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Fluctuation-induced transitions in anisotropic two-dimensional turbulence
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Two-dimensional (2D) turbulence features an inverse energy cascade that produces
large-scale flow structures such as large-scale vortices (LSVs) and unidirectional jets. We
investigate the dynamics of such large-scale structures using extensive direct numerical
simulations (DNS) of stochastically forced, viscously damped 2D turbulence within a
periodic rectangular (Cartesian) domain [0, Lx] × [0, Ly]. LSVs form and dominate the
system when the domain aspect ratio δ = Lx/Ly ≈ 1, while unidirectional jets predominate
at δ � 1.1. At intermediate values of δ, both structures are metastable, and fluctuation-
induced transitions between LSVs and jets are observed. Based on large-scale energy
balance in the condensate, we derive and verify predictions for the dependence of the
total kinetic energy and the flow polarity on the nondimensional control parameters. We
further collect detailed statistics on the lifetimes of LSVs and jets from DNS runs of up to
10 738 viscous diffusive time units in length. The distribution of the lifetimes is consistent
with that of a memoryless Poisson process. The data are compatible with an exponential
dependence of the mean lifetime on the aspect ratio δ. In addition, the mean lifetimes
depend sensitively on the Reynolds number Re: As Re increases, the energy gap between
LSV (lower energy) and jet states (higher energy) arising from anisotropic dissipation in-
creases, leading to an increase in lifetimes that is approximately exponential in Re for both
LSVs and jets. Similarly, as the ratio of the forcing scale to the domain size increases, the
transition rates increase sharply, confirming earlier findings. We investigate the transition
dynamics in terms of kinetic energy, flow polarity, modal amplitude, and 2D phase-space
diagrams, revealing that the transitions occur in two stages: In the initial stage, an efficient
redistribution of kinetic energy by nonlinear triadic interactions facilitates a rapid transition
from LSVs to jets and vice versa. In the second stage, the kinetic energy of the newly
formed structure slowly adjusts to its associated (higher or lower) equilibrium value on
a longer, viscous timescale, leading to a time delay that results in hysteretic transition
behavior. Fluctuation-induced transitions may also occur between different numbers of
jets. Our findings shed new light on the dynamics of coherent large-scale structures in
anisotropic turbulence.

DOI: 10.1103/PhysRevFluids.9.064605

I. INTRODUCTION

Turbulent flows are ubiquitous in nature. In planetary atmospheres and oceans, fluid motions are
often restricted to being quasi-two-dimensional due to geometric confinement, rapid rotation, and
stratification [1,2]. This provides a motivation for the study of highly idealized two-dimensional
(2D) turbulence [3]. A distinguishing feature of such 2D turbulence is the fact that it displays
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an inverse energy cascade [4], leading in finite domains to the formation of large-scale coherent
structures such as vortices and jets [5–7]. These flow structures, known as condensates by analogy
with Bose-Einstein condensates in a boson gas, were first observed in the pioneering experiments
of Sommeria [8] and in numerical simulations in a square periodic domain by Smith et al. [9]. In
physical space, condensates take different forms which resemble widely observed phenomena in
geophysical flows, including hurricane-like vortices and zonal jets. The formation of condensates
is not limited to inertial 2D turbulence, as this process has been observed in models of living
fluids [10–12] and is also present in various highly anisotropic, three-dimensional (3D) flows
in the presence of rotation, density stratification, thin-layer geometry, and other effects [13–21].
However, despite the prevalence of turbulent condensation phenomena across such a range of
physical systems, the formation and dynamics of the associated turbulent large-scale flow structures
remain incompletely understood.

In Ref. [22], the authors studied stochastically forced 2D turbulence within a rectangular domain
[0, Lx] × [0, Ly], with an aspect ratio Lx/Ly ≡ δ, subject to periodic boundary conditions. The aspect
ratio was varied, and two types of flow structures were observed. In a square domain, a pair of
counter-rotating large-scale vortices (LSVs) forms, whose properties have been extensively studied
in the past [6,23–25]. When the domain is elongated in one direction, jets oriented parallel to the
short side of the domain emerge instead. The transition between these two disparate regimes is
of particular interest. As the aspect ratio increases from δ = 1, the system traverses an interval
of bistability, where the two different flow structures persist metastably (with a finite lifetime) until
they are disrupted by random, fluctuation-induced transitions towards the competing structure. It has
been confirmed theoretically, using tools from statistical mechanics [26], that coherent structures in
the inviscid limit of the 2D Navier-Stokes equation (i.e., the 2D Euler equation) can indeed take
the form of LSVs or jets. Statistical equilibria of 2D flows were also recently revisited in Ref. [27].
Similar LSV and jet solutions were furthermore observed in anisotropically forced, direct statistical
simulations of planar 2D turbulence in Ref. [28], and in solutions of the Euler equation on a sphere
[29,30], although in the latter case ergodicity breaking may prevent the formation of a condensate
in the absence of forcing [31,32]. Moreover, LSVs and jets were reported in rotating convection
within anisotropic domains [17,18] and, more recently, in convection with misaligned gravity and
rotation axes [33–36]. Dipoles and unidirectional jets were also found to play an important role in
the inverse cascade of decaying 2D turbulence prior to condensation [37].

Bistability between qualitatively distinct metastable turbulent flow states (i.e., states whose
lifetime is finite in the presence of fluctuations) is observed in a wide variety of physical systems,
including body-forced 3D turbulence within thin layers [38,39] and rotating turbulence [40], where,
in both cases, LSVs and small-scale 3D turbulence coexist over a range of the control parameter. A
similar type of bistability was identified in rotating Rayleigh-Bénard convection [41,42]. Bistability
was also found between states with and without super-rotation in a model of atmospheric dynamics
[43] and in experiments on a wide range of turbulent flows [44–46]. However, when observation
times are limited, multistability may not manifest itself through spontaneous transitions even in
the presence of fluctuations, provided the latter are appropriately small. For instance, in [41], no
spontaneous transitions between 3D turbulence and LSVs were observed in the range of bistability
in the simulations, despite the presence of turbulent fluctuations (whose amplitude was small
compared to the energy gap between the two states). Similarly, while pronounced multistability
was identified in instability-driven 2D turbulence between LSVs, vortex crystals, and mixtures of
these [47,48], no spontaneous transitions were observed between these states, although metastable
vortex crystals have been observed in body-forced rotating 3D turbulence [49]. Another example
of bistability and rare transitions is found in barotropic (i.e., 2D) turbulence on the β plane (an
idealized model that includes a latitudinally varying Coriolis force, featuring zonal jets [50]), where
the number of zonal jets can change randomly at fixed parameters [51–53]. Random transitions
were also observed in 2D horizontally periodic convection with stress-free boundaries between
convection rolls and so-called windy states characterized by horizontal flow with strong vertical
shear and suppressed convection [54,55]. Bistability and spontaneous transitions are also observed
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in the paths of the Gulf Stream and the Kuroshio current [56], as well as in the thermohaline
circulation [57]. More generally, multistability is common in the climate system [58].

An important class of random transitions in turbulent flows involves spontaneous reversals. Such
reversals are observed, for instance, in the polarity of the magnetic field of the Earth [59] (where
reversals occur randomly) and of the Sun [60] (where they are part of the more regular 22-year
solar cycle), a phenomenon reproduced qualitatively in laboratory dynamo experiments [61] and
subsequent theoretical developments, cf. Ref. [62]. An additional example of a reversing flow is
found at high altitudes in the Earth’s atmosphere, where the quasibiennial oscillation consists in
reversals of the mean zonal wind approximately every 2 years [63], a phenomenon that has also
been studied using laboratory analogs [64,65]. In fact, reversals are common in convectively driven
flows and have been the subject of detailed studies [66–72]. In addition, random reversals have also
been observed and studied in confined 2D or quasi-2D turbulence, both in the laboratory [8,73–75]
and in numerical as well as theoretical work [76–79].

Beyond the specific case of turbulent flows, the study of fluctuation-induced transitions in random
processes has a long history [80]. A problem of particular importance concerning metastable states
such as those discussed above is that of computing first-passage times, e.g., the first time at which
a certain random process crosses a given threshold [81]. Problems of this type arise in a variety
of areas from finance [82], chemistry [83], and biology [84,85] to fluid flows [86]. The classic
first-passage problem concerns escape from a potential well due to small-amplitude noise, for
which the mean first-passage time is given by the Eyring-Kramers formula [87–89], which indicates
that the mean first-passage time depends exponentially on the depth of the potential well. In the
context of chemical kinetics, this result is associated with the name of Arrhenius [90–92]. A similar
exponential dependence of the mean lifetime of metastable zonal jets on a (frictional) control
parameter was recently identified in barotropic turbulence on the β plane by Bouchet et al. [51],
where the authors state that their results provide the first example of such an Arrhenius law in
a turbulent flow. In general, the lifetimes of metastable states in turbulence in different systems
have been found to depend on physical control parameters in a variety of ways, depending on the
system under consideration. In body-forced thin-layer turbulence, the average lifetime of LSVs
and 3D turbulence was found to change faster than exponentially with the nondimensional layer
height [39] and appears to diverge at a threshold height [38]. By contrast, in windy convection, the
mean lifetime of metastable states was recently reported to exhibit a power-law dependence on the
Rayleigh number with an exponent close to 4 [55].

Another important problem involving a highly nontrivial dependence of characteristic timescales
on the physical control parameter is the transition to turbulence in pipe flow [93]. There, localized
turbulent puffs systematically meet one of two fates: They can randomly split or decay, with each
process having an associated timescale that follows a double-exponential function of the Reynolds
number. Importantly, due to limitations of the available data, early works had misidentified this
dependence as exponential, i.e., Arrhenius-like [94], but more detailed measurements subsequently
established the superexponential dependence as correct [95], supported by theoretical arguments
based on the insight that puff decay in pipe flow is triggered when the pointwise maximum turbulent
intensity drops below some threshold [96]. The intersection of the two double-exponential curves
representing the timescales of turbulent puff decay and splitting, respectively, defines the critical
Reynolds number for the transition to turbulence in a pipe. Similar superexponential dependence of
turbulence lifetimes has also been reported for other transitional shear flows [97–100], disproving
earlier claims of diverging lifetimes at a critical Reynolds number.

Against the backdrop of this rich literature on metastable states in turbulence and beyond, the
present study focuses on fluctuation-induced transitions in stochastically forced 2D turbulence
within anisotropic domains, arguably one of the simplest examples of a bistable turbulent flow. In
Ref. [22], which provides a major motivation for the work presented here, only a small number of
transition events between LSVs and jets could be observed due to the relatively limited simulation
time. For this reason, the statistical properties of this system have not yet been comprehensively
analyzed. In particular, the distribution of first-passage times between LSVs and jets, and its
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FIG. 1. An illustration of the domain with side lengths Lx and Ly (Lx > Ly), and random forcing acting on
the length scale �.

dependence on the physical control parameters of the system, are unknown, as are the phase-space
paths traversed by the system during transitions. Here we go significantly beyond the scope of
Ref. [22] by conducting direct numerical simulations (DNS) over a very long time to obtain statisti-
cal information on the condensate states and the transition events and analyze the impact of the three
nondimensional control parameters (domain aspect ratio, Reynolds number, and nondimensional
forcing scale).

The remainder of this paper is structured as follows. In Sec. II, we describe our simulation
setup and introduce the relevant nondimensional control parameters. Next, in Sec. III, we describe
the large-scale structures arising in our system, introduce the quantitative measures we use to
identify them, and formulate a simple model based on large-scale energy balance. In Sec. IV,
we present the phenomenology of the random transitions between LSVs and jets and discuss
the impact of all nondimensional control parameters on the transitions. In Sec. V, we examine
the phase-space trajectories traversed by the system during transitions, while Sec. VI examines
spontaneous transitions between different numbers of jets. The paper concludes in Sec. VII with a
discussion of our results and outlines remaining open questions.

II. SIMULATION SETUP

Equations and important quantities

We study incompressible flow of a constant density fluid within a planar rectangular domain
[0, Lx] × [0, Ly], illustrated in Fig. 1. The fluid motion is driven by a stochastic force, and the domain
is subject to periodic boundary conditions. The flow obeys the 2D Navier-Stokes equation,

∂t u + u · ∇u = −(1/ρ)∇p + ν∇2u + f, ∇ · u = 0, (1)

where u = ux̂ + vŷ is the 2D velocity field, ρ is the constant density, p is the pressure, ν is the
kinematic viscosity and f is the driving force. The force f is chosen to have zero spatial mean, to be
random and white in time, acting within an isotropic forcing band centered on a typical forcing scale
� (defined as the arithmetic mean of the largest and smallest length scales in the forcing band) and
injecting energy at a rate ε. In Appendix A, we describe in detail how the width of the (narrow) forc-
ing band is selected. The forcing spectrum is flat over the forcing band and the randomness consists
in uniformly distributed phases of the complex Fourier modes. To simplify Eq. (1), we introduce the
stream function ψ (x, y, t ) such that u = (∂yψ,−∂xψ ), satisfying the incompressibility constraint
∇ · u = 0. We note that in our setup, following Ref. [22], the only mechanism for saturation of
large-scale condensates in Eq. (1) is viscous dissipation, which decreases in strength as the length
scale increases. Many studies of 2D turbulence therefore include additional saturation mechanisms,
such as Rayleigh friction [3,7]. In the interest of simplicity we retain here only viscous dissipation
in order to reduce the number of model parameters. It is known that the condensate properties,
including the qualitative spatial profile of the large-scale flow, depend explicitly on the choice of
saturation mechanism in 2D turbulence (specifically, whether the condensate saturates by viscosity
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or Rayleigh friction [101,102]). For this reason the dynamics of large-scale structures described
below are not expected to follow the results in Ref. [7], where Rayleigh friction is considered.

The system is characterized by three a priori nondimensional control parameters: the aspect
ratio δ, the ratio �̃ between forcing scale and domain size (referred to in the following as the
nondimensional forcing scale), and the forcing-scale Reynolds number Re, defined as

δ ≡ Lx/Ly, �̃ ≡ �/Ly, Re ≡ ε1/3�4/3/ν, (2)

respectively. The average kinetic energy density of the flow is given by

E ≡ 1
2 〈|u|2〉 = 1

2 (〈u2〉 + 〈v2〉), (3)

where 〈·〉 is the domain average. A typical velocity scale dictated by the forcing is u f ≡ (ε�)1/3,
giving the forcing energy scale

E f ≡ 1
2 (ε�)2/3. (4)

In addition, an important timescale characterizing the evolution of the system is the time it takes for
momentum to diffuse across the entire domain (for specificity, in the y direction)

tν = L2
y

4π2ν
. (5)

We emphasize that tν is a natural choice of timescale for analyzing the long-term behavior of this
system. In the presence of a strong condensate, the shortest characteristic time in the system is the
large-scale turnover time tls = Ly/Uls, where Uls is the large-scale flow velocity in the condensate.
From large-scale energy balance, it follows that E ≈ 1

2U 2
ls ∝ E f Re/�̃2, cf. Eq. (15). This implies

that

tls ∝ (�2/ε)1/3︸ ︷︷ ︸
≡t f

1√
Re

, (6)

in terms of the timescale of enstrophy injection by the forcing t f = (�2/ε)1/3, which is the second
important timescale in the problem, and which also coincides with the eddy turnover time in the
forward enstrophy cascade. The slowest a priori characteristic timescale in the system is tν ∝ t f Re.
In the limit of large Re, these timescales are well separated,

tls 	 t f 	 tν . (7)

Hence, tν is the key timescale for analyzing the long-time evolution of the system.
In the following, we denote the nondimensional time measured in viscous units by t̃ = t/tν and

the nondimensional energy measured in units of the forcing energy scale by Ẽ = E/E f . We integrate
Eq. (1) subject to periodic boundary conditions using the Fourier pseudospectral solver GHOST
[103], where the 2/3 rule is adopted for dealiasing and a semi-implicit fourth-order Runge-Kutta
scheme is used for time integration. All simulations are initialized with small amplitude random
initial conditions.

Table I shows a summary of all simulations performed in this study. All the runs were performed
with Lx � Ly, such that the aspect ratio δ � 1. The runs are grouped into several sets: In sets D1 and
D2, the aspect ratio δ is varied over the relatively narrow region of bistability between LSVs and
jets 1 � δ � 1.1 for fixed Re = 459 or Re = 344, respectively, and fixed nondimensional forcing
scale. In set R the Reynolds number is varied between Re = 275 and Re = 688, while keeping δ and
�̃ fixed, and in set L the nondimensional forcing scale is varied between �̃ = 0.173 and �̃ = 0.49.
Run T exhibits tristability between jets in the x or y direction and LSVs in a square domain for �̃ =
1/

√
5, while run J shows a transition between distinct numbers of jets in a highly elongated domain

with δ > 3. All runs analyzed here are long compared to the viscous timescale tν , with the shortest
runtime being 57 tν and the longest runtime being 10738 tν . We stress that the longest runs reported
here are more than two orders of magnitude longer than the simulations reported in Ref. [22], which
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TABLE I. Summary of the runs described in this study. Columns show run label, Reynolds number, the
number of grid points in the x and y directions, the aspect ratio δ, the nondimensional forcing scale �̃, the
number of runs performed within each set of simulations, and the maximum runtime within that set.

Maximum
Set Re nx × ny δ �̃ No. runs runtime in tν

D1 459 256 × 256 1–1.1 0.34 16 2800
D2 344 128 × 128 1.045–1.1 0.34 12 10738
R 275–688 128 × 128, 256 × 256 1.07 0.34 7 7219
L 69 256 × 256 1.06 0.173–0.491 8 690
T 550 256 × 256 1 = 1/

√
5 (≈0.45) 1 230

J 55 128 × 64 3.1125 0.53 1 57

only reached � 50 tν . In order to be able to integrate for such long times, a requirement of the very
long characteristic timescales in the problem, we adopt moderate spatial resolutions of 128 × 128
or 256 × 256 grid points. The resolution is held fixed for any given Reynolds number as we vary
δ, i.e., we consider grids with slightly differing spacing in the x and y directions in the interest of
efficiency gains in the Fourier transforms.

We ensure that all runs reported here are well resolved by verifying that the enstrophy dissipation
spectrum Dν (k) ≡ 2νk4E (k) decays toward the truncation scale, where E (k) is the energy spectrum,
binned in wave-number intervals of 2π/Lx, namely

E (k) = 1

2

∑
p

k−π/Lx�|p|<k+π/Lx

|û(p)|2, (8)

where the hat indicates a Fourier transform. The energy spectrum and the enstrophy dissipation
spectrum are shown in Fig. 2 for a sample run from set D1. In Appendix B, we describe a remapping
of the above setup to the square domain, which reveals effective anisotropic diffusion and forcing.
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FIG. 2. Log-log plots of (a) energy spectrum and (b) enstrophy dissipation spectrum in the LSV state (blue
line) and in the jet state (orange line). Gray vertical shaded region indicates the forcing region. Blue and orange
shaded regions indicate one standard deviation (std) about the mean spectrum computed from 310 outputs in
the statistically stationary state for the LSV state, and 458 outputs for the jet state. Data shown were obtained
at δ = 1.07, Re = 459, �̃ = 0.34 (set D1). The large-scale maximum in panel (a) reveals the presence of the
condensate (whose amplitude is slightly larger in the jet state than in the LSV state), while panel (b) highlights
the well-resolvedness of our simulations by the fact that the enstrophy dissipation spectrum decays towards the
grid scale. Both panels show that at scales intermediate between the forcing scale and the size of the domain,
the LSV state is characterized by more energetic motions than the jet state.
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FIG. 3. Large-scale structures from a run from set D1 in a domain with aspect ratio δ = 1.07 at Re = 459,
�̃ = 0.34 (resolution nx = ny = 256 grid points) at two distinct times t = t1, t = t2 from a long simulation,
visualized via the stream function ψ (x, y) (top row) and vorticity ω(x, y) (bottom row). Left column: Pair of
LSVs present at t = t1. Right column: Unidirectional jets present at t = t2.

Similar features are also found in the barotropic vorticity equation for quasigeostrophic convection
on a tilted f plane characterized by misaligned rotation and gravity axes [35,36], where transitions
between LSVs and jets were observed at finite inclination angles, not unlike those which we explore
further below. We stress that in Refs. [35,36] the anisotropy is not geometrical but rather derives
from the misalignment between gravity and the rotation axis.

III. BISTABLE DYNAMICS AND LARGE-SCALE STRUCTURES

A. Flow structures and proxies for their identification

Energy injected by the random force f in the forcing band centered on the scale � < Ly � Lx is
transferred via the inverse cascade to larger scales. The viscous dissipation at large scales is weaker
than at small scales for a given velocity amplitude, allowing the energy to accumulate at the scale
of the domain. As the resulting condensate grows in amplitude, the weakness of large-scale viscous
dissipation is compensated by increased velocity amplitude, thereby balancing the injection rate
of energy and producing a statistically steady state where the total energy in the system fluctuates
about a constant value.

In physical space, this condensation process results in the formation of large-scale coherent
structures, as shown in Fig. 3. Which type of structure forms depends on the geometry of the
domain, specifically on the aspect ratio δ. In a square domain (δ = 1), LSVs form, while in a highly
rectangular domain (δ 
 1), unidirectional jets oriented parallel to the short side of the domain
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FIG. 4. The evolution of the polarity m and the nondimensional energy Ẽ = E/Ef in units of the forcing
energy Ef , defined in Eqs. (3) and (9), during random, fluctuation-induced transitions between LSVs and jets.
The x axis shows nondimensional time measured in viscous units. Here δ = 1.065 and Re = 459 (set D1).
When jets are present, m ≈ 1 and Ẽ attains a high value. By contrast, when LSVs are present, m is closer to 0
and Ẽ falls to a lower value.

are found. Since the domain average of the vorticity ω = −∇2ψ , expressed in terms of the stream
function ψ , vanishes exactly due to the periodic boundary conditions, LSVs and jets always occur in
pairs. That is, the LSVs in the periodic domain always appear as a pair of counter-rotating vortices,
while jet states invariably consist of an even number of parallel bands with velocity of alternating
sign.

We further note that in the infinite plane, Eq. (1) is invariant under arbitrary rotations, i.e., the
problem is isotropic. In the periodic square, by contrast, this symmetry is reduced to invariance
under rotations by 90◦. Hence, the set of solutions in the square domain is also invariant under
this transformation. This symmetry is broken when the domain becomes rectangular, which is key
for the transition from vortices (which are invariant under rotations by 90◦) and unidirectional jets
(which are not).

The acquisition of statistical data requires that we quantitatively distinguish between the two
large-scale structures. Thus we define the polarity m of the flow based on the difference in the
fraction of kinetic energy contained within the x and y components of the velocity,

m ≡ 〈v2〉 − 〈u2〉
〈u2〉 + 〈v2〉 , (9)

where 〈·〉 denotes the spatial average over the domain. When a pair of LSVs is present in the domain,
the kinetic energies in the x and y directions are approximately equal (〈v2〉 ≈ 〈u2〉), implying m ≈ 0.
When jets in the y direction are present, the flow is primarily oriented along the y direction (〈v2〉 

〈u2〉), and m ≈ 1. Similarly, jets in the x direction correspond to m ≈ −1. The quantity m has been
used to distinguish jets and LSVs in rapidly rotating convection within anisotropic domains [17]
and an analogous measure was introduced in dynamo theory to distinguish between magnetic fields
with dipolar and quadrupolar symmetry [104].

Figure 4 shows a section of the time series of both the polarity m and the nondimensional kinetic
energy Ẽ = E/E f , as defined in Eqs. (3) and (9), at an aspect ratio of δ = 1.065 and moderate
Reynolds number Re = 459. The flow spontaneously transitions between unidirectional jets in the
y direction (parallel to the shorter side), characterized by m ≈ 1, and LSVs, where m is closer to
zero (m differs slightly from zero in the LSV state since vortices in the anisotropic domain are
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slightly elongated). The kinetic energy of the vortex state is seen to be lower than that of the jet, an
observation we discuss further below.

B. Energy balance of large-scale condensates

The parameter dependence of the polarity and the kinetic energy can be estimated by considering
the large-scale energy balance in the statistically steady state. For the analysis of the spectral energy
distribution, we introduce the combined kinetic energy in wave vectors ±ka,b = ±(aQx, bQy), with
Qx = 2π/Lx, Qy = 2π/Ly, denoted by

Ea,b ≡ 1
2 (|û(ka,b)|2 + |û(−ka,b)|2) = |û(ka,b)|2, (10)

where û(k) is the Fourier transform of the velocity with wave number k. Equation (10) takes into
account the fact that the velocity field is real, i.e., that û(k) = û∗(−k).

In a nearly square domain with δ � 1, the two smallest wave numbers in the system are
Qx and Qy, which are associated with the wave vectors k±1,0 = (±Qx, 0) and k0,±1 = (0,±Qy),
respectively. Energy is injected into the system at a rate ε within the forcing band centered on
the length scale � and transferred by the inverse cascade to the largest scales. A fraction α1,0 ε

of the injected energy is transferred to k±1,0 and another fraction α0,1 ε is transferred to k0,±1,
where α1,0 + α0,1 � 1 since a (small) part of the energy transferred upscale from the forcing will
be dissipated at scales other than the largest ones, and one expects α1,0 + α0,1 to increase with Re.
In steady state, the nonlinear transfer of energy from the forcing scales to the large-scale modes is
balanced by the rate of dissipation, formally

2νQ2
yE1,0

δ2
= α1,0ε, 2νQ2

yE0,1 = α0,1ε. (11)

For any given wave number k, we can directly measure the rate at which energy is received from
the nonlinear transfer rate of energy to this mode, namely

T (k) = −2 Re[û∗(k) · N̂(k)], (12)

where hats indicate Fourier transforms and N = (u · ∇)u is the advection term. We denote the com-
bined transfer rate to modes ±ka,b by Ta,b ≡ 2T (ka,b), where we used the property T (k) = T (−k).
Time-averaging this nonlinear transfer rate and adding up the contributions from ±ka,b yields α1,0 ε

and α0,1 ε, respectively,

αa,b ε = T (ka,b) + T (−ka,b), (13)

in terms of the time average (·) computed over several lifetimes of a given structure. The particular
cases (a, b) = (1, 0) and (a, b) = (0, 1) will be of relevance below.

Figure 5(a) shows the result of a direct measurement of α1,0 and α0,1 from set D1 of our DNS at
Re = 459 as a function of δ. In the jet state, one finds, as expected, that α0,1 	 1 while α1,0 is close
to 1: The inverse cascade exclusively feeds the mode k1,0 in the x direction. Moreover, in the LSV
state, one finds comparable values for α1,0 and α0,1, with equality α1,0 = α0,1 at δ = 1. As the aspect
ratio increases from δ = 1, the difference between α1,0 and α0,1 increases, with a decrease in α1,0

and an increase in α0,1. Despite some amount of dissipation at smaller scales, the kinetic energy is
clearly dominated by the large-scale contributions Els ≡ E1,0 + E0,1, with Els/E � 91% of the total
energy residing within the large-scale modes in the LSV state, as shown in Fig. 5(b). In the jet state,
this fraction increases to Els/E � 96% of the total energy contained within the largest-scale modes,
cf. Fig. 5(b).

Since the kinetic energy E is dominated by the largest scales in the presence of a strong
condensate, Eq. (11) implies an approximate expression,

E ≈ E1,0 + E0,1 = ε

2Q2
yν

(α1,0δ
2 + α0,1). (14)
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FIG. 5. (a) Fraction of the injected energy fluxes α1,0, α0,1 maintaining the large-scale energies E1,0 and
E0,1 against dissipation, cf. Eqs. (11), measured directly from the nonlinear transfer rate according to Eq. (13)
based on runs in set D1. As expected, in the LSV state, α1,0 = α0,1 at δ = 1, with a slight dominance for the
gravest (largest-scale) mode as δ increases, manifested by an increase in α1,0 and a decrease in α0,1. In the jet
state, α0,1 	 α1,0 as expected. A small fraction of kinetic energy is lost during the transfer from the forcing
scales to the largest scales, so that α1,0 < 1 in the jet state. (b) Fraction of total kinetic energy E residing in the
large-scale contributions Els = E1,0 + E0,1. Owing to the presence of the condensate, this fraction is close to
one: in the LSV state Els/E � 91% and in the jet state Els/E � 96%. Sufficient statistics in the jet state were
only obtained at aspect ratios δ � 1.06 and in the LSV state for aspect ratios δ � 1.07.

In nondimensional terms, this amounts to

Ẽ = E

E f
≈ Re

4π2�̃2
(α1,0δ

2 + α0,1), (15)

where the forcing energy scale E f is defined in Eq. (4). Similarly, from Eq. (11), we can also estimate
the polarity of the flow as

m ≈ E1,0 − E0,1

Els
= α1,0δ

2 − α0,1

α1,0δ2 + α0,1
. (16)

Thus in the jet state, where α0,1 	 1, the polarity m ≈ 1, while in the LSV state the polarity m is
expected to vanish at δ = 0 (since α1,0 ≈ α0,1) and to become positive at δ > 1, since α1,0 > α0,1 at
δ > 1 [cf. Fig. 5(a)]. Next, we present detailed measurements of Ẽ and m from DNS and confront
the above predictions with the DNS results.

C. Measurements of polarity m and energy ˜E from DNS

In all simulations, we record time series of polarity m and nondimensional energy Ẽ , and compile
histograms of these random variables in the turbulent flow. Figure 6 shows the probability densities
P(m) and P(Ẽ ) at δ = 1.065, Re = 459 (set D1). These are clearly bimodal, indicating bistability
between the jet and LSV states. This bimodality is observed over a range of δ for given Re and
�̃. The shape of the observed peaks is close to Gaussian (as verified by the fits shown in Fig. 6),
except for the peak associated with the jet state near m = 1, which is asymmetric due to the upper
bound m � 1. It is well known that near-Gaussian statistics are obeyed by many observables in
2D turbulence, cf. Refs. [105,106]. The energy gap between the jet and LSV states [Fig. 7(b)] is
a key feature of this system. In addition to anisotropic dissipation, a key factor contributing to the
presence of this gap is the fact that the total, time-averaged rate at which energy is received by the
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FIG. 6. Bimodal histograms of m and Ẽ in a simulation with Re = 459, �̃ = 0.34, and δ = 1.065 (set D1).
The peak close to m ≈ 1 corresponds to the jet state, while the peak centered around m ≈ 0.2 corresponds to
the LSV state. In the kinetic energy histogram, the lower-energy peak corresponds to the vortex state, while
the higher-energy peak corresponds to the jet state. It is interesting to note that the peaks in P(m) and P(Ẽ ) are
approximately Gaussian, except for the peak at m ≈ 1, where m is bounded above by 1 by definition, leading
to an asymmetric peak shape.

large scale modes, i.e., α1,0 + α0,1, is smaller in the LSV state where more energy is dissipated at
smaller scales.

Figure 7 shows a comparison between the time-averaged values of m and Ẽ in the jet and LSV
states, measured in DNS at Re = 459, and the corresponding predictions from Eqs. (14) and (16).
In Fig. 7(a) one sees a satisfactory agreement between the DNS and the predicted values of m
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FIG. 7. Comparison between the values of the polarity m (a) and nondimensional energy Ẽ (b) at different
values of δ in set D1 at Re = 459, �̃ = 0.34 measured in DNS and the predicted values from Eqs. (14) and (16).
(a) Polarity m in the jet and LSV states is predicted correctly albeit with a slight overestimate. (b) In agreement
with Fig. 5(b), Ẽ in the jet state is close to that in the large-scale modes, while in the LSV state there is a �10%
difference between the large-scale energy and the total energy. Sufficient statistics in the jet state were only
obtained at aspect ratios δ � 1.06 and in the LSV state for aspect ratios δ � 1.07.
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FIG. 8. Histogram of the lifetimes of LSVs and jets in a simulation with δ = 1.07 and Re = 275 (under-
sampled tails are cut off). Data are from simulation set R. The dashed lines show an exponential fit which is in
good agreement with the data. The second row shows the y axis on a logarithmic scale to further validate the
approximately exponential trend. The histograms shown are based on a total of 741 realizations of jets and 805
realizations of LSVs.

based on the large-scale energy balance. In Fig. 7(b), one further sees that the total kinetic energy
in the jet state is close to the predicted value, while in the LSV state the observed kinetic energy
is slightly higher than the contribution from the large-scale modes alone due to finite Re effects, in
agreement with Fig. 5(b). Overall, we conclude that there is agreement between the DNS results
and our predictions based on large-scale energy balance.

IV. LIFETIME STATISTICS

A key quantity to be measured in this problem is the nondimensional lifetime τ̃ of the large-scale
structures, i.e., the length of the time intervals between two consecutive transitions. Depending on
the type of flow structure present, we denote the lifetime as τ̃LSV or τ̃jet . We measure these times in
units of the viscous time tν defined in Eq. (5). For all lifetimes reported here, we subtract 0.5tν to
account for the duration of the transition, see also Fig. 17.

Since the transitions take place at random times, τ̃ is a random variable whose statistics we
will analyze in the following. The lifetimes of each structure are observed to approximately follow
exponential distributions, as shown in Fig. 8, indicating that they arise from a memoryless Poisson
process. Similar findings have been reported for a wide variety of metastable states in turbulent
flows, e.g., Refs. [38,39,42,55,99,100].

In the following, we examine the dependence of the mean lifetime 〈τ̃ 〉 of LSVs and jets on
parameters. Specifically, we focus on the impact of the nondimensional control parameters δ, Re,
and �̃ on 〈τ̃LSV〉 and 〈τ̃jet〉.

A. Aspect ratio δ = Lx/Ly

As δ is increased from unity, the system transitions from preferring the LSV state to preferring
the jet state. One expects that this is associated with 〈τ̃LSV〉 decreasing as δ increases and 〈τ̃jet〉
increasing as δ increases. To examine this, we measured 〈τ̃ 〉 in two sets of simulations (D1 and
D2) with Re = 459 and Re = 344, respectively, varying δ from 1.045 to 1.1, as shown in Fig. 9.
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FIG. 9. Mean lifetimes of LSVs (diamonds) and jets (squares) versus δ from simulations at two distinct
Reynolds numbers, Re = 344 (D2, orange) and Re = 459 (D1, blue). Error bars correspond to �〈τ̃ 〉 =
�τ̃/

√
N , where N is the sample size and �τ̃ is the sample standard deviation. A minimum number of 20

(at δ = 1.05) up to a maximum number of 500 (at δ = 1.07) consecutive transitions were observed. Dashed
black lines, which indicate best-fit exponential relations, are indistinguishable from the solid colored lines
representing best-fit power-law relations. This is due to the small range of δ ≈ 1 over which the transitions are
observed, implying δ ≈ log(δ) + 1.

We observe that 〈τ̃LSV〉 and 〈τ̃jet〉 intersect at δ = 1.07 for Re = 344 and at slightly lower δ for
Re = 459, which we can identify as the transition point δ = δt between the LSV and jet states. The
data in Fig. 9 show that 〈τ̃jet〉 increases by a constant factor as Re increases, producing a simple shift
on the logarithmic y axis, while 〈τ̃LSV〉 increases its slope as Re increases (Fig. 9). The observation
that the transition point δ = δt shifts towards smaller δ as Re increases will be discussed further
below, see also Fig. 13.

In Fig. 9, we see that 〈τ̃LSV〉 and 〈τ̃jet〉 are consistent with the fitted exponential function of δ

(dashed black lines). A similar exponential relationship (Arrhenius law) has been observed, for
instance, in the context of rare transitions between different numbers of jets in β-plane turbulence
[51]. However, we cannot discard the possibility that the dependence is a power law with a
large exponent (solid colored lines), owing to the narrow range in δ over which bistability is
observed. Both results, either power-law or Arrhenius form, differ from the case of rare transitions
in anisotropic three-dimensional turbulence [38] (between 3D turbulence and LSVs), where the
timescales of LSV formation or decay clearly show a faster-than-exponential dependence on the
control parameter.

As discussed in Ref. [38], another possibility is that the mean lifetime of a given structure
diverges at some parameter threshold. This is numerically very difficult to ascertain since the
required simulation times become extremely long, which has led to false conclusions in the past,
cf. [107]. For instance, we cannot exclude, based on our data, that the mean lifetime of the jet state
may diverge at some aspect ratio δ � 1 for certain choices of Re and �̃. However, in Sec. IV C we
show that at least for the special case �̃ = 1/

√
5, the lifetime of the LSV state is finite and jets can

form spontaneously even in the square domain at δ = 1.

B. Reynolds number Re

The dependence of mean lifetimes on the Reynolds number Re in this system is somewhat
counterintuitive. One might expect that larger values of Re correspond to larger fluctuation am-
plitudes and thus more frequent transitions. However, as we will see below, transition rates decrease
(i.e., lifetimes increase) as Re increases as a consequence of an increasing energy gap between the
two structures.
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FIG. 10. Time series of nondimensional energy Ẽ = E/Ef in simulations with different Re at δ = 1.07 (set
R). Smaller Re corresponds to lower energies and a smaller difference between ELSV and Ejet , leading to more
frequent random transitions.

In our setting, Re is closely related to the total kinetic energy E , with larger Re corresponding
to a higher E , cf. Eq. (15). This is consistent with the time series of kinetic energy at different
Reynolds numbers shown in Fig. 10, which show that energy of both jets and LSVs increases with
Re, as does the energy gap. Figure 11 shows histograms of nondimensional energy at different
Re from simulation set R, revealing that the energy of the jet and LSV states, as well as the gap
between them [Fig. 12(a)], all increase with Re, as does the amplitude of the fluctuations in the
total energy (dominated by the large-scale contribution), although the energy gap increases more
rapidly than the amplitude of the total energy fluctuations [Fig. 12(b)]. Quantitatively, at a fixed
δ and sufficiently large Re, we expect the gap between the LSV energy ELSV and the jet energy
Ejet to be approximately proportional to Re based on the predictions of Sec. III B, Eq. (15). This
expectation is confirmed in Fig. 12(a). A smaller energy gap compared to the forcing energy scale
causes the system to transition more frequently between the two structures because the system needs
to dissipate or absorb less energy when the transition happens. Therefore, lower Re result in more
frequent transitions and shorter τ̃ than higher Re, as observed in Fig. 10.

Next, we quantified the dependence of 〈τ̃ 〉 on the Reynolds number Re based on the runs in set R,
varying Re from 275 to 688. Figure 13 shows a lin-log plot of the resulting mean lifetimes of LSVs
and jets versus Re. One observes that there is again an approximately exponential dependence,
as shown by the best fits for LSVs and jets (solid lines). While the exponential fit appears to
be consistent with our data, a power-law dependence also provides an acceptable, albeit slightly
less accurate fit (not shown), giving 〈̃τjet〉 ∝ Re3.65 and 〈̃τLSV〉 ∝ Re0.98 at δ = 1.07 and �̃ = 0.34.
Incidentally, a similar power-law dependence on the Rayleigh number Ra has recently been reported
in Ref. [55] for metastable states in windy convection, with 〈τ 〉 ∝ Ra4.05.

The data shown in Fig. 13 indicates that the mean lifetime of jets increases with Re more rapidly
than that of LSVs at fixed aspect ratio δ = 1.07. At this aspect ratio the system transitions from a
statistical preference for LSVs for Re < Ret to a statistical preference for jets for Re > Ret, where
Ret ∼ 380. This result is consistent with the data shown in Fig. 9, and suggests that the transition
point δ = δt decreases as Re increases.

C. Nondimensional forcing scale �̃ = �/Ly

Finally, the nondimensional ratio �̃ = �/Ly between the forcing and domain scales plays a critical
role in the transitions. Figure 14 shows that the results are highly sensitive to �̃, based on runs from
simulation set L: The rate at which transitions occur between LSVs and jets decreases sharply
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FIG. 11. Histograms of total kinetic energy (nondimensionalized by the forcing scale energy) for runs in
set R at δ = 1.07, �̃ = 0.34. The kinetic energy of jets and LSVs increases with Re, and so does the amplitude
of fluctuations around either state.

with �̃; at �̃ = 0.491, there are many transitions in the time interval shown (∼120tν), while the
system switches between jets and LSVs four times at �̃ = 0.341 and only once at �̃ = 0.254 in
the same time interval. Here we mention that in the work of Bouchet and Simonnet [22], the
forcing was concentrated near wave number k = 2, i.e., � = π , with Lx = 2πδ and Ly = 2π [108],
corresponding to �̃ ≈ 0.5 in our notation. A sensitive dependence of transition rates on parameters
was previously reported in Ref. [109].

Figure 15 shows that both jet and LSV energies are approximately proportional to �̃−2, in
agreement with large-scale energy balance [cf. Eq. (15)]. This implies that Ẽjet − ẼLSV, namely
the size of the energy gap between the two states relative to the forcing energy, also increases
approximately as �̃−2 when �̃ is reduced. This observation suggests that, similarly to the decrease
of transition rates with increasing Reynolds number, the decrease in the mean transition rate with

064605-15



XU, VAN KAN, LIU, AND KNOBLOCH

0 100

(a)

200 300 400 500 600 700 800

Re

0

5

10

15

20

25

˜ E
je

t
−

˜ E
L
S
V

∝ Re

300 400 500 600 700

Re

5

6

7

8

9

10

11

(
˜ E

je
t
−

˜ E
L
S
V
)/

σ
˜ E
,L

S
V

(b)

FIG. 12. (a) Energy gap between LSV and jet states versus Re at δ = 1.07, �̃ = 0.34 (set R). An approx-
imately linear trend is observed at large Re. (b) The energy gap divided by the standard deviation of the total
energy in the LSV state (cf. Fig. 11) increases with Re.

decreasing �̃ appears to be related to the sharp increase in the energy gap. However, the highly
sensitive dependence of lifetimes on �̃ prevents the type of detailed, quantitative analysis of the
dependence of the mean lifetimes on �̃ that was done for their Reynolds number and aspect ratio
dependence.

In summary, we find that mean lifetimes depend approximately exponentially on the domain
aspect ratio δ (i.e., the anisotropy parameter), while for a given aspect ratio and �̃, the mean
lifetimes also depend approximately exponentially on Re [i.e., the energy gap measured in units
of the forcing energy, see Fig. 12(a)], while the mean lifetimes also sharply increase when the
energy gap widens due to a decreased nondimensional forcing scale �̃ (while keeping Re and δ

fixed). These observations suggest that an underlying Arrhenius law would be consistent with the
measured exponential dependence of mean lifetimes on parameters although we are unaware of any
theoretical arguments supporting this result. Should a quantity analogous to a quasipotential exist
for the present problem, our simulations indicate it must necessarily depend on δ (which controls
the relative mean lifetimes of the two structures) and on the energy gap (controlling the absolute
mean lifetimes of both structures). The forcing energy E f is likely an important measure of the
fluctuation amplitude, although the fluctuations of the total energy (dominated by large scales) may
also be relevant and may need to be taken into account.

Next we briefly discuss a special case that arises when the forcing is concentrated near �̃ = 1/
√

5.
In this case, shown in Fig. 16, a square domain with δ = 1 exhibits tristability between LSVs and
jets in the x or y directions, with spontaneous transitions between them. This contrasts starkly with
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FIG. 13. Lin-log plot of the mean lifetimes of LSVs and jets versus Re from simulation set R (δ = 1.07 and
�̃ = 0.34). Solid lines show exponential best fits, which are consistent with the lifetime data for jets and LSVs,
respectively. Each data point is based on between 50 transitions (Re = 688) and 1000 transitions (Re = 275).

FIG. 14. Segments of time series of the polarity m in simulations from set L with different nondimensional
forcing scales �̃ = �/Ly (increasing top to bottom) for δ = 1.06 and Re = 69. Larger forcing scales lead to
substantially more frequent random transitions.

10 15 20 25 30

� 2

100

200

300

400

˜ E

˜ELSV

˜EJet

∝ �̃−2

∝ �̃−2

FIG. 15. Total nondimensional energy Ẽjet in the jet state and the corresponding energy ẼLSV in the LSV
state versus �̃ from simulation set L (Re = 69, δ = 1.06). Both quantities scale approximately as �̃−2, in
agreement with large-scale energy balance as expressed in Eq. (15). Thus the energy gap Ẽjet − ẼLSV grows
rapidly as �̃ decreases.
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FIG. 16. Time series of the polarity m on a square domain (aspect ratio δ = 1) with nondimensional forcing
scale �̃ = 1/

√
5 and Reynolds number Re = 550 (from simulation set T). The polarity m randomly jumps

between −1, 0, and +1, indicating the coexistence of three types of large-scale structures in the domain. The
jets in both directions are present in the system for approximately the same fraction of the simulation time, as
expected from the symmetry under x ↔ y.

the usual condensate state found in square domains, where typically a highly stable pair of counter-
rotating LSVs is observed [3]. We stress that this tristable behavior in a square domain was only seen
when the forcing range included the scale �̃ = 1/

√
5. We have explicitly verified that metastable jets

do not form in a square domain when forcing at either �̃ > 1/
√

5 or �̃ < 1/
√

5. While the precise
origin of this phenomenon is as yet unknown, we note that the wave number triads

k1,1 + k1,0 + k−2,−1 = 0, k1,1 + k0,1 + k−1,−2 = 0, (17)

which couple either one of the large-scale modes to a forcing-scale mode, facilitate a nonlinear
interaction between the k1,0 and k0,1 modes and the forcing scales via the mediator mode k1,1,
which is the closest scale to the gravest modes, permitting a strong spectrally local interaction. A
full quantitative explanation of the observed dynamics remains to be elucidated. It is interesting to
note that similar turbulent jets alternating between the x and y directions in a square domain were
also observed in rotating convection [42].

V. TRANSITION TRAJECTORIES

In addition to the lifetime statistics discussed above, it is also of interest to examine the transitions
themselves. In particular, we investigate whether the transition from LSVs to jets and vice versa are
time reversible. In general, transition trajectories between distinct attractors in multistable systems
are asymmetric. For instance, in Ref. [53], the transitions between states with 2 and 3 jets in β-plane
turbulence follow different paths in Fourier space in different directions (2 → 3 jets or 3 → 2 jets).
This motivates us to examine the similarity between transitions in the two directions in our system.

A. Evolution of m and ˜E during transitions

As established in Sec. III, the polarity m and the kinetic energy Ẽ serve as key indicators of the
system state. Here we focus specifically on the temporal evolution of these quantities during the
transitions from jets to LSVs and vice versa.

We consider a long-time simulation in the bistable range, with a large number of transitions
from LSVs to jets and vice versa. Figure 17 shows superimposed sections of the time series of
m and Ẽ centered on the point during transitions, at nondimensional time t̃ = t̃0, where m(t̃0)
minimizes P(m), cf. Fig. 6. Hence, by construction, all the m time series shown in Fig. 17 coincide
at nondimensional time t̃ = t̃0. Point clouds indicate the instantaneous states of the system during
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FIG. 17. Top row: Evolution of the polarity m defined in Eq. (9) during transitions from LSVs to jets
and vice versa shifted in time such that the m values coincide at nondimensional times t̃ = t̃0, where m( t̃0 )
corresponds to the minimum of P(m). The rightmost panel shows the overlap of the first two, where the
time axis in the middle panel was reflected about t̃ = t̃0. The scatter points show the instantaneous system
states in different realizations, while the solid lines represent the ensemble average. Bottom row: Same for the
nondimensional kinetic energy Ẽ . Vertical dashed lines highlight t̃ = t̃0. Data are taken from a simulation in
set D2 with δ = 1.07, �̃ = 0.34, and Re = 344, including 121 instances of transitions from LSVs to jets and
129 from jets to LSVs.

individual transitions, while the solid lines indicate an average over the ensemble of all observed
transitions.

The top row of Fig. 17 shows that the polarity changes rapidly as the flow transitions from
LSVs to jets and vice versa. Superimposing the two ensemble-averaged trajectories by reflecting
the time axis in the middle panel about t̃ = t̃0, one obtains the right panel, which shows that m
approximately follows the same transition path in either direction, within one standard deviation.
By contrast, the lower panel shows that the kinetic energy Ẽ displays a drastically different transition
behavior. Kinetic energy is approximately constant up to the shifted time t̃ = t̃0 (defined in terms
of m as described above). Then the energy increases or decreases on a viscous timescale to adapt
to the equilibrium value appropriate for the newly formed structure, given by Eqs. (11). When
both curves are again superimposed by reflecting the middle panel about t̃ = t̃0 (right panel), it
becomes apparent that the time delay in the energy evolution results in a markedly asymmetric, i.e.,
irreversible, transition behavior.

The distinct evolution of m and Ẽ reveals the two-stage nature of the fluctuation-induced
transitions in this system. First, a rapid nonlinear transfer of energy takes place, transforming one
large-scale structure into the other, as indicated by m, and the kinetic energy Ẽ subsequently adjusts
to the new equilibrium value. The role of the nonlinear transfer during transitions can also be
analyzed directly by measuring the energy transfer rate Ta,b defined in Eq. (12). Figure 18 shows
ensemble-averaged time series of T1,0 and T0,1 (nondimensionalized by the energy injection rate ε)
during transitions from LSVs to jets and vice versa. Away from the transition, in the statistically
stationary (jet or LSV) states, the transfer rate fluctuates about a constant value, corresponding to
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FIG. 18. Time series of the nonlinear transfer T1,0 (top row) and T0,1 (bottom row), nondimensionalized by
the injection rate ε, during transitions shown over the same time axis as in Fig. 17. Scatter points stand for
the raw data (smoothed in time for clarity) and solid lines indicate the ensemble-average over a large number
of transitions. The value about which the ensemble-averaged Ta,b fluctuates in the statistically stationary (jet
or LSV) states corresponds to αa,b in Eq. (13), while a pronounced overshoot or undershoot is seen during
the transition, indicating the presence of large nonlinear transfer rates that lead to the rapid redistribution of
energy reflected in the evolution of m during transitions shown in Figs. 17 and 19. Data are taken from the
same simulation as in Fig. 17.

the fractions α1,0 and α0,1 of energy reaching the large-scale modes, cf. Eq. (13). In contrast, during
the transition, an overshoot or an undershoot is seen in the time series, reflecting the rapid change
in the large-scale energies E1,0 and E0,1.

Figure 19 shows a reduced phase space portrait of the bistable dynamics for a run in set D2
at Re = 344, δ = 1.07 in terms of m and Ẽ , the two key global system properties. The gray point
cloud indicates instantaneous system states, while the colored lines represent the ensemble-averaged
transition trajectories from LSV to jet and vice versa. It can be seen that the system spends most
of its time in the regions corresponding to LSVs and jets, connected by occasional transitions from
one region to the other, as expected. Colors indicate the time elapsed during the transition relative
to t̃ = t̃0. The evolution of the system from LSVs to jets and back to LSVs corresponds to a loop
in this phase space that is always traversed counterclockwise, in a manner reminiscent of relaxation
oscillations [110], with rapid changes in m and slow changes in energy, but with the important
difference that the cycle is completed within a random time period given by the sum of the lifetimes
of jet and vortex states. Figure 19 highlights that transitions are initiated by a rapid change in the
polarization m, followed by a slow relaxation in the kinetic energy Ẽ to that of the new state.

B. Evolution of energy in large-scale Fourier modes

In addition to m and Ẽ defined in terms of the physical-space velocity field, the set of (complex)
Fourier coefficients spans Fourier space and thus provides a full characterization of the fluid
flow. To visualize the spectral energy distribution in the large-scale flow structures, we use the
nondimensional energy in the modes ±ka,b, denoted by Ẽa,b, as defined in Eq. (10). We reiterate that,
since the inverse energy cascade concentrates the energy in the largest-scale motions, the system is
well described by the first few Fourier modes with the smallest wave numbers. Therefore the modal
energies Ẽ1,0 and Ẽ0,1 are sufficient to characterize the state of the system, as verified in Sec. III B.
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FIG. 19. Dynamics in phase space (m, Ẽ ) within the bistable δ range from a run in set D2 (δ = 1.07, Re =
344, �̃ = 0.34, same simulation as in Fig. 17). Raw data are represented as gray point clouds, while ensemble-
averaged transition trajectories are shown by colored, solid curves. Colors indicate the nondimensional time
elapsed during transitions (corresponding to the abscissa of Fig. 17). Labels mark LSV and jet states, with
arrows representing the counterclockwise transition direction consisting of a fast phase (small change in t̃) and
a slow phase (larger change in t̃). The phase portrait is qualitatively reminiscent of relaxation oscillations [110],
but the period at which the system completes the loop is the sum of the jet and LSV lifetimes (augmented by
the duration of the transitions themselves).

In addition, we also consider the fraction of the total kinetic energy Ẽ contained in Ẽ1,0 and Ẽ0,1 at
any given time (recall that Ẽ changes between vortex and jet states), given by Ẽ1,0/Ẽ and Ẽ0,1/Ẽ ,
respectively.

Figure 20 shows the system evolution in terms of (Ẽ1,0, Ẽ0,1) [Fig. 20(a)] and (Ẽ1,0/Ẽ , Ẽ0,1/Ẽ )
[Fig. 20(b)], with the gray point cloud again indicating the set of all instantaneous system states
and the purple and green lines corresponding to the ensemble-averaged transition trajectories from
LSV to jet and vice versa. It should be noted that the system spends most of its time in the regions
corresponding to LSVs and jets, while occasionally traversing from one region to the other.

In Fig. 20(a), a loop can be discerned in terms of the ensemble-averaged transition trajectories,
similar to that in Fig. 19. When replotted in terms of (Ẽ1,0/Ẽ , Ẽ0,1/Ẽ ) [Fig. 20(b)], this loop
collapses towards the dashed line indicating states where the entire energy is contained within the
large-scale modes, i.e., Ẽ1,0 + Ẽ0,1 = Ẽ . It can be seen that the jet states are somewhat closer to
the dashed line than the LSV states, indicating that the remaining small-scale motions in the LSV
state are more vigorous compared to the jet state. While this difference is small compared to the
total energy, it does indicate a measurable difference between the energy spectra of the LSV and jet
states. This is consistent with the spectra shown in Fig. 2 and with the results shown in Fig. 5(b).

VI. TRANSITION BETWEEN DIFFERENT NUMBERS OF JETS

When δ is increased further beyond the bistable interval discussed above, the number of jets
emerging from the inverse cascade increases. Figure 21(a) shows a space-time plot of the stream
function averaged in the y direction 〈ψ〉y, with the x coordinate on the vertical axis and time in
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FIG. 20. Alternative phase space plots of the bistable system in Fourier space from a simulation in set
D2 with δ = 1.07 and Re = 344. Gray points in both plots indicate the instantaneous system states, while
the purple and green symbols indicate the ensemble-averaged trajectories traversed by the system during a
transition. (a) Absolute energies in the large-scale modes (Ẽ1,0, Ẽ0,1), whose sum approximates the total energy
Ẽ . The transition direction is indicated by arrows. (b) Fraction of the energy contained in the large scales
(Ẽ1,0/Ẽ , Ẽ0,1/Ẽ ), whose difference approximates the polarity m. The dashed diagonal line corresponds to
Ẽ1,0 + Ẽ0,1 = Ẽ .

viscous units on the horizontal axis, from a run at δ ≈ 3.1, �̃ = 0.53, low Reynolds number Re = 55,
with a spatial resolution of 128 × 64 grid points. A spontaneous transition from a state with two
pairs of jets to a state with a single pair of jets is initiated around t̃ � 30. Since the length scale
doubles during the transition from two pairs of jets to a single pair of jets, the flow amplitude
is significantly increased owing to reduced viscous dissipation, an effect seen in Fig. 21(b) as a
drastic (close to fourfold) increase in kinetic energy during the transition. A similar coarsening-type
evolution from two pairs of jets to a single pair of jets was observed in rapidly rotating convection
in an anisotropic domain [17].

FIG. 21. (a) Space-time plot of y-averaged stream function from run J in a domain with aspect ratio δ ≈
3.1125, at low Reynolds number Re = 55 and �̃ = 0.53, showing a transition from two pairs of jets to a single
pair of jets. The flow amplitude of the jets in this transition increases greatly because the energy in the system
is stored in larger-scale motions and is therefore less susceptible to viscous dissipation. (b) Kinetic energy time
series associated with the transition reveals a significant energy gap overcome in the transition.
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We also underline that a single pair of jets at δ > 1 corresponds to a buildup of energy at the
largest available scale, also known as the gravest mode, which is in line with the expectation of
standard theory [9]. However, when several pairs of jets are present in the system, the inverse
cascade is arrested at a scale comparable to (but somewhat larger than) the short side length (Ly for
δ > 1). The same phenomenology was observed in turbulent rotating convection [17,18], but there
is so far no detailed explanation of this observed arrest of the inverse cascade at scales comparable to
the short side length. Moreover, jets aligned with the short side of the domain also form in fixed-flux
Rayleigh-Bénard convection in a doubly periodic domain, where the secondary instability of an
elevator mode generating a horizontal jet requires a small enough horizontal extent [72].

In the presence of a dominant scale-independent damping mechanism, such as Rayleigh damp-
ing, the energy gap between states with different numbers of jets is removed, see, e.g., [51]. Previous
studies of fluctuation-induced transitions between different numbers of jets include barotropic flows
in the presence of the β effect (latitudinal variation of the Coriolis force) but similar studies of
anisotropy-generated jets remain to be carried out.

VII. CONCLUSION

In this investigation, we made significant contributions to our understanding of fluctuation-
induced transitions in anisotropic 2D turbulence by performing extensive DNS and acquiring
statistical data on the impact of key system parameters on the dynamics. We have formulated
and verified predictions for the energy and flow polarity of LSVs and jets based on large-scale
energy balance. Furthermore, we have shown that the lifetimes of the large-scale structures are
exponentially distributed, indicating that they derive from a memoryless process, as observed for
various metastable states in other turbulent flows [38,39,42,55,99,100].

We find that the dependence of mean lifetimes on δ is consistent with an exponential relation,
although a power-law dependence with a large exponent could not be ruled out. This behavior differs
markedly from the parameter dependence of the lifetimes observed for 3D turbulence and LSVs in
thin layers [38,39] and also from the transition to turbulence in a pipe [93]. In both of the latter cases,
the timescales involved depend superexponentially on the control parameter in question (Reynolds
number in pipe flow and the ratio between forcing scale and layer height in thin-layer turbulence).
More generally, the history of transitional shear flow studies suggests caution when extrapolating
our findings to asymptotically long lifetimes; for instance, for turbulent puffs and slugs in pipe flow,
the double-exponential dependence of lifetimes on Re is technically hard to determine, and earlier
studies with fewer data and smaller domains incorrectly suggested an exponential dependence on
Re instead [94]—see also the discussion in Ref. [107].

We further find that the mean lifetimes of LSVs and jets increase approximately exponentially
with the Reynolds number Re, as the energy gap between the LSV and jet states grows with Re.
We also showed that the mean lifetimes increase rapidly with decreasing nondimensional forcing
scale �̃ between the forcing scale and the domain size, in agreement with previous work [109].
This is likely the reason why the transitions described here have not been more widely observed,
since 2D turbulence experiments are often performed with small-scale forcing, �̃ 	 1. We also
observed that for a specific forcing scale, with �̃ = 1/

√
5, the lifetime of the LSV state in a square

domain was drastically reduced by a spontaneous symmetry breaking, with frequent transitions
between metastable LSVs and jets in both x and y directions. The precise quantitative origin of this
phenomenon is as yet unknown.

Our results are consistent with the existence of an Arrhenius-like law in this system, where the
anisotropy parameter δ and the LSV-jet energy gap (measured in units of the forcing energy or
large scale energy variance) control the relative and absolute lifetimes of the two states, although no
theoretical argument in favor of such a law is at present available.

We have also analyzed in detail transition trajectories between LSV and jet states, showing that
the transition involves a rapid change in the flow polarity m generated by efficient nonlinear energy
transfer between large-scale modes, followed by a slow subsequent change in the kinetic energy
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E as the flow amplitude adjusts to the new equilibrium state. The system trajectory in the reduced
phase space spanned by (m, E ) forms a loop resembling relaxation oscillations, although the system
traverses the loop at random times given by the lifetimes of LSVs and jets. Transition paths between
multistable attractors, including turbulent flows, may be computed using the instanton formalism,
cf. Refs. [51,53,111,112]. However, whether the properties of the observed transition paths in the
present system, including the two-step transition behavior revealed by the evolution of m and E , can
be derived on theoretical grounds remains an open question.

We also described a transition between different numbers of jets. As discussed above, viscous
damping is the only mechanism for energy dissipation retained in our model. As a result there
is a substantial energy gap between these states even at moderate Re, leading to exceedingly rare
transitions. We reiterate that the choice of purely viscous condensate saturation was made to simplify
the system as much as possible and to limit the number of control parameters in the system to
three. Alternative but scale-independent damping terms, such as linear Rayleigh damping [3] or
nonlinear damping (used to model turbulent drag [113]), allow saturation at significantly lower
kinetic energies, thereby providing benefit for numerical simulations, while also being physically
relevant. These have been included in the study of zonal jets on the β plane [51,52]. In contrast
with the well-studied problem of jets on the β plane, however, a detailed investigation of the
dynamics of purely geometry-induced jets in stochastically forced, anisotropic 2D turbulence is
still outstanding, and may benefit from the inclusion of such alternative damping mechanisms to
eliminate the large energy gap that makes transitions between jets so exceedingly rare. Another
important open problem concerning states with multiple pairs of jets in the present system is the
nature of the arrest mechanism that prevents energy from accumulating in the gravest modes, given
that no β effect is present in our model. We leave these aspects of the problem for future study.

Given the relatively simple transition phenomenology in terms of energy and polarity revealed
by the phase-space diagram shown in Fig. 19, a promising avenue for a better understanding of
the parameter dependence of our system might be the development of a low-dimensional reduced
model. At the very least, such a reduced model needs to retain the modes at k1,0, k0,1 and the
forcing-scale modes, as well as triads facilitating the interaction between the forcing scales and the
large scales.

The present study is, of course, highly idealized owing to the assumption of exact two-
dimensionality and the use of periodic boundaries. Within these idealizations, it may be of interest
to consider the related problem of 2D, stochastically forced, viscously damped flow on a sphere,
varying the global rotation rate. On the nonrotating sphere, the final state produced by a stochas-
tically forced inverse cascade is a vortex quadrupole (although this is not always observed in the
unforced case due to ergodicity breaking [31,32]), while zonal jets (and Rossby waves) emerge when
the sphere is rapidly rotating [32]. Similar results are found in the shallow water equations on the
sphere [114,115], but in either case, the transition between jets and vortices on the sphere remains to
be analyzed. The inclusion of boundaries in two-dimensional turbulence is known to induce a rich
phenomenology [116] and it would be of interest to study the robustness of the results presented here
in that setting. Another promising direction for future work is the inclusion of the third dimension
in the context of quasi-2D turbulence [21]. Given the established bistability between small-scale
3D turbulence and LSVs in thin-layer turbulence near a threshold layer height [38], there is an
intriguing possibility that small-scale 3D turbulence, LSVs, and large-scale jets may coexist when
horizontal anisotropy is introduced in a thin 3D layer. Furthermore, it will also be important to
clarify how the results described here for 2D flow are related to similar transitions between jets and
LSVs in 3D turbulent rotating convection within anisotropic plane layers [17,18] or on an inclined
f plane [33–36], a problem which has recently seen important theoretical advances [117]. A key
difference between these convection problems and our study is that buoyant momentum forcing is
self-organized in response to the flow field itself, and acts over a broad range of scales, in contrast to
the idealized white noise considered here. In this context, we reiterate that the longest simulations
presented here extended over more than 104 viscous time units, a time that is orders of magnitude
longer than any available simulations of 3D turbulent rapidly rotating convection. For example, the
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runs presented in Ref. [18] only extend over 40 viscous time units, while the longest runs reported
within the rapidly rotating regime extended over 10tν in Ref. [17] and 0.5tν in Ref. [41]. As a
result we were able to compute many more transitions and collect reliable statistical information.
Moreover, the white noise driving considered here and in much of the earlier work on 2D and
quasi-2D turbulence differs from the red noise (larger noise variance at small frequencies) displayed
by climatic fluctuations [118,119], and it might be of interest to examine the effect of such colored
noise on the transitions in the present system as well as their potential experimental realization.
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APPENDIX A: SPECIFICATION OF THE FORCING BAND

In a finite, anisotropic domain, the spacing of the discrete wave numbers in the x and y
directions is not the same. Specifically, as the domain is elongated in the x direction, the spacing
in this direction, Qx = 2π/Lx, is reduced. For a fixed forcing range, a change of δ can change
the specific forcing modes falling into the forcing range, thereby changing the degree of isotropy
of the forcing and leading to visible effects in the simulation results. In our simulations, we
endeavored to avoid this by an appropriate specification of the forcing band. For all runs in sets
D1, D2, and R, which cover an interval of aspect ratios δ ∈ [1, 1.1], we chose an appropriately
narrow forcing range containing wave numbers k ∈ [k1, k2], with k1 = 2.34 Qy, k2 = 3.17 Qy, and
Qy = 2π/Ly. In this way, the forcing band contains exactly the modes ka,b ≡ (aQx, bQy) with
(a, b) = (±2, 2), (±2,−2), (±3, 0), (0,±3), (±3, 1), (±3,−1), (1,±3), (−1,±3), illustrated in
Fig. 22, for all δ ∈ [1, 1.1]. This set of forcing modes remains close to isotropic as δ is varied.
The dimensional forcing scale � is taken to be the arithmetic mean of the largest and smallest scales
contained in the forcing band, which is close to 0.34Ly for sets D1, D2, and R.

For runs in set L, we kept � fixed at 1, while varying the domain size Ly and maintaining the
aspect ratio δ = 1.07 unchanged. The width of the forcing range in set L was not kept strictly
constant, with the goal of maintaining the forcing as close to isotropic as possible. In set J, we chose
k1 = 1.5Qy, k2 = 2.5Qy. Finally, in set T, we picked k1 = 2.12Qy and k2 = 2.53Qy so that only
modes with wave number

√
5 were forced.

APPENDIX B: REMAPPING TO THE SQUARE: ANISOTROPIC DIFFUSION AND FORCING

It is a simple observation that Eq. (1) in the rectangular domain (x, y) ∈ [0, Lx] × [0, Ly] can be
mapped onto to the square (x̌, y) ∈ [0, Ly] × [0, Ly] by letting x = δx̌, implying ∂x = δ−1∂x̌, such
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FIG. 22. Illustration of the forcing band employed in all simulations in sets D1, D2, and R. In this specific
case, δ = 1.07.

that the vorticity equation, written in terms of ψ ,

∂t (−∇2ψ ) + J (ψ,∇2ψ ) = −ν(∇2)2ψ + fω(x, y, t ), (B1)

with the Jacobian J (a, b) = (∂xa)(∂yb) − (∂ya)(∂xb) and fω = ẑ · ∇ × f , is mapped to the following
equation for the rescaled stream function ψ̌ ,

∂t (−∇̌2ψ̌ ) + J̌ (ψ̌, ∇̌2ψ̌ ) = −ν(∇̌2)2ψ̌ + f̌ω(x̌, y, t ), (B2)

where ψ̌ = δ−1ψ , the anisotropic Laplacian is ∇̌2 = δ−2∂2
x̌ + ∂2

y and the anisotropic Jacobian is

J̌ (a, b) = (∂x̌a)(∂yb) − (∂ya)(∂x̌b). In this system the rescaled forcing f̌ (x̌, y, t ) = δ−1 fω(x̌, y, t )
drives the flow anisotropically in an ellipsoidal wave-number shell, instead of the isotropic ring
of wave numbers on which fω(x, y, t ) acts. Clearly, when δ > 1, the dissipation in the y direction is
enhanced relative to the x̌ direction, a key ingredient for the transition from LSVs to jets.

Incidentally, an equation of the form (B2) has been obtained for the barotropic vorticity in
quasigeostrophic convection on a tilted f plane characterized by misaligned rotation and gravity
axes [35,36], where transitions between LSVs and jets were observed at finite inclination angles, not
unlike those explored further below. We stress that in Refs. [35,36] the anisotropy is not geometrical
but rather derives from the misalignment between gravity and the rotation axis.
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