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Statistical theory of passive scalar turbulence
within the viscous-convective range
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An expected statistical law of passive scalar turbulence subjected to high Schmidt num-
bers is studied with the Hessian-based Lagrangian renormalized approximation (HBLRA),
a self-consistent closure theory recently developed for passive scalar turbulence. With-
out relying on any empirical parameters, HBLRA derives the scalar variance spectrum
proportional to k−1 in the viscous-convective range predicted by Batchelor. Thanks to
improvements in the physical description, HBLRA yields quantitatively better predictions
of the scalar variance spectrum and its universal constant in comparison with pioneering
closure theories. Our results suggest that the turbulence motion of only a limited scale
range may contribute to the scalar flux within the viscous-convective range. Numerical
solutions for finite Schmidt numbers (Sc = 10–100 000) are obtained, where a clear
viscous-convective range appears with a well-developed inertial-convective range.
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I. INTRODUCTION

Fluid turbulence, a class of ubiquitous phenomena in nature, is often characterized by its strong
mixing effect, which dominates the transportation of a variety of physical properties, including
temperature, chemical substances, etc. A passively convected scalar field is a simplified model of
such physical properties, and it offers a basic platform to understand the nature of turbulence mixing.

In the case of sufficiently high Reynolds and Péclet numbers, one may find the inertial-convective
range where both fluid dissipation and scalar diffusion are negligible. According to a discussion
similar to that of Kolmogorov’s inertial range, one may reach the Obukhov-Corrsin scaling law of
the scalar structure function [1,2]:

〈[θ (x + r) − θ (x)]2〉 ∝ ε−1/3χr2/3, (1.1)

where θ is the scalar field, r is a spatial separation within the scale range, and ε and χ are the mean
dissipation rate of the kinetic energy and the scalar variance. The scaling law (1.1) may be rewritten
in Fourier space; the scalar variance spectrum Eθ (k) satisfying

∫ ∞
0 Eθ (k)dk = 〈θ2〉/2 may be given

by a universal power law:

Eθ (k) = COCε−1/3χk−5/3, (1.2)

where COC is often referred to as the Obukhov-Corrsin constant. The existence of the power law
given by Eq. (1.2) has been suggested from several experiments and direct numerical simulation
(DNS) [3–9]. In the inertial-convective range, the above scalar statistics may be understood from a
similar mechanism to the Richardson-Kolmogorov cascading of the velocity field: the scalar struc-
ture may be destroyed, mostly by turbulence eddies of the same size, and split into smaller pieces.
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While there are a number of phenomena that can be expressed from the mixing taking place in
the inertial range, the convection effect of a far smaller lengthscale also plays substantial roles in
the real world: clustering of cloud droplets or convection of reactive substances inside water may be
typical examples. The fluid convection of such a small lengthscale can be studied using the passive
scalar of small diffusivity, which may be characterized by the Schmidt number Sc ≡ ν/κ (ν is the
kinematic viscosity of the fluid, and κ is the diffusivity of the scalar) being sufficiently high, i.e.,
Sc � 1. Then one may find in the sub-Kolmogorov scale a subrange called the viscous-convective
range where the passive scalar is subjected to persistent straining motions of the Kolmogorov-scale
eddies and produces even smaller structures. The problem was first proposed by Batchelor, with his
analytical discussions leading to another power law of the scalar-variance spectrum [10]:

Eθ = CBχ
(ν

ε

)1/2
k−1 (kη � k � kb), (1.3)

where CB, often referred to as the Batchelor constant, is expected as another universal constant,
kη(≡1/η), is the Kolmogorov wave number defined as the reciprocal of the Kolmogorov length
η [≡(ν3/ε)1/4], and kb(≡1/ηb) is the Batchelor wave number defined as the reciprocal of the Batch-
elor length ηb [≡(κ2ν/ε)1/4]. The above spectrum can also be derived from the dimensional analysis
using Kolmogorov’s timescale (ν/ε)1/2, and the turbulence mixing in the viscous-convective range
may be dominated by the motion of the smallest turbulence eddies at the Kolmogorov scale. Then,
unlike the scale-local mechanism of the Richardson-Kolmogorov cascading, turbulence mixing in
the sub-Kolmogorov range may be understood from the scale nonlocal interaction between the
Kolmogorov and sub-Kolmogorov scales, which has quite a different mechanism from those in
the inertial range, and it has yet to be explored.

Since the discovery by Ref. [10], considerable efforts have been devoted to investigating the
nature of the viscous-convective range from experimental [11–13], numerical [6,14–17], and the-
oretical frameworks [18,19]. Among them, experiment and DNS, which are direct approaches to
the problem, may still have severe limitations in either Reynolds or Schmidt numbers, since the
situation requires a huge gap between the largest and the smallest scales. Thus, in this paper we
choose one of the theoretical approaches, namely self-consistent spectral closure. Since the early
work of the direct-interaction approximation (DIA) [20], self-consistent spectral closure has offered
deductive approaches to the lower-order statistics of turbulence on the basis of the exact governing
law. The Lagrangian-history DIA (LHDIA) [21] may be the pioneering attempt to incorporate the
Lagrangian picture into DIA strategy, resulting in self-consistent closure models consistent with
Kolmogorov’s theory, e.g., abridged Lagrangian history DIA (ALHDIA) [21] and strain-based
ALHDIA (SBALHDIA) [22]. On the other hand, Kraichnan presented a more systematic scheme
to obtain his closure models on the basis of what is called the renormalized-perturbation theory
[23]. Here we should mention the Lagrangian description of the field, a fundamental building
block of the Lagrangian closure families. In the Lagrangian description, one may focus on the
dynamics of the field value experienced by a fluid element, and the fluid element may be identified
by a space-time point, say (x, s), passed by the trajectory of the element. Then a field value φ

experienced at time t by an element labeled by (x, s) may be written as φ(x, s|t ). The original
idea of the Lagrangian picture is to focus on the time advancement in t which is referred to as the
measuring time in Ref. [24]. However, in LHDIA-based theories, the true Lagrangian dynamics
of variables are avoided due to their mathematical complexity, and instead s, referred to as the
labeling time in Ref. [24], is chosen for the development of the two-time statistics. This point was
substantially improved by Kaneda [24]: the Lagrangian position function, a mapping function from
the Eulerian to Lagrangian variables, was introduced for a more direct treatment of the Lagrangian
time advancement of variables. The resultant theory—the Lagrangian renormalized approximation
(LRA)—enables far simpler closure equations. In particular, the fluctuation-dissipation relation
[Eq. (2.53) of Ref. [24]] reduces its calculation cost appreciably, although it is not yet known
whether this is a natural consequence or just an accident. Later, the LRA model was rederived
on the basis of the DIA formalism instead of the renormalization scheme [25]. While not fully
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justified because of their deficiency in describing higher-order statistics, self-consistent spectral
closures enable us to investigate large-scale phenomena of very high Reynolds and Schmidt numbers
far out of reach of both DNS and experiments of current technologies. There was, however, a
specific problem involving self-consistent closure when applied to passive scalar turbulence: while
successful at the level of dimensional analysis, these closure theories underestimate the scalar
variance spectrum in general [26–30]. A recent work on self-consistent spectral closure focused on
this problem and proposed an improved version of LRA, namely the Hessian-based LRA (HBLRA)
[31]. Thanks to its theoretical basis on the local scalar structure, HBLRA succeeded, without relying
on any empirical parameters, in deriving the inertial-convective spectrum with the Obukhov-Corrsin
constant being COC ≈ 0.754, which is reasonably close to experimental and DNS data of COC ≈ 0.7
[5–9]. In addition to passive scalar statistics, HBLRA has also been applied to the inertial particle
problem to elucidate the interscale dynamics of particle clusters [32].

This paper provides theoretical analyses of the passive scalar statistics of high Schmidt numbers
on the basis of HBLRA, whose short introduction is given in the forthcoming Sec. II. The closed
set of equations provided by HBLRA enables a self-consistent description of the scalar variance
spectrum coupled with background turbulence. In Sec. III, an asymptotic analysis is applied to
HBLRA to obtain a closed set of equations for the far-dissipative range describing the nonlocal
coupling between turbulence and scalar. In Sec. IV, without relying on any empirical parameters,
Batchelor’s spectrum [Eq. (1.3)] and its universal constant are derived from the asymptotic solution
of the high-Schmidt-number limit. Finite-Schmidt-number cases are also investigated in Sec. V,
where we see in a quantitative manner how the viscous-convective range develops as the Schmidt
number increases.

II. SUMMARY OF HBLRA

Here we provide a brief summary of HBLRA theory (see Ref. [31] for more details). HBLRA is
a branch of Lagrangian renormalized approximation (LRA) theory [24]. The essential difference of
HBLRA from conventional theories is its closure variable representing the scalar statistics. In the
renormalized perturbation theory in turbulence, the choice of the representative variable is the key
to a better approximation [24,33].

In contrast to the pioneering works employing the scalar field θ (x, t ) itself, we shall focus on
an alternative quantity representing more structural information of the local scalar distribution,
which may be the key idea of Batchelor’s theory [10]. The scalar Hessian, ∂i∂ jθ , may be the most
fundamental quantity expressing local extrema and saddle points of scalar distribution. However,
the Hessian, the second-order derivative of the scalar, is too sensitive to the small-scale nature, so
we focus instead on a spatially integrated Hessian H̄i j ≡ 
−1∂i∂ jθ . One thing to note is that H̄
reflects the value of the scalar gradient, unlike the pure Hessian ∂i∂ jθ , which may be understood
from ∂iH̄i j = ∂ jθ . Thus the local value of H̄i j may also be sensitive to the large-scale structure
acting like a background scalar gradient, which may be an undesirable feature as a closure variable
expressing small-scale nature. Then the following quantity is chosen as the representative variable
of HBLRA:

Hi j ≡ H̄i j − δi jθ. (2.1)

Here the term −δi jθ is added to cancel out the dependence on the scalar gradient (see discussions
in Sec. II B of Ref. [31]). Following the original LRA, we apply the Lagrangian analysis to
the modified Hessian Hi j , which describes the deformation of the local scalar distribution in the
Lagrangian picture.

For later discussions, we assume homogeneity and isotropy of both the velocity and the scalar
fields. Thereby, the Fourier analysis in the spatial components may be available in describing the
dynamics of each scale. We define the Fourier transformation as follows:

Hi j (x, t ) → Hi j (k, t ) = 1

(2π )3

∫
d3x exp [−ik · x]Hi j (x, t ), (2.2)
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where the Fourier component Hi j (k, t ) shares the same main symbol with the spatial component
Hi j (x, t ) for simplicity of notation. Following similar steps to the original LRA theory, the autocor-
relation and the averaged response function of the Hessian Hi j are introduced. In the homogeneous
and isotropic cases, all the statistical functions may be reduced to isotropic scalar functions:
Q(k; t, t ′), H (k; t, t ′), and GH (k; t, t ′) for the velocity autocorrelation, the Hessian autocorrelation,
and the Hessian response function, respectively (k ≡ ‖k‖). The scalar variance spectrum Eθ (k) is
related to our Hessian autocorrelation by Eθ (k, t ) = 4πk2H (k; t, t ), so it is solved from the closure
equations for Q(k; t, t ′), H (k; t, t ′), and GH (k; t, t ′). If the scalar source is confined in a sufficiently
small wave number region, HBLRA theory yields the following set of equations for H (k; t, t ′) and
GH (k; t, t ′):

(∂t + 2κk2)H (k; t, t ) = 2π

∫∫



d p dq kpq(1 − z2)
∫ t

t0

dsQ(p; t, s)

× {H (q; s, t )GH (k; t, s) − H (k; s, t )GH (q; t, s)},
(2.3)

(∂t + κk2)H (k; t, t ′) = − π

2

∫∫



d p dq kpq(1 − y2)(1 − z2)
∫ t

t ′
ds Q(p; t, s)H (k; t, t ′)

− π

2

∫∫



d p dq kpq(1 − y2)(1 − z2)
∫ t

t0

ds Q(p; t, s)GH (q; t, s)H (k; s, t ′)

+ π

2

∫∫



d p dq kpq(1 − y2)(1 − z2)
∫ t ′

t0

ds Q(p; t, s)H (q; t, s)GH (k; t ′, s),

(2.4)

(∂t + κk2)GH (k; t, t ′) =−π

2

∫∫



d p dq kpq(1 − y2)(1 − z2)

×
∫ t

t ′
ds Q(p; t, s){GH (k; t, t ′) + GH (q; t, s)GH (k; s, t ′)} (t � t ′), (2.5)

GH (k; t ′, t ′) = 1, (2.6)

while the velocity autocorrelation Q(k; t, t ′) is obtained from the LRA equations for the velocity
closure [Eqs. (2.35)–(2.46) of Ref. [24]] and is related to the energy spectrum E (k, t ) as E (k, t ) =
2πk2Q(k; t, t ). The geometrical factors y ≡ (q2 + k2 − p2)/(2kq), z ≡ (p2 + k2 − q2)/(2kp), and

 ≡ {(p, q)| |k − p| � q � k + p} reflect the triad interaction between three wave number modes:
second-order nonlinearity allows for an interaction between three modes when k, p, and q can form
the sides of a triangle. Then three factors x [≡(p2 + q2 − k2)/(2pq)], y, and z are introduced as
cosines of three interior angles opposite to the sides k, p, and q, respectively [20,24]. The integration
domain 
 arises from an existence condition for such a triangle.

III. EQUATIONS FOR THE FAR-DISSIPATIVE RANGE

If turbulence is sustained by a source applied in a sufficiently large scale, the inertial range may
span a wide range in Fourier space. Let Q(k; t, t ) be CKε2/3k−11/3 for k → +0 so that the inertial
range reaches the neighbor of k = 0, which corresponds to the high-Reynolds-number limit. Q(k)
can be solved under such a condition, and the resultant 3D energy spectrum E (k) ≡ 2πk2Q(k; t, t )
is given in Fig. 1. The Kolmogorov constant was obtained as CK ≈ 1.722 in a similar manner to
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FIG. 1. Energy spectrum function E (k) ≡ 2πk2Q(k; t, t ) obtained from LRA. A numerical factor 1.722
corresponds to the Kolmogorov constant CK .

that of Ref. [28]. Note that the value agrees with that of Ref. [25] (CK ≈ 1.722) based on a different
calculation scheme from those of the present work and Ref. [28]. At a sufficiently high wave number
k � kη, where the viscosity sufficiently suppresses the energy spectrum, HBLRA closure composed
of Eqs. (2.3)–(2.6) is reduced to a much simpler form. First, let k be sufficiently higher than kη. Then
Q(p; t, s) in Eqs. (2.3)–(2.5) vanishes in most of the integration domain 
 except for the region
p � k. Let us introduce here a cutoff wave number pmax satisfying kη � pmax � k. Then, only a
limited part � ≡ {(p, q)| |k − p| � p � pmax} in the total integration domain 
 may be sufficient
to reach appropriate values of the nonlinear terms (see Fig. 2). The resultant equations read

(
∂t + 2κk2

)
H (k; t, t ) = 4

15
πk−2

∫ ∞

0
d p

∫ t

t0

ds p4Q(p; t, s)

×
[

GH (k; t, s)
∂

∂k

{
k4 ∂H (k; s, t )

∂k

}
− H (k; s, t )

∂

∂k

{
k4 ∂GH (k; t, s)

∂k

}]
,

(3.1)

FIG. 2. In the case of k � p, most of the velocity correlation Q(p; t, s) is confined in the range 0 � p �
pmax, so that the integration domain can be reduced from 
 (gray area) to � (hatched area) in calculating the
nonlinear terms of Eqs. (2.3)–(2.5).
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(∂t + κk2)H (k; t, t ′) = − 8

15
π

∫ ∞

0
d p

∫ t

t ′
ds p4Q(p; t, s)H (k; t, t ′)

− 8

15
π

∫ ∞

0
d p

∫ t

t0

ds p4Q(p; t, s)GH (k; t, s)H (k; s, t ′)

+ 8

15
π

∫ ∞

0
d p

∫ t ′

t0

ds p4Q(p; t, s)H (k; t, s)GH (k; t ′, s), (3.2)

(∂t + κk2)GH (k; t, t ′) = − 8

15
π

∫ ∞

0
d p

∫ t

t ′
ds p4Q(p; t, s)

× {GH (k; t, t ′) + GH (k; t, s)GH (k; s, t ′)} (t � t ′), (3.3)

whose derivation may be given in Appendix A. Now Eqs. (3.1)–(3.3) accompanied by
GH (k; t ′, t ′) = 1 [see Eq. (2.6)] form a closed set of equations for the scalar statistics at the
far-dissipative scale k � kη. Unlike the original Eqs. (2.3)–(2.5), the wave number integration is
applied only on the velocity correlation, which implies that the self-interaction of the scalar is
now quite local while the coupling between the scalar and the velocity is nonlocal. Recalling
that E (p) = 2π p2Q(p), we notice that p4Q(p; t, s) in Eqs. (3.1)–(3.3) is closely related to the
autocorrelation of the velocity strain, which becomes prominent around the Kolmogorov scale.
Then the timescale of the local scalar structure may be mostly dominated by the balance between
the timescale of the straining motion around the Kolmogorov scale and the diffusion timescale.

IV. VISCOUS-CONVECTIVE RANGE

In the case of high Schmidt numbers, we may find within the viscous range a subrange where the
convection effect exceeds the scalar diffusion. In such a scale range, diffusion terms in Eqs. (3.1)–
(3.3) may be negligible. Then we soon realize that Eq. (3.3) without the diffusion term can be
uniquely solved without a dependence on k. Let us normalize Eq. (3.3) by the Kolmogorov scales
of length and time. We introduce a dimensionless time interval as τ ≡ (t − t ′)(ε/ν)1/2. Now we
rewrite GH as follows using a dimensionless function ḠH :

GH (k; t, t ′) = ḠH (τ ). (4.1)

In a similar fashion, the velocity correlation Q(p; t, s) can also be rewritten using another dimen-
sionless function Q̄:

Q(p; t, s) = CK

2π
ε2/3 p−11/3Q̄( p̄; τ − σ ), (4.2)

where p̄ ≡ pη is a dimensionless wave number, σ ≡ (s − t ′)(ε/ν)1/2 is another dimensionless
time, and CK (≈1.722 [25,28]) is the Kolmogorov constant. Then Eq. (3.3) may be rewritten as

∂τ ḠH (τ ) = − 4

15
CK

∫ ∞

0
d p̄ p̄1/3

∫ τ

0
dσ Q̄( p̄; τ − σ ){ḠH (τ ) + ḠH (τ − σ )ḠH (σ )} (τ � 0).

(4.3)

Now ḠH (τ ) can be uniquely solved using ḠH (0) = 1. The numerical result of ḠH (τ ) is given in
Fig. 3. Some details of the calculus to solve Eq. (4.3) can be found in Appendix B. Now the response
function GH (k; t, t ′) tells us the relaxation of the local scalar structure, whose time integration offers
the timescale of the scalar field:

τG ≡
∫ ∞

t
GH (k; t ′, t )dt ′ = (ν/ε)1/2

∫ ∞

0
ḠH (τ )dτ ≈ 2.53(ν/ε)1/2 (4.4)
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FIG. 3. Numerical result of ḠH . The dimensionless time interval τ (horizontal axis) is normalized by the
Kolmogorov timescale (ν/ε)1/2.

in the unit of the Kolmogorov timescale (ν/ε)1/2. It should be remarked that the scalar structures in
the viscous-convective range have a single timescale τG independent of k, which agrees with the idea
of Ref. [10]: the scalar structures within the viscous-convective range are uniformly deformed by
the turbulence eddy of the Kolmogorov length, and they have a single timescale (ν/ε)1/2. A similar
approach may be applicable to Eq. (3.2). Here we focus on another correlation function instead of
H (k; t, t ′). If the scalar field reaches the stationary state, we can introduce a normalized function:

RH (k; t, t ′) ≡ H (k; t, t ′)
H (k; t, t )

, (4.5)

whose equation may be given by

∂t RH (k; t, t ′) = − 8

15
π

∫ ∞

0
d p

∫ t

t ′
ds p4Q(p; t, s)RH (k; t, t ′) − 8

15
π

∫ ∞

0
d p

∫ t

t0

ds p4Q(p; t, s)

× GH (k; t, s)RH (k; s, t ′) + 8

15
π

∫ ∞

0
d p

∫ t ′

t0

ds p4Q(p; t, s)RH (k; t, s)GH (k; t ′, s),

(4.6)

accompanied by RH (k; t ′, t ′) = 1. Due to the independence of GH from k, Eq. (4.6) can be uniquely
solved without a dependence on k. Using another dimensionless function R̄H , we rewrite RH in a
dimensionless form:

RH (k; t, t ′) = R̄H (τ ), (4.7)

where τ is again the dimensionless time (t − t ′)(ε/ν)1/2. By introducing again the dimensionless
wave number p̄ ≡ pη, Eq. (4.6) may be rewritten as

∂τ R̄H (τ ) = − 4

15
CK

∫ ∞

0
d p̄ p̄1/3

∫ τ

0
dσ Q̄( p̄; σ )R̄H (τ ) − 4

15
CK

∫ ∞

0
d p̄ p̄1/3

∫ τ

−∞
dσ Q̄( p̄; τ − σ )

× ḠH (τ − σ )R̄H (σ ) + 4

15
CK

∫ ∞

0
d p̄ p̄1/3

∫ 0

−∞
dσ Q̄( p̄; τ − σ )R̄H (τ − σ )ḠH (−σ ),

(4.8)
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FIG. 4. Numerical result of R̄H .

accompanied by R̄H (0) = 1. The numerical solution of R̄H (τ ) is given in Fig. 4, which is symmetric
under a transformation τ → −τ , i.e., H (k; t, t ′) = H (k; t ′, t ) holds in the viscous-convective range.
The timescale is given by

τR ≡ 1

2

∫ ∞

−∞
RH (k; t ′, t )dt ′ = 1

2
(ν/ε)1/2

∫ ∞

−∞
R̄H (τ )dτ ≈ 2.53(ν/ε)1/2, (4.9)

which coincides exactly with τG.
Now we are ready to solve the scalar spectrum using Eq. (3.1). Multiplying both sides of Eq. (3.1)

by 4πk2, we obtain the equation of the scalar variance spectrum:

(∂t + 2κk2)Eθ (k, t ) = Tθ (k, t ), (4.10)

where Tθ is the transfer function of the scalar variance spectrum:

Tθ (k, t ) = 16

15
π2

∫ ∞

0
d p

∫ t

t0

ds p4Q(p; t, s)

×
[

GH (k; t, s)
∂

∂k

{
k4 ∂H (k; s, t )

∂k

}
− H (k; s, t )

∂

∂k

{
k4 ∂GH (k; t, s)

∂k

}]
. (4.11)

Under the stationary state, the time-derivative term on the left side of Eq. (4.10) vanishes. Also, the
diffusion term vanishes in the viscous-convective range. Then, integrating Eq. (4.10) over [k,∞)
yields

∫ ∞

k
Tθ (p)d p = 2κ

∫ ∞

k
p2Eθ (p)d p = χ, (4.12)

i.e., the scalar flux �θ (k) ≡ ∫ ∞
k Tθ (p)d p may take a constant value χ in the viscous-convective

range. Recalling that both GH and RH are independent of k in the viscous-convective range (see
Sec. IV), Eq. (4.11) may be rewritten as

Tθ (k) = 16

15
π2 ∂

∂k

[
k4 ∂H (k)

∂k

] ∫ ∞

0
d p

∫ t

t0

ds p4Q(p; t, s)RH (k; s, t )GH (k; t, s), (4.13)
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while the scalar-variance flux �θ (k) is given by

�θ (k) = −16

15
π2k4 ∂H (k)

∂k

∫ ∞

0
d p

∫ t

−∞
ds p4Q(p; t, s)RH (k; s, t )GH (k; t, s). (4.14)

With the help of Eq. (4.14), Eq. (4.12) can be rewritten as a first-order differential equation of Eθ (k)
(see Appendix C), whose solution may be given by

Eθ (k) = CBχ
(ν

ε

)1/2
k−1, (4.15)

where

CB = 5

2CK

/ ∫ ∞

0
d p̄ p̄1/3

∫ ∞

0
dσ Q̄( p̄, σ )R̄H (−σ )ḠH (σ ). (4.16)

Now Eq. (4.15) is identical to the expected Batchelor spectrum of Eq. (1.3). Then CB given by
Eq. (4.16) is identified with the Batchelor constant. Numerical calculation of Eq. (4.16) yields

CB ≈ 3.60, (4.17)

which is close to the experimental values obtained from the measurements of oceanic flows
(3.9 ± 1.5 [11] and 3.7 ± 1.5 [12]). The present achievement (4.17) should be compared with
the results from the pioneering Lagrangian-closure theories:

√
10/3(≈ 1.83) from LRA [34], 1.30

from LDIA (its fundamental equations are identical to those of LRA) [29], 0.8–1.0 from ALHDIA
[27], and 2.0 from SBALHDIA [27], which are all substantially lower than the present result. The
discrepancy between the present and the pioneering results comes exactly from the difference in
their physical pictures: in the present theory, the two-time statistics GH (k; t, s) and H (k; t, s) explain
the timescale of the deformation of the scalar distribution caused by fluid’s straining motion, and
they express the scalar flux within the viscous-convective range according to Eq. (4.14). In contrast,
the pioneering theories are incapable of describing the timescale of the scalar deformation because
of their representative variables being the scalar field, and the deformation of the scalar is irrelevant
to determine the scalar flux within the viscous-convective range, which may be inconsistent with the
idea of Batchelor [10]. This may be understood from the behavior of the scalar value experienced by
a Lagrangian fluid element: if the diffusivity is sufficiently small, the scalar value on a fluid element
may be conserved, yielding an infinite-length timescale in its Lagrangian analysis. This amounts
to a simple replacement GH (k; t, t ′), RH (k; t, t ′) → 1 of Eq. (4.14). As a result, the conventional
Lagrangian theories based on the scalar field explain their scalar flux without the relaxation effect
of the deformation of the scalar field, and they overestimate the scalar flux and underestimate CB.

Now Eq. (4.14) expresses the scalar-variance flux by integrating the contributions from the
velocity-gradient statistics of various scales. One can discuss the weight of the contribution from
the velocity gradient of each scale. Let us rewrite Eq. (4.14) as

�θ (k) = − 2

15
CK

( ε

ν

)1/2
k3 ∂ k−1Eθ (k)

∂k

∫ ∞

0
d p̄ W ( p̄), (4.18)

where W ( p̄) is a dimensionless function given by

W ( p̄) =
∫ ∞

0
dσ p̄1/3Q̄( p̄, σ )R̄H (−σ )ḠH (σ ).

Another dimensionless function

W̄ ( p̄) ≡ W ( p̄)∫ ∞
0 dq̄ W (q̄)

(4.19)
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FIG. 5. Dimensionless measures W̄ and F̄ of the contribution from the velocity gradient to the scalar flux.
In the horizontal axis, the wave number p̄ is normalized by the Kolmogorov length η.

offers a measure of the contribution from the velocity gradient statistics at the scale of p̄. An integral
of W̄ , i.e.,

F̄ ( p̄) ≡
∫ p̄

0
W̄ (q̄)dq̄, (4.20)

tells us how much the scalar flux is generated by the fluid motion at the wave number range lower
than p̄. Numerical results of the measures W̄ and F̄ are plotted in Fig. 5. W̄ increases monoton-
ically before its peak around p̄ = 0.1. Recalling that p̄ is normalized by the Kolmogorov length
η, p̄ = 0.1 corresponds to 0.1kη in the wave number, which is close to the scale at which the
dissipation spectrum peaks. This suggests that the dissipative motion of the fluid gives a major
contribution to the scalar flux in the viscous-convective range. In contrast, F̄ ( p̄) remains 0.15 at
p̄ = 0.1, meaning that only 15% of the scalar flux within the viscous-convective range is induced by
the fluid motion of the wave number range smaller than 0.1kη. On the other hand, F̄ ( p̄) reaches 0.99
at p̄ = 0.9, suggesting that the fluid motion of k � 0.9kη contributes only 1%. Also, one may say
that more than 80% (99–15%) of the scalar flux can be expressed by the fluid motion within the wave
number band [0.1kη, 0.9kη]. In addition, F̄ (1) ≈ 0.995 and F̄ (0.01) ≈ 0.005, so the fluid motion
within [0.01kη, kη] can express 99% (99.5–0.5%) of the scalar flux within the viscous-convective
range.

V. SOLUTIONS FOR FINITE SCHMIDT NUMBERS

So far we have applied an asymptotic analysis to HBLRA equations in order to investigate the
physics of the high-Schmidt-number limit, which could hardly be achieved by experiment nor DNS
in the near future. On the other hand, the case of finite Schmidt numbers can be solved from HBLRA
equations in a straightforward manner, which may offer some cornerstones for near-future studies.
In the present work, stationary solutions of finite Schmidt numbers varying from 10 to 100 000 are
obtained, with a slight modification to HBLRA equations for the sake of reducing the calculation
cost; since most of the calculation cost of HBLRA is from the triple integrals on the right side
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FIG. 6. Scalar variance spectra. Dotted lines show the theoretical asymptotes of the inertial-convective and
the viscous-convective ranges, respectively.

of Eq. (2.4), we redefine H (k; t ′, t ) as H (k; t, t ′) for t � t ′. As mentioned in the previous section,
H (k; t, t ′) = H (k; t ′, t ) holds in the viscous-convective range, so the current modification does not
alter the result of the viscous-convective solution, while a slight difference appears in the inertial-
convective range: the Obukhov-Corrsin constant becomes COC ≈ 0.756, which is almost identical
to the original result COC ≈ 0.754.

Here we employ the same velocity statistics Q(k; t, t ′) in the previous sections. Pro-
vided the scalar field is sustained by its source of sufficiently large scale, we apply H (k) =
(4π )−1COCχε−1/3k−11/3 for k → 0 as a boundary condition to solve Eqs. (2.3)–(2.6). The resultant
spectra are shown in Fig. 6, where the power law region ∝ k−1 observed in kη � 0.1 extends as the
Schmidt number increases. To see more details of the viscous-convective range, the compensated
spectra are shown in Fig. 7. A buffer region 0.05 � kη � 1 may be recognized between the
inertial-convective and the viscous-convective ranges, and the k−1 range may exist in kη � 1.
Then Sc = 10 and 100 may not be sufficient to observe the asymptote of CB ≈ 3.60 beyond the
buffer. In the inset of Fig. 7, we draw an error band of 3% (a green band) ranging from 3.49
to 3.71 of the vertical axis in order to identify the plateaus such that the compensated spectra
agree with CB ≈ 3.60 within an error of 3%. Then 0.8 � kη � 10 from the case of Sc = 10 000
and 0.8 � kη � 30 from the case of Sc = 100 000 are identified. In addition to the scalar variance
spectrum of the single-time analysis, HBLRA expresses the timescale of the scalar field from the
two-time statistics, i.e., τG ≡ ∫ ∞

t GH (k; t ′, t )dt ′ [see also Eq. (4.4)] plotted in Fig. 8. Again, a buffer
region 0.05 � kη � 1 appears between the inertial-convective and the viscous-convective ranges. In
the viscous-convective range above the buffer region, the timescale τG tends to a constant, which
indicates that the scalar timescale within the viscous-convective range is uniformly dominated by
a single timescale (ν/ε)1/2. Again, the error band of 3% ranging from 2.45 to 2.61 of the vertical
axis is drawn in the inset of Fig. 8 (a green band). Then the plateaus 1 � kη � 10 from the case of
Sc = 10 000 and 1 � kη � 50 from the case of Sc = 100 000 are identified, respectively. For both
the spectrum and the timescale, the plateaus may extend as Sc increases.
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FIG. 7. Compensated spectra. Dotted lines show the theoretical asymptotes of the inertial-convective and
the viscous-convective ranges, respectively.

VI. SUMMARY AND DISCUSSIONS

Passive scalar turbulence at high Schmidt numbers was examined by means of HBLRA, a
self-consistent closure theory based on the exact governing laws. Without relying on any em-
pirical parameters, the closure equations successfully led us to an expected result ∝ k−1 of the
scalar variance spectrum within the viscous-convective range with its universal Batchelor constant
CB ≈ 3.60 [see Eq. (4.17)], which is appreciably larger than those obtained from pioneering closure

FIG. 8. Scalar timescale τG. Dotted lines show the theoretical asymptotes of the inertial-convective and
the viscous-convective ranges, respectively. The timescale of the inertial-convective range is obtained as
1.13k−2/3ε−1/3 in Ref. [31].
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theories: LRA (1.30–1.83), ALHDIA (0.8–1.0), and SBALHDIA (2.0). Experiments and DNS
suggest CB ≈ 3.6–5.7, thus, at least in terms of the predictability of the Batchelor constant, HBLRA
may be the most reliable among these self-consistent closure theories (there is also an estimation
CB = 2

√
5 ≈ 4.47 based on the Langevin models of the velocity and the scalar within the Eulerian

framework [19]). This may be because of the improvement in the physical picture: unlike pioneering
theories, HBLRA successfully explained the timescale of a scalar within the viscous-convective
range deformed by the straining motion of the Kolmogorov scale, which leads to a more plaus-
ible description of the viscous-convective range. Indeed, HBLRA predicts that the relaxation
timescale of the scalar distribution within the viscous-convective range is dominated by a single
timescale ∼(ν/ε)1/2 of the Kolmogorov scale, which is in accordance with the idea of Batchelor
[10]. Our result of CB ≈ 3.60 is close to experimental values obtained from measurements of
oceanic flows (3.9 ± 1.5 [11] and 3.7 ± 1.5 [12]). It should be remarked, however, that the pioneer-
ing works of Refs. [11,12] fully rely on the spectral form of Ref. [10], which has not been verified yet
(a more recent work Ref. [15] reported that their DNS shows better agreement with another spectral
form of Ref. [35] than that of Ref. [10]). Also, in the measurement of temperature field in oceanic
flow, the Schmidt number (Sc ≈ 10) is not sufficiently high to obtain a clear k−1 spectrum, so their
data alone may not be sufficient to verify our achievement (Refs. [11,12] determine CB from the
fitting of their measurements with the entire viscous range including the viscous-diffusive range).
Another experiment on the mixing of salt concentration within water reported CB ≈ 4 from a clearer
viscous-convective range [13]. Recent numerical surveys reported somewhat higher values of CB:
CB ≈ 4.9 from Ref. [14] by fitting their DNS data under moderate Schmidt numbers, CB ≈ 5.7
from Ref. [15] via high-Schmidt-number DNS with the Reynolds number being moderate, and
CB ≈ 5 from Ref. [17] via high-Reynolds-number DNS with the Schmidt number being moderate.
It may still be challenging with the current computational technology to increase both Reynolds
and Schmidt numbers simultaneously, and thus our result CB ≈ 3.60 may be left as one theoretical
prediction to be assessed by future studies.

Finite-Schmidt-number calculations suggest the existence of the universal viscous-convective
range for high Sc (�10 000). Our results indicate the existence of a buffer region 0.05 � kη � 1
between the inertial-convective and the viscous-convective ranges, and the k−1 power-law range
may appear in kη � 1. Here we shall recall the assumption in deriving the spectrum of Eq. (4.15);
our asymptotic analysis requires kη � 1, while our results of Figs. 7 and 8 appear to tend to the
asymptotes for kη � 1. Since both DNS and LRA suggest an appreciable falloff of the energy
spectrum for kη � 0.1 [25,36], it might be possible to relax the assumption from kη � 1 to kη �
0.1, which could partially support the existence of the viscous-convective range for kη � 1. In the
range 1 � kη � 30 of the case Sc = 100 000, both the compensated spectrum and the timescale
agree with the asymptotic values [CB ≈ 3.60 and τG ≈ 2.53(ν/ε)1/2] within the error of 3%, which
could be recognized as the plateaus of the viscous-convective range (see Figs. 7 and 8).

On the other hand, the finite-Reynolds-number effect on the viscous-convective range should also
be explored in future studies. One can make a rough projection of the finite-Reynolds-number effect
using a discussion of Sec. V as follows. According to the function F̄ in Fig. 5, the turbulence of a
limited wave number band contributes to the scalar flux within the viscous-convective range. Indeed,
the theory suggests that the velocity spectrum within a limited band 0.01 � kη � 1 can express
99% of the scalar flux within the viscous-convective range. In DNS of the velocity field based on
the pseudospectral method, for instance, if the energy pileup occurs around kη ≈ 1 due to the wave
number cutoff, this may contaminate the viscous-convective range via the scalar flux according to
Eq. (4.18). If the schemes of forcing or time averaging affect the spectrum of kη ≈ 0.01, the scalar
flux may also be affected via Eq. (4.18). Then, in order to obtain the universal Batchelor constant
with a certain accuracy, one may need to obtain, at least, the energy spectrum of kη � 0.01 with a
sufficient accuracy.

There is still much room for improvement in the present framework, i.e., the incorporation of the
intermittency effect. HBLRA, as a branch of the moment-closure theory, does not reflect the spatial

064603-13



TAKETO ARIKI

intermittency of ε and χ . However, the intermittency effect may be more prominent as the scale
becomes small, and this should be taken into account. Up to now we have had no perspective on
how much this affects our result: not only the predicted value of the Batchelor constant but even
its universality may be questioned. Unfortunately, the problem is out of reach of the current work.
However, low-Schmidt-number simulations confirmed stronger intermittency as the scale becomes
small [7], and there should be an undeniable effect on the physics in the sub-Kolmogorov scale. In
the same context, we mention the viscous-diffusive range (k � kb). For the high-wave number limit
(k → ∞), the asymptotic solution of Eqs. (3.1)–(3.3) yields Eθ (k) ∝ exp[−√

15(k/kb)2] (algebraic
dependence omitted), which shows a more rapid falloff than those expected from DNS [14,15]. This
may be partially due to the lack of intermittency effect. Likewise in Ref. [15], incorporation of the
spatial intermittency of the physical properties may be available to further investigate the physics of
the far-dissipative range.

The present paper provides an application to the most fundamental case, i.e., fully developed
homogeneous isotropic turbulence. There may be, however, further generalized cases to which
the present formulation could contribute. For instance, turbulence induced by the Rayleigh-Taylor
instability (RTI) may be one typical class of phenomena frequently observed in both industrial and
natural sciences. Numerical and experimental studies on RTI-induced turbulence have examined
a wide range of Sc (1–1000) [37], which could be compared with the result of Sec. V, where
Sc ranges from 10 to 100 000. HBLRA may be a reasonable approach to phenomena of such a
wide range of Sc. Also, we should note that as of now there is no conclusive argument about the
inertial-range structure of RTI-induced turbulence [38,39]. In this respect, it should be recalled
that LRA and HBLRA closures can be applied without assuming the velocity spectrum, so RTI
should be an important subject for future studies. In particular, the constant-density formulation
with the Boussinesq approximation may be available for current LRA and HBLRA formulations
[40].
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APPENDIX A: DERIVATION OF EQS. (3.1)–(3.3)

Here we begin with Eq. (2.3). First the integration domain 
 can be replaced with �. In �, q is
close to k so that k, p, and q can form the sides of a triangle, i.e., k, q � p and q ≈ k. A simple
replacement of q with k results in vanishing of the right side, and any nontrivial contributions may
arise from a slight difference between k and q. Then we rewrite q as k + ξ p, where ξ (∈ [−1, 1]) is
a dimensionless parameter introduced to simplify the integration by q. Now Eq. (2.3) is rewritten as

(∂t + 2κk2)H (k; t, t ) = 2πk
∫ pmax

0
d p

∫ 1

−1
(p dξ ) p(k + pξ )(1 − z2)

∫ t

t0

ds Q(p; t, s)

× {H (k + pξ ; s, t )GH (k; t, s) − H (k; s, t )GH (k + pξ ; t, s)}. (A1)

Now we perform power series expansions in terms of p̂ (≡p/k) as follows:

1 − z2 = 1 − ξ 2 + p̂ξ (1 − ξ 2) + O( p̂2), (A2)

H (k + pξ ; s, t ) = H (k; s, t ) + p̂ξ k
∂H (k; s, t )

∂k
+ 1

2
p̂2ξ 2 k2 ∂2H (k; s, t )

∂k2
+ O( p̂3), (A3)

GH (k + pξ ; t, s) = GH (k; t, s) + p̂ξ k
∂GH (k; t, s)

∂k
+ O( p̂2). (A4)
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From the lowest order analysis in p̂, Eq. (A1) turns into

(∂t + 2κk2)H (k; t, t ) = 4

15
π2k−2

∫ pmax

0
d p

∫ t

t0

ds p4Q(p; t, s)

×
[

GH (k; t, s)
∂

∂k

{
k4 ∂H (k; s, t )

∂k

}
− H (k; s, t )

∂

∂k

{
k4 ∂GH (k; t, s)

∂k

}]
.

(A5)

At this stage, we do not need to limit the p integration up to pmax, since Q(p; t, s) tends to zero for
p � pmax � kη. Then we reach Eq. (3.1) free of the cutoff wave number pmax. Similar steps can be
applied to Eqs. (2.4) and (2.5), which results in Eqs. (3.2) and (3.3).

APPENDIX B: INTEGRATION OF ḠH

One simple approach to Eq. (4.3) may be an iteration scheme where one may repeatedly
substitute an old ḠH (τ ) into the right side and integrate the left to obtain a new ḠH (τ ). It should
be noted, however, that such a direct iteration does not converge well for large τ . An alternative
approach may be given as follows. First we shall focus on the first term on the right side of Eq. (4.3):

−K (τ )ḠH (τ ),

(
K (τ ) ≡ 4

15
CK

∫ ∞

0
d p̄ p̄1/3

∫ τ

0
dσ Q̄( p̄; τ − σ )

)
. (B1)

This term implies that ḠH (τ ) may decay exponentially as τ → ∞, which helps ḠH (τ ) to converge
at large τ . Let us extract the exponential behavior caused by this term by solving the following
equation:

∂τ Ā(τ ) = −K (τ )Ā(τ ). (B2)

Rewriting Ā(τ ) as exp[−ā(τ )] and substituting it into Eq. (B2) yields

∂τ ā(τ ) = K (τ ). (B3)

Now we shall define the initial condition. Here we choose ā(0) = 0 for later simplicity. Also note
that ∂τ ā(τ )|τ=0 K (0) = 0. Following a similar strategy to Ref. [28], we differentiate both sides by
τ , which reads

∂2
τ ā(τ ) = 4

15
CK

∫ ∞

0
d p̄ p̄1/3Q̄( p̄; τ ). (B4)

Now Eq. (B4) can be solved with the help of its initial conditions: ā(0) = 0 and ∂τ ā(τ )|τ=0 = 0.
Let us next express ḠH (τ ) using the above exponential decay factor. Introducing another dimen-

sionless function B̄(τ ), we write ḠH (τ ) as Ā(τ )B̄(τ ). Substituting this into Eq. (4.3) yields

∂τ B̄(τ ) = 1

Ā(τ )

4

15
CK

∫ ∞

0
d p̄ p̄1/3

∫ τ

0
dσ Q̄( p̄; τ − σ )ḠH (τ − σ )ḠH (σ ), (B5)

accompanied by ḠH (τ ) = Ā(τ )B̄(τ ). The initial condition ḠH (0) = 1 is now expressed by
B̄(0) = 1. One can apply the iteration scheme to B̄(τ ), which shows much faster and stabler
convergence than that of the iteration based on ḠH (τ ). Starting from the initial function B̄(τ ) = 1,
ten iterations may be sufficient to obtain τG ≈ 2.53. The numerical solutions for ḠH (τ ), Ā(τ ), and
B̄(τ ) are shown in Fig. 9. While B̄(τ ) oscillates for a wide range of τ , the exponential decay of Ā(τ )
rapidly damps ḠH (τ ). Similar steps may be applicable to R̄(τ ).
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FIG. 9. Profiles of ḠH (τ ), Ā(τ ), and B̄(τ ).

APPENDIX C: DERIVATION OF EQ. (4.15)

Using dimensionless functions (Q̄, R̄H , and ḠH ) and the scalar-variance spectrum Eθ (k)
[= 4πk2H (k)], Eq. (4.14) may be rewritten as

�θ (k) = − 2

15
CK

( ε

ν

)1/2
k3 ∂ k−1Eθ (k)

∂k

∫ ∞

0
d p̄ p̄1/3

∫ ∞

0
dσ Q̄( p̄, σ )R̄H (−σ )ḠH (σ ). (C1)

The above �θ (k) should be balanced with χ : �θ (k) = χ [see Eq. (4.12)], which may be rewritten
as

k3 ∂ k−1Eθ (k)

∂k
= − 15

2CK
χ

(ν

ε

)1/2
/ ∫ ∞

0
d p̄ p̄1/3

∫ ∞

0
dσ Q̄( p̄, σ )R̄H (−σ )ḠH (σ ). (C2)

Now Eq. (C2) may be regarded as a first-order differential equation of Eθ (k), which can be integrated
in a straightforward manner:

Eθ (k) = CBχ
(ν

ε

)1/2
k−1 + Ck, (C3)

with

CB = 5

2CK

/ ∫ ∞

0
d p̄ p̄1/3

∫ ∞

0
dσ Q̄( p̄, σ )R̄H (−σ )ḠH (σ ). (C4)

Here C is an arbitrary constant, which should vanish for a physically acceptable solution convergent
for k → ∞. Then we reach Eq. (4.15).
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