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Helium plumes at moderate Reynolds number
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We present an experimental investigation of the turbulent entrainment in non-Boussinesq
steady plumes, focusing on three helium releases issued from an axisymmetric source,
and with increasing Reynolds number. Two-dimensional instantaneous velocity fields,
measured using particle image velocimetry (PIV), are exploited to compute first- and
second-order velocity statistics focusing on the near field, i.e., up to a distance of a few
tens of source radii. Flow visualizations and velocity statistics profiles are investigated
to describe the flow transition from a quasilaminar zone, governed by Rayleigh-Taylor
instability, to a more distinctly turbulent region. The vertical evolution of the integral
fluxes, the Richardson number, and the entrainment coefficient are presented enlightening
the influence of an increasing Reynolds number at the source. The plume characteristic
density is reconstructed based on the assumption, sustained by recent literature data, of
a null-divergence flow. Making use of the entrainment decomposition, we investigate the
contribution of the different physical mechanisms involved in the mixing process at varying
distances from the source, with a focus on the effect of the local density ratio. Our results
show that the variations of the entrainment coefficient in the turbulent region are primarily
affected by the near-field generation of turbulent kinetic energy and by a rising contribution
of buoyancy effects. Both features do not exhibit a clear dependence on local variations of
the density ratio.

DOI: 10.1103/PhysRevFluids.9.064501

I. INTRODUCTION

Plumes are vertical flows that arise from a localized source of buoyancy. They are a widely
investigated topic in fluid mechanics because of their presence in several areas of engineering and
physical sciences, e.g., ocean outfalls, exhausts of engines, volcanic eruptions, and fire-induced
smoke. A robust approach in the modeling of plumes generated by a circular source is provided
by the “plume equations” [1], i.e., an integral description of the flow, in which spatially averaged
variables depend only on the distance from the source, z. In this framework, the key parameter is
the so-called entrainment coefficient, α, which controls the dilution of the plume with the ambient
fluid. Morton et al. [1], and most of the subsequent theoretical and experimental studies on this topic
(the main results are resumed in the review papers of List [2], Kaye [3], and Woods [4]), deal with
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the so-called “Boussinesq plumes,” characterized by slight (i.e., less than 10%) density differences
between the plume and the surrounding fluid. In this framework, assuming a fully turbulent plume
developing in a nonstratified quiescent environment and neglecting molecular diffusion, the flow
dynamics can be shown [5] to depend on a single nondimensional parameter, the scaled plume
Richardson number, defined as [6]

�(z) = 5

8αp
Ri(z) = Ri(z)

Rip
, (1)

where αp = 0.12 is a reference far-field value for the pure plumes entrainment coefficient, obtained
considering top-hat profiles [1,7,8], and the Richardson number, representative of the ratio of
buoyant to inertial forcing, is defined as Ri = g(ρ0 − ρm)rm/ρ0w

2
m, where g is the gravitational

acceleration, ρ0 is the ambient density, and ρm, rm, and wm are the local characteristic density,
radius, and velocity, respectively (see Sec. IV for precise definitions). The so-called “pure plume”
equilibrium condition, with Rip = 8αp/5, is reached in the far field of any turbulent buoyant release,
independently of its condition at the source [6]. By construction, � = 1 for a pure plume. This
condition sets a distinction between forced plumes, which have an excess of momentum (relative to
pure plume conditions), 0 < � < 1, and lazy plumes, which have a deficit of momentum (� > 1).

The body of literature that deals with releases characterized by large density differences at the
source, i.e., the “non-Boussinesq” releases, is significantly smaller. In the early work of Batchelor
[9], a reduced turbulent mixing was observed, with respect to the Boussinesq case, in starting plumes
significantly lighter than the ambient fluid. In the following decades, the only experimental study
that sought to elucidate the effects of large density differences on the entrainment coefficient was
the work of Ricou and Spalding [10]. Based on experiments on variable-density jets (i.e., � = 0),
they inferred that the entrainment is increased for an increasing ratio between the local characteristic
density and the ambient density, following the powerlaw

α = α0

(
ρm

ρ0

)1/2

, (2)

where α0 = α j is the entrainment coefficient in the far field of the jet (where the effects of density
differences between the release and the ambient are lost). This result has created the basis for
subsequent works (e.g., [11–14]) in which Eq. (2) is assumed to be valid (in the absence of
any further experimental confirmation) even for non-Boussinesq plumes, simply by considering
α0 = αp. However, the adoption of Eq. (2) for non-Boussinesq plumes raises several issues. Firstly,
recent experiments and simulations of Salizzoni et al. [15] on variable-density jets do not support
the scaling proposed by Ricou and Spalding [10]. Secondly, its extension to non-Boussinesq plumes
is not based on any robust experimental evidence. Moreover, the relation (2) suggests an entrainment
phenomenology relative to the density differences that is somehow controversial. According to
well-established literature on buoyant jets and plumes [5,6,8,16–18], a reduced density of the release
would imply a larger �, resulting in an enhanced entrainment coefficient. For 0 < � < 1, this feature
is outlined by the following relation for α [6,16,17]:

α = α j + �(αp − α j ), (3)

where αp > α j . According to Eq. (2), the entrainment coefficient would instead be reduced by a
smaller plume density, and its dependence on the local � neglected.

The limited understanding of the role of density ratio in the entrainment process derives essen-
tially from a lack of experimental studies on non-Boussinesq plumes. These releases have rarely
been investigated experimentally because of the complexity of their reproduction at laboratory
scale. High-density differences plumes are typically generated by fires [19,20] or by very light
gases that must be properly stocked. The technical hurdle relies on obtaining a sufficiently high
buoyant forcing (compared to the inertial one) such that � � 1, while maintaining a sufficiently
high Reynolds number at the source. Most experimental studies on non-Boussinesq releases focus
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on flows where the required buoyant forcing is smaller, such as turbulent jets [10,15,21] or forced
plumes [22,23]. Given the ease of its stocking, its low cost, and its low density, the most convenient
gas that is fit to recreate, in the laboratory, a release with a low-density ratio, is helium. The ratio
of the kinematic viscosities of helium and air at ambient temperature at atmospheric pressure is
7.7 [24,25]. The Reynolds number of a helium release is reduced by a factor of 7.7 compared to
a pure air release. Therefore, to recreate a high-Reynolds, laboratory plume that is simultaneously
non-Boussinesq and with � close to unity, it is necessary to increase its spatial scale. For example,
a helium lazy plume issued by a 1-m-diameter source was reproduced by O’Hern et al. [26] but the
measurements were performed only up to a maximum of 1 diameter in height.

Given these controversial aspects, this work aims at providing a step forward in the understanding
of the density ratio role in the mixing process and presents an experimental investigation of the
entrainment in non-Boussinesq steady plumes. We focus on three helium plumes with increasing
Reynolds numbers at the source, Res, defined as Res = 2wsrs/νs, where rs is the source radius and
ws and νs are the mean vertical velocity and kinematic viscosity at the injection, respectively. In
this framework, considering a nonreacting plume in a nonstratified environment, the entrainment
coefficient α is expected to depend on the following nondimensional quantities:

α = α

(
�s,

ρs

ρ0
, Res, Scs,

νs

ν0
,

z

rs

)
, (4)

where the subscript “s” refers to the value of the quantity at the source. The Schmidt number at
the source, Scs = νs/D, equal to the ratio between the kinematic viscosity at the source νs and the
species diffusivity D, and the ratio between the kinematic viscosity at the source and the ambient
one, ν0, will be fixed for all the experiments and their influence on the entrainment phenomenon
will not be explored in the following. The explicit dependence on the distance from the source, z/rs,
can be made implicit by considering the dimensionless parameters defined locally (i.e., for a given
distance from the source [15]). Therefore, we will investigate the following relation:

α = α

(
�,

ρm

ρ0
, Rem

)
, (5)

where Rem = 2rmwm/νm is the local Reynolds number, based on the local characteristic radius,
velocity, and viscosity (see Sec. IV for the definition of the characteristic quantities).

A full characterization of non-Boussinesq plume statistics would require simultaneous measure-
ment of velocity and density. However, the works of Salizzoni et al. [15] on variable-density jets and
O’Hern et al. [26] on the near-source region of non-Boussinesq lazy plumes have shown that the
Reynolds and Favre first- and second-order statistics are almost coincident. In the remainder of the
paper, we will assume that this holds also for non-Boussinesq pure plumes: all subsequent analysis
will therefore rely on Reynolds-averaged statistics only. This allows us to significantly simplify the
experimental setup, performing only velocity measurements obtained by the PIV technique. The
experimental details are presented in Sec. II. A description of the flow is presented in Sec. III, relying
on flow visualizations and on the presentation of first- and second-order velocity statistics profiles.
The analysis of the integral flow dynamics is shown in Sec. IV and it is performed by evaluating
the plume fluxes, the characteristic quantities, and � at different heights from the source. The
computation of the entrainment coefficient is performed in two ways. The first is based on the radial
integration of the volume conservation equation closed with the classical entrainment hypothesis
[27]. The second relies on the entrainment decomposition [6,16,28], obtained by manipulating the
mean-kinetic energy and the momentum equations. This relation was deployed both experimentally
and numerically in recent works on jets and Boussinesq plumes [5,15,18,29], fountains [30,31], and
gravity currents [32] but so far never exploited for non-Boussinesq plumes. The dependence of the
entrainment coefficient and of the entrainment decomposition terms on the local density ratio and
local Richardson and Reynolds numbers is discussed in Sec. V. Conclusions are reported in Sec. VI.
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(a) (b)

FIG. 1. (a) Sketch of the experimental setup. (b) Radial profiles at the source of the mean vertical velocity,
w, and the rms of vertical velocity fluctuations, σww . All the profiles are normalized with the source mean
centerline velocity, wc,s.

II. EXPERIMENTAL SETUP

The experiments aim at establishing first- and second-order velocity statistics in a plane of non-
Boussinesq plumes with varying Reynolds number at the source. The measurement technique is
a two-dimensional PIV, obtained on a single measurement window, placed just above the plume
source. The plumes are generated using a helium–air gas mixture supplied through a 70-cm-long
vertical pipe. The gas mixture has a density ratio ρs/ρamb at the source equal to 0.2. The volume
fluxes of helium and air are provided by two flow controllers. The helium molar fraction, needed
to impose this density ratio at the source, is 0.93. In order to have a homogeneous flow, the mixing
between air and helium takes place far upstream of the entrance to the source pipe [see Fig. 1(a) for
a sketch of the experimental setup]. Three different plumes with Reynolds numbers at the source
equal to 260, 450, and 820 are studied, referred to hereafter as Re260, Re450, and Re820. All three
plumes have � = 1 at the source and the same density ratio, ρs/ρamb. In order to keep these two
parameters constant and to change only the Reynolds number, both the volume flow rate and the
exit area of the source are changed in the three experiments. The exit radial profiles of the mean
vertical velocity, w, and of the rms of vertical velocity fluctuation, σww, scaled with the mean source
centerline velocity, wc,s, are shown in Fig. 1(b). The source conditions are summarized in Table I.
For the three experimental plumes, the source Schmidt number is 1.69 and the viscosity ratio is 7.1.

A. PIV acquisition parameters

A dual-head Nd:yttrium aluminum garnet laser (Litron Bernoulli-PIV 200-15) and a 12-bit CCD
camera with 3280 × 4920 pixel resolution are synchronized so that a close pair of laser pulses

TABLE I. Experimental source conditions.

Re260 Re450 Re820

� 1 1 1
Source diameter ds (cm) 3.5 5 7.5
Exit velocity ws (m/s) 0.82 0.98 1.20
ρs/ρamb 0.2 0.2 0.2
Volume flux at the source πQs (m3/s) 7.9×10−4 1.92×10−3 5.31×10−3
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corresponds to a close pair of camera shots. The pulses produce a laser sheet that passes through
a plume symmetry plane that is perpendicular to the camera’s optical axis, and the light reflected
by the seeding particles is captured by the camera. The commercial PIV system LaVision DaVis is
used for acquisition. The cross-correlation is performed on areas of 64 × 64 pixels and exploits a
50% overlap between the areas, and a 103 × 154 element velocity vector field is obtained. The size
of the image is 52.5 cm × 78.5 cm, with a spatial resolution of 5.1 mm. Since the source exit radius
rs is different for the three plumes, the maximum measurement height (expressed in terms of source
radii) changes between the experiments. These are 44.6rs, 31.2rs, and 20.8rs for Re260, Re450, and
Re820, respectively.

PIV measurements require seeding both the mixture exiting from the source (internal seeding)
and the ambient air (external seeding). The internal seeding is obtained with micronic oil droplets
and the external one is obtained with a fog generator emitting droplets in the range 0.5–2 µm.
After generating the external seeding, we waited several minutes to allow the particles to achieve
a uniform distribution in the room and for ambient velocity fluctuations to attenuate. It is worth
checking that the PIV image brightness induced by internal seeding is equal to the brightness
induced by external seeding. After every modification in the position of the camera or in the
position of the laser head, the LaVision PIV system was recalibrated (using a calibration grid).
The software receives as input the geometrical measure of the grid dots, the global dimension of the
calibration panel, the position of the center of the grid, and self-calibrates to obtain proper velocity
measurements.

Since the exit velocity changes between the three plumes, different �t between the impulses
are used for the three source conditions, in order to guarantee the accuracy of the results. For each
plume, 1500 instantaneous velocity fields are acquired with a frequency of 3.3 Hz, allowing the first
and second-order velocity statistics to be computed accurately [33].

B. Measurements uncertainties

Following recent studies [15,34,35], we consider that, at first order, the most relevant source
of the experimental errors is the precision uncertainty due to the finite number of samples. This is
locally estimated, for mean vertical velocity, w(r, z), and for the axial-normal and shear components
of the Reynolds stress tensor, w′w′(r, z) and w′u′(r, z), following the method presented in Benedict
and Gould [36], considering a 95% confidence interval. For w, the experimental errors along the
centerline do not exceed 2%, while they are close to 6% at the edges of the plume. In this region,
also the errors on w′w′ have a maximum, while, for smaller radial distances, they do not exceed
8%. The errors on Reynolds shear stress w′u′, instead, have a maximum in the proximity of the
centerline, where the absolute value of w′u′ is close to zero. In the rest of the domain, they are
approximately 12%.

The propagation of the errors on the velocity statistics is employed to estimate errors on all
quantities in Sec. IV, where all the plots are presented with error bars (when these are not present
their amplitude is below 5%). To that purpose, we generate, for each velocity statistic, 100 fictitious
fields, whose local values are given by the sum of the measured value of the reference statistic and
of a zero-mean Gaussian random variable. The standard deviation of the random variable is half of
the precision uncertainty. This process allows evaluating 100 vertical profiles for each quantity of
Sec. IV. The vertical profiles and error bars correspond to the local mean value and to the width of
the 95% confidence interval obtained from the 100 vertical profiles, respectively.

III. FLOW DESCRIPTION

A. Flow visualization

The starting point of our analysis is a phenomenological description of the flow, considering the
instantaneous visualizations of Fig. 2. The flow visualizations can be easily obtained from the set
up described in Sec II, removing the seeding of the ambient air. For the three Res, it is possible
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(a) (b) (c)

FIG. 2. Instantaneous visualization of the three experimental plumes.

to distinguish two distinct regimes in the observed domain, identified by different flow kinematics.
In the near-source region, the plumes are governed by a local absolute instability dynamics [37],
characterized by the formation of large vortex rings that govern the flow without triggering an
evident energy transfer to smaller-scale structures. These toroidal structures, which are typically
the signature of a Rayleigh-Taylor instability, have been observed in the near-source region of jets
[38,39] and plumes [25,40–42]. Their dynamics is related to a characteristic “puffing” frequency,
which exhibits a clear dependence on both the Reynolds and the Richardson numbers [25]. From
Fig. 2, it is evident that, for Re260, a larger number of vortex rings is present simultaneously in
the streamwise direction with respect to the cases with higher Res. For the three experiments,
the processes involved in the growth, interaction, and breakdown of vortices evolve temporally
in a periodic way. The breaking of the organized structures and the subsequent destruction of
the potential core results in the formation of small-scale eddies, giving rise to typical features
characterizing a turbulent flow regime.

B. Local flow statistics

The second step in our analysis is a detailed description of first- and second-order velocity
statistics. The aims of this analysis, other than widening the so-far limited literature on the ex-
perimental data on non-Boussinesq plumes, are to evaluate (i) the signature of the two differing
flow regimes in the statistical flow response and (ii) the dependency on Res of the velocity statistics.
To have a general overview of the flow and exploiting axial symmetry, the nondimensional mean
vertical velocity, w/ws, Reynolds shear stresses, w′u′/w2

s , and turbulent kinetic energy, k/w2
s , are

shown in Fig. 3. Assuming isotropy on the horizontal plane [18,43], the latter is estimated as
k � 1/2(w′w′) + u′u′, where w′w′ and u′u′ are the axial-normal and radial-normal components
of the Reynolds stress tensor.

Both the vertical and the radial distances are scaled with the source radius, rs. In order to have
a direct comparison between the different plumes, in the reminder of the paper, the results for
the three experiments will be presented up to a maximum height of 20 source radii (the upper
limit of the measurement domain for Re820). Variations in the Reynolds number at the source
show little influence on the first-order statistics (w) [Figs. 3(a)–3(c)] but become evident when
considering second-order statistics. The turbulent kinetic energy fields [Figs. 3(g)–3(i)] show a peak
that approaches the source for increasing Res, revealing the faster triggering of turbulence within the
potential core as the Reynolds number increases. This behavior is consistent with the visualizations
in Fig. 2: for Re260, multiple vortex rings are simultaneously present in the streamwise direction.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. First- and second-order statistics fields for the three experimental plumes: (a)–(c) show the mean
vertical velocity fields w scaled with the vertical velocity at the source ws; (d)–(f) show the shear Reynolds
stress fields w′u′ scaled with w2

s ; and (g)–(i) are the turbulent kinetic energy fields k scaled with w2
s . Both the

vertical and the radial positions are scaled with the source radius rs.
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(a) (b)

FIG. 4. Evolution of the rms vertical velocity fluctuation, σww,c (a), and of the mean centerline vertical
velocity, wc (b), for the three experimental plumes. Hollow and filled markers refer to the quasilaminar and
turbulent zones, respectively.

This implies a larger extension of the region dominated by the Rayleigh-Taylor instability, compared
to cases with higher Res.

The effect of the turbulent transition is evident also on the axial profiles of the rms vertical
velocity fluctuations σww,c, shown in Fig. 4(a). For the three experiments, σww,c is null at the source,
it increases for 0 < z/rs < 6rs, reaches a maximum, and decreases. Increasing the Reynolds number,
the vertical distance from the source of the peak diminishes, and the maximum value increases. In
addition, we observe a varying shape of the axial profile: for Re820, the growth until the peak is
monotonic, for Re450, there is an inflection point below the peak, at z = 3rs, and for Re260, there is
a relative maximum at the same position. Similar overshoot in the σww,c vertical profile has been
already observed for variable-density transitional jets by Kyle and Sreenivasan [38] and Viggiano
et al. [21]. Relying on spectral analysis, Kyle and Sreenivasan [38] have shown that the overshoot in
σww,c is primarily associated with the vortices pairing process. This may account for the observed
double peak in Re260, as an increased number of vortices can lead to a higher number of interactions
among them, resulting in multiple peaks of σww,c. For z > 10rs, downstream of the structure
breakdown and of the pinch off of the potential core (i.e., where the turbulent regime is established),
there are no longer abrupt variations in σww,c. The distinction between the region identified by
organized structures and the one characterized by a disorganized state related to classical turbulence
will be maintained also in Sec. IV and will be highlighted by the use of hollow and filled markers,
respectively. The z > 10rs zone will be referred to as “turbulent region” in the following. The axial
profiles of vertical centerline velocity wc, shown in Fig. 4(b), confirm that, for first-order statistics,
the Reynolds dependence is less evident. Our moderate-Reynolds, non-Boussinesq pure plumes
show a wc acceleration above the source, up to 3ws, and then a deceleration.

Other relevant features of the flow concern the evolution of the Reynolds stress tensor com-
ponents at various distances from the source, shown in Fig. 5, where all the profiles are scaled
with the mean centerline vertical velocity squared and the radial distance with z. The profiles
are compared with the fully self-similar radial profiles provided by Wang and Law [8] (hereon
referred to as W&L), measured in the far field (z > 100rs) of a pure plume. For the w′u′ component
[Figs. 5(a)–5(c)], the values gradually increase moving downstream from the source and, above 15rs,
the profiles approach self-similarity. The peak value, equal for the three plumes, w′u′/w2

c ≈ 0.017,
is slightly smaller than the peak registered by W&L, i.e., w′u′/w2

c ≈ 0.021. The influence of a
varying Reynolds number is evident in the radial profiles of axial normal w′w′ and radial normal
u′u′ stresses [Figs. 5(d)–5(i)]. Near the source, at z = 5rs, the vertical velocity fluctuations are small,
compared to the far-field value, for Re260 [Fig. 5(d)] and Re450 [Fig. 5(e)] but they show a big
overshoot in Re820 [Fig. 5(f)]. Just downstream, at z = 8rs, the situation is reversed with a sharp
increase of w′w′ in Re260 and Re450 but a decrease in Re820 with respect to the values at z = 5rs.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. Radial profile for the three plumes of w′u′ (a)–(c), w′w′ (d)–(f), and u′u′ (g)–(i) obtained at different
distances from the source. In order to seek for self-similar behavior, the flow statistics are scaled with w2

c and
the radial distance with z. The results are systematically compared with the radial profiles measured by Wang
and Law [8] (black dashed line) for a pure plume in full self-similar condition.

This peculiar behavior confirms a faster turbulent triggering for increasing Res. Once the peak of
fluctuations related to the transition occurs, the profiles gradually approach the W&L reference
values. The effects of turbulent transition are less evident in the case of radial normal stresses u′u′
[Figs. 5(g)–5(i)], despite the occurrence of an overshoot at 5rs for Re820 [Fig. 5(i)]. A dependence
on Reynolds number is nevertheless appreciable by observing that, at the same distance from the
source, a higher Reynolds number corresponds to higher u′u′/w2

c values.

IV. INTEGRAL ANALYSIS

In this section we move to the description of radial integrated flow statistics. Our aims are
to (i) characterize the vertical variation of the integral quantities in transitional, non-Boussinesq
plumes; (ii) present an estimate for the local characteristic density, ρm; and (iii) evaluate the vertical
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(a) (b) (c)

(d) (e) (f)

FIG. 6. (a)–(c) Vertical variation of the integral volume, mass, and momentum fluxes. (d)–(f) Characteristic
density ρm, radius rm, and velocity wm. The dot-dashed lines show the power-law scaling predicted by Morton
et al. [1].

behavior of the entrainment coefficient and the relevance of the different terms of the entrainment
decomposition.

A. Integral fluxes, characteristic scales, and entrainment from volume conservation

As can be shown by manipulating the enthalpy balance equation [44], volume conservation is
fully consistent with the dynamics of low-Mach non-Boussinesq releases, despite the large density
differences characterizing the flow. Therefore, the combination of volume and mass balances implies
the conservation of the vertical integral flux of density deficiency, D ≡ 2

∫ ∞
0 (ρ0 − ρ )wr dr = Ds

[44]. This allows us to estimate the vertical variation of the characteristic density of the plume ρm,
without relying on any direct measurements of density or helium concentration. By writing the
density deficiency as Ds = θm(ρ0 − ρm)Q, where Q ≡ 2

∫ ∞
0 wr dr is the integral volume flux and

θm is a profile coefficient (see Sec. IV B), considered equal to unity at this stage [44], we can obtain
the characteristic plume density as

ρm = ρ0 − Ds

θmQ
. (6)

By integrating the mean vertical velocity profiles and by locally approximating the density radial
profiles with top-hat profiles, it is possible to estimate the plume mass flux, G, and momentum, M:

G ≡ 2
∫ ∞

0
ρ wr dr � ρmQ, M ≡ 2

∫ ∞

0
ρ w2r dr � 2ρm

∫ ∞

0
w2r dr = ρmM∗, (7)

where the symbol M∗ ≡ 2
∫ ∞

0 w2r dr represents the specific momentum [45]. Figures 6(a)–6(c)
show the resulting integral quantities: Q, G, and M. The fluxes can be exploited to obtain the plume
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top-hat velocity, wm, and radius, rm([15]):

wm ≡ M

G
� M∗

Q
, rm ≡

(
QG

M

)1/2

� Q

M∗1/2 . (8)

The resulting top-hat quantities, i.e., ρm/ρ0, wm, and rm are presented in Figs. 6(d)–6(f). The vertical
variation of the density ratio [Fig. 6(d)] shows how the turbulent entrainment causes an increase
in the plume density while moving away from the source. For z > 22rs, ρm/ρ0 reaches 0.9, i.e.,
the plumes attain a Boussinesq condition. The growth of the density ratio is more intense in the
near-source region, but, immediately downstream from the turbulent transition, ρm/ρ0 is still close
to 0.7, enabling the investigation of non-Boussinesq effects even in the turbulent zone.

Figure 6(e) shows that, before exhibiting linear spreading, the characteristic radius does not
increase until z = 4rs in the three different experiments. The plume necking is concurrent with an
augmentation of the characteristic velocity up to 1.8ws [Fig. 6(f)], consistently with the increasing
of the centerline vertical velocity [Fig. 4(a)]. This peculiar behavior is corroborated by dimensional
analysis. In the region where the characteristic velocity increases, i.e., z < rs, the plume radius is
constant and equal to rs. Therefore, wm is only a function of an equivalent buoyancy flux per unit
area, Dsg/(ρ0πr2

s ), and of the distance from the source, z. It can be written as

wm ∼
(

Dsg

ρ0r2
s

)a

zb. (9)

The concordance of measurement units is achieved for a = b = 1/3, justifying the plume accel-
eration in the z direction. Necking and acceleration in non-Boussinesq plumes are also predicted,
for example, by the Fannelop and Webber [46] model, generalizing the Morton et al. [1] approach
for plumes with density ratio significantly smaller than 1 and for non-power-.law solutions. The
power-law behavior of the characteristic scales predicted by the scaling argument for Boussinesq
releases (black dashed line in Fig 6, [1]) is instead fairly well respected for z > 12rs: within the
turbulent region, the low-density ratio has negligible influence on the plume scales.

When dealing with Boussinesq releases, the mixing with ambient air is usually quantified by the
coefficient α, arising from the integral volume (or mass) conservation:

dQ

dz
= −2[ru]∞ (10)

when introducing the entertainment hypothesis −[ru]∞ = αM∗1/2 [27]. Given the volume conser-
vation, and based on the recent experimental evidence by Salizzoni et al. [15], this approach can be
conveniently adopted also when dealing with non-Boussinesq releases. Relying on these findings,
we therefore estimate α as

α = 1

2M∗1/2

dQ

dz
. (11)

The values of α for increasing distance from the source and for the three plumes are shown in
Fig. 7(a). Despite some noise due to the numerical estimate of the vertical derivative of the volume
flux Q from experimental data, the three cases show the same trend. The entrainment is close to
zero at the source; it strongly increases for 0 < z < 8rs and then more gradually. The α profiles
are not exactly monotonic as they show a local maximum for 5rs < z < 10rs. The position of the
local maximum approaches the source if Res increases. In the upper part of the domain, α loses its
dependence on Res and exceeds 0.1.

In Fig. 7(b), the plume variables are exploited to compute �, as defined in Eq. (1). In our
experiments with an imposed � = 1 at the source, the acceleration near the source [see Fig. 4(b)]
causes an increase in the inertial forcing that produces a “momentum-dominated” region (i.e., with
� < 1). Once reaching a minimum � ≈ 0.25, the flow tends to regain the pure plume condition in
the upper part of the domain. The vertical height at which the minimum � occurs decreases for
increasing Res but the qualitative behavior is the same for the three plumes.
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(a) (b)

FIG. 7. (a) Entrainment obtained from volume conservation, α, and (b) plume scaled Richardson number, �.

B. Entrainment relation

In this section, we present a second estimate of the entrainment coefficient, obtained by com-
bining the mass, momentum, and mean kinetic energy balance equations. This approach, referred
to as entrainment decomposition, was employed primarily for investigating Boussinesq releases
[16,18,28,29,47] and, only recently, low-density jets [15] and is here applied to non-Boussinesq
plumes. The detailed derivation of this entrainment relation for moderate Reynolds, non-Boussinesq
plumes, is presented in the Appendix. Starting from the complete relation and considering (i) that the
Reynolds-averaged velocity statistics are equal to the Favre-averaged velocity statistics, (ii) a top-hat
profile for the time-averaged density ρ(r, z), i.e., ρ(r, z) = ρm(z), and (iii) only the contribution
of the mean and viscous profile coefficients [6,15,18,44], denoted with subscripts “m” and “μ”
(Appendix), we obtain that the entrainment relation can be written as

αEμ = −ρm

ρ0

δm + δμ

2(γm + γμ)
+ ρm

ρ0
rm

d

dz

(
ln

(γm + γμ)1/2

1 + βμ

)
+

(
1

1 + βμ

− θm

γm + γμ

)
Ri, (12)

where

γm ≡ 2

w3
mr2

m

∫ ∞

0
w3r dr, δm ≡ 4

w3
mrm

∫ ∞

0
w′u′ dw

dr
r dr, (13)

and where the terms βμ, γμ, and δμ arise when considering the viscous terms within the balance
equations. Their formulation is

βμ ≡ −2rm

Rem

d (ln Q)

dz
, γμ ≡ −2

Remw2
mrm

dM∗

dz
, δμ ≡ −8

w2
mRem

∫ ∞

0

[(
∂w

∂r

)2

+
(

∂w

∂z

)2
]

r dr.

(14)

In the Rem definition, a characteristic kinematic viscosity νm, obtained by weighing the helium
and air viscosities according to their concentration in the plume, inferred from ρm, is considered.
Despite the moderate Reynolds number at the source, we observe that, in the whole domain and for
all three plumes, βμ 	 1, γμ 	 γm, and δμ 	 δm, so that the contribution of the viscous terms is
fully negligible. Therefore, the entrainment relation reduces to

αE = − ρm

ρ0

δm

2γm︸ ︷︷ ︸
αprod

+ ρm

ρ0
rm

d

dz

(
ln γ 1/2

m

)
︸ ︷︷ ︸

αshape

+
(

1 − θm

γm

)
Ri︸ ︷︷ ︸

αRi

. (15)
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(a) (b)

FIG. 8. Vertical variations of (a) γm and (b) −δm.

A remark is necessary for the value of θm, which cannot be obtained relying on velocity measure-
ments. Assuming that the profiles have a Gaussian shape, θm can be written as [29]

θm = 2

ϕ2 + 1
, (16)

where ϕ = r̂b/r̂m is the ratio between the standard deviation of the Gaussian density deficiency
profile, r̂b, and the standard deviation of the Gaussian velocity profile, r̂m. The literature values of
ϕ for Boussinesq jets and plumes show a relevant scatter. Despite this, there is a general agreement
in assuming their dependence on the local value of � [8,29,33]. Assuming its independence on
the density ratio and Reynolds number, Wang and Law [8] have proposed the following empirical
relation between the local ϕ and �:

ϕ = ϕ j − (ϕ j − ϕp)�κ, (17)

where ϕ j = 1.23 and ϕp = 1.04 are the reference values for pure jet and pure plume, respectively,
and where κ = 1.5. We assume relation (17) to hold for our experimental plumes.

The profile coefficients with the greatest influence on the entrainment coefficient estimate
are γm and δm, which correspond to the nondimensional flux of the mean kinetic energy and
the production of turbulent kinetic energy. Their vertical profiles are presented in Figs. 8(a)
and 8(b). The γm coefficients [Fig. 8(a)] increase in the near-source region. They attain an al-
most constant value at a lower vertical distance from the source for increasing Res. The value
in the turbulent region is constant (γm ∼ 1.3, close to γm = 4/3, typical for a Gaussian radial
velocity profile [6]), indicating the self-similarity of the mean vertical velocity field. The −δm

coefficients [Fig. 8(b)] show an analogous trend to γm with two relevant differences: (i) Re260

shows an overshot at z = 8rs in correspondence with the turbulence triggering; and (ii) in the
turbulent region, the influence of the Reynolds number at the source is still present, and fades out
for z > 15rs.

The entrainment coefficient, αE , is obtained summing the three contributions αprod, αRi, and
αshape. The αprod term [Fig. 9(a)] is related to the rate of production of turbulent kinetic energy
over the mean kinetic energy flux. It is zero at the source and has a strong increase when z < 10rs,
in correspondence with the turbulent transition. The growth continues in the turbulent region and,
for the three plumes, αprod ≈ 0.55 at z = 20rs. We expect αprod to increase up to 0.7 in the far field
[6]. The αRi term, related to buoyancy effects and depending linearly on the Richardson number,
is mainly responsible for the increased entrainment in plumes with respect to jets. As shown by
Fig. 9(b), regardless of the Reynolds number at the source, αRi keeps increasing, also in the turbulent
region, and exceeds 0.05 for z > 15rs. The αshape contribution [Fig. 9(c)] is related to the shape
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(a) (b) (c)

FIG. 9. Axial variation of the entrainment relation components: αprod (a), αRi (b), and αshape (c) for the three
experimental plumes.

variation of the radial profiles for increasing distances from the source. It is identically zero in a
fully self-similar condition. Above z = 5rs, αshape becomes negligible compared to αprod and αRi.

Figure 10 shows a comparison between the two estimates of the entrainment coefficient, obtained
from Eqs. (11) and (15). Note that the entrainment coefficient obtained from volume conservation
[Eq. (11)] is fully independent of the one obtained from the entrainment relation Eq. (12). To satisfy
volume, mass, momentum, and kinetic energy balances, the two coefficients have to match in the
whole domain. Figure 10 shows that even the simplified entrainment relation provided by Eq. (15)
is in good agreement with the estimate of α derived from volume conservation. Almost everywhere,
and notably for z > 4rs, the width of the error bars caused by the propagation of the errors on the
velocity statistics is lower than the discrepancy between the two estimates. This confirms that, at first
order, the errors introduced by the hypothesis considered to write Eq. (15) have a minor relevance
on the entrainment coefficient estimate in non-Boussinesq plumes.

V. DISCUSSION

Finally, we aim at investigating the general dependence provided by Eq. (5), i.e., to which
extent the entrainment coefficient depends on the local density ratio and on the local Richardson
and Reynolds numbers. We focus on the turbulent region of the flow, i.e., where z > 10rs. In this

(a) (b) (c)

FIG. 10. Entrainment comparison for the three experimental plumes Re260 (a), Re450 (b), and Re820(c). αE

is obtained from Eq. (15) and α from Eq. (11).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 11. Measured αprod, αRi, and α as a function of the local density ratio ρm/ρ0 [(a),(d),(g)], Richardson
number � [(b),(e),(h)], and Reynolds number Rem [(c),(f),(i)] for the three experimental plumes. The hollow
symbols refer to the z < 10rs region.

region, the density ratio [Fig. 6(d)], � [Fig. 7(b)], and Rem increase. In order to understand how
these parameters influence the physical mechanisms of the entrainment, we initially consider the
behavior of the two most significant terms of the entrainment decomposition in the turbulent zone:
αprod [Figs. 11(a)–11(c)] and αRi [Figs. 11(d)–11(f)].

The αprod coefficient exhibits, even in the turbulent region, a dependence on the Reynolds number
at the source that is canceled only for ρm/ρ0 > 0.8 and � > 0.8 (corresponding to a height of
z > 15rs). For Re450 and Re820, a monotonic increase in αprod is observed, concurrently with the
increase of ρm/ρ0, �, and Rem. However, the vertical profiles of αprod obtained here are analogous
to those observed in high Reynolds iso- and variable-density jets, and Boussinesq forced plumes
(i.e., they have a null value at the source that increases in the first tens of source radii) [15,18].
Salizzoni et al. [15] have recently shown (verifying that the αprod vertical profiles in an isodensity
jet and in a jet with a density ratio significantly smaller than 1 at the source are almost coincident)
that the increase of αprod up to z = 30rs does not exhibit a dependence on the density ratio, but
is rather the product of a rising turbulent kinetic energy production, while moving away from the
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source, due to the development of the flow in the near-source region, and occurring independently
of the local density values. Arguably, the same reasoning can be applied to buoyant releases.

Concerning αRi, Figs. 11(d) and 11(e) show its increasing trend with respect to both ρm/ρ0 and
�. Given the definition of αRi [Eq. (15)], its increase can be fully attributed to �. Indeed, the other
parameters affecting the value of αRi are γm, which is constant in the turbulent region, and θm,
which depends on �, only. We can therefore discard any eventual influence of ρm/ρ0 on αRi. In our
experimental plumes, the increase of � with the distance from the source z is concurrent with the
increase of the density ratio due to the mixing of the plume with the ambient fluid. This justifies the
observed increasing trend of αRi with the density ratio.

Figures 11(g)–11(i) report the plots of the entrainment coefficient α as a function of ρm/ρamb, �,
and Rem, respectively. For z > 10rs, the experimental values of α as a function of the density ratio
show a trend in agreement with the scaling predicted by Eq. (2) [black-dashed line in Fig. 11(g)].
However, considering the discussion on the αprod and αRi coefficients, the increase of α with z (and
therefore with ρm/ρ0) is primarily associated with (i) the vertical development of the turbulence
dynamics (that occurs similarly in Boussinesq and non-Boussinesq releases) and (ii) the increasing
of �. The growth of the density ratio is not the predominant cause of the enhanced mixing for
increasing distances from the source. Figure 11(h) shows that the trend of the entrainment coefficient
is fairly linear with �, as predicted by Eq. (3) (black-dotted line) for self-similar (i.e., αshape = 0)
Boussinesq releases assuming a constant αprod [16,17]. This explains why our results follow Eq. (3)
especially for � > 0.8 (i.e., z > 15rs), where variations in αprod are less significant.

VI. CONCLUSIONS

An experimental study on transitional, helium plumes with � = 1 at the source has been
carried out performing PIV measurements. The aim is to describe the dynamics of these releases
and provide an experimental investigation of the turbulent entrainment in non-Boussinesq steady
plumes. We report here our main findings:

(a) A transition from a quasilaminar, Rayleigh-Taylor instability-dominated region to a more
chaotic, turbulent zone is present above the source. The transition position gets closer to the source
for increasing Reynolds number at the source.

(b) The experimental plumes exhibit necking and acceleration above the source. A forced-plume
region is created in correspondence to this acceleration.

(c) A methodology to derive the characteristic plume density relying on the conservation of the
density deficiency flux has been proposed. The mixing with the ambient air causes an increase in
the plume density. The density ratio reaches 0.9 after 22rs; above that height the plumes can be
considered as “Boussinesq.”

(d) The αprod contribution is null at the release and increases for rising distance from the source.
This increment is analogous to that recently observed both in Boussinesq and non-Boussinesq
releases due to the vertical development of the turbulence dynamics [15,18].

(e) Downstream from the turbulent transition, both ρm/ρ0 and � increase with z in our exper-
imental plumes. Given that αRi increases by definition with �, an increasing trend is also present
when αRi is plotted against ρm/ρ0.

(f) In the turbulent flow region, the scaling predicted by Ricou and Spalding [10] aligns well with
our experimental results. However, based on observations on αprod and αRi, we cannot conclude that
an enhanced density ratio is the physical cause of the more intense mixing process while moving
away from the source.

Further experimental and numerical studies are needed to better understand the role of large
density differences on the entrainment phenomenon, especially to broaden the findings presented in
this study to non-Boussinesq plumes with high Reynolds numbers at the source and with variations
of the density difference over more than one order of magnitude.

Supporting data for this article are available on request.
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APPENDIX: NON-BOUSSINESQ ENTRAINMENT DECOMPOSITION WITH VISCOUS TERMS

The purpose of this Appendix is to provide the complete version of the entrainment decomposi-
tion for moderate-Reynolds, non-Boussinesq plumes.

The equations are written considering Favre-averaged statistics. The Favre averages are denoted

by a tilde and defined as ξ̃ = ρξ/ρ (so that the variance writes σ̃ 2
ξ = ρ (̃ξ − ξ )2/ρ), where the

overbar denotes Reynolds average.
The time-averaged conservation equations for mass and momentum (in the z direction) can be

expressed as, respectively,
1

r

∂

∂r
r(ρũ) + ∂

∂z
(ρw̃) = 0, (A1)

1

r

∂

∂r
r(ρũ w̃ + ρ ˜u′′w′′) + ∂

∂z
(ρw̃2 + ρw̃′′2) = −∂ p

∂z
+ ρ0b + μ

[
1

r

∂

∂r

(
r
∂w

∂r

)
+ ∂2w

∂z2

]
, (A2)

where p is the pressure difference relative to the hydrostatic pressure p0 (defined such that ∂
∂z p0 =

−ρ0g, with g the gravitational acceleration, b = g(ρ0 − ρ )/ρ0 is the local buoyancy, and μ is the
dynamic viscosity. Multiplying (A2) by 2w̃ and using (A1) yields

1

r

∂

∂r
r

(
ρũ w̃2 + 2ρ ˜u′′w′′w̃ − 2μ

∂w

∂r
w̃

)
+ ∂

∂z

(
ρw̃3 + 2ρw̃′′2w̃ + 2p w̃ − 2μ

∂w

∂z
w̃

)
= 2 ρ ˜u′′w′′ ∂

∂r
w̃ + 2 ρw̃′′2 ∂

∂z
w̃ + 2p

∂

∂z
w̃ + 2ρ0bw̃ − 2μ

(
∂w

∂r

∂w̃

∂r
+ ∂w

∂z

∂w̃

∂z

)
. (A3)

Integrating (A1), (A2), and (A3) over r (between the plume axis and infinity) we then obtain

dG̃

dz
= −2ρ0[rũ]∞, (A4)

d

dz
(β̃gM̃ ) = ρ0B̃, (A5)

d

dz

(
γ̃g

M̃2

G̃

)
= δ̃g

M̃5/2

Q̃1/2G̃3/2
+ ρ0 θ̃m

B̃M̃

G̃
, (A6)

where the mass flux, G̃, momentum flux, M̃, volume flux, Q̃, and integral buoyancy, B̃, are defined
as, respectively,

G̃ ≡ 2
∫ ∞

0
ρw̃r dr, M̃ ≡ 2

∫ ∞

0
ρw̃2r dr, Q̃ ≡ 2

∫ ∞

0
w̃r dr, B̃ ≡ 2

∫ ∞

0
br dr, (A7)

and where β̃g = β̃m + β̃ f + β̃p + β̃μ, γ̃g = γ̃m + γ̃ f + γ̃p + γ̃μ, and δ̃g = δ̃m + δ̃ f + δ̃p + δ̃μ are
profile coefficients, associated with the radial variations of the mean flow (denoted with subscript
"m"), velocity fluctuations (denoted with subscript " f ") or with the mean pressure (denoted with
subscript "p"). The profile coefficients associated with the radial variations of the mean flow are
defined as

β̃m ≡ 2

ρ̃mw̃2
mr̃2

m

∫ ∞

0
ρw̃2r dr = 1, θ̃m ≡ 2

b̃mw̃mr̃2
m

∫ ∞

0
bw̃r dr,

γ̃m ≡ 2

ρ̃mw̃3
mr̃2

m

∫ ∞

0
ρw̃3r dr, δ̃m ≡ 4

ρ̃mw̃3
mr̃m

∫ ∞

0
ρ ˜w′′u′′ ∂w̃

∂r
r dr, (A8)
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those associated with the fluctuations of the velocity or with the mean pressure are

β̃ f ≡ 2

ρ̃mw̃2
mr̃2

m

∫ ∞

0
ρw̃′′2r dr, β̃p ≡ 2

ρ̃mw̃2
mr̃2

m

∫ ∞

0
pr dr,

γ̃ f ≡ 4

ρ̃mw̃3
mr̃2

m

∫ ∞

0
ρw̃w̃′′2r dr, γ̃p ≡ 4

ρ̃mw̃3
mr̃2

m

∫ ∞

0
w̃pr dr,

δ̃ f ≡ 4

ρ̃mw̃3
mr̃m

∫ ∞

0
ρw̃′′2 ∂w̃

∂z
r dr, δ̃p ≡ 4

ρ̃mw̃3
mr̃m

∫ ∞

0
p
∂w̃

∂z
r dr, (A9)

and those associated with the viscous stresses are

β̃μ ≡ −2μ

ρ̃mw̃2
mr̃2

m

∫ ∞

0

∂w

∂z
r dr, δ̃μ ≡ −4μ

ρ̃mw̃3
mr̃m

∫ ∞

0

(
∂w

∂r

∂w̃

∂r
+ ∂w

∂z

∂w̃

∂z

)
r dr.

γ̃μ ≡ −4μ

ρ̃mw̃3
mr̃2

m

∫ ∞

0
w̃

∂w

∂z
r dr, (A10)

Salizzoni et al. [15] showed that the differences between Reynolds averaged and Favre averaged
are very slight for the mean longitudinal velocity. In (A10), replacing w by w̃ gives after some
simplification

β̃μ ≡ −2̃rm

R̃em

d (ln Q̃)

dz
, γ̃μ ≡ −2

R̃emw̃2
mr̃m

dM̃∗

dz
, δμ ≡ −2̃ε

R̃em
, (A11)

with M̃∗ = ∫ ∞
0 w̃2r dr, ε̃ = 4

w̃2
m

∫ ∞
0 [( ∂w̃

∂r )2 + ( ∂w̃
∂z )2]r dr and R̃em = ρ̃mw̃m 2̃rm

μ
is the z-dependent

Reynolds number obtained with the Favre-averaged scales.
In these definitions, we have made use of a "top-hat" plume width r̃m, velocity w̃m, density ρ̃m,

and buoyancy b̃m, which are consistently defined using integral quantities as [6]

r̃m ≡ Q̃1/2G̃1/2

M̃1/2
, w̃m ≡ M̃

G̃
, ρ̃m ≡ G̃

Q̃
, b̃m ≡ B̃M̃

Q̃G̃
. (A12)

By definition of the entrainment coefficient, the radial volume flux of the entrained ambient fluid
in (A4) is assumed to be proportional to the longitudinal velocity of the plume:

α̃ ≡ −[rũ]∞
r̃mw̃m

. (A13)

Combining (A4), (A12), and (A13) the entrainment coefficient can be expressed as

α̃ = ρ̃m

ρ0

r̃m

2G̃

dG̃

dz
. (A14)

Equations (A5) and (A6) in turn become

ρ̃m

ρ0

r̃m

M̃

d

dz
(β̃gM̃ ) = R̃i, (A15)

ρ̃m

ρ0

r̃mG̃

M̃2

d

dz

(
γ̃g

M̃2

G̃

)
= ρ̃m

ρ0
δ̃g + 2̃θmR̃i, (A16)

where R̃i is the plume Richardson number, a parameter varying with the distance from the source,
defined as

R̃i ≡ b̃mr̃m

w̃2
m

= G̃

Q̃

B̃

M̃

(
Q̃G̃

M̃

)1/2

, (A17)
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so that R̃i(z = 0) = R̃is.
Finally, by rearranging (A15) and (A16), we can retrieve the complete formulation for the

entrainment coefficient:

α̃E = − ρ̃m

ρ0

δ̃g

2γ̃g︸ ︷︷ ︸
α̃prod

+ ρ̃m

ρ0
r̃m

d

dz

(
ln

γ̃ 1/2
g

β̃g

)
︸ ︷︷ ︸

α̃shape

+
(

1

β̃g
− θ̃m

γ̃g

)
R̃i︸ ︷︷ ︸

α̃Ri

. (A18)
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