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Impact of rotation change on the emptying of an ideal bottle of water
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We are carrying out the experimental study of the emptying of a hermetically sealed
cylindrical tank in a rotating frame. We determine the optimal rotational velocity for
the tank, which minimizes the emptying time. Moreover, there exists a critical rotation
velocity at which the emptying time exceeds that of the nonrotating case, depending on
the relative duration of each of the three emptying regimes identified in this flow, namely,
(i) a bubble regime, (ii) a vortical air jet regime, and (iii) a bathtub vortex regime. The
three regimes, easily distinguished by the shape of the air-water interface, have different
draining velocities. The lifetime of each regime, as well as the transitions between them,
depend on both the water level and the rotating velocity of the platform.
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I. INTRODUCTION

About 400 years ago, Torricelli [1] formulated the law describing the emptying of a vessel.
Since then, numerous studies have been conducted on free-surface tank draining, resulting in
refined versions of Torricelli’s law based on experimental findings and adapted to a wider range
of configurations [2–5].

While the industrialization of glass bottles began contemporaneously with Torricelli’s discovery,
the emptying of bottles [6–9], sealed cylinders [10–16], and cubic tanks [17–19] was first stud-
ied only 35 years ago [20]. Many studies have investigated the emptying time of sealed tanks
[6,7,10–13,20] and the influence of tank and outlet size and geometry [6,9–12,20], inclination
[6,8,9,11,20], temperature [18,20], surface tension [9], and more recently on the influence of bottle
perforation [21]. Furthermore, the periodic occurrence of bubbles during tank draining, which is
commonly known as the “glug-glug” phenomenon, has been described and modeled in many works
[13,14,17,22–24].

Spinning a bottle of water to empty it faster or creating a “tornado in a bottle” [25] are well
known experiments to the general public. Vortices, which promote fluid mixing, can be desirable
[26] or, on the contrary, undesirable because it can entrain air and damage equipment, particularly
pumps, and pose safety problems in nuclear facilities [27–29]. Moreover, as will be illustrated in
the following sections, the formation of a vortex has a significant impact on tank emptying and on
recirculation systems that use buffer tanks, which drastically affects the emptying time.

Although there exists an extensive literature on bathtub vortices at atmospheric pressure [5,30–
46], surprisingly, to the best of our knowledge, no quantitative studies have been investigated on the
specific case of emptying a rotating water bottle [7,22].

In this article, we fill this gap and show the many connections that exist between emptying a
rotating water bottle and the vortical emptying of open-air tanks. To do so, we perform extensive
experimental measurement on a sealed cylindrical tank mounted on a rotating platform. We describe
the different stages and regimes that affect the emptying flow and show how the emptying time is
affected. We identify three discharge regimes: the first is commonly referred to as the bubble regime,
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(a) (b)

FIG. 1. (a) Schematic drawing of the experimental setup including details of the outlet cylindrical draining
pieces. (b) Low-frequency glug-glug sound spectrum as a function of time in the case � = 0 rpm and � = �1.
The fundamental frequency and its harmonics are marked with dots. The spectrum is obtained by using a
sliding Fourier transform processing of the signal.

while the other two involve either a vortical jet or a bathtub vortex. We show how the total draining
time depends critically on each of these emptying regimes and their succession.

The article is structured as follows: In Sec. II we present the experimental setup we used to carry
out our experiments. Section III presents the effect of rotation on drainage efficiency in terms of
the time required for emptying. The three flow regimes identified during rotational emptying are
described in Sec. IV and their transition dynamics in Sec. V.

II. EXPERIMENTAL SETUP

The ideal bottle is a Plexiglas cylinder of radius R = 145 ± 0.1 mm and depth L = 390 mm.
The tank has a rim with a groove designed to accommodate a rubber seal, ensuring a tight seal
when the nondeformable lid, made of 1-cm-thick PVC, is closed. The rim and PVC lid of the tank
are pierced with 15 evenly spaced holes to accommodate tightening screws, ensuring the proper
sealing. It is rigidly mounted on a rotating platform composed of two cylindrical marble plates,
each with a diameter of 1.5 m and a thickness of 20 cm. The plates are stacked on top of each other
with a 1-mm-thick air cushion in between, such that the upper piece rotate frictionlessly around
the vertical axis of rotation Oz, as illustrated in Fig. 1(a). The center of the bottle is aligned with
Oz. The rotating velocity � can be varied between 0 and 10 rpm. The leveling accuracy has been
ensured within ±0.1 degrees. The bottom plate has a hole drilled in its center for drainage. Two PVC
cylindrical draining pieces have been machined [see Fig. 1(a)], each with a thickness of 1 cm and
internal hole diameters of �1 = 12.7 ± 0.1 mm and �2 = 19.8 ± 0.1 mm, such that � > 1.9�c,
where �c = √

2σ/ρl g ≈ 3.4 mm is the capillary length of water in our experiments, in order to
avoid the effects of surface tension at the outlet [13]. For diameters below this limit, the emptying
time in a tube tends towards infinity [47]. The top surface of each draining piece is flush with the
bottom of the tank, and a tight hatch is located beneath it, which can be remotely opened at t = 0 s.

At t = 0 s, the air at the top of the container is at the atmospheric pressure Pa and both air and
water are at the ambient temperature Ta = 19 ± 1◦ C. The initial water level is H0 = 375 ± 1 mm.
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The air and chlorinated water used have a specific density ρg of 1.2 kg m−3 and ρl of 998 kg m−3,
respectively. The chlorinated water has a kinematic viscosity ν of (1.03 ± 0.02) × 10−6 m2 s−1 and
a surface tension σ of 58 ± 4 mN m−1. This yields an Ekman number Ek = ν/�R2 in the range of
4.7 × 10−5 � Ek � 4.7 × 10−4.

To ensure that the initial bulk is in solid body rotation, the system is rotated continuously
throughout the experiment, beginning one hour before the start of the emptying. The typical spin-up
time H0/(ν�)1/2 [48,49] which holds for cylindrical geometry and in the presence of free surface
[50,51] is actually of the order of 103 s, smaller than the settling time of 1 h. The initial parabolic
deformation of the interface resulting from rotation, which can be expressed as �2R2/4g, is in the
uncertainty range of H0, with a magnitude of less than 0.6 mm and thus negligible.

The cumulative mass m(t ) of drained water at time t is measured on a digital mass scale with a
precision of 0.5 g and a sampling frequency of 7 Hz. No inertial correction is necessary for weight
measurements because the force balance is centered on Oz. We determine the water flow rate Q
using the time derivative ṁ of the measured mass m(t ). The average water level H (t ) in the tank at
time t is computed from H (t ) = H0 − m(t )/ρlπR2 with an accuracy of 1 mm.

A side view webcam captures the radial profile of the free surface h(r, t ). Furthermore, the
webcam records the audio throughout the process, allowing us to determine the frequency at which
bubbles are formed by analyzing the distinct glug-glug sound they are produced. A typical sound
spectrogram is shown in Fig. 1(b). The spectrum is obtained by using a sliding Fourier transform
processing of the signal. The fundamental frequency and its harmonics obtained by considering the
maximum intensity of the spectrum are marked with dots and allow us to deduce the associated
period τ .

To study the reproducibility of the experiments, some of them were replicated under identical
conditions. The experiments with diameter �1 were repeated eight and seven times at � = 4 and
5 rpm, respectively. For these rotations speed, the draining velocity can undergo different trends,
with a nonreproducible appearance of the different regimes (a point that will be addressed in the
final part of this article). For all the other rotation speeds, the standard deviation of the draining time
is below 2% for large � and diameter �1, and 5% for diameter �2. For smaller �, the standard
deviation is below 5% for diameter �1 and 7% for diameter �2.

III. THE EFFECT OF ROTATION ON DRAINAGE EFFICIENCY

We explore the relationship between the emptying time Te of the sealed tank and the rotating
velocity � of the platform. The emptying time Te is defined as the time it takes for 99% of the
initial water level to drain. In this context, efficiency is defined as the ratio of the emptying time Te

with rotation to that without rotation, the smaller the ratio, the more efficient the drain. Figure 2(a)
illustrates the scaled emptying time Te(�)/Te(0) as a function of the platform’s rotating velocity �,
where Te(0) is the emptying time in the absence of rotation. The time values shown are averaged
over the number of experiments performed for each rotation. They have also been doubled for
diameter �1 and � = 4 and 5 rpm, where emptying can follow different behaviors, leading to
drastically different emptying times, as will be explained in Sec. V. For both outlet sections, an
increase in the rotating velocity of the tank initially leads to a reduction in the emptying time. The
shortest emptying time is observed at the optimal rotating velocities �opt(�1) = 4.0 ± 0.5 rpm and
�opt(�2) = 3.0 ± 0.5 rpm for sections �1 and �2, respectively. However, this minimum time is
not reproducible. For section �1, the emptying time can be much longer for intermediate values
of the rotational speed, namely, 4 and 5 rpm. Nonreproducible emptying times are also expected
at � = 4 rpm for diameter φ2, as will be justified in Sec. V. Further increasing the tank’s rotation
increases the discharge time, which follows a seemingly linear trend whose slope depends on the
outlet diameter �, as shown by the blue dashed lines in Fig. 2(a). Notably, when plotting the
scaled emptying time as a function of the dimensionless parameter �(�/2)2/ν = (�/2R)2Ek−1

[Fig. 2(b)], the points collapse on a master line. This dimensionless parameter is thus the relevant
control parameter for describing the bathtub vortex emptying process that occurs when the rotation
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(a) (b)

FIG. 2. Emptying time Te(�) scaled by the emptying time without rotation Te(0) (a) as a function
of the rotating velocity �, and (b) as a function of �(�/2)2/ν. The black horizontal dashed lines
represent the nonrotating case (� = 0 rpm). The black solid lines are included as a visual guide of the
dispersion of the results for intermediate �. The blue dashed lines represent the linear fit of the experiments for
which only regimes 2 and 3 are significant during drainage. The estimated standard deviation across different
measurements is included in the size of the points, except for �1 and � = 4 and 5 rpm, points for which the
two observed behaviors are shown in red.

is large enough (see Sec. IV), as reported in Ref. [5]. When the rotation speed � becomes sufficiently
large, the bathtub vortex regime becomes dominant and has time to establish. The trend (blue dashed
line) in Fig. 2(b) can differ for sections with smaller diameters, where surface tension has a consider-
able effect on the flow, potentially even stopping it, and can differ also for sections that are too large,
as the tank would then empty too quickly and the short draining time would not allow the vortex
to establish properly. It is worth noting that, for the smaller outlet diameter �1, the emptying time
remains shorter than the one of the nonrotating case even at the highest rotating velocity tested in our
experimental setup. However, for the larger section �2, the discharge time exceeds that of the nonro-
tating case once � exceeds 8 rpm. Contrary to a common assumption, our results reveal that rotating
the tank does not always result in faster emptying compared with the nonrotating case. Instead,
we identify an optimal tank rotating velocity �opt that maximizes the efficiency of the emptying
process.

To delve further, we analyze the behavior of the scaled water height H/H0 inside the container
as a function of the dimensionless time t/Te(0) [see Figs. 3(a) and 3(b) for sections �1 and �2,
respectively]. Different emptying trends related to different regimes (see Sec. IV for a detailed
description) are observed depending on the rotating velocity of the system.

At low rotating velocities (� � 1 rpm), the evolution of H/H0 follows a nearly linear trend
with time. This evolution is characteristic of a nonrotating regime in which bubbles periodically
form in the system, which we refer to as regime 1 or bubble regime (dotted lines). At higher rotating
velocities [�(�1) � 4 rpm and �(�2) � 5 rpm], while the duration of regime 1 becomes negligible
compared with the emptying time, two other regimes are observed, namely, the vortical jet regime
and the bathtub vortex regime, labeled as regimes 2 (dashed lines) and 3 (solid lines), respectively. In
regime 2, the height decreases at a faster rate compared with regime 1, following here also a nearly
linear trend. In regime 3, a nonlinear decrease in height is observed, characteristic of the discharge
behavior in rotating free-surface tanks (see Sec. IV for further explanations). As can be seen in
Fig. 3, this nonlinear decay can become less effective than the linear decay of regime 1, which
explains why the emptying becomes less effective when � is too large and regime 3 dominates. At
intermediate rotating velocities (2 � �(�1) � 3 rpm and 2 � �(�2) � 4 rpm), all three regimes
are observed sequentially. The relative duration of each regime during an experiment influence the
overall effectiveness of the drainage process.
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(a) (b)

FIG. 3. (a) Time evolution of H/H0 for �1 and (b) for �2 at 0 � � � 10 rpm. Dotted lines indicate the
presence of regime 1, dashed lines indicate the presence of regime 2, and solid lines indicate the presence of
regime 3. The time t is scaled by the emptying time Te(0) when � = 0 rpm. For high rotation speeds, regime
1 only lasts between 5% and 6% of the drainage time.

IV. CHARACTERIZATION OF THE THREE DIFFERENT EMPTYING REGIMES

The bubble regime (regime 1) represents the discharge regime observed in the absence of
rotation [see Fig. 4(a) at t/Te(�) = 0.01]. It is characterized by the cyclic occurrence of air bubbles
at the outlet of the tank, which rise by buoyancy up to the top of the tank. Air is therefore
gradually replacing water in the upper portion of the tank, with a decreasing frequency over time,
as shown in Figs. 1(b) and 5. The analytical expression proposed by Clanet and Searby [13] for
the period of bubble formation is applicable to containers whose aspect ratios allow the inertia
term (2R/�)4vQ

2 to be neglected. This does not apply to our experiments [13]. Figure 5 shows the
scaled bubble periods τ/Te(0) measured for different rotating velocities. The period of the glug-glug
is clearly related to H/H0, whereas it depends only slightly on � over the explored range of �

and �. The bubble regime is characterized by an oscillating draining velocity whose mean value
remains constant over time and relatively small compared with the other two regimes, as shown in
Fig. 4(b). The emptying velocity in this regime can be modeled using Whalley’s approach [20] as
vB = C2

√
g�(ρl − ρg)/(ρ1/4

g + ρ
1/4
l )2, with C ≈ 0.916 as proposed by Kordestani and Kubie [10].

The draining velocity obtained from this model (vB = 0.261 m s−1) is in relatively good agreement
with the experimentally measured mean velocity (vQB = 0.276 m s−1) for the case � = 0 rpm and
� = �2 (�1 is not in the range of previous studies). Intermittent bursts can be observed in Fig. 4(b)
(black arrows), see also the Supplemental Material [52], when regime 2 transiently settles in the
bubble regime, for � > 0.

Regime 2 is characterized by a highly unsteady vortical jet flow. This regime occurs when
vorticity concentrates along the discharge axis aligned with Oz. However, the generated vortex is
not strong enough to maintain a continuous gaseous core from the outlet to the free surface. Instead,
it takes the form of an “air jet,” as shown in Fig. 4(a) at t/Te(�) = 0.53. In this regime, the fluid
continuously flows through the discharge section. The pressure in the air volume is lower than the
atmospheric pressure Pa, but larger than in regime 1 (see Sec. V for further explanations). This
difference in pressure explains why regime 2 is more effective than regime 1 in draining, as seen in
Fig. 4(b), where the draining velocity is the largest and exhibits only slight variations with H/H0.

Regime 3 is similar to the bathtub vortex regime observed in rotating free-surface tanks
[30,31,34–46] in terms of interface deformation [see Fig. 4(a) at t/Te(�) = 0.68], as well as
draining velocity. In Fig. 6(a), we compared experiments with and without a lid for a rotation rate
of � = 5 rpm. The red curve, representing the standard case with a lid, matches perfectly with the
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(a) (b)

FIG. 4. (a) Sequence of photographs for the case � = 2 rpm and �1. The first bubble appears after
t/Te(�) = 0.01 with a normalized water height H̃ = H̃B (out of scale). Regime 2 stabilizes at t/Te(�) = 0.53,
with a normalized water height H̃ = H̃J . Regime 3 stabilizes at t/Te(�) = 0.68, with a normalized water
height H̃ = H̃BV . Images capturing the interfacial aspect during the transitions between regimes 1 and 2 and
between regimes 2 and 3 were taken at t/Te(�) = 0.02 and t/Te(�) = 0.66, respectively. At t/Te(�) = 0.04
(red arrow), the first appearance of the unstable vortical jet (regime 2) is observed, as also shown in panel
(b). (b) Draining velocity vQ normalized by the mean velocity of the case without rotation vQB, plotted for
� = 0 rpm and � = 2 rpm with section �1 as a function of H/H0. The boundaries of the different regimes
H̃ = H̃B, H̃J , H̃BV for the � = 2 rpm case are represented respectively by dotted lines, dotted-dashed lines
and dashed lines, matching the color scheme used in panel (a). Arrows on the velocity curve indicate the
appearances of the jet, which coincide with the measured velocity peaks. The first arrow in red corresponds to
the photographic image marked by a red arrow in panel (a).

gray dashed curve of the lidless case from a critical height H/H0 = 0.46, which is lower than the
height at which regime 3 establishes (H/H0 = 0.6). The vortex regimes in both configurations are
thus identical once the vortex is well established. Furthermore, the draining velocity vQ normalized
by the classical Torricelli velocity vT = β

√
2gH is shown in Figs. 6(b) and 6(c) as a function of the

water depth H/H0 at � = 7 rpm for both sections. The dashed lines vQ/vT = 1 serve as a reference
to illustrate Torricelli’s law. It can be observed that the measured draining velocity is significantly
lower than the classical Torricelli case. Following Caquas et al. [5], the draining velocity vBV in the
presence of a bathtub vortex can be predicted (red data points in Fig. 6) based on the shape of the
free surface as

vBV (t ) = β

√
4g

(�/2)2

∫ �/2

0
h(r, t )rdr, (1)

with a correction coefficient β ≈ 0.6, consistent with values reported in the literature for a circular
hole [2,13]. This agreement demonstrates that once the vortex is formed, the draining velocity vQ,
is no longer influenced by the presence of the tank lid nor subject to hysteresis effects. Thus, in
this regime, the top and bottom of the tank are continuously connected through the gaseous core.
Consequently, air pressure above the water volume is Pa. In this regime, the larger the rotating
velocity of the platform, the faster the draining velocity decreases as the water level decreases. This
can be attributed to the expansion of the gaseous core with increasing rotation, resulting in a reduced
average water height above the outlet section and a reduced wet section at the outlet. In contrast, in
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FIG. 5. Period of bubble appearance τ scaled by the emptying time without rotation Te(0) for different
rotating velocities as a function of the scaled water height H/H0 for section �1.

(a)

(b) (c)

FIG. 6. (a) Draining velocity vQ scaled by vQB as a function of the instantaneous water height H scaled by
its initial value H0 for the case �1 at � = 5 rpm. The red curve represents the standard experiment with the
airtight lid, while the gray dotted line represents the case without lid (i.e., at atmospheric pressure throughout
the experiment). (b), (c) Draining velocity vQ scaled by vT as a function of the instantaneous water height H
scaled by its initial value H0 for (b) �1 and � = 7 rpm, and (c) �2 and � = 7 rpm. The solid black lines
correspond to mass measurements and the red points to Eq. (1) with interface shape measurements. The black
dashed line shows the reference value vQ = vT . Here, the estimated value of the corrected coefficient β is
approximately 0.6.
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(a)

(b) (c)

FIG. 7. (a) Diagram showing the occurrence of the different regimes as a function of the mean scaled
regime time TR/Te(�) and the rotating velocity � for section �1. Regime 1 appears in red, regime 2 in green
and regime 3 in blue. (b) Normalized height HR/H0 at which each regime appears plotted against 2

√
�ν/�g for

the two sections. The appearance of regime 2 (HR = HJ ) is indicated in green, while the appearance of regime
3 (HR = HBV ) is indicated in blue. All experiments for which the onset of regime 2 differ are represented. The
black dashed lines are included as a visual guide. (c) Scaled draining velocities vQ/vT at the threshold value
for � = 4 rpm and section �1. For this threshold value of �, the results of three emptying, in the same initial
configuration, are shown, and show different trends. The onset of the jet regime is marked with arrows, and the
transition to the vortex regime is indicated by diamonds. The colors of the symbols correspond to those of the
curves. The inset shows the schematic diagram of the experiment.

regime 2, the radius of the gaseous core remains small and relatively constant throughout the entire
regime. Ultimately, regime 3 becomes even less effective than regime 1.

V. DYNAMICS OF TRANSITIONS

As mentioned in Sec. III, the efficiency of the draining process, as a function of the rotating
velocity, is highly dependent on the relative duration of each of the three emptying regimes described
in the previous section. The transition between the different regimes is not straightforward either,
particularly given the unstable nature of regime 2. To describe the transitions between each of
the three draining regimes, we consider the case of Fig. 4 where � = 2 rpm and � = �1. The
visualization of transitions between different regimes [see Fig. 4(a)] is also indicated in Fig. 4(b),
corresponding to the changes in slope of the velocity curve.

At t/Te(�) = 0, the draining is initiated at the pressure P of the air volume Vg located in the
upper zone of the tank [see inset of Fig. 7(c)], which is initially equal to the atmospheric pressure Pa.
The fluid flows until the pressure P reaches the critical value Pc = Pa − ρl gH . Once this pressure
is reached, the external air at the outlet pushes the water, forming a bubble. This bubble grows,
expanding both the volume of water Vl (Vl being the volume of water including bubbles or air jet)
and the pressure P of the air volume Vg. At t/Te(�) = 0.01, the bubble pinches off and detaches
from the outlet. The tank drains and P decreases again. When the pressure P reaches the new Pc(H ),
a second bubble forms at the outlet. Eventually, by repeating the aforementioned mechanism [17],
bubbles form periodically in the tank. For larger outlet diameters (such as �2), counter-currents of
water can occur when a bubble is formed [22].

As the container drains, vorticity concentrates and the pressure decreases along the Oz axis. From
the start of the draining [see Fig. 4(a) at t/Te(�) = 0.02], the resulting stretching can cause the rising
bubbles to elongate. Once the stretching reaches a critical intensity, it can lead to the formation of an
air jet, which, due to the inherent instability of the vortex, can subsequently disappear [see Fig. 4(a)
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at t/Te(�) = 0.04]. Before reaching the surface, the jet breaks up into bubbles at a level zmax < H
[see inset of Fig. 7(c)]. The pressure P(t ) at point M, which belongs to the air core at height zmax,
must satisfy Pa = P(t ) + ρl g[H (t ) − zmax], where zmax increases as the vortex becomes stronger.

When HB � H < HJ [see Fig. 4(b)], regime 1 dominates, the vortex is weak, the height zmax is
small, and the pressure P approaches the previous critical value Pc. The air jet can even disappear at
the critical value P(t ) = Pc. In this case, there is no more outflow, which breaks the structure of the
vortex, and regime 1 reappears. Generally, the intermittent bursts of regime 2 are brief (t ≈ 4 s) and
only represents a small fraction of regime 1. It can be observed in Fig. 4(b) where peaks of draining
velocity correspond to the appearance of the intermittent air jet.

When HJ < H < HBV [see Fig. 4(b)], regime 2 stabilizes and the air jet reaches a height zmax

close to the interface. The airflow brought by the jet is sufficient for the pressure P to increase. When
the pressure P(t ) approaches Pa, the transition from regime 2 to regime 3 initiates. Simultaneously,
the upper interface undergoes deformation in an attempt to match the shape of the air jet. This
transition can occur continuously, as showed in the case of � = 2 rpm presented in Fig. 4(a)
at t/Te(�) = 0.66. In this scenario, the interface deformation exhibits a hybrid form, combining
characteristics of both an air jet and the typical deformation observed in a bathtub vortex interface.
However, for higher rotating velocities (see the Supplemental Material [53]), the transition can
become oscillatory. In such cases, the air jet can intermittently disappear when the pressure P(t ) is
high, while a distinctive bathtub vortex deformation appears at the upper air-water interface. If the
vortex intensity is insufficient for the interface deformation to rapidly extend into the outlet section,
the pressure P(t ) decreases once again, causing the jet to reappear. The interface deformation then
oscillates between these two states in a pulsating cycle until the pressure equilibrates at P(t ) = Pa.

The transitions between the successive regimes, and therefore the time spent in each of them,
directly depend on the vortex intensity, and thus on �. Figure 7(a) shows the diagram of occurrences
of the different regimes. The duration of regime 1 decreases with increasing �. For high rotation
velocities, the vortex establishes itself rapidly and remains stable, causing regime 1 to last only a
few seconds. Consequently, its influence on the emptying process is negligible. On the contrary,
regime 3 behaves in the opposite manner. Its duration decreases as � decreases, and for low values
of �, regime 3 does not occur at all.

The swirl ratio S = ��/U [31], commonly used in tornado research to analyze their intensity
and stability [54], is defined locally at the discharge section. Here, U = 2Q/πδ� represents the
characteristic radial velocity in the Ekman layer at the bottom of the tank [43] during the early stages
of the emptying process. During this stage, Q is approximately equal to

√
�g(�/2)2, resulting in

the simplification of the swirl ratio to S = 2
√

�ν/�g. Figure 7(b) illustrates the heights at which
the jet regime HJ (in green) and the bathtub vortex regime HBV (in blue) occur as a function of
2
√

�ν/�g. The evolution of HBV exhibits a seemingly linear increase with the swirl ratio within the
range of tested � values (it is expected that the ratio H/H0 approaches 1 for higher � values). The
occurrence of the stable vortex regime is therefore clearly correlated to the initial swirl ratio. This
transition point between regime 2 and 3 is also reproducible [see Figs. 7(b) and 7(c)].

The establishment of regime 2 requires a vortex and therefore a sufficient �, but the vortex must
not be too intense in order to delay the transition to regime 3. Thus, the fraction of time spent
in regime 2 first increases with �, becomes maximal for an optimal rotating velocity �J which
depends on � and decreases for larger values of �.

At the largest �, the water level HJ at which the transition occurs between regime 1 and 2 is
repeatable and appears to be constant [see Fig. 7(b)]. The value of the plateau varies very slightly
with the diameter �, with HJ (�1)/H0 = 0.96 ± 0.01 and HJ (�2)/H0 = 0.92 ± 0.01. However, this
is no longer true for intermediate and small �. The values of HJ become random. Figure 7(c) shows
the draining velocity for several experiments with the same settings (� = 4 rpm and �1). The red
and purple curves exhibit a behavior typical at large �, with mainly regime 2 and 3 only present.
The yellow curve is representative of a case where all three regimes are successively present, as
is usually observed at intermediate �. Across all experiments conducted at � = 4 and 5 rpm with
diameter �1, we observed that approximately half of the curves followed either an intermediate
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rotation trend or a high rotation trend. This phenomenon was not observed for diameter �2, but
the few experiments carried out (4 at � = 4 rpm, 3 at � = 5) do not allow us to draw any general
conclusions about this case.

Similarly to the jet intermittence in regime 1, the unpredictability of the settling of regime 2
underlines the instability of the vortex in regime 2. This explains why the fastest emptying is not
always obtained for a repeatable value of �.

VI. CONCLUSIONS

Our study has demonstrated that the draining of a closed vessel in a rotating frame is far from
being trivial, with three successive regimes identified whose occurrence and duration depend on
�, H , and �. We found that rotation is efficient to empty the tank only when an optimal rotating
velocity �opt is reached. In our range of studied diameters and rotations, we observed that the
draining time increases almost linearly with the parameter �(�/2)2/ν once the critical value �opt

is reached. By studying the critical heights at which the regimes occur, we noticed that the critical
height for the occurrence of regime 2 is not well defined and nonreproducible at low values of �, but
becomes reproducible and constant beyond �opt. As for the height HBV , it can be expressed in terms
of the swirl ratio S = 2

√
�ν/g� and scales almost linearly over the range of explored � values.

Although idealized, our experiment provides a better understanding of the emptying of a rotating
water bottle. The chosen ratio H0/R in our experiment is approximately three times smaller than that
of a typical water bottle, while H0 is of the same order of magnitude. Variations in this aspect ratio
should not change the physics of the emptying process. It is worth noting that while the water height
does not affect the velocity during the bubble regime, the draining velocity will be larger for a larger
height as soon as the vortex is present. Therefore, for an equivalent water volume, a higher H0/R
ratio leads to a shorter emptying time. The choice of a larger radius R allows for a slower emptying
rate and longer visualization of the different regimes compared with a typical water bottle. The ratio
�/R also is chosen to be very small in our case to remain within the typical approximation used for
the Torricelli’s law. For larger aspect ratios, as in the case of a typical water bottle (�/R ≈ 0.2), we
expect a modification in the draining velocity expressed by Eq. (1), as the interface velocity would
no longer be negligible in the balance. However, for aspect ratios close to those of a bottle, the three
regimes mentioned in this article can be observed. Only the duration of each regime is affected.
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