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Multilayered porous media can be found widely in both natural and engineered systems.
This type of heterogeneous porous structure can have a substantial influence on the effec-
tive flow and transport processes. This work aims to develop a hybrid analytical-numerical
solution that elucidates the relationship between the scalar dynamics and media properties
in a coupled system comprising a two-dimensional free-flow layer and a heterogeneous
porous medium, operating under fully developed laminar flow conditions. In our study,
we employ perturbation and homogenization methods to derive a set of one-dimensional
upscaled equations for transport of a passive scalar. Subsequently, we develop an integral
transform-based semianalytical solution that allows to relate the properties of the porous
system to scalar mixing and spreading. To validate the newly developed solution for the
upscaled system, we compare it with the numerical results for the two-dimensional scalar
transport. The semianalytical solution is used to investigate the influence of the multilay-
ered system on macroscopic transport by analyzing the scalar cloud’s breakthrough curve,
dispersion coefficient, and mixing. Our findings indicate that the semianalytical solution
can be utilized to optimize and control dispersion of the scalar cloud. Our computational
results show the potential of the solution to determine the arrangement of porous media
properties to achieve a desired mixing objective.

DOI: 10.1103/PhysRevFluids.9.064502

I. INTRODUCTION

Scalar transport in conduits embedded in a porous permeable matrix is ubiquitous in both natural
and engineered systems. Examples consist of fractured porous media [1], canopy-coated riverbeds
[2], porous-wall microfluid mixers [3], blood vessels [4,5], membrane filters and microthermophoto-
voltaic generators [6,7], and altered zones induced by geochemical reactions in geological systems
[8–10]. The presence of shear due to the interaction of the free flow with a porous surface can
regulate and control momentum and mass fluxes between adjacent systems [11–14]. Channels that
are coated with multiple layers of porous media exhibit distinct properties that impact the flow and
migration of solutes at both micro and macro scale. In our study, the microscale refers to the specific
physical domain where pore morphology and concentration are defined at individual points, whereas
the macroscale encompasses the overall media and transport characteristics represented by effective
properties such as dispersion. The arrangement of these layers, as well as any structural variations
within a single layer, can influence the overall transport capabilities (e.g., dispersion) of the system.
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Therefore, establishing a fundamental understanding of the relationship between the microstructure
and transport properties is essential for precise prediction of scalar mass migration, optimization of
microdispersion, and other related tasks.

Three modeling strategies are commonly employed when investigating scalar dispersion in a
coupled channel-matrix system. These are:

(1) Direct numerical method. This approach utilizes numerical simulations to accurately predict
solute migration within the system. It consists of solving the multidimensional advection-diffusion
equations in both the porous layers and the free-flow domains. While it provides high-fidelity
results, the computationally intensive nature of the direct numerical approach limits its widespread
application due to the inherent multiscale nature of the channel-matrix system. Discrete fracture
network (DFN) models [15,16] are frequently applied for complex fracture networks to reduce the
computational burden of the direct numerical method.

(2) Analytical solutions of advection-diffusion equations. These solutions involve quantifying
the transport by means of the ADE. However, obtaining analytical solutions is often feasible only
under simplifying assumptions. One of the major technical difficulties lies in accounting for the non-
uniformity of the velocity profile in the channel and/or matrix [17–19]. As a result, the analytical
analysis often assumes uniform velocity, pure diffusive transport, or de-coupled channel-matrix
transport. Hybrid analytical-numerical methods, such as the one adopted in de Barros and Cotta
[20], allow for more flexibility in considering the variability of both the velocity and diffusivity
profiles directly in the ADE.

(3) Upscaling methods. Upscaling methods involve the estimation of effective parameters by
averaging over heterogeneous domains or by modeling the system using simplified representations.
These approaches aim to capture the overall dispersive behavior of the scalar cloud in the coupled
channel-matrix system while reducing computational complexity. Often times, analytical solutions
can be employed to solve the simplified representation of the governing equations due the complex-
ity reduction.

Within the context of hydrological applications and waste disposal safety assessment, Tang
et al. [21] and Sudicky and Frind [1] proposed the use of analytical solutions to predict reactive
contaminant transport in fractured porous media. The works of Tang et al. [21] and Sudicky and
Frind [1] assume that transverse diffusion is the sole physical mechanism for solute migration within
the porous matrix and that transport in the fracture is due to longitudinal advection and dispersion.
Along this line of work, Roubinet et al. [17] expanded previous solutions (e.g., Refs. [1,21]) to
examine solute transport in a single fracture embedded in a porous medium. Roubinet et al. [17]
showed, semianalytically, how transverse dispersion within a fracture controlled fracture-matrix
solute exchange. In similar fashion, Dejam et al. [22] derived a solution for an upscaled transport
model of a fracture-porous matrix system and highlighted the importance of fracture–matrix inter-
action in controlling the magnitude of the dispersion coefficient. Rubol et al. [23] proposed a hybrid
numerical-analytical methodology to examine the impact of the velocity profile in a turbulent shear
flow over a permeable canopy layer on scalar mass fluxes in a two-dimensional system. The authors
illustrated how the permeability and porosity of the permeable layer affected the asymmetry of the
scalar concentration spatial profile [23]. Due to its flexibility to tackle more complex scenarios,
these hybrid numerical-analytical methods have also been employed to continuum and discrete flow
and transport models for fractured porous media [13,24]. The derivation of analytical solutions
for the scalar concentration field has also been subject of interest in other applications, such as
microfluidic devices and biological fluids. Dejam [12] derived a reduced order model to examine
the effects of both pressure-driven and electroosmotic flows on hydrodynamic dispersion in a
porous-walled microfluidic channel. Motivated by the cardiovascular system, Zimmerman et al. [25]
used Laplace’s transform to derive analytical solutions for an upscaled reactive advection-dispersion
equation in a tube with diffusive losses through the tube’s walls.

To attain closed-form solutions, some of the above-mentioned works relied on upscaling tech-
niques to reduce the complexity of the transport process in the channel-porous matrix system.
The upscaling method involves various perturbation techniques, such as single- or multiple-scale
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expansions and Reynolds-type decomposition. These methods allow for a rigorous derivation
of macroscale equations that describe the spatially averaged quantities at the microscale (pore-
scale). Examples of such techniques include homogenization [26], volume averaging [27], and the
method of moments [28]. These approaches establish a formal connection between the micro- and
macroscale by introducing effective parameters, such as the dispersion coefficients, which depend
on the specific characteristics of the coupled channel-matrix system. These upscaling methods
provide asymptotic approximations of the complete microscopic solution, typically truncated at
the first or second order.

Despite significant insights obtained in the above mentioned literature, most of these works
assume that the porous matrix is homogeneous (for an exception, see Ref. [24]). Multilayer porous
media possesses distinctive characteristics and benefits that make it indispensable across a wide
range of applications in natural and engineered systems. Examples of such composite porous
media include stratified soils [29,30], landfill clay liners [31], and multilayered membrane filters
[7]. Natural systems, such as shales and aquifers, are typically characterized by multiple layers
of media that display distinctive transport properties and demonstrate a multiscale nature (e.g.,
Refs. [29,30,32]). Such stratification in the geological properties, e.g., permeability, can lead to
non-Fickian transport behavior [29,33,34]. As an example from engineered systems, a multilayered
porous membrane consists of multiple stacked membranes, each serving a distinct purpose. Some
layers provide structural support, while others function as filters for substances of varying sizes.
The resulting layered system exhibits exceptional flow and transport properties, notably including
permeability and dispersion. Sanaei and Cummings [6] developed a physics-based model for these
multilayered systems that allows to investigate the influence of the membrane’s morphological
features in the filtration performance. The model proposed in Sanaei and Cummings [6] is also
used to optimize the membrane’s structure to achieve a desired goal. Experimental evidence has
shown that a meticulously engineered multilayer membrane outperforms a uniform membrane [35].

The main goal of our analysis is to examine transport of a passive scalar through a symmetric
free-flow layer (FFL) embedded within a multilayered porous media (PML) system. The PML
is characterized by its spatially variable permeability and porosity. Our objective is to establish
an analytical relationship between the macroscopic behavior of the coupled FFL-PML system,
specifically the breakthrough condition, dispersion, and mixing, with the properties that characterise
the multilayered media. To achieve this, we combine spatial averaging with perturbation approaches
to explicitly consider both the impact of steady non-uniform flow conditions and a multilayer porous
matrix on dispersion of the scalar cloud. The upscaled concentration field is computed by means of
integral transforms. For the purpose of illustration, we assume the flow in the FFL is governed by the
Stokes equation, while the flow within the PML is described by Darcy-Brinkman’s equation (e.g.,
Refs. [36,37]). The solution methodology for the scalar problem can account for other flow models
within the PML. Our results highlight how the hydraulic properties characterizing the multilayer
porous medium have the potential of modulating the dispersive behavior of a solute.

II. PHYSICAL MODEL AND ASSUMPTIONS

A. Velocity profile in multilayer system

The domain of interest (Fig. 1) is composed of multiple layers, including one FFL and several
PMLs. In this study, tilde (·̃) denotes dimensional variables. The FFL occupies x̃ ∈ (0, L) and ỹ ∈
(0, H0), and the nth PML occupies x̃ ∈ (0, L) and ỹ ∈ (Hn−1

0 ,Hn
0 ), where L is the length of the

domain and Hb
a represents a summation operation:

Hb
a =

b∑
i=a

Hi, (1)
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FIG. 1. Schematic representation of the two-dimensional flow domain. Layer-0 represent the free-flow
layer. The remaining layers (Layer-1, Layer-2,...,Layer-n) represents porous materials characterized by distinct
permeabilities.

and Hi, i = 0, 1, 2, ..., n is the width of the ith layer. Namely, the width of the FFL is H0 and the
total width of the PML is defined as

H = Hn
1. (2)

The fluid flow in the FFL is incompressible and modelled with Stokes’ equation:

μ
d2ũ0

dỹ2
− d p̃

dx̃
= 0, for ỹ ∈ [0, H0], (3)

where μ is the viscosity, ũ0 is the longitudinal velocity in the FFL (Layer-0 in Fig. 1), and d p̃/dx̃ is
the pressure gradient along x̃. The pressure gradient is defined by

d p̃

dx̃
= PL − P0

L
, (4)

where P0 and PL are the pressures at the inlet and outlet respectively. We define the outlet pressure
PL = 0, hence the pressure gradient becomes −P0/L.

The flow in the PML is assumed to be governed by the Darcy-Brinkman equation:

μ
d2ũi

dỹ2
− μ

Ki
ũi − d p̃

dx̃
= 0, for ỹ ∈ [

Hi−1
0 ,Hi

0

]
, (5)

with Ki and ũi denoting the permeability and velocity in the ith porous layer. Here ũi is non-zero only
in the ith porous layer. In this model, the flow is parallel to the PML, and is symmetric about ỹ = 0.
Notice that other models, besides the Darcy-Brinkman equation, could be adopted in this work.
The Darcy-Brinkman model is employed here for the purpose of illustration. Noticeably, velocity
profiles of the FFL and PML are assumed to be fully developed along the longitudinal direction. In
this work, the following boundary conditions are adopted:

dũ0

dỹ
= 0, ỹ = 0, (6)

ũi = ũi+1, ỹ = Hi
0, i = {0, 1, 2, ..., n − 1}, (7)

dũi

dỹ
= dũi+1

dỹ
, ỹ = Hi

0, i = {0, 1, 2, ..., n − 1}, (8)

ũn = 0, ỹ = Hn
0. (9)
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The velocity of the FFL and PML are:

ũ f = ũ0, (10)

ũm =
∑

i

ũi. (11)

We normalize the governing flow equations according to the following groups:

ui = ũi

U0
, x = x̃

L
, y = ỹ

H0
, (12)

where U0 is the characteristic velocity. Equations (3) and (5) then become

d2u0

dy2
+ H2

0 P0

μLU0
= 0, for y ∈ [0, 1], (13)

and

μ
d2ui

dy2
− H2

0

Ki
ui + H2

0 P0

μLU0
= 0, for y ∈ [hi−1, hi], (14)

where hi = Hi
0 and h0 = H0/H0 = 1. U0 is the dimensional velocity scale defined as U0 =

H2
0 P0/(μL). Additionally, We define the following dimensionless parameters:

λi = H0√
ki

, ki = 1

λi
=

√
Ki

H0
, (15)

where λ is the reciprocal of the Darcy number. We have the dimensionless system of equations

d2u0

dy2
+ 1 = 0, for y ∈ [0, 1], (16)

d2ui

dy2
− λ2

i ui + 1 = 0, for ỹ ∈ [hi−1, hi], (17)

with the corresponding dimensionless boundary equations
du0

dy
= 0, y = 0, (18)

ui = ui+1, y = hi, i = {0, 1, 2, ..., n − 1}, (19)

dui

dy
= dui+1

dy
, y = hi, i = {0, 1, 2, ..., n − 1}, (20)

un = 0, y = hn. (21)

The general solution of the ordinary differential equation system given by Eqs. (16) and (17) is

u0(y) = − 1
2 y2 + E0y + F0, for y ∈ [0, 1], (22)

ui(y) = 1

λ2
i

+ Eie
λiy + Fie

−λiy, for ỹ ∈ [hi−1, hi], (23)

where E0, F0, Ei, and Fi are integration constants to be determined by boundary conditions. We have

E0 = 0, (24)

−1

2
h2

0 + E0h0F0 − 1

λ2
1

− E1eλ1h0 − F1e−λ1h0 = 0, (25)

−h0 + E0 − E1λ1eλ1h0 + F1λ1e−λ1h0 = 0, (26)
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FIG. 2. Left: Velocity profile of a six-layer system where {ki}5
i=1 = 0.02. Right: Velocity profile of a six-

layer system where [k1, k2, k3, k4, k5] = [0.3, 0.3, 0.2, 0.1, 0.02].

1

λ2
i

+ Eie
λihi−1 + Fie

−λihi−1 − 1

λ2
i−1

− Ei−1eλi−1hi−1 − Fi−1e−λi−1hi−1 = 0, (27)

Eiλie
λihi−1 − Fiλie

−λihi−1 − Ei−1λi−1eλi−1hi−1 + Fi−1λi−1e−λi−1hi−1 = 0, (28)

−Eneλnhn − Fne−λnhn − 1

λ2
n

= 0. (29)

Notice that Eqs. (27) and (28) are valid for i = 2, 3, ..., n, and there are 2n + 2 equations from
Eqs. (24)–(29). A system of linear equations can be constructed to solve for the unknowns
[E0, F0, ..., Ei, Fi]. The final solution will provide the velocity profile within the FFL and PML.

The velocity profile of a six-layer system with two permeability profiles is shown in Fig. 2. The
system consists of one FFL layer and five PML layers. Figure 2 (left) corresponds to the case where
the permeability values are identical, viz. [k1, k2, k3, k4, k5] = [0.02, 0.02, 0.02, 0.02, 0.02],
while the Fig. 2 (right) depicts the result of a heterogeneous structure, viz. [k1, k2, k3, k4, k5] =
[0.3, 0.3, 0.2, 0.1, 0.02]. From Fig. 2, we can observe that when the permeabilities are low and
uniform, the velocity shear stems from the FFL (Fig. 2, left). However, the velocity profile becomes
more fluctuating when the permeability is heterogeneous (Fig. 2, right) with shear flow throughout
the entire PML-FFL system. It is worth noting that when upscaling the concentration equation,
other velocity profiles can also be considered. For example, the coupling of the Stokes and Darcy
equations with the Beavers-Joseph interface condition [38] can be taken into account.

B. Scalar transport and upscaling

We model transport of a passive scalar with a two-dimensional advection-diffusion equation in
the FFL and a two-dimensional advection-dispersion equation for the PML. The scalar quantity is
instaneously injected into the FFL. The evolution of the scalar concentration in time and space is
given by the following equations:

∂ c̃1

∂ t̃
+ ũ f

∂ c̃1

∂ x̃
= D̃1

∂2c̃1

∂ x̃2
+ D̃1

∂2c̃1

∂ ỹ2
, For ỹ ∈ [0, H0], (30)

∂ c̃2

∂ t̃
+ ũm

∂ c̃2

∂ x̃
= D̃2

∂2c̃2

∂ x̃2
+ D̃2

∂2c̃2

∂ ỹ2
, For ỹ ∈ [

H0,H
n
0

]
, (31)
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where c̃1(x̃, t̃ ) and c̃2(x̃, t̃ ) are the local scalar concentrations in the FFL and PML, respectively,
ũ f and ũm are the longitudinal velocities, D̃1 is the diffusion coefficient in the FFL, and D̃2 is the
mechanical dispersion coefficient of the PML (assumed to be isotropic). We define dimensionless
variables as follows:

c1,2(x, t ) = c̃1,2

C0
, u f ,m = ũ f ,m

U0
, D1,2 = D̃1,2

D0
, t = t̃

T
, (32)

where D0 is the scale of diffusion coefficient and T is timescale, in this study, we choose T = L/U0.
We utilize consistent scaling for both the FFL and PML layers, ensuring that these scales are
distinctive and representative for the entire system. As an example, the concentration and velocity
scales are unique for both FFL and PML. Additionally, the diffusivity D0 corresponds to the
molecular diffusion of the solute and serves as a representative value of the entire system. Further
we define two dimensionless quantities:

Pe = H0U0

D0
, ε = H0

L
, (33)

where Pe is the Péclet number and ε is the length ratio of the system (see Fig. 1). The dimensionless
transport equations are

Pe
∂c1

∂t
+ Pe u f

∂c1

∂x
= ε2D1

∂2c1

∂x2
+ D1

∂2c1

∂y2
, for y ∈ [0, 1], (34)

Pe
∂c2

∂t
+ Pe um

∂c2

∂x
= ε2D2

∂2c2

∂x2
+ D2

∂2c2

∂y2
, for y ∈ [1, hn], (35)

where u f is the velocity profile of the FFL (i.e., u f = u0), and um is the velocity of the entire PML
(i.e., um = ∑

i ui). The corresponding boundary conditions are

c1 = 0, x = 0;
∂c1

∂x
= 0, x = L, (36)

∂c2

∂x
= 0, x = 0;

∂c2

∂x
= 0, x = L, (37)

∂c1

∂y
= 0, y = 0; c1 = c2, y = 1, (38)

D1
∂c1

∂y
= φD2

∂c2

∂y
, y = 1;

∂c2

∂y
= 0, y = hn, (39)

c1 = N ( x|μ0, σ0), t = 0; c2 = 0, t = 0, (40)

where N (x|μ0, σ0) is the Gaussian probability density function with mean μ0 and standard devia-
tion σ0:

N ( x|μ0, σ0) = 1

σ0

√
2π

e
− (x−μ0 )2

2σ2
0 . (41)

Despite our choice for a Gaussian-like instantaneous injection, other functions can be employed in
lieu of N (x|μ0, σ0). φ is the porosity, which is the ratio between the void space and the total volume
of the media.

To upscale this system of equations, see Eqs. (34) and (35), we employ a spatial transformation
together with homogenization upscaling techniques following the work of Ling et al. [3]. Let η

denote the spatial transformation

η = ε− 1
2 x, (42)
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and

c1 = c(0)
1 (t, η) + ε

1
2 c(1)

1 (t, η, y) + εc(2)
1 (t, η, y) + O[ε

3
2 ], (43)

c2 = c(0)
2 (t, η) + ε

1
2 c(1)

2 (t, η, y) + εc(2)
2 (t, η, y) + O[ε

3
2 ]. (44)

Equations (43) and (44) represent a homogenization expansion of order ε
1
2 . By substituting

Eqs. (42)–(44) into Eqs. (34) and (35), we obtain two expanded expressions, namely, Eqs. (A1) and
(A2) (see Appendix A). These expanded equations can be rearranged and combined to form a system
of equations, specifically Eqs. (A3)–(A5) and (A6)–(A8). By solving these equations sequentially,
we can determine c(1)

1 , c(2)
1 , c(1)

2 , and c(2)
2 . Subsequently, these values are substituted back into the

expanded Eqs. (A1) and (A2). Finally, spatial averaging is performed along the y-direction, taking
into account the boundary conditions. This process yields the coupled upscaled equations described
in Refs. [3,13] (see Appendix A for details):

∂c(0)
1

∂t
+ 〈u f 〉∂c(0)

1

∂x
= D	

1

∂2c(0)
1

∂x2
+ A1

∂c(0)
1

∂x
+ A2

(
c(0)

1 − c(0)
2

)
, (45)

∂c(0)
2

∂t
+ 〈um〉∂c(0)

2

∂x
= D	

2

∂2c(0)
2

∂x2
− B1

∂c(0)
2

∂x
− B2

(
c(0)

1 − c(0)
2

)
, (46)

subject to

c(0)
1 = 0, x = 0;

∂c(0)
1

∂x
= 0, x = L, (47)

∂c(0)
2

∂x
= 0 x = 0;

∂c(0)
2

∂x
= 0, x = L, (48)

c(0)
1 = N (μ0, σ0), t = 0; c(0)

2 = 0, t = 0, (49)

where 〈·〉 is the spatial average operator:

〈·〉 = 1

L	

∫ L	

0
· dy, (50)

where L	 = 1 for the FFL and L	 = hn − 1 for the PML. The upscaled dispersion coefficients are
given by

D	
1 = εD1

Pe
− εPe

D1
〈u f M(y)〉, (51)

D	
2 = εD2

Pe
− εPe

D2
〈umN (y)〉, (52)

and A1, A2, B1, and B2 are the upscaled coefficients reported in Appendix B. M(y) and N (y) are the
characteristic function of dispersivity (see Appendix B). Additionally, in Appendix C, we show that
the D	

1 approaches to the classic Taylor-Aris dispersion when the permeability approaches zero.
The higher-order concentration solutions are also solved:

c(1)
1 (x, y, t ) = ε

1
2 Pe

D1
M(y)

∂c(0)
1

∂x
, (53)

c(1)
2 (x, y, t ) = ε

1
2 Pe

D2
N (y)

∂c(0)
2

∂x
, (54)

The upscaled Eqs. (45) and (46) are solved for the zeroth-order concentrations, namely, c(0)
1 and

c(0)
2 . The first-order concentration profile is calculated according to Eqs. (53) and (54). And these

expressions will be used to reconstruct two-dimensional distribution.
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III. SOLUTION METHODOLOGY

A. Generalized integral transform technique

To solve the governing transport Eqs. (45) and (46) along with its initial and boundary conditions
(47) and (48), we will make use of the Generalized Integral Transform Technique, i.e., GITT [39,40].
This method has been applied to compute scalar transport in shear flows [20,23,41]. In flow and
scalar transport related study, many governing equations exhibit a similar form as that of Eqs. (45)
and (46), thus, to enhance generality, we rewrite the upscaled equations in the following manner:

∂C1

∂t
= ∂

∂x

(
P1

∂C1

∂x

)
+ P2

∂C1

∂x
+ P3

∂C2

∂x
+ P4C1 + P5C2, (55)

∂C2

∂t
= ∂

∂x

(
Q1

∂C2

∂x

)
+ Q2

∂C2

∂x
+ Q3

∂C1

∂x
+ Q4C2 + Q5C1, (56)

where C1,2 ≡ 〈c1,2〉 ≡ c(0)
1,2. The connection between Eqs. (45), (46) and (55), (56) is provided

through the coefficients Pi and Qi (i = 1, 2, ..., 5) which are reported in Appendix B. Note that
all Pi and Qi are constants once the geometric and transport parameters of the FFL and PML are
determined. The boundary and initial conditions are as follows:

C1(0, t ) = 0;
∂C1

∂x

∣∣∣∣
x=L

= 0; C1(x, 0) = N ( x|μ0, σ0), (57)

C2(0, t ) = 0;
∂C2

∂x

∣∣∣∣
x=L

= 0; C2(x, 0) = 0, (58)

We start by defining the integral transform-inverse pair [39,42]:

C̄ji(t ) =
∫ L

0
ξ̃ ji(x)Cj (x, t )dx, j = {1, 2}, (59)

Cj (x, t ) =
∞∑

i=1

ξ̃ ji(x)C̄ji(t ), j = {1, 2}, (60)

where the symmetric kernels (i.e., eigenfunctions) ξ̃ ji(x) are defined as follows:

ξ̃ ji(x) ≡ ξ ji(x)√
Nji

, j = {1, 2}. (61)

Here, Nji corresponds to the norm of the eigenfunctions ξ ji(x). The norm is defined as the integral
over the eigenfunction squared over the entire domain [39,42], and it is written as

Nji =
∫ L

0
ξ 2

ji(x)dx. (62)

The kernels are the solution of the eigenvalue problem:

∂

∂x

(
P1

∂ξ1i

∂x

)
+ P4ξ1i = −μ2

1iξ1i, (63)

∂

∂x

(
Q1

∂ξ2i

∂x

)
+ Q4ξ2i = −μ2

2iξ2i, (64)

where μ ji are the eigenvalues, these equations are subject to

ξ ji(0) = 0;
∂ξ ji

∂x

∣∣∣∣
x=L

= 0. (65)

In our upcoming examples, we consider Pi and Qi (for i = 1, 2, ...) to be constant. A set of solutions
for Eqs. (63), given constant Pi and Qi (for i = 1, 2, ..., 5), satisfying the boundary conditions
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defined in Eq. (65) is

ξ ji(x) = sin(β jix), (66)

where β ji are the positive roots of cos(βkiL) = 0, we write

β ji = nπ

L
+ 2π

L
, n = 0, 1, 2, ... (67)

Multiplying Eqs. (55) and (56) by ξ̃ ji(x), integrating from 0 to L and using Eqs. (59) and (60)
together with the boundary conditions, we obtain the following set of coupled ordinary differential
equations (for details, see Ref. [39]):

dC̄ji(t )

dt
+ μ2

jiC̄ ji(t ) = Ḡ ji(C̄1i(t ), C̄2i(t )), j = {1, 2}, (68)

with

μ1i =
√

P1β
2
1i − P4, (69)

μ2i =
√

Q2β
2
2i − Q4. (70)

The function Ḡ ji(C̄1i, C̄2i ) is written

Ḡ1i(t ) =
∞∑

w=1

[(
P2

∫ L

0
ξ̃1i(x)

d ξ̃1w(x)

dx
dx

)
C̄1w(t )

+
(

P4

∫ L

0
ξ̃1i(x)

d ξ̃2w(x)

dx
dx + P5

∫ L

0
ξ̃1i(x)ξ̃2w(x)dx

)
C̄2w(t )

]
, (71a)

Ḡ2i(t ) =
∞∑

w=1

[(
Q2

∫ L

0
ξ̃2i(x)

d ξ̃2w(x)

dx
dx

)
C̄2w(t )

+
(

Q4

∫ L

0
ξ̃2i(x)

d ξ̃1w(x)

dx
dx + Q5

∫ L

0
ξ̃2i(x)ξ̃1w(x)dx

)
C̄1w(t )

]
. (71b)

The transformed initial conditions are provided as follows:

C̄1i(0) =
∫ L

0
ξ̃1i(x)N ( x|μ0, σ0)dx, (72)

C̄2i(0) = 0. (73)

The coupled system of ordinary differential equations provided in Eq. (68) is solved using an
implicit time integration scheme and the algorithm is implemented in Matlab. Once C̄ki(t ) is solved,
Ck (x, t ) can be obtained by using the inverse formula (60). After the average concentration, i.e.,
zeroth-order solution is obtained, the two-dimensional solution can be reconstructed by superposi-
tion of the zeroth- and the higher-order solution, see Eqs. (53) and (54).

Cf (x, y, t ) = C1(x, t ) + εPe

D1
M(y)

∂C1

∂x
, (74)

Cm(x, y, t ) = C2(x, t ) + εPe

D2
N (y)

∂C2

∂x
+ Cδ (x, y, t ), (75)

where Cδ is utilized to compensate the mismatch induced by neglecting higher-order solution.
Cδ (x, y, t ) is assumed to ensure the continuity condition at the interface y = h0 and satisfy the
boundary condition at y = hn, i.e., dCδ/dy → 0. One possible form is constructed as Eq. (76),
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FIG. 3. (a) C1(x, t ) and C2(x, t ) spatial distribution at different times. (b) Concentration breakthrough curve
(BTC) measured at x = μ0 + 3σ0. (c) The reconstructed 2D solution of the concentration field using Eqs. (74)
and (75). (d) The the concentration field of the 2D full solution.

which satisfies Cf (x, h0, t ) = Cm(x, h0, t ) and decays to 0 as y → hn:

Cδ (x, y, t ) = [Cf (x, h0, t ) − Cm(x, h0, t )]eh0−y. (76)

In Fig. 3, we show the concentration field in a FFL- PML system. The length of the layer is
L = 50, h0 = 1, [h1, h2, h3] = [1, 3, 1], [k1, k2, k3] = [0.1, 0.01, 0.01], D1 = 1, D2 = 1, Pe = 50
and the total time computed is Tfinal = 50. Figure 3(a) shows the average concentration profile in
the FFL (Cf ) and in the PML (Cm) for t = [0, 10, 20, 30, 40, 50]. Figure 3(b) is the breakthrough
curve (BTC) at x = μ0 + 3σ0, where μ0 = L/8 and σ0 = 1 are the mean and variance of the initial
concentration distribution N (x|μ0, σ0). Figure 3(c) illustrates the two-dimensional concentration
reconstructed by Eqs. (74) and (75). We can see that the solute travels faster in the FFL and spreads
wider in the PML [see Figs. 3(a) and 3(c)]. Such results indicate that the upscaled equation and the
GITT algorithm provide a solution that is physically consistent. Figure 3(d) is the concentration field
using the same setting solved by 2D full solver (see Sec. III B for solver details). As we can see, the
reconstructed solution shows a high accuracy compared to the 2D full solution. The computation
time of the upscaled equation is 36.06 s, while the 2D full solver takes 67.4 min.

B. Validation

To validate the one-dimensional upscaled equation and assess the accuracy of the solution, we
compare the GITT solution with the results obtained from a two-dimensional partial differential
equation solver. In our study, the two-dimensional case corresponds to the solution of Eqs. (34)
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FIG. 4. Validation results of Pe = 1, Pe = 30, Pe = 100, and Pe = 300. The figures on the left are the
BTCs measured at x∗ = μ0 + 3σ0 and the figures on the right are the error between the upscaled equation
(1D-UPE) and two-dimensional result (2D-PDE). The black dashed line is the error threshold E = √

ε.

and (35). The two-dimensional case, denoted here as 2D-PDE, is solved by the partial differential
equation solver COMSOL Multiphysics, i.e., Coefficient-Form-PDE module. The upscaled equation
is solved by GITT and is denoted as 1D-UPE. To assess the accuracy of the upscaled solution, we
define the following error metric:

E f ,m(t ) =
∣∣C1D

f ,m

∣∣
x=x∗ − C2D

f ,m|x=x∗ |
N (μ0|μ0, σ0)

, (77)

where C2D
f ,m|x=x∗ is the average concentration (along the y direction) of the two-dimensional solution.

Here, N (μ0|μ0, σ0) corresponds to the maximum concentration of the initial distribution, i.e., the
Gaussian distribution evaluated at x = μ0. Here, we define x∗ = μ0 + 3σ0 as the location where the
concentration BTC is measured.

Figure 4 shows the comparison between the GITT solution and the two-dimensional numerical
results for different values of Pe. For the results depicted in Fig. 4, we used the following parameters
values: L = 50, h0 = 1, [h1, h2, h3] = [1, 3, 1], [k1, k2, k3] = [0.1, 0.01, 0.01], D1 = D2 = 1. As
previously mentioned, the concentration BTCs are measured at x∗ = μ0 + 3σ0. All parameters are
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kept the same for both 1D-UPE and 2D-PDE. The figures on the left-hand-side are BTCs and the
ones on the right are the errors between the results of 1D-UPE and 2D-PDE [Eq. (77)]. Overall,
1D-UPE exhibits a good agreement with the 2D-PDE when Pe < 1000, and the FFL solution
(Cf ) behaves better when compared to the PML solution (Cm). The maximum error of Cf is less
than

√
ε: max(E f ) <

√
ε, and the error of Cm exceeds

√
ε: max(Em) >

√
ε but converge to small

values at large time. As previously mentioned, Appendix C also demonstrates how our computa-
tional results converge to the Taylor-Aris dispersion coefficient when the permeability approaches
zero.

In this section, we have established a general workflow for solving the solute transport problem
in FFL + PML system. We started with two-dimensional governing equations and obtained the
upscaled equations which are coupled one-dimensional equations. The coupled upscaled equations
are solved semianalytically using the GITT method.

IV. TRANSPORT PROCESS ANALYSIS

A. Breakthrough condition

Here we demonstrate the impact of a multilayered porous media system on transport of a passive
scalar at different Pe numbers. The total length of the domain is L = 50, with the FFL thickness h0 =
1. The thickness of the individual porous layers are given as [h1, h2, h3, h4, h5] = [1, 3, 5, 3, 1],
and the corresponding permeabilities are specified by the following values [k1, k2, k3, k4, k5] =
[0.01, 0.01, k3, 0.01, 0.01]. Here, k3 represents the permeability of the third layer, which we con-
sider for two different values: k3 = 0.01 and k3 = 0.5. The diffusion coefficients in the FFL and
PML are denoted as D1 = 1 and D2 = 1. For the initial condition, we set the concentration at t = 0
as C1(t = 0) = N (x|L/8, 1), and we measure the concentration BTC at the position x = (7/8)L,
which is close to the outlet of the channel-matrix system.

Figure 5 illustrates the scalar concentration BTCs for six selected Pe values: Pe = 1 × 10−3, 1 ×
10−2, 1, 10, 100, 300. The solid red curve corresponds to the concentration in the FFL for case
where k3 = 0.01, while the dashed red curve corresponds to the concentration in the FFL for
k3 = 0.5. Similarly, the blue solid line represents the concentration in the PML layer with k3 = 0.01,
and the blue dashed line represents k3 = 0.5. Figure 5 reveals that when Pe 
 1, specifically when
Pe = 1 × 10−3, the concentrations (namely, Cf and Cm) are independent of the value of k3 This
suggests that in the regime dominated by diffusion (Pe 
 1), the variability of the permeability in
the PML has minimal influence on the transport behavior. However, as the Péclet number increases,
see cases for Pe = 1 × 10−2 and Pe = 1, the temporal dynamics of the scalar concentration obtained
for different k3 values begin to deviate from each other. This indicates that the variability of the
permeability starts to play a significant role in transport. Note that in the Pe range of 1 × 10−3 to
1, the concentrations Cf and Cm overlap, and diffusion is the main transport mechanism. When Pe
reaches 10, the variability of the permeability in the PML has a substantial impact on transport.
This can be observed from the concentration BTC results, where Cf and Cm display different
breakthrough conditions represented by the two dashed curves. Furthermore, the results for different
k3 values become distinguishable by comparing the dashed and solid lines. As the Péclet number
is increased to 100 and 300, the concentration BTC results obtained for different k3 values start
to merge with each other. This interesting behavior can be attributed to the dominant advection
transport effect, where the scalar cloud is transported swiftly due to the fluid flow in the FFL. In
this case, the variability of the permeability of the porous system does not influence significantly
the transport dynamics.

B. Local dispersion

To examine the effect of the PML’s permeability variability on the solute transport, we analyze
the dispersion of the scalar cloud within the system. Following Cirpka and Kitanidis [43], we
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FIG. 5. Breakthrough curve (BTC) of an FFL + PML (five layers) system at different Pe numbers. The
solid line represents a case of lower permeability, while the dashed line represents higher permeability results.
The red curves depict the BTC of the FFL, and the blue curves correspond to the PML. In the low Pe case, all
curves overlap, indicating similar transport processes. However, as Pe ∼ 10, the curves diverge significantly,
indicating a strong impact of the geometry.

compute the local temporal moments of the concentration BTCs:

χ0,γ =
∫

Cγ (x0, t )dt, (78)

χ1,γ =
∫

Cγ (x0, t )tdt, (79)

χ2,γ =
∫

Cγ (x0, t )t2dt, for γ = {m, f }, (80)

where Cγ (x0, t ) is the BTC of FFL (γ = f ) or PML (γ = m) at x = x0 and χi is the ith temporal
moment. The second central moment is defined by

χc,γ = χ2,γ − χ2
1,γ

χ0,γ

. (81)

Therefore, the local dispersion can be computed as [43]

Dloc,γ = x2
0,γ χc,γ χ2

0,γ

2χ3
1,γ

. (82)

For the purpose of illustration, we investigate the influence of permeability on local dispersion
within a three-layer system. The domain has a total length of L = 40, with the thickness of the FFL
being h0 = 1. The individual porous layer thicknesses are given as [h1, h2, h3] = [1, 5, 1], and the
corresponding permeabilities are specified by [k1, k2, k3] = [0.01, k2, 0.01], with k2 taking values
of 0.01 or 0.5. The local BTC used for dispersion computation is measured at position x = 7L/8,
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FIG. 6. The dispersion coefficient ratio is computed between different permeability cases. Each dot’s value
is determined by dividing the dispersion of the high permeability case by that of the low permeability case.
The dashed line represents a ratio of 1; dots above the dashed line indicate that the dispersion of the high
permeability case is larger.

which is equal to 35.0. We use Dloc, f to denote the dispersion measured in the FFL and Dloc,m for
the dispersion measured in the PML.

Figure 6 presents the ratio of the local dispersion in the high permeability case (Dloc|k2=0.5) to
that in the low permeability case (Dloc|k2=0.01). The top figure displays the ratio for the FFL, while
the bottom figure represents the results for the PML. The Péclet number ranges from 1 × 10−3

to 3 × 103. We plot the ratio to determine which configuration yields a higher local dispersion.
Specifically, when the dot lies above the dashed line Dloc|k2=0.5 > Dloc|k2=0.01, it signifies that the
high permeability configuration results in a greater local dispersion.

In the FFL, when Pe 
 1, the system is diffusion governed, and as a result, the dispersion coef-
ficients are similar. For Pe ∈ [1 × 10−2, 1 × 10−1], the high permeability configuration provides a
higher local dispersion. Conversely, when Pe ∈ [1 × 101, 1 × 103], the low permeability case leads
to a higher FFL dispersion. When Pe > 1 × 103, the system is dominated by advection, causing the
BTCs to be similar due to the high flow rate that rapidly transports the scalar cloud. This is further
confirmed in Fig. 5.

In the PML layer, dispersion escalates alongside the enhanced permeability of the third layer.
As the permeability of a layer increases, velocity heterogeneity intensifies, leading to elevated
dispersion.

In this section, we demonstrate how the upscaled system is solved by GITT, and the validation
of the solution. Additionally, we analyze the BTCs in both FFL and PML together with computed
local dispersion value. The results suggest that, permeability of the multilayers system has a strong
impact on the system scale solute transport process.
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FIG. 7. The normalized dispersion computed based on the simulation results, see Eq. (83) of a FFL-PML
(five layers) system for different Pe numbers and k3 values. Each pixel is the result of a pair of k3-Pe, when the
color is warmer/brighter, the dispersion is larger.

V. DISPERSION OPTIMIZATION

In the previous section, we demonstrated how permeability of one layer of the multilayered
system changes the overall dispersion of the solute transport. These results showed the existence of
a set of parameters that can potentially lead to an optimal dispersion. For example, can we identify
a maximum dispersion at a given operating condition (i.e., Pe)? Such optimization is relevant for
designing multilayered and evaluating solute mass transfer when the conductive properties of a
certain layer changes.

To demonstrate this, we performed computations in a system with L = 40 and h0 = 1. The thick-
ness of the individual layers are given as [h1, h2, h3, h4, h5] = [1, 3, 5, 3, 1], and the corresponding
permeabilities are specified by [k1, k2, k3, k4, k5] = [0.01, 0.01, k3, 0.01, 0.01]. Here, k3 represents
the permeability of the third layer. For this third layer, we consider six different permeability
values: k3 = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5. The Pe number ranges from 1 to 1 × 103, and the local
dispersion computed at different k3 is normalized using the following expression:

Dn = Dloc(Pe)|k3 − min
[
Dloc(Pe)|k3

]
max

[
Dloc(Pe)|k3

] − min
[
Dloc(Pe)|k3

] , (83)

for k3 = [0.01, 0.1, 0.2, 0.3, 0.4, 0.5].

Figure 7 depicts the results of the dispersion optimization. Figure 7 (left) provides the results of
the FFL dispersion while the Fig. 7 (right) corresponds to the results of PML. Similar to the results
shown in the dispersion analysis (Fig. 6), when Pe is small, highly permeable system provides a
higher FFL dispersion which may enhance the mixing in the free-flow zone. When Pe is high, the
permeable layer does not increase the dispersion in the free-flow zone. However, in the PML, a
highly permeable third layer (i.e., k3 = 0.5) always provides a higher dispersion.

With the same setup, we explore the design space by varying the third layer’s thickness
h = [1, 3, h3, 3, 1] and permeability k = [0.01, 0.01, k3, 0.01, 0.01]. For each pair of h3 and k3, we
compute the dispersion coefficient Dloc(Pe)|h3,k3 using Eq. (82), and the normalized dispersion is

Dn = Dloc(Pe)|h3,k3 − min
[
Dloc(Pe)|h3,k3

]
max

[
Dloc(Pe)|h3,k3

] − min
[
Dloc(Pe)|h3,k3 ]

, (84)
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FIG. 8. Contour plots of the normalized dispersion as a function of k3 and h3. Each line represents
dispersion of the same value. The solid line is the higher Pe case and the dashed line denotes the lower Pe
results.

where

h3 = [1, 1.5, 2, 2.5, 3, 3.5], (85)

k3 = [0.01, 0.1, 0.2, 0.3, 0.4, 0.5]. (86)

As shown in Fig. 8, the results for Pe = 1 (dashed lines) and Pe = 100 (solid lines) are displayed,
with warm colors indicating high dispersion. When Pe is small, the maximum dispersion in the FFL
occurs in a zone with large values of k3 and h3. However, for Pe = 100, the maximum dispersion
in the FFL can be achieved with small values of k3 and h3. In the highly advective transport regime
(Pe = 100), a wider porous media layer stretches the velocity profile and reduces the velocity
heterogeneity along the y direction, leading to a weakening of the dispersive effects.

When h3 is fixed at Pe = 100, a larger value of k3 allows more flow to pass through the PML
instead of the FFL, resulting in a decrease in the dispersivity (Dn). However, as shown in the
right plot of Fig. 8, dispersion always increases as the permeability in the third layer increases.
Furthermore, Fig. 8 indicates that it is possible to achieve the same dispersion coefficient with
different combinations of k3 and h3. This expands the parameter space for designing multilayer
structures, such as microfluidics or membranes, to meet specific scalar transport requirements.

VI. SUMMARY

In this work, we analyze scalar transport in a two-dimensional shear-flow system consisting of a
conduit bounded by a layered porous medium. Flow in the conduit is governed by Stokes equation,
while flow in the porous medium is given by the Darcy-Brinkman equation. Transport of a passive
scalar is computed through an upscaled one-dimensional model. The upscaled advection-dispersion
equation is attained through the use of perturbation theory and spatial averaging. The upscaled
concentration field is computed through the use of a hybrid analytical-numerical integral transforms
method known as the generalized integral transform technique [39]. The Darcy-Brinkman flow
model is used for the sake of illustration and the integral transform-based methodology employed for
the scalar transport problem in this work is flexible to incorporate different flow models in the porous
medium. We point out that other hybrid numerical-analytical approaches could be used to solve the
upscaled advection-dispersion equations, such as the method proposed in de Barros et al. [44].
The integral transform approach proposed in de Barros et al. [44] yields a semianalytical solution. It
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combines complex analysis with numerics and avoids the solution of ordinary differential equations.
It is particularly well-suited to tackle partial differential equations with constant coefficients, such
as 1D upscaled equations derived in this work. However, the GITT is a flexible method that allows
to solve governing equations that exhibit coefficients that vary in both space and time [20,39].
The two-dimensional solution is reconstructed with the upscaled equation results. We successfully
compare the results from the upscaled one-dimensional advection-dispersion equation with fully
numerical results for the corresponding two-dimensional system.

Our research findings highlight the substantial influence of variations in the permeability field
within a multilayered porous medium on the overall behavior of scalar mixing. We observed that
the distribution of permeability within the porous medium significantly affects the dispersion of the
scalar substance. Specifically, we identified the existence of an optimal dispersion coefficient that
corresponds to the most efficient mixing in this type of system. The discovery of an optimal disper-
sion coefficient has important implications for engineering design. It suggests that by appropriately
adjusting the permeability field, engineers can achieve an ideal level of dispersion that maximizes
mixing efficiency. This knowledge can be applied to various engineering applications where ef-
fective mixing is crucial, such as in chemical reactors or environmental remediation processes.
Furthermore, our study demonstrated that different combinations of properties within the porous
media layer can lead to the same dispersion coefficient. This indicates that there is flexibility in
designing porous media systems for efficient mixing. Engineers can explore various combinations of
permeability, porosity, and other properties to achieve the desired dispersion coefficient, providing
greater control over the mixing process.

Although outside of the scope of this work, it is important to note that in natural porous media,
properties such as the permeability are uncertain due to data scarcity (e.g., Ref. [45]). Therefore
transport quantities, such as the scalar concentration, must be characterized statistically. Under
these conditions, the proposed integral transform solutions can be used in existing uncertainty
analysis frameworks and modular computational packages, see Olivier et al. [46]. Furthermore,
the results regarding solute mixing and dispersion are limited to the physical setup presented in this
study. However, as previously mentioned, the computational approach proposed illustrates how the
distribution of the permeabilities values can significantly impact the solute mixing rates. As shown
in the results, the combination of the upscaled system and the integral transform method can be
utilized to optimize solute dispersion and mixing.

Overall, these findings expand the possibilities for designing efficient mixing systems in engi-
neering applications. By understanding the impact of permeability field variability and the existence
of an optimal dispersion coefficient, engineers can optimize the design of porous media systems to
enhance mixing and improve overall system performance.
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APPENDIX A: ASYMPTOTIC EXPANSION

Substituting Eqs. (42), (43), and (44) into Eqs. (34) and (35) leads to

εPe

(
∂c(0)

1

∂t
+ ε

1
2
∂c(1)

1

∂t
+ ε

∂c(2)
1

∂t

)
+ ε

1
2 Pe

(
u f

∂c(0)
1

∂η
+ ε

1
2 u f

∂c(1)
1

∂η
+ εu f

∂c(2)
1

∂η

)

= εD1

(
∂2c(0)

1

∂η2
+ ε

1
2
∂2c(1)

1

∂η2
+ ε

∂2c(2)
1

∂η2

)
+ D f

(
ε

1
2
∂2c(1)

1

∂y2
+ ε

∂2c(2)
1

∂y2

)
(A1)
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and

εPe

(
∂c(0)

2

∂t
+ ε

1
2
∂c(1)

2

∂t
+ ε

∂c(2)
2

∂t

)
+ ε

1
2 Pe

(
um

∂c(0)
2

∂η
+ ε

1
2 um

∂c(1)
2

∂η
+ εum

∂c(2)
2

∂η

)

= εD2

(
∂2c(0)

2

∂η2
+ ε

1
2
∂2c(1)

2

∂η2
+ ε

∂2c(2)
2

∂η2

)
+ Dm

(
ε

1
2
∂2c(1)

2

∂y2
+ ε

∂2c(2)
2

∂y2

)
, (A2)

respectively. Collecting terms that have the same order of magnitude of ε:

Peu f
∂c(0)

1

∂η
= D1

∂2c(1)
1

∂y2
, (A3)

Pe
∂c(0)

1

∂t
+ Peu f

∂c(1)
1

∂η
= D1

∂2c(0)
1

∂η2
+ D1

∂2c(2)
1

∂y2
, (A4)

Pe
∂c(1)

1

∂t
+ Peu f

∂c(2)
1

∂η
= D1

∂2c(1)
1

∂η2
, (A5)

and for the porous domain:

Peum
∂c(0)

2

∂η
= D2

∂2c(1)
2

∂y2
, (A6)

Pe
∂c(0)

2

∂t
+ Peum

∂c(1)
2

∂η
= D2

∂2c(0)
2

∂η2
+ D2

∂2c(2)
2

∂y2
, (A7)

Pe
∂c(1)

2

∂t
+ Peum

∂c(2)
2

∂η
= D2

∂2c(1)
2

∂η2
, (A8)

The corresponding conditions are 〈
c(1)

1

〉 = 0, (A9)〈
c(2)

1

〉 = 0, (A10)

∂c(1)
1

∂y
= 0, y = 0, (A11)

∂c(2)
1

∂y
= 0, y = 0, (A12)〈
c(1)

2

〉 = 0, (A13)〈
c(2)

2

〉 = 0, (A14)

∂c(1)
2

∂y
= 0, y = 0, (A15)

∂c(2)
2

∂y
= 0, y = 0, (A16)

c(0)
1 + ε

1
2 c(1)

1 + εc(2)
1 = c(0)

2 + ε
1
2 c(1)

2 + εc(2)
2 , (A17)

D1
∂c(1)

1

∂y
= φD2

∂c(1)
2

∂y
, y = 1, (A18)

D1
∂c(2)

1

∂y
= φD2

∂c(2)
2

∂y
, y = 1. (A19)
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Integration of Eq. (A3) together with conditions (A9) and (A11) gives

c(1)
1 = ε

1
2 Pe

D1
M(y)

∂c(0)
1

∂x
, (A20)

where M(y) is given by Eq. (B1). Similarly, integration of Eq. (A6) gives

c(1)
2 = ε

1
2 Pe

D2
N (y)

∂c(0)
2

∂x
. (A21)

Procedure of getting the higher-order solution is shown in Ling et al. [13,3].

APPENDIX B: PARAMETERS

The parameters are

M(y) = Iu f (y) + F1, (B1)

N (y) = Ium(y) + G1y + G2, (B2)

A1 = φN ′(h0), (B3)

A2 = 2φ(hn − h0)Dm

εPe(1 + 2G3 + 2G4)
, (B4)

B1 = N ′(h0)

hn − h0
, (B5)

B2 = 2Dm

εPe(1 + 2G3 + 2G4)
, (B6)

where

Iu f (y) =
∫∫ y

0
u f (y∗)dy∗, (B7)

Ium(y) =
∫∫ y

h0

um(y∗)dy∗, (B8)

F1 = −〈Iu f (y)〉, (B9)

G1 = −
∫ hn

h0

um(y)dy, (B10)

G2 = −〈Ium(y)〉 − 〈G1y〉, (B11)

G3 = −hn, (B12)

G4 = − (hn)3 + 3(hn)2G3 − 1 − 2G3

6hn − 6
. (B13)

The variables of the Eqs. (55) and (56) are

P1 = D	
1, P2 = −〈u f 〉, P3 = A1, P4 = A2, P5 = −A2, (B14)

Q2 = D	
2, Q2 = −(〈um〉 + B1), Q3 = 0, Q4 = B2, Q5 = −B2. (B15)
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FIG. 9. Comparison between the classic Taylor-Aris dispersion (dashed line) and the upscaled dispersion
of the FFL D	

1.

APPENDIX C: VALIDATION WITH THE TAYLOR-ARIS DISPERSION THEORY

In this Appendix, we show how our computational results converge to the Taylor-Aris dispersion
coefficient. D	

1 is the effective dispersion coefficient of the FFL. The classic Taylor-Aris dispersion
coefficient of a slit is (see Eq. (72) of Dejam et al. [22])

DTA = 1 + 2
105 Pe2. (C1)

We expect D	
1 converges to DTA when permeability approaches zero. To validate, we set single layer

PML with h = 5 or h = 10 and compute D	
1 with k = [1 × 102, 1 × 101, 1 × 100, 1 × 10−1, 1 ×

10−2, 1 × 10−3]. We are using Pe = 1 and ε = 1 for the computation, since the prefactor is not
a function of Pe and ε. The result is shown in Fig. 9. We plot DTA − 1 using dashed line, and
denote D	

1 − 1 using red dots (H = 5) and blue squares (H = 10). We can see that both solutions
approaches to the Taylor-Aris when k → 0.
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