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Supervised super-resolution deep convolutional neural networks (CNNs) have gained
significant attention for their potential in reconstructing velocity and scalar fields in turbu-
lent flows. Despite their popularity, CNNs currently lack the ability to accurately produce
high-frequency and small-scale features, and tests of their generalizability to out-of-sample
flows are not widespread. Generative adversarial networks (GANs), which consist of two
distinct neural networks (NNs), a generator and discriminator, are a promising alternative,
allowing for both semisupervised and unsupervised training. The difference in the flow
fields produced by these two NN architectures has not been thoroughly investigated,
and a comprehensive understanding of the discriminator’s role has yet to be developed.
This study assesses the effectiveness of the unsupervised adversarial training in GANs
for turbulence reconstruction in forced homogeneous isotropic turbulence. GAN-based
architectures are found to outperform supervised CNNs for turbulent flow reconstruction
for in-sample cases. The reconstruction accuracy of both architectures diminishes for
out-of-sample cases, though the GAN’s discriminator network significantly improves the
generator’s out-of-sample robustness using either an additional unsupervised training step
with large eddy simulation input fields or a dynamic selection of the most suitable up-
sampling factor. These enhance the generator’s ability to reconstruct small-scale gradients,
turbulence intermittency, and velocity-gradient probability density functions. Conversely,
the supervised super-resolution CNN network lacks the capability to reconstruct these
statistics. The extrapolation capability of the GAN-based model is demonstrated for
out-of-sample flows at higher Reynolds numbers. Based on these findings, incorporating
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discriminator-based training is recommended to enhance the reconstruction capability of
super-resolution CNNs.

DOI: 10.1103/PhysRevFluids.9.064601

I. INTRODUCTION

Recent advances in experimental diagnostics and direct numerical simulation (DNS) capabilities
have enabled the generation of increasingly high-fidelity turbulent flow fields. Doing so requires
expensive assessments and significant computational resources due to the chaotic, multiscale nature
of turbulence, making them impractical for engineering applications. Consequently, high-fidelity
reconstruction of turbulent flows from limited data has been a longstanding concern. In this context,
the ability to restore high-resolution (HR) from low-resolution (LR) fields is an attractive proposi-
tion. For example, accurately representing small-scale turbulent features is necessary to capture
mixing at these scales, which could enable more accurate subfilter-scale (SFS) closure models
for large eddy simulations (LES) [1]. Similarly, in particle image velocimetry (PIV), near-wall
resolution limitations constrain the ability to capture intricate flow structures close to boundaries,
where high-resolution information is crucial for understanding boundary layer dynamics [2].

Significant strides in modern deep-learning frameworks have motivated the development of
data-driven super-resolution (SR) methods for turbulent flows, which are promising compared to
traditional SR techniques [3,4]. Their objective is to design suitable neural network architectures
to upsample LR (φLR) fields to HR fields (φHR). The resulting model should accurately invert an
unknown filter operator G,

φHR ≈ φSR = G−1
l ∗ φLR = G−1

l ∗ G ∗ φHR, (1)

where G−1
l is an lth-order approximate inverse of G. The quality of the approximate inverse operator

depends heavily on the choice of network architecture and training methodology and is not universal
for implicit kernel functions.

Deep convolutional neural networks (CNNs) have been applied for SR, with Fukami et al. [5–7]
pioneering their use for chaotic flows. They used a conventional super-resolution CNN to reconstruct
turbulent velocity and vorticity fields from LR input data obtained from experimental data and
numerical calculations. Using a similar architecture with residual layers [8], Pant and Farimani [9]
trained a deep CNN on forced homogeneous isotropic turbulence (HIT) to super-resolve filtered
DNS fields and addressed the tradeoff between resolution (fidelity) and computational complexity.
Liu et al. [10] used a deep CNN model for SR reconstruction of 3D HIT, finding that training on
time-series velocity fields improved the model’s SR reconstruction capabilities. Recently, Zhou et al.
[11] developed a turbulence volumetric super-resolution (TVSR) model based on CNNs, trained on
various Reynolds numbers, that was robust and accurate for different Reynolds numbers, though
only when coupled with an approximate deconvolution method (ADM).

While SR architectures have been shown to be more accurate than analytical models for in-
sample predictions (i.e., tested on data that statistically matches training data) [11,12], the current
understanding of SR mainly involves results obtained from supervised training of CNN models,
which require labeled LR and HR data for training. The necessarily large amounts of labeled data
for this, often from DNS, can be impractical to obtain. Supervised SR-CNN-based architectures
do not typically generalize to out-of-sample flow conditions or domains, for they are optimized
for specific data sets and objective functions, hence they remain largely untested for out-of-
sample inputs. Furthermore, supervised CNN architectures do not accurately predict high-resolution
details, resulting in a loss of high-wave number features and producing blurry super-resolved
fields. This is a significant limitation for small-scale reconstruction requiring accurate recovery of
high-frequency detail.
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To address the drawbacks of the supervised CNNs training strategy for SR, generative adversarial
networks (GANs) have been employed [13] that, unlike CNNs, do not rely solely on user-defined
objective functions for training. Instead, GANs’ super-resolving generator networks, based on
CNNs, are coupled with discriminator networks that compete in semisupervised learning. In GAN-
based SR, the generator produces higher-resolution versions of low-resolution fields (e.g., filtered
DNS or LES), while the discriminator network attempts to differentiate between the generated
high-resolution field and the real, “ground truth” high-resolution field (e.g., the DNS itself). During
training, the generator learns to produce samples that are indistinguishable from genuine high-
resolution data. The discriminator in turn learns to judge the authenticity of the samples. As a result,
both networks improve each other during the adversarial training process.

Deng et al. [14] compared super-resolution GAN (SRGAN) [15] and enhanced SRGAN (ESR-
GAN) [16] approaches, initially developed for image reconstruction, for the reconstruction of the
flow around tandem cylinders by upscaling two-dimensional turbulence. The ESRGAN architecture
outperformed the SRGAN in mean-flow metrics and fluctuation distributions. Through the use
of GAN architectures with and without physical loss functions (based on mass and momentum
conservation), Lee and You [17] studied the prediction of flow around a cylinder in laminar
conditions. One should note that this approach barely differs from DNS and is thus, by default,
computationally prohibitive. In reconstructing temporal data from a large time-step interval, only
the physics-based loss function adequately constrained the solution space for accurate prediction
of the resolved flow motion. Xu et al. [18] presented an innovative architecture that leverages
transformers in conjunction with a GAN; they found this architecture to effectively reconstruct
high-resolution turbulence fields for isotropic and anisotropic flows. Kim et al. [4] addressed the
challenge of reconstructing small-scale turbulence for sparsely paired LR and HR data, adopting a
cycle-consistent generative adversarial network (CycleGAN). The architecture successfully recon-
structs HR flow fields with DNS-quality statistics from the LES data. To drive the (unsupervised)
learning process, they designed a loss function based on the assumption that the filtered-DNS
(F-DNS) fields share a similar distribution with LES data. Consequently, their approach did not
use unsupervised adversarial training.

Bode et al. [19,20] introduced a physics-informed ESRGAN (PIESRGAN) for SFS turbulence
reconstruction incorporating a loss function based on the continuity-equation residual alone. Al-
though their model was only trained on HIT data, it was able to improve scalar-mixing predictions
in a reacting jet. Nista et al. [21,22] then investigated the generalization capability of a similar GAN
architecture by evaluating the model’s extrapolability to higher and lower Reynolds numbers than
those used for training. They found that the ratio between the LES filter width and the Kolmogorov
scale must be preserved for adequate generalization (i.e., a fixed SR upsampling window). Grenga
et al. [23] investigated the ability of similar GAN models to recognize and reconstruct gradient and
countergradient transport in low- and high-Karlovitz-number combustion regimes [24,25]. In this
case, only a GAN trained for both data sets adequately reconstructed the subfilter scales for both
combustion regimes.

While numerous studies have recognized the superior performance of GANs for super-resolution
reconstruction over conventional supervised CNNs [4,17,26–28], the underlying reasons for this
advantage have not been thoroughly explored. Possibilities include the flexibility in the training
strategy (supervised and partially unsupervised), the use of adversarial (unsupervised) training
leveraging unpaired training data, and the exploitation of generative models to model distributions,
thereby improving generalization to out-of-sample data. GANs are not without drawbacks and may
exhibit training instability and mode collapse, which could hinder convergence of the generator
[29]. Given these and the computational cost of training GANs, a critical evaluation of the need for
SR-GANs and the influence of the discriminator on generalizability to both in- and out-of-sample
flows with respect to different kernels and sizes and different flow configurations is necessary.
Moreover, the performance of GAN-based models to reconstruct spatial features and correlations,
including gradients, intermittency, and probability density function tails, has not been thoroughly
examined.

064601-3



LUDOVICO NISTA et al.

TABLE I. Simulation parameters for training and testing data sets. N is the number of mesh points, Ret

is the turbulent Reynolds number, Lx/L11 is the number of integral scales within the computational domain,
dx/η is the mesh resolution relative to the Kolmogorov microscale η, and kmax is the largest wave number
represented. “Train” and “test” flags indicate which data were used in model training and testing, respectively.

Case N Reλ Ret Lx/L11 dx/η kmax Train Test

Re90 2563 90 920 5.26 1.98 128 • •
Re130 5123 130 3320 5.26 1.86 256 •
Re350 10243 350 16182 5.26 1.97 512 •

This study investigates and quantifies the role of the GAN discriminator in reconstructing
turbulent fields while considering the benefits and limitations of the GAN approach. To evaluate
the effectiveness of adversarial training, a supervised deep-CNN model (TSResNet; Sec. III A)
is directly compared to a semisupervised/unsupervised GAN (PIESRGAN; Sec. III B). The same
CNN architecture, physics-inspired loss functions, and training data are used for the TSResNet and
PIESRGAN models. Hence, the sole difference between the two lies in the training strategy. In
particular, the ability to accurately reconstruct small-scale structures of turbulence, consistent with
the fundamental theory of turbulence, is investigated. Furthermore, while most studies have focused
on in-sample reconstruction within a narrow range of flow conditions, we explore both models’
generalizability to out-of-sample filtered fields for different filter sizes, filter kernels, and Reynolds
numbers. Our aim is to develop an understanding of the consistency of the reconstructed fields with
the original flow while avoiding the generation of spurious and/or unphysical fields and preserving
the fundamental turbulence characteristics. Particular emphasis is placed on the improvements of
these metrics brought about by adversarial training.

II. DATA SETS AND PREPROCESSING

Three forced HIT DNS data sets at Taylor-microscale Reynolds numbers Reλ = 90, Reλ = 130,
and Reλ = 350 are considered. These are computed using the CIAO code, which uses second-order
central differences, staggered meshes, and second-order implicit time advancement to solve the
incompressible Navier-Stokes equations [30]. The calculations have mesh sizes 256 × 256 × 256
points for the low Re, 512 × 512 × 512 points for intermediate Re, and 1024 × 1024 × 1024 points
for the high Re. The linear forcing f = A u proposed by Lundgren [31] is applied, where A is a
forcing parameter inversely proportional to the eddy turnover time. Table I reports the simulation
parameters for the three data sets. SR training used only the lowest Re DNS (Re90), with the higher
Re DNSs (Re130 and Re350) being reserved for testing.

After the lowest Re simulation reached a statistically stationary state, 160 snapshots of the 3D
velocity vector [ui = (U ,V ,W )T ] were extracted every five eddy-turnover times for training. To
obtain low-resolution data, all available snapshots of the instantaneous velocity were filtered using
explicit filter kernels of width � = 4 dx, corresponding to 8 η. Our analysis is limited by memory
requirements associated with the upsampling factor. As demonstrated later, the filter size considered
places the cutoff wave number into the inertial range. As the primary goal is to demonstrate
the effectiveness of adversarial training for SR reconstructions by comparing different training
strategies, the advantage of adversarial contribution is apparent even at these upsampling factors.
The training, validation, and testing data sets were composed of high-resolution (DNS) data, and the
corresponding low-resolution (filtered-DNS) data. The spatial box, Gaussian, and spectrally sharp
filter kernels are defined as

Gbox(x) =
{

1
�

if|x| � �
2

0 otherwise
, (2)

064601-4



INFLUENCE OF ADVERSARIAL TRAINING ON …

GGaussian(x) =
(

6

π�2

) 1
2

exp

(
−6(x)2

�2

)
, (3)

Gspectral(x) = sin [π (x)/�]

π (x)/�
, (4)

and the F-DNS fields are obtained by a discrete downsampling operation, applied independently of
the filter kernel, defined as

fdownsampling : R� → R�/�, ūF-DNS =
N∑

i=1

N∑
j=1

N∑
k=1

G ∗ u(�i,� j,�k), (5)

where N is the number of mesh points of the high-resolution field and � is the corresponding three-
dimensional field. The latter operation ensures that the F-DNS fields have the same dimensionality
as the corresponding LES fields. A comparison of filter kernels (box, Gaussian, and spectrally sharp)
is given in Sec. V A.

Loading the entire training data set is impractical given memory limitations. To alleviate this,
we extract subdomains randomly from each snapshot of the full domain. The first 120 snapshots
were used for training, while the last 40 frames, equally divided, were used for validation and
testing (training/validation ratio = 0.75/0.25). The ongoing validation was then performed on 20
in-sample fields not used for training. The last 20 snapshots were employed to obtain averaged
results. The time separation between training/validation samples and testing samples spans more
than 10 large-eddy turnover times, thus the two sets of samples should be statistically uncorrelated.
Both networks, TSResNet and PIESRGAN (introduced in Sec. III), were trained using subboxes of
the original computational domain with a size of 128 η × 128 η × 128 η, corresponding to subboxes
of 64 × 64 × 64 and 16 × 16 × 16 for high- and low-resolution fields, respectively. The size of
these subboxes was found to be a good compromise between memory requirements and the inherent
length scale of the turbulent flow. It is important to emphasize that the dimensions of the subboxes
were constrained by both η and the integral length scale lt . Specifically, it is ensured that at
least one lt is contained in these subboxes. Using those settings, 6400 subboxes were employed
for the training. During the evaluation of testing samples, the entire test sample is reconstructed
continuously, without employing cropped reconstruction boxes as is done for training. The velocity
components of high-resolution data and low-resolution data used for training and testing were
normalized by the global maximum and minimum of the DNS [i.e., (UF-DNS,VF-DNS,WF-DNS) ∈ [0, 1]
and (UDNS,VDNS,WDNS) ∈ [0, 1]] to improve the network’s performance [32].

The large data set and deep convolutional frameworks (implemented in TensorFlow [33]),
required training parallelization; this was done using the Horovod library [34]. Calculations were
performed on the Jülich DEEP-EST cluster (DEEP-DAM partition) using four nodes, each with
one NVIDIA V100 32 GB GPU. This gave an overall speed-up close to a factor of four versus
single-GPU training. A minibatch of eight subboxes per GPU and the ADAM optimizer, with an
initial learning rate of 10−4, were chosen due to memory constraints and previous evidence of the
success of this combination [9,17,35]. “Mixed-precision” training is common in machine learning
for its low computational cost [36] but can be detrimental to predictive accuracy in scientific
computing. We use single-precision arithmetic for both weight definition and loss computations,
following the results of Hrycej et al. [37]. Details are provided in the Appendix. Moreover, during
the evaluation of the testing samples, CPUs with access to a significantly larger memory pool are
employed to overcome memory limitations.

For unsupervised training, LES calculations of forced HIT are conducted using the same DNS
solver configuration albeit for coarser grid resolutions (equivalent to the discrete downsampling
factor applied to the DNS mesh). The unresolved scales are closed using the dynamic Smagorinsky
model [38,39] [Eq. (11)], or their influence is not explicitly modeled (“implicitly modeled” LES). To
extrapolate a given model to higher Re (utilizing the Re130 and Re350 data sets for out-of-sample
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FIG. 1. Top: The generator structure employed for CNN and PIESRGAN-based models. Bottom: The
discriminator structure employed for PIESRGAN models. In each, φF is the filtered input field, φSR is the
super-resolved field, and φGT is the ground-truth (DNS) field. Each convolutional block contains kernels of
size k, n filter maps, and s strides along each spatial dimension of the convolutional layer.

analyses), the filtered input field is rescaled to match the �/η ratio used for training. This rescaling
procedure guarantees a certain level of generalizability [21].

III. NEURAL NETWORK ARCHITECTURES AND TRAINING STRATEGY

Our networks are based on the architecture of Bode et al. [19,20,40,41]. Differing from previous
work, our generator network uses additional up-/downsampling layers and dense layers, depicted
in Fig. 1; this is inspired by the original ESRGAN architecture [16] and adapted for small-scale
turbulence reconstruction [22]. Along with the definition of the two architectures, the training
approaches are described next.

A. TSResNet

The TSResNet (Turbulent Super-Resolution Residual Network) is a supervised CNN-type model.
It uses only the generator shown in Fig. 1 without the discriminator. The TSResNet is adapted from
the original SRResNet [42], which can capture small-scale features when skip connections are in-
cluded. The generator relies on three-dimensional convolutional layers with Leaky Rectified Linear
Units (LReLUs) as activation functions, as they have higher computational efficiency compared
to standard rectified linear units (ReLUs) [33]. The Residual-in-Residual Dense Blocks (RRDBs)
include residual connections, a set of densely connected-layer blocks (three in the present work),
and a residual-in-residual structure [16]. Together, these enable super-resolved data to be generated
through a very deep network. This capability is essential to facilitate learning complex transfor-
mations and is currently one of the state-of-the-art features of super-resolution networks [43]. Two
upsampling layers increase the input spatial resolution by a factor of four in each spatial dimension.
Each one doubles the dimensions of the input by nearest-neighbor interpolation (replicating adjacent
grid points), followed by a convolution layer to improve the approximation. The upsampling branch
(the gray section in Fig. 1) is later modified in Sec. V B, where additional upsampling layers are
added. The total number of trainable parameters in the TSResNet is approximately 18 million.
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The perceptual loss originally proposed by Wang et al. [16] for image reconstruction has been
found to be less suitable for turbulence modeling [12] and is thus replaced with constraints derived
from the continuity equation. The loss function used for the TSResNet training process (LCNN) is a
combination of pixel loss (Lpixel), pixel gradient loss (Lgradient), and continuity loss (Lcontinuity),

LCNN = β1 Lpixel + β2 Lgradient + β3 Lcontinuity,

Lpixel = MSE(φSR, φDNS),

Lgradient = MSE(∇φSR,∇φDNS),

Lcontinuity = MSE(∇ · φSR, 0),

(6)

where the coefficients β = [0.89, 0.06, 0.05] were previously selected by Bode et al. [19] though
hyperparameter tuning, φSR is the super-resolved field, and φDNS is the DNS field. The mean-squared
error (MSE) is computed between the reconstructed and ground-truth fields and is applied sepa-
rately to all elements when tensor quantities are considered. The Lpixel loss function is inherently
dimensionless, owing to the prior normalization of both the input and output fields. Likewise, the
Lgradient loss function is normalized using the Kolmogorov length scale η, as the gradients are
small-scale quantities. Consequently, the Lcontinuity function loss as the sum of normalized gradients
is also dimensionless. This normalization helps to ensure that the loss functions are not affected by
the choice of the grid spacing or the velocity magnitude, allowing for more general and scalable
applicability of the nondimensional β parameters across similar configurations.

The network was initialized with random weights to ensure unbiased predictions. Training occurs
for a sufficient number of epochs after which the loss function and statistics computed on the
reconstructed field do not change substantially.

B. PIESRGAN

In contrast, the PIESRGAN model uses the full GAN architecture, i.e., generator and discrim-
inator, in adversarial training. The generator has the same architecture as the TSResNet described
previously. The discriminator (Fig. 1) is a deep deconvolutional architecture of fully connected
layers with binary classification output, differing from the original ESRGAN discriminator by the
introduction of a dropout layer to prevent overfitting. The total number of trainable parameters of
the discriminator is approximately 19 million.

The generator’s loss function is largely unchanged compared to the TSResNet but now includes
the contribution of the discriminator loss (Ladversarial [44]). The generator loss function is LGAN =
β1 Lpixel + β2 Lgradient + β3 Lcontinuity + β4 Ladversarial, where

Ladversarial = −E[log(σ (D(G(φSR)) − E[D(φDNS)]))]

− E[log(1 − σ (D(φDNS) − E[D(G(φSR))]))], (7)

E[·] is the expectation operator, σ (·) is the sigmoid function, and D(φDNS) and G(φSR) are the
discriminator and generator outputs. The first term of the adversarial loss function encourages
the discriminator to correctly classify HR fields as real, while the second term encourages the
generator to produce SR fields that can fool the discriminator into classifying them as HR. If
φDNS is not provided during the training (unsupervised training; Sec. V), Ladversarial is reduced to
Ladversarial = −E[log(σ (D(G(φSR))))]. The weights β = [0.89, 0.06, 0.05, 6 × 10−5] were chosen
through hyperparameter tuning, such that the absolute value of each term in LGAN is of the same
order. It is important to note that these β parameters may not be universally applicable and could
be case-dependent. While those parameters have proven effective for HIT configurations, their
optimality may vary for different flow configurations for which further hyperparameter tuning is
recommended. The loss function, used to train the discriminator when ground truth DNS fields are
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TABLE II. List of model configurations, training strategies, and training/testing filter kernels and sizes.
The filter kernels “B,” “G,” and “S” abbreviate box, Gaussian, and spectrally sharp kernels, respectively. The
∧ indicates that the combined set of the input fields is employed in the training, and the # indicates the variable
upsampling factor.

Training Input training–testing fields
Model strategy Filter kernels (�/�DNS) Section

Influence of adversarial training on in-sample predictions

TSResNet (spectral kernel) Supervised S (4)–S (4) Sec. IV
TSResNet (box kernel) Supervised B (4)–B (4) Sec. IV
PIESRGAN (spectral kernel) Semisupervised S (4)–S (4) Sec. IV
PIESRGAN (box kernel) Semisupervised B (4)–B (4) Sec. IV

Influence of adversarial training on out-of-sample filters

PIESRGAN (multiple-kernel-trained) Semisupervised B ∧ S (4)–G (4) Sec. V A
PIESRGAN (partially unsupervised) Semisupervised and unsupervised B ∧ S ∧ LES (4)–G (4) Sec. V A
TSResNet (fixed upsampling) Supervised B (4)–B (8) Sec. V B
PIESRGAN (fixed upsampling) Semisupervised B (4)–B (8) Sec. V B
PIESRGAN (x#) Semisupervised and dynamic upsampling B (2 ∧ 4 ∧ 8)–B (#) Sec. V B

Influence of adversarial training on out-of-sample predictions (higher Re numbers)

TSResNet Supervised (Re90) B (4)–B (4) Sec. VI
PIESRGAN Semisupervised (Re90) B (4)–B (4) Sec. VI

available, is given by

LDISC = E[log(σ (D(φDNS) − E[D(G(φSR))]))]

+ E[log(1 − σ (D(G(φSR)) − E[D(φDNS)]))], (8)

which is based on the relativistic average GAN loss function proposed by Jolicoeur-Martineau [44].
The training of the GAN architecture is challenging, as the generator and discriminator networks

are trained to compete against each other. Finding a convergence point is one of the main challenges
of GAN training, and training can suffer oscillations and destabilization in the model’s trainable
parameters [13]. To cope with these, the generator is pretrained in a fully supervised manner
(like the TSResNet) by using the original generator loss function proposed in Eq. (6). Subsequently,
the pretrained generator is used to initialize the GAN training. Recent findings demonstrated that
the choice of the initial learning rate for both networks is essential for the local convergence of the
GAN training, and recommendations from recent literature have been adopted [22,29].

C. Training strategy

Table II lists the architecture, training strategy, and training/testing fields for the specific trained
models used in subsequent sections. In the supervised and semisupervised approaches, both LR and
DNS field pairs are accessible, and the network utilizes this paired data set in an attempt to learn
the mapping function between LR fields and to their corresponding ground-truth counterparts. This
methodology is viable only when the data set contains paired data, i.e., both F-DNS and DNS data.
In the unsupervised approach, only LR fields (LES data) are available without the corresponding
DNS fields, thus learning relies solely on the feedback provided by the discriminator and the
physics-informed loss function. The partially supervised approach is a combination of the two
strategies, in which F-DNS/DNS pairs and true LES data as well as the discriminator feedback
are employed for training.
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FIG. 2. In-sample (Re90) TKE spectra (left) and PDF of the normalized velocity gradient (right) for box-
filtered training/testing fields.

The TSResNet models were trained for roughly 200 epochs, after which no additional reconstruc-
tion improvement was observed, using the Re90 data set and Eq. (6) as the loss function. Statistical
convergence required 37 wall-time hours using four NVIDIA Tesla V100 32 GB GPUs. The trained
TSResNet model parameters were used to initialize the GAN generators. No GAN discriminator
pretraining was applied, as this step has recently been demonstrated to have minimal influence [22].
The adversarial training required an additional 11 wall-time hours using the same hardware, i.e.,
roughly 30% more than the TSResNet training time, over an additional 40 epochs. To counteract
the influence of the additional training time performed during the GAN training, the TSResNet
models were trained for an additional 40 epochs. However, this additional training time did not
impact the final reconstructed field and can be considered superfluous.

IV. EFFECTS OF ADVERSARIAL TRAINING ON IN-SAMPLE
TURBULENCE RECONSTRUCTION

Both models are tested on in-sample data, statistically matched with the training data, to assess
their reconstruction capability. This evaluates the models’ performance under ideal conditions.
Figures 2 and 3 compare TKE spectra and the probability density function (PDF) of normalized
velocity gradients of the filtered DNS (F-DNS), full-mesh (unfiltered) DNS, TSResNet upsampled
fields, and PIESRGAN upsampled fields. The SR models are trained to produce a statistically

FIG. 3. In-sample (Re90) TKE spectra (left) and PDF of the normalized velocity gradient (right) for
spectrally sharp filtered training/testing fields.
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FIG. 4. PDFs of the normalized velocity increments for different separation distances for box-filtered DNS
fields, TSResNet reconstructions (left), and PIESRGAN reconstructions (right).

correct SR field with DNS-like quality. The models are trained and evaluated for the Re90 case
using either the box filter (Fig. 2) or spectrally sharp filter (Fig. 3). The primary difference in the
training data is the box filter’s artificial attenuation of the near-filter-scale F-DNS fields, which the
spectrally sharp filter avoids. The TSResNet recovers the TKE of the resolved scales (k � 32) but
fails to correctly predict the SFS energy distribution for either filter. Conversely, the PIESRGAN is
more accurate, deviating from the DNS only for k � 122 and energy values E (k) � 10−7 for both
filters. This behavior is quantitatively confirmed by the PDF of the normalized velocity gradient,
where the TSResNet tends to underpredict the large gradients, while the PIESRGAN marginally
deviates from the DNS solution. It is worth noting that the TSResNet and the PIESRGAN generator
use the same network architecture, while the loss function defers only for the adversarial terms as
defined in Sec. III B. The PIESRGAN’s more accurate reconstruction is therefore due to its training,
rather than the generator’s network depth or loss-function differences. The PIESRGAN architecture
improves the root-mean-squared error (RMSE) by 19% compared to the TSResNet for box-filtered
training/testing fields and by 13% for spectrally sharp filtered training/testing fields.

PDFs of the normalized velocity increments δXU for different separation distances proportional
to the Kolmogorov microscale η were considered to characterize turbulent structures at different
scales, similar to Attili and Bisetti [45]. Figure 4 compares the DNS and reconstructed fields of
velocity increments corresponding to distances of 2η (solid lines), 4η (dotted lines), 16η (dashed
lines), and 64η (dash-dot lines). For small separation distances, the TSResNet captures only
the most probable features well but underpredicts at the tails. For the largest increment (64η),
the gap with the ground truth is less evident. These TSResNet reconstructions are perceptually
smoother and blurred compared to the DNS fields, as a consequence of the poor reconstruction
of the large normalized velocity increments. Conversely, the PIESRGAN predictions almost ex-
actly overlap with the DNS for all increments considered. This alignment underscores that the
structures recovered by PIESGRAN are coherent with the structures that were removed during
the initial filtering operation. This is due to the discriminator’s nonlinear feedback to the gen-
erator (due to the discriminator’s nonlinear activation functions), which boosts the generator’s
accuracy for the subfilter scales. This means that the GAN can reconstruct complex, nonlinear
relationships between low-resolution inputs and the reconstructed fields, independent of the filter
kernel applied to the HR fields. The adversarial training, therefore, improves the in-sample recon-
struction capabilities compared to only using supervised learning, even with the same generator
architecture.

Additionally, the SR architecture’s a priori SFS reconstruction accuracy and its effect on derived
quantities are important considerations and a prerequisite for a potential a posteriori deployment in
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FIG. 5. Joint PDFs of the box-filtered DNS τ SFS
12 with the dynamic Smagorinsky-modeled field (left),

TSResNet reconstruction (center), and PIESRGAN reconstruction (right).

LES. The LES-filtered momentum equation,

∂u j

∂t
+ ui

∂u j

∂xi
= − 1

ρ

∂ p

∂x j
+ ν

∂2u j

∂xi∂xi
− ∂τ SFS

i j

∂xi
, (9)

contains the anisotropic residual-stress tensor τ SFS
i j ,

τ SFS
i j ≡ uiu j − ui u j − 2

3
kSFSδi j, (10)

where ui are unfiltered velocity components obtained from either the DNS or the SR fields and
kSFS ≡ (uiui − uiui )/2 is the kinetic energy of the subfilter scales [46]. In Eq. (10) the · operator
indicates filtering (either box or spectrally sharp filters) and downsampling proportional to the
upsampling factor (in the present case, the factor is equal to four). Comparisons are made to the
widely used dynamic Smagorinsky model [38,39],

τ SFS
i j = −2cs�

2 |S|Si j, with |S| = (2Si jSi j )
1/2, (11)

where Si j denotes the filtered strain-rate tensor, � is the filter width, and cs is the dynamically
computed Smagorinsky constant, averaged along the homogeneous directions [39].

Figure 5 shows joint PDFs (jPDFs) of the box-filtered DNS τ SFS
12 and the dynamic-

Smagorinsky (left), TSResNet-reconstructed (center), and PIESRGAN-reconstructed (right) τ SFS
12 .

The PIESRGAN-reconstructed field is statistically more similar to the filtered DNS than the
TSResNet-reconstructed and dynamic-Smagorinsky-modeled fields, in order of decreasing fidelity.
In general, each component of the PIESRGAN-reconstructed τ SFS

i j has an average pointwise cor-
relation, computed from the jPDF, with the DNS exceeding 90%. Similar results are obtained for
spectrally filtered input fields. It is clear that adversarial training improves the a priori correlation
of SR fields with ground-truth data for in-sample predictions.

Similarly, the SFS dissipation rate εSFS = Si j τ
SFS
i j is highlighted because it is a crucial property

of SFS models [47]. Figure 6 shows the jPDFs of the box-filtered DNS SFS dissipation rate and
those of the dynamic-Smagorinsky model (left), the TSResNet-reconstructed field (center), and the
PIESRGAN-reconstructed field (right) εSFS. Here τ SFS

i j is determined using Eq. (11) for the dynamic
Smagorinsky model and Eq. (10) for the SR models and DNS. The dynamic Smagorinsky model
demonstrates its dissipative nature, evident in the exclusive occurrence of positive values for εSFS

SMAG.
Locally, there are strong deviations from the SFS dissipation rate of the DNS. The data-driven
models, on the other hand, predict dissipation rates that are in superior local agreement with the
DNS. The TSResNet-reconstructed εSFS

SR distribution is slightly bulky around the diagonal, while the
PIESRGAN-reconstructed εSFS

SR is closer to the correct range of the a priori local SFS dissipation.
The average SFS dissipation rate 〈εSFS〉 computed using the TSResNet is roughly 50% higher
compared with that computed using the PIESRGAN network. The mean SFS dissipation predicted
by the PIESRGAN is within 2% of the DNS value.
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FIG. 6. Joint PDFs of the box-filtered DNS εSFS with the dynamic Smagorinsky-modeled field (left),
TSResNet reconstruction (center), and PIESRGAN reconstruction (right).

V. ACCURACY OF SR MODELS FOR OUT-OF-SAMPLE FILTERS

Recent work has highlighted practical limitations of data-driven deconvolution methods arising
primarily when the application differs substantially from the training data [13,26,48]. In the previous
section, the PIESRGAN successfully reconstructed in-sample filtered fields φF and approximately
inverted the operator G−1. However, training SR models using only F-DNS data with corresponding
full-resolution fields does not necessarily guarantee accurate upscaling of real-world fields having
potentially different turbulence statistics [49]. The reason could be that for a posteriori LES mod-
eling, the interactions between grid spacing, numerical accuracy, and modeling assumptions might
have to be considered. In the context of experimental analysis, the filter kernel and width implied
by optical and camera systems are unknown. To understand the influence of these parameters, we
now consider out-of-sample filter kernels and filter widths separately.

A. Different filter kernels for training and testing

The trained SR models are now tested for F-DNS input fields using out-of-sample filter kernels
but the same filter size. This emulates applications of trained models on fields for which the implicit
filter operation is unknown, such as the use of experimental data at insufficiently high resolution.

Figure 7 compares the TKE spectra and the PDF of normalized velocity gradients for the net-
works that were trained individually on box-filtered or spectrally sharp filtered fields exclusively and
applied to Gaussian-filtered input data. The exclusively box-filter-trained SR models consistently
overestimate the SFS kinetic energy, which results in inaccurate predictions at the high wave

FIG. 7. TKE spectra (left) and PDF of the normalized velocity gradient (right) for models trained either for
box- or spectrally sharp-filtered data and tested on Gaussian-filtered data.
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numbers and overpredicted energy at lower wave numbers than the filter cutoff. Conversely, for
models exclusively trained on spectrally sharp filtered data, the opposite behavior is observed when
the network is applied to Gaussian-filtered data: both models underpredict the resolved and SFS
kinetic energy, with the PIESRGAN model being slightly more accurate than the TSResNet model.
Clearly, both SR models fail to extrapolate to filter kernels not seen in training.

One possible approach to address the reduced out-of-sample filter invertibility is to combine an
SR architecture with an algebraic approximate deconvolution method [50]. This would first use the
ADM to recover the resolved velocity fluctuations, then a PIESRGAN trained for spectrally sharp
filtered fields would extrapolate the subfilter scales. Still, it is important to note that the ADM-
deconvoluted field would still differ from an ideal, spectrally sharp filtered field, especially near
the cutoff scale [11,51]. Thus, the performance of the spectral-trained GAN could suffer from its
tendency to invert a known filter. A combination of an SR data-driven model and an algebraic ADM
could partially minimize the GAN’s over/underestimation, but it would likely not completely solve
the issue.

Another potential solution leverages the GAN’s flexibility to train both in a semisupervised and
unsupervised mode, relying on the underlying “structure” of the data for patterns. This approach
will be described subsequently. Both models were trained on a mixture of box-filtered and spectrally
sharp filtered data in an otherwise consistent manner with the training strategy outlined previously
(equal number of subboxes per filter kernel, randomly selected during the training). This approach
is henceforth referred to as multiple-kernel-trained. The discriminator is then trained to distinguish
between generated high-resolution fields, upsampled from either box-filtered or spectrally sharp
filtered DNS fields, and the corresponding ground-truth fields. Validating for in-sample F-DNS
fields (i.e., obtained with the same filter kernels used for training), the reconstruction performance
is comparable to that obtained in Sec. IV. Similar to the previous analysis, the PIESRGAN
demonstrates better reconstruction capability than the TSResNet; hence we omit the TKE spectra
and PDF of the normalized velocity gradient for brevity. Both models are capable of recognizing
and learning both filtering operations that were applied to generate low-resolution training data,
suggesting that this ability is not exclusively derived from adversarial training.

When testing for out-of-sample Gaussian-filtered input data (not included in the training data),
the multiple-kernel-trained PIESRGAN model again suffers a performance drop. Figure 8 plots
centerline slices of the normalized velocity magnitude and its absolute error obtained for the
PIESRGAN using multiple-filter-kernel training. It is evident that the velocity field reconstructed
by the model exhibits distortions compared to the ground-truth data. Notably, the error is especially
pronounced for small-scale structures. Figure 9 shows TKE spectra and PDFs of normalized velocity
gradients for the multiple-kernel-trained PIESRGAN model, showing that the reconstructed field
is in better agreement with the DNS than the single-filter-trained model, though artifacts remain
in the high-frequency subfilter scales. The velocity-gradient PDF shows similar trends for the
multiple-kernel-trained PIESRGAN, with consistent overprediction of the small-scale shear strain.
Training for different filter kernels can mitigate filter-inversion inadequacies, but does not alleviate
them altogether.

While the discriminator does not directly influence the generator’s ability to distinguish between
filter kernels, adversarial training can still improve the accuracy of the reconstructed fields. This
is an advantage of the GAN-based architecture. Inspired by Bode et al. [19], though differing in
purpose and methodology, we now include both labeled (corresponding DNS and F-DNS fields)—as
in the previous approach—and unlabeled data (computed LES fields, either with no SFS model or
the dynamic Smagorinsky model, as described in Sec. III) in the training process (referred to as the
LES-training step). Labeled data help the discriminator differentiate between real and fake samples,
while unlabeled data improve the generator’s ability to upsample realistic fields. The discriminator is
trained in a supervised manner using only generated and ground-truth fields, and its weights are not
updated in the LES-training step, while the generator continues to be trained on randomly sampled
LES data. The resulting super-resolved LES fields are then evaluated by the trained discriminator.
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FIG. 8. 2D slices of instantaneous normalized velocity magnitude and the absolute error of SR fields
versus DNS. The normalized absolute error is Ê = E/ max(EDNS,SR1 , EDNS,SR2 ), where E = |uDNS − uSR1,2 |, and
the subscripts 1 and 2 indicate the multiple-filter-kernel and semisupervised training approaches, respectively.

Since the discriminator is not trained further, the generator loss was reduced to

LGANunsupervised = β3 Lcontinuity + β4 Ladversarial, (12)

where β3 = 0.05 and β4 = 6 × 10−5. This is referred to as the partially unsupervised approach.
The right column of Fig. 8 demonstrates that the PIESRGAN model, trained in a partially

unsupervised manner, precisely reconstructs small-scale structures absent from the (out-of-sample)
input data, with significantly lower normalized absolute error. Thus, the use of partially unsuper-
vised training significantly reduces the overprediction of small features. In terms of RMSE, the
reconstructed field from the PIESRGAN trained with multiple kernels is 67% higher compared to
that computed using the partially unsupervised-trained PIESRGAN. Figure 9 illustrates decreased
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FIG. 9. TKE spectra (left) and normalized velocity gradient PDFs (right) for PIESRGAN models trained
for multiple filter kernels without and with partially unsupervised step (LES-training step). Testing results are
shown for Gaussian-filtered fields.

overprediction of the SFS kinetic energy and better reconstruction of the normalized velocity
gradient PDF when the partially unsupervised training is employed. The significant improvements at
both large and small scales indicate that the unsupervised training step (LES-training step), possible
only with GAN-based models, helps to generalize the model to diverse input fields.

It is worth noting that using computed LES fields or F-DNS fields as input is somehow equivalent
to including random fields, as typically used in GAN applications, without incurring the risk of
introducing spurious non-physical phenomena. This is important because the large scales need to
be consistent between LR and HR fields. This choice enables the generator to focus on refining
and augmenting existing subfilter-scale structures only, providing a guided generation process.
Acknowledging the notorious instability and convergence difficulties in GAN training, we prefer
this LR field-based solution over incorporating random vectors/fields.

To isolate the effect the discriminator exerts, we disable either the adversarial or continuity loss
in Eq. 12. With this, the generator is trained in a fully unsupervised manner, relying solely on
feedback from the continuity equation (first option) or solely on feedback from the discriminator
network (second option). Figure 10 compares the possible training options showing joint PDFs
of the Gaussian-filtered DNS τ SFS

12 [Eq. (10)] using only Lcontinuity loss (left), only Ladversarial loss
(center), and both Lcontinuity and Ladversarial losses (right) during the unsupervised training phase.
The PIESRGAN-reconstructed field using only the Ladversarial loss during unsupervised training is
statistically similar to that obtained when both losses are employed. Conversely, the reconstructed
field obtained using only the Lcontinuity depicts a bulkier distribution around the diagonal and a

FIG. 10. Joint PDFs of the Gaussian-filtered DNS τ SFS
12 using only Lcontinuity loss (left), only Ladversarial loss

(center), and both Lcontinuity and Ladversarial losses (right) during the unsupervised training phase.
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FIG. 11. TKE spectra (left) and the PDF of the normalized velocity gradients (right) when both models are
trained with fields filtered with a box filter with a size of four and tested on a field filtered with a box filter with
a size of eight.

predominant shift, resulting in a consistent overestimation of the magnitude of the Reynolds stress.
While the reconstruction improvement using only Ladversarial is comparable to that shown in Fig. 9,
the training process became more unstable and ultimately resulted in GAN collapse. To address this
issue, the batch size and initial learning rate were decreased (the batch size was divided by half and
the initial learning rate decreased by an order of magnitude) to improve the training stability [22].
Thus, the continuity loss serves to stabilize and accelerate the training process and does not seem to
meaningfully drive reconstruction performance, but further investigations are needed.

B. Different filter sizes for training and testing

We now explore the ability of SR models to reconstruct fields for different filter sizes than from
those used in training. SR training typically uses fixed upsampling factors, which can result in blurry
fields and/or artifacts for upsampling factors not included in the training data. This is especially
critical for flow conditions and/or geometries requiring different local filter ratios (e.g., near-wall
resolution for PIV or stretched grids for LES computations). For this, a fixed SR upsampling factor
can cause over- or under-sampling, leading to reduced reconstruction capabilities.

To investigate this, SR models trained to upsample data for an LES-to-DNS-mesh ratio �4 =
�/�DNS = 4, where � is the effective LES mesh resolution and �DNS is the DNS mesh resolution,
are tested for ×4 upsampling of �8 input data—that is, upsampling �8 data to an effective LES
resolution of �2. All tests use box-filtered data.

Figure 11 shows TKE spectra and normalized velocity-gradient PDFs for the previously super-
vised box-trained TSResNet and PIESRGAN models applied to box-coarser Re90 input data. The
PIESRGAN accurately recovers the TKE spectrum over the upsampled range, even though it does
not fully recover the low-probability tails of the velocity-gradient PDF. The TSResNet model does
not fare as well, with significant deviations from the DNS spectrum throughout the upsampled
range. Despite these imperfections, it is clear that the PIESRGAN exhibits an improved tendency to
successfully upsample across different scale ranges than those used for training, at least within the
self-similar scales of statistically stationary HIT. Of course, this does not imply equal success for
anisotropic flows.

Multiple upsampling branches can be incorporated into the generator network to determine the
ideal upsampling ratio from the input data, as applied by Lim et al. [52] for image-processing tasks.
We now modify the generator architecture (Fig. 1) for multiple upsampling branches, shown in
Fig. 12. Three branches enabling different upsampling ratios are present.

(1) The first branch, for high-resolution inputs, contains one ×2 upsampling layer.
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FIG. 12. Left: Sketch of the three upsampling branches in the modified GAN generator. Right: PDF of the
normalized velocity gradient for PIESRGAN fields reconstructed using the most appropriate upsampling factor
selected by the discriminator.

(2) The second branch, for intermediate-resolution inputs (used in Sec. IV), contains two
upsampling layers for an overall ×4 upsampling ratio.

(3) The third branch, intended for low-resolution inputs, contains three upsampling layers for an
overall ×8 upsampling ratio.

Multiple branch employment is promising for image processing [52], though the generator needs
prior information on the input size, resulting in the network being able to handle only predetermined,
known input sizes. Small upsampling factors typically result in adequate reconstruction, if incom-
pletely resolved, with larger structures typically accurately captured. Conversely, over-upsampling
can lead to significant spurious artifacts [53].

Instead, we use the discriminator to select the appropriate upsampling branch. The GAN is
trained for box-filtered fields of different filter sizes (�2, �4, and �8). During training, the correct
upsampling branch is enabled based on the known filter size, and unused branches are deactivated.
During testing, the generator upsamples the input field along all three branches, producing ×2, ×4,
and ×8 fields, which the trained discriminator then uses to calculate an adversarial loss [using
Eq. (8) with φDNS = 0]. The upsampling factor corresponding to the lowest adversarial loss is
chosen. Thus, the discriminator learns to recognize high-quality fields during training and can
provide highly nonlinear feedback to the generator on the quality of the generated field.

Table III lists a “quality score”

Q = E[log(σ (D(G(φSR))))], (13)

related to the discriminator loss, for �2, �4, �8, and �16 input data upsampled along the ×2, ×4,
and ×8 branches. Higher values indicate higher confidence (by the discriminator) in the quality of

TABLE III. Quality score Q for different input filter-to-DNS-grid ratios and upsampling branches.

Upsampling factor

Input ×2 ×4 ×8

�2 0.93 0.46 0.08
�4 0.73 0.91 0.23
�8 0.53 0.69 0.84
�16 0.17 0.34 0.59
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FIG. 13. TKE spectra for Re90-trained models evaluated on higher-Reynolds-number Re130 (left) and
Re350 (right) input data. Filtered DNS data were obtained using a �4 box filter.

the upsampled field. The �16 input data are out-of-sample. The branch providing the highest quality
score is selected as the most-appropriate output for arbitrary input data.

Figure 12 shows normalized velocity-gradient PDFs for PIESRGAN-upsampled fields using the
discriminator-selected upsampling branches. It is evident that the discriminator accurately selects
the appropriate branch, enabling the modified PIESRGAN to accurately recover both the large
scales and the tails of the PDFs. This adaptive upsampling strategy, utilizing the discriminator,
is particularly effective in scenarios where the input filter size is not present in the training data.
For example, in Table III, the ×8 upsampling branch is correctly selected as the most appropriate
available branch for the out-of-sample �16 input data. However, it is important to note that this
approach entails higher computational cost compared to using a single upsampling factor (roughly
50% higher), as more fields are employed. In conclusion, this dynamic upsampling feedback, which
can be provided only in the context of a GAN-based architecture, is an effective approach to
mitigating the fixed upsampling/filter size limitation.

VI. EXTRAPOLATION TO HIGHER REYNOLDS NUMBERS

The previous sections demonstrate that the PIESRGAN architecture can reconstruct unresolved
fields more accurately than the TSResNet for in-sample flows. The discriminator, playing a crucial
role in adversarial training, permits greater flexibility for out-of-sample conditions (e.g., for different
filter kernels and/or upsampling ratios), though the model must also generalize well beyond the flow
conditions used for training.

To test this generalization capability with equal filter kernel and size for both training and testing,
thus under ideal conditions, the models trained for the lower Reλ = 90 case (Re90) (Sec. IV) are
applied to forced HIT for the higher Reλ = 130 (Re130) and Reλ = 350 (Re350) cases (Table I).
Figure 13 compares the TKE spectra for these out-of-sample model applications to the unfiltered and
box-filtered (�4) DNS spectra. The Reλ = 90-trained TSResNet model fails to correctly reconstruct
the subfilter scales, similar to its performance in the previous in-sample analyses, while the Reλ =
90-trained PIESRGAN model accurately extrapolates the subfilter scales at these higher Reynolds
numbers, at least outside the dissipation range. The ability of the PIESRGAN model to extrapolate
the small scales of anisotropic flows remains to be studied.

The architecture can capture the scale similarity of the turbulent motions and be applied at various
Reynolds numbers on similar configurations. It is worth noting that the higher-Reynolds-number
reconstruction (Re350) is slightly more accurate than the-lower-Reynolds-number reconstruction
(Re130). This is due to the ratio �/η differing slightly from the one used for training (Sec. III).
In both extrapolation investigations, the PIESRGAN reconstruction indicates a 17% reduction in
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FIG. 14. Joint PDFs of the box-filtered τ SFS
12 with PIESRGAN reconstruction when applied to the Re130

data set (left) and the Re350 data set (right).

RMSE compared to the reconstruction achieved by TSResNet. The jPDFs of τ SFS
12 evaluated on the

PIESRGAN-reconstructed field forRe130 and Re350 inputs are shown in Fig. 14. In both cases,
the PIESRGAN model extrapolates accurately to higher Re, with remarkable alignment of the
predicted SFS stress with the DNS data. In both cases, the cross-correlation of every SFS stress
tensor component computed from the fields obtained from the PIESRGAN model exceeds 90%.

VII. CONCLUSION

We investigated the influence of adversarial training on super-resolution turbulence reconstruc-
tion. GAN-based models (PIESRGANs) are assessed against a standard, supervised CNN-based
model (TSResNet). Two approaches are introduced that leverage the GAN model’s adversarial
training capabilities, enabled by its discriminator network, to enhance the generator network’s
accuracy and generalizability to out-of-sample inputs for different filter sizes and filter kernels.
The GAN generator and TSResNet have identical model structures, hence their evaluation cost is
the same despite the enhanced accuracy of the GAN model.

The two training approaches have first been evaluated for in-sample data (i.e., statistically similar
to the training data). In TKE spectra and velocity-gradient PDFs, the PIESRGAN architecture
more accurately reconstructs the full-resolution velocity fields compared to the TSResNet model.
The TSResNet model accurately captures the large-scale features, though the PIESRGAN is more
consistent throughout the range of scales and velocity increments.

Adversarial training, while computationally more expensive, is promising to enhance SR model
reconstruction of small-scale turbulence. In a priori assessments of the SFS stress tensor, the SR
models outperform the widely used dynamic Smagorinsky model, showing significantly improved
statistical alignment with the “true” filtered-DNS SFS stresses. The usefulness of these findings
will, however, need to be further verified through a posteriori tests. Of the SR models, the
PIESRGAN-reconstructed SFS fields are 64% better aligned with the filtered-DNS SFS fields than
those produced by the TSResNet. This is due entirely to the GAN discriminator’s feedback to the
generator; all other training was performed identically. The discriminator’s semisupervised training
enables it to capture more complex, nonlinear relationships between the low- and high-resolution
fields than a standard, supervised training approach would permit.

Data-driven super-resolution methods are known to suffer significant performance drops when
applied to substantially out-of-sample data. This capability is particularly important to upscale real-
world fields. To test this, we investigated two non-consistent applications of the SR models to testing
data sets: out-of-sample filter kernels and out-of-sample upscaling ratios. To assess the influence of
the training filter kernel, box- and spectrally sharp-filtered SR models were applied to Gaussian-
filtered DNS fields. The box/spectral-trained SR models consistently over/underestimated the
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SFS kinetic energy when applied to Gaussian-filtered fields and produced poorly aligned jPDFs
of τ SFS

12 . To mitigate this behavior, both architectures were trained for a random collection of
fields containing both box- and spectral-filtered data. The ensuing models have slightly greater
reconstruction capability than the single-filter-trained models, though both still had a consistent gap
to the Gaussian-filtered DNS. The TSResNet was again inaccurate for the subfilter scales, while
the PIESRGAN added artifacts at high wave numbers, with slight underprediction of filter-scale
features.

To improve the GAN generator’s ability to upsample unlabeled, low-resolution fields (i.e.,
without accompanying high-resolution fields), computed LES fields were provided as LR training
inputs. This choice enabled the generator to refine and augment existing SFS structures only from
input fields that possess physical meaning, ensuring an effective contribution to the generative
process. The discriminator was employed in an unsupervised manner to provide feedback to the
generator during training. By combining inputs with multiple kernels and computed LES data, the
generator was trained to produce fields with correct high-frequency details emulating the DNS.
This partially unsupervised approach permits the PIESRGAN architecture to handle diverse input
fields more effectively, and the issue of consistent small-scale overprediction of energy density is
alleviated.

The ability of SR models to upsample out-of-sample filter-to-DNS mesh ratios was also explored.
When a single upsampling factor is used for training, the reconstructed field may exhibit blurriness
and artifacts, leading to inaccurate super-resolved fields and decreased predictive capability. To
overcome this issue, two additional upsampling branches were added to the generator, with the
discriminator determining which branch to apply locally. This enables the GAN model to manage
input fields of potentially unknown resolution. By selecting the upsampling factor that minimizes
this adversarial loss, the generator most faithfully reconstructs a given input field, at least within
the range of upsampling ratios provided during training. We find that training over different
filter kernels, unlabeled data (e.g., true LES data), and multiple filter-to-DNS mesh ratios enables
sufficient model robustness and reconstruction capabilities.

Finally, the ability of the two models to extrapolate to higher Reynolds numbers was tested.
Using input fields from higher-Reynolds-number DNS, filtered to maintain the same �/η ratio used
for training, the PIESRGAN architecture more consistently reconstructed small-scale flow features
than the TSResNet. This suggests that GAN-based models trained for lower Reynolds numbers can
be successfully applied to slightly higher Reynolds numbers, though further testing for non-HIT
flows (e.g., turbulent shear flows, turbulent reacting flows) is ongoing.

Adversarial training, although computationally more costly than standard supervised approaches,
is overall successful in improving the reconstruction and extrapolative capabilities of the data-driven
SR model. Leveraging the discriminator’s feedback, a GAN-based model is able to generate more
diverse and realistic samples during training that improve the architecture’s performance and
generalizability to unseen training data.

In order to enhance the reproducibility of this study and provide additional clarity on technical
aspects of the architectures, access to our GIT repository will be provided upon request.
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FIG. 15. Comparison of the TKE spectra for in-sample box-filtered training/testing fields when different
numerical-precision training are adopted. Mixed-precision combines half-precision floating point (FP16) with
single-precision floating point (FP32).
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APPENDIX: INFLUENCE OF NUMERICAL PRECISION

“Mixed-precision” training has emerged as a powerful technique with significant implications
for deep learning models. In conventional training, using 32-bit floating-point precision (“single
precision,” FP32) for storing model parameters incurs higher memory requirements. To address
this limitation and accelerate model training, reduce memory usage, and improve inference times,
mixed-precision training has gained popularity. It combines FP16 (16-bit floating-point precision)
and FP32, for different parts of the neural network computation. Its major drawback is that
reduced numerical precision can considerably reduce the precision of the resulting model, which
is particularly detrimental for highly multiscale problems [37]. Lower precision can compromise
a trained model’s parameters and increase the probability that the magnitude of the loss gradients
could be in the same order as the floating-point roundoff error.

To evaluate the influence of numerical precision, Fig. 15 shows TKE spectra for in-sample, box-
filtered, super-resolved fields from PIESRGAN models trained using mixed, single, and double
precision (FP64). Mixed-precision training clearly leads to an accumulation of TKE at high wave
numbers, while both single and double precision are visually comparable to the DNS at these high
wave numbers. Because it is computationally less intensive, single precision is therefore chosen for
the model-training results presented throughout the paper.
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