the state space does
not change when increasing from γ = 1 to γ = 100. However, for γ = 0.01, we observe differences
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(a)

(b)

(c)

FIG. 10. The phase diagram for f ∈ (100, 200), α ∈ (44, 132) for (a) γ = 1 and (b) γ = 0.01. (c) Floquet
analysis on the beating solution for a filament with aspect ratio α = 44 for γ ∈ {0.01, 1}. We note that the
bifurcation occurs later for γ = 0.01, and the eigenvalue is complex at the bifurcation.

for filaments with smaller aspect ratios: planar beating becomes stable at a higher value of the
forcing, as shown in Fig. 10. In its place, we see a range of distinct dynamics to those observed
for γ = 1. For instance, for ( f , α) = (140, 44) the filament appears as a mixture of whirling, QP1
and planar beating. The filament begins by whirling and then transitions to planar beating through
QP1-type beating, before returning to whirling in the opposite direction. For ( f , α) = (160, 88) on
the other hand, the filament undergoes periodic planar deformations.

By performing Floquet analysis on the planar beating behaviors for γ = 0.01, we can confirm
the beating becomes stable for higher forcing values, as indicated by the simulations. Although
the dynamics are different, for α ∈ {66, 88}, the dominant eigenmode remains purely real at this
bifurcation, as for γ = 1. However, for α = 44, the eigenvalue is complex as shown in Fig. 10,
indicating a change in frequency between the new dynamics and the planar beating at this transition.

These results are not entirely unexpected. The torsional drag scales like ∼O(α−3), and so
increasing the aspect ratio will decrease the amount of torsion generated. Therefore it is expected
that changing the twist modulus should not change the results significantly, and any changes will
occur for smaller aspect ratio, as observed and discussed above.

APPENDIX F: QP2 FREQUENCIES

The solution that emerges for the highest forcing values, QP2, is quasiperiodic, meaning it is a
composition of several periods which are not integer divisors. In particular, this means we cannot
extract a frequency in the usual sense. Instead, in order to compare these dynamics as we vary the
forcing and aspect ratio, we use a fast Fourier transform (FFT) on the x coordinate of the tip to
decompose our dynamics into their corresponding frequencies (see Fig. 11 inset). We can extract
the frequency with the most dominant amplitude (i.e., the largest spike) and plot these for various
f and α, as shown in Fig. 11. As with the planar beating and whirling solutions [as shown in
Fig. 4(a)], we observe that this frequency increases with both forcing and aspect ratio. Although
these results are obtained by decomposing the time trace of the tip x coordinate, we note that
the dominant frequencies are found to be the same when analyzing the displacement of any other
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FIG. 11. The frequency associated to the dominant mode, ω1, for various f and α. We see that ω1 increases
with both f and α. Inset: Single-sided amplitude spectrum of QP2 for ( f , α) = (540, 44). We take ω1 to be the
frequency with the largest amplitude.

segment, indicating that this frequency is likely associated to the dynamics of the lower portion
of the filament. Recall that in QP2, the base of the filament is whirling whereas the upper portion
appears to be beating, while being "dragged" around by the whirling base. It appears as though the
mode corresponding to this whirling is the dominant contribution to the dynamics along the filament
length.

APPENDIX G: SUPPLEMENTAL VIDEOS

The Supplemental Material [95] contains videos which display the key dynamics discussed in
the main text.

SM1 (sm1_whirl.mp4): A filament with ( f , α) = (100, 44), i.e., undergoing whirling oscilla-
tions.

SM2 (sm2_qp1.mp4): A filament with ( f , α) = (139, 44), i.e., undergoing QP1 oscillations.
SM3 (sm3_beat.mp4): A filament with ( f , α) = (300, 44), i.e., undergoing planar beating oscil-

lations.
SM4 (sm4_qp2.mp4): A filament with ( f , α) = (600, 44), i.e., undergoing QP2 oscillations.
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