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Colloidal deposits from evaporating sessile droplets:
Coffee ring versus surface capture
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Suppression of the coffee ring effect is desirable in many industrial applications which
utilize colloidal deposition from an evaporating liquid. Here we focus on the role of particle
arrest at the liquid-air interface (surface capture) which occurs at high evaporation rates. It
is known experimentally that this phenomenon inhibits particles from reaching the contact
line, leading to a deposit which is closer to uniform. We are able to describe this effect
using a simple 1D modeling framework and, utilizing asymptotic theory, parametrize our
model by the ratio of the vertical advection and diffusion timescales. We show that our
model is consistent with existing frameworks for small values of this parameter, but also
predicts the surface layer formation seen experimentally at high evaporation rates. The
formation of a surface layer leads to a deposit morphology which mimics the evaporative
flux density and so is closest to uniform when evaporation has a constant strength across
the liquid-air interface.

DOI: 10.1103/PhysRevFluids.9.064304

I. INTRODUCTION

The coffee ring effect (CRE), referring to the accumulation of solute particles near the contact
line of an evaporating sessile droplet, is a ubiquitous phenomenon routinely seen in our daily lives
and arising in numerous industrial settings. Some examples include inkjet printing [1], dip coating
[2] and DNA alignment in optical gene mapping [3]. The underlying physical mechanism driving
coffee ring formation has been well understood since the 1997 exposition of Deegan et al. [4]
and was described in a recent review by Gelderblom et al. [5]: capillary flow arises in the droplet
bulk due to the mismatch between the local evaporation flux density and the geometrical constraint
enforced by the droplet’s minimal surface energy shape and the pinned contact line. This capillary
flow carries particles towards the contact line where an enhanced deposit is observed. Despite
the simple physical explanation for the CRE, the dynamics of drying particle suspensions can be
rich and complex. For example, Yabu and Shimomura [6] report a regular stripe patterned deposit
left behind by the receding meniscus during the casting of polymer films; shear bands resembling
chevrons [7], fracture patterns [8] and buckling instabilities [9,10] have also been observed.
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FIG. 1. An advancing front of jammed particles which are accumulating near the contact line of a sessile
evaporating droplet. Extracted from a video in Ref. [12].

In this article, particular attention will be given to the effects of finite particle size; these are
often neglected in CRE models, yet are experimentally often crucial. At high enough solute volume
fractions (typically around the close packing efficiency of randomly distributed monodisperse
spherical particles, 64%), the solute undergoes a transition towards a porous solid. We will refer
to this effect as jamming [11]. Particles approaching the jamming threshold become immobile (i.e.,
they are no longer freely advected by the fluid). Using colloids of size ≈1 µm, optical microscopy
experiments by Marín et al. [12] allow for direct observation of this phenomenon (see Fig. 1). These
experiments have also revealed that the jammed deposit can exhibit both ordered and disordered
phases depending on the particle advection speed: slowly advected particles have more time to
arrange into an optimal packing structure and vice versa. The deposit is also found experimentally
to be incompressible [13,14], meaning interactions between the liquid-air interface and the newly
formed deposit must be accounted for during evaporation. We note that, prior to jamming, particles
may also aggregate and form clusters due to the presence of van der Waals forces or liquid bridges.
For simplicity, we shall neglect aggregation and assume that particle arrest happens due to jamming
throughout this article.

From a modeling perspective, inclusion of jamming is important for obtaining coffee ring
profiles with a realistic thickness. If particles are assumed passive in the fluid, with only diffusion
balancing advective transport, then the particle concentration at the contact line rises without bound
and the ring thickness decreases in width with time down to a line [15], in direct contrast with
observation. To go beyond these models, one must capture the change in fluid and particle dynamics
in the growing region of jammed solute. The fluid flow through the porous solid, which exists to
compensate for evaporative losses in this region, is well described by Darcy’s law [16,17].

Experimentally, it is possible to calculate the rate of mass loss of an evaporating droplet by
weighing it throughout the drying process. If the droplet’s dimensions are known, we can then use
this to estimate the surface-averaged evaporation flux density J ∗ (i.e., the rate of mass loss per unit
surface area). Assuming J ∗, the droplet radius R∗, and solutal diffusion coefficient D∗ are known,
three parameters will be of importance in this study [note that here and throughout the rest of this
article an asterisk (*) is used to indicate a dimensional quantity]:

(i) ε: The drop’s initial aspect ratio (height to radius).
(ii) Pe = R∗J ∗/ερ∗D∗: The Péclet number, quantifying advection against diffusion.
(iii) φc: The solute volume fraction at jamming.
The simplest modeling framework capable of qualitatively reproducing CRE dynamics assumes

the drop to have a low aspect ratio and a vertically homogeneous solute distribution [15,16,18,19].
This allows for a formulation in terms of depth-averaged quantities, reducing the number of
dimensions and hence overall complexity of the model; this is particularly important for reducing
the cost of computing fully 3D profiles (e.g., printed lines). Since the ring is formed primarily by
particle advection and jamming, it is also convenient to neglect lateral diffusion. Formally, these
assumptions are equivalent to the asymptotic limit [20]:

ε � 1, Pe � 1, ε2Pe � 1. (1)
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Jammed
solute

FIG. 2. A schematic representing the vertical particle distributions and jammed regions for differing
timescales t∗

a and t∗
d . Arrows represent radial mass fluxes (vertical fluxes are not shown). When t∗

a � t∗
d , the

solute is vertically homogeneous, and so the jammed deposit has a vertical front. When t∗
d � t∗

a the solute is
more concentrated near the free surface, and so the jammed deposit exhibits an overhang.

Depending on the evaporation strength and particle size (influencing the solutal diffusion coeffi-
cient), the Péclet number for this problem can vary across orders of magnitude. Fortunately, the
limit given above is applicable to a wide range of particle suspensions (see examples given in
Sec. II). Theoretical work by Larsson and Kumar [21] even suggests that this assumption retains
accuracy if ε2Pe is of order unity or larger, an observation which is consistent with our findings in
Sec. V B. Asymptotic approximations strike a balance between complexity and accuracy in allowing
for simple analytic expressions for the evaporation-induced capillary flow that hold up reasonably
well against experimental data [12,22].

In most applications CRE is undesirable. In the field of inkjet-printed electronics, for instance,
a reduced deposit in the interior limits the mobility of charge carriers and thus lowers the overall
conductivity. This has motivated a range of studies into control via electrostatic suppresssion [18],
manipulating particle shape [23] and the Marangoni effect [24], to give examples. Another candidate
for CRE suppression, which has been studied less extensively, occurs at large evaporation rates. In
this limit, the timescale associated with vertical advection t∗

a = ρ∗εR∗/J ∗ is much shorter than
the timescale for vertical dispersion t∗

d = ε2R∗2/D∗ so particles adhere to the retreating liquid-air
interface before they can escape via diffusion [25–27] (see Fig. 2). In this article we will refer to
this adhesion phenomenon at the free surface as surface capture, though other naming conventions
exist (the surface particle layer is often referred to as a “skin” [28,29]).

Li et al. [26] found that, through the surface capture mechanism, the dried deposit morphology
is much closer to uniform (the observed deposits can be found in Sec. V A and have been compared
to our predictions). The result holds for mono- and polydisperense nanoparticles across a range of
sizes. Though there have been theoretical studies which recognize surface capture [30,31], to the
authors’ knowledge there is no existing model that successfully incorporates both jamming and
surface capture effects (with the notable exception of Maki and Kumar [28], who modeled surface
capture by simulating the full 2D axisymmetric advection diffusion equation in the drop), both of
which are essential to predicting the coffee ring thickness, the extent of the surface layer, and the
overall deposit morphology. Here we attempt to remedy this by lifting a number of assumptions in
existing CRE models.

The model developed in Secs. II, III, and IV utilizes the hydrodynamic approach taken by Popov
[19] (summarized in Sec. III): the lubrication equations are used to describe the bulk fluid flow and
the free surface attains a minimal surface energy shape. In Popov’s framework, particles are either
freely advected with the fluid or jammed; there is no intermediate “slurry” region as considered by
Kaplan and Mahadevan [17], for instance. In Sec. IV A we will first examine the pure surface capture
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regime in which diffusion is neglected entirely and so particles are transported along streamlines
until they terminate at the jammed surface layer/contact line deposit. This regime is defined formally
by the limit

ε � 1, Pe � ε2Pe � 1. (2)

Following this, we will look into intermediate cases: By specifying the vertical concentration
profile a priori with a diffusive boundary layer expression parameterized by ε2Pe, in Sec. IV C we
will develop a more general model that retains the low-dimensional character of the conventional
CRE models (a feature which is so far not present in models of surface capture). This framework
is consistent with Popov’s model and pure surface capture in the limits given by (1) and (2),
respectively. Additional information on the existence/radial extent of the jammed surface layer can
be found at intermediate ε2Pe.

II. EVAPORATION DYNAMICS

As we will see, the functional dependence of the evaporative flux density will have a strong
influence on the deposit morphology, particularly towards the surface capture regime. It is therefore
worth discussing the evaporation dynamics in depth. In CRE literature, it is common to assume one
of two expressions for the local evaporation flux density J∗

evap [15,19,32,33]:
(i) Kinetic evaporation:

J∗
evap = J ∗

k (3)

(ii) Diffusive evaporation:

J∗
evap = 1

2

J ∗
d√

1 − (r∗/R∗)2
, (4)

where J ∗
k ,J ∗

d are constants and R∗ is the droplet radius. Each of these models represents a rate-
limiting step in the evaporation process. For kinetic evaporation it is assumed that the liquid-vapor
phase transition is rate-limiting, whereas for diffusive evaporation the dispersion of saturated vapor
adjacent to the free surface is rate limiting. The diffusive evaporation model also assumes both the
droplet aspect ratio ε → 0 and the surrounding air to be quiescent, meaning the drop and the air
must be in thermal equilibrium. Equation (4) is then obtained by solving the quasisteady diffusion
problem for the solvent vapor above the drop [34].

Experimentally, one might control the drop temperature by heating the substrate. This inevitably
gives rise to thermal convection in the surrounding air [35]. Convection currents can act to carry
saturated vapor away from the liquid-air interface, leading to a larger global evaporation rate than
would be expected if diffusion were dominant. Through this mechanism, convection may also cause
local variations in the evaporation flux, giving an evaporation profile which is closer to uniform as
seen the kinetic regime. Even under isothermal conditions, the diffusive evaporation model neglects
Stefan flow, which arises due to the differences in density between the saturated vapor at the droplet
surface and surrounding air.

Neglecting the aforementioned effects, in the diffusive case, the evaporation strength can be
written as [19,34]

J ∗
d = 4

π

D∗
air(�

∗
0 − �∗

∞)

R∗ , (5)

where �∗
0,�

∗
∞ are the saturation and far-field vapor densities and D∗

air is the vapor diffusion
coefficient. Using J ∗

d in place of J ∗, the Péclet number in terms of these parameters is thus
Pe = (4/π )D∗

air(�
∗
0 − �∗

∞)/ερ∗D∗. To demonstrate the applicability of the Pe � 1 limit taken
here, consider the case of the PEDOT:PSS complex, which is currently of interest in the field
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FIG. 3. A schematic of the drop shapes and the beginning (dotted line) and late (solid line) stages of
evaporation. The jammed solute is depicted in pink to show its influence on the free surface height. In the
upper figure there is only a coffee ring deposit, whereas in the lower figure a jammed surface layer has also
formed. The kinetic and diffusive evaporation regimes are shown in blue and red, respectively.

of inkjet-printed electronics [36,37]. Assuming the printing medium is predominantly water,
�∗

0 − �∗
∞ = 0.014 kg m−3 (given a humidity of 40%) [38] and D∗

air = 2.4 × 10−5 m2 s−1 [39] at
room temperature. The PEDOT:PSS complex typically has a diameter of 16 nm [40], so application
of the Stokes-Einstein relation gives D∗ ≈ 3 × 10−11 m2 s−1. Hence, assuming an aspect ratio
of ε ≈ 0.3, the Péclet number is Pe ≈ 46. Note also that as the solvent evaporates, the relative
strength of advection to diffusion increases, and so the effective Péclet number increases with time.
Repeating the calculation at a temperature of 75 ◦C (at which we expect surface capture effects to
become more important) while retaining a humidity of 40% gives Pe ≈ 254. Larger colloids with
sizes ranging from hundreds of nanometres to microns have smaller diffusion coefficients, and so
we expect the Péclet number for these suspensions to be larger still. Thus, the asymptotic limits
used in this study, limits (1) and (2), are applicable to a wide range of suspensions.

III. FLUID DYNAMICS

We will begin by discussing the hydrodynamic component of our model. We assume that particles
affect fluid flow only when they have jammed, so that the hydrodynamic problem is coupled to the
solute concentration only through boundary conditions (i.e., the position of the jammed particle
front). The following notation is utilized for depth averages:

〈 f (r∗, z∗, t∗)〉g = 1

g

∫ g

0
f (r∗, z∗, t∗) dz∗ . (6)

If no subscript g is specified, integration up to the liquid-air interface z∗ = h∗
tot is implied. We will

also make reference to averages up to the height of the bottom of the surface layer, z∗ = b∗, where
relevant.

The expected dynamics are depicted in Figs. 3 and 4. From the moment evaporation begins, there
appears a region near the contact line occupied by jammed solute. A sharp “shock” front separates
this region and the region of free advection. As evaporation progresses, the free surface height
decreases and the contact line deposit grows in thickness. Since this deposit is incompressible, the
surface cannot recede any further where it has formed. Depending on the system parameters, we
may also see solute jamming at the liquid-air interface. Ultimately, as the deposit region grows, we
see a reversal in curvature of the free surface at the later stages of evaporation, followed by either the
free surface or the jammed surface layer meeting the substrate at r∗ = 0 (lower left and lower right
panels in Fig. 4 respectively). In theoretical studies by Popov [19] and Kaplan and Mahadevan [17]
(both of which take the vertically homogeneous limit), the post-touchdown dynamics are omitted

064304-5



COOMBS, SPRITTLES, AND CHUBYNSKY

Jammed solute region

Free surface touchdown
Jammed surface layer touchdown

(a) (b)

(c) (d)

FIG. 4. Schematics describing aspects of the model. The arrows in (a) depict the transition from a semi-
to full-Poiseuille flow in the presence of a jammed surface layer. Panel (b) depicts the variables describing the
drop geometry, contact line deposit, and surface layer. Panels (c) and (d) show two distinct possibilities at the
later stages of evaporation: touchdown of the free surface or jammed surface layer.

since the modeling frameworks used by both break down at this stage. We will also omit this stage.
However, our related article [41] includes post-touchdown behavior in the context of a different
modeling framework.

Since the drop has a low aspect ratio, ε � 1, the fluid flow is well modeled by the lubrication
equations [15,16,42]

∂h∗
tot

∂t∗ + 1

r∗
∂

∂r∗ (r∗〈u∗〉h∗
tot ) + J∗

evap/ρ
∗ = 0, (7a)

〈u∗〉 = −�∗

μ∗
∂ p∗

∂r∗ , (7b)

p∗ = p∗
atm − σ ∗

r∗
∂

∂r∗

(
r∗ ∂h∗

tot

∂r∗

)
, (7c)

where p∗ is the pressure, u∗ is the radial fluid velocity, and ρ∗, μ∗, and σ ∗ are the fluid density,
dynamic viscosity, and surface tension, respectively. The precise form of the prefactor �∗ is not
important here. However, given the modeling assumptions made in subsequent sections, it will take
the form of either h∗

tot
2/3 or b∗2/12, depending on whether a surface layer has formed or not. Since

the fluid flow is evaporation-induced, the scale for radial velocity is U ∗ = J ∗/ρ∗ε. The capillary
number is thus Ca = μ∗U ∗/σ ∗ = μ∗J ∗/(ρ∗σ ∗ε). The nondimensionalization which we will use
for the rest of this study is

r∗ = R∗r, z∗ = εR∗z, J∗
evap = J ∗Jevap, 〈u∗〉 = U ∗〈u〉,

t∗ = R∗

U ∗ t f t, p∗ − p∗
atm = μ∗U ∗

ε2R∗ p, h∗
tot = εR∗htot,

b∗ = εR∗b, �∗ = ε2R∗2
�, (8)

where t f is an O(1) parameter to be later assigned for convenience. The dimensionless governing
equations then become

1

t f

∂htot

∂t
+ 1

r

∂

∂r
(r〈u〉htot ) + Jevap = 0, (9a)

〈u〉 = −�
∂ p

∂r
, (9b)

p = − 1

C̃a

1

r

∂

∂r

(
r
∂htot

∂r

)
, (9c)
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where C̃a = Ca/ε3 is a scaled capillary number. Experimental droplet evaporation studies by Brutin
[43] quote a typical drop radius of R∗ = 1.8 mm and a global evaporation rate (per unit drop
radius) of E∗ = 1.6 mg s−1 m−1 ∼ πR∗J ∗. Even with an aspect ratio of ε = 0.1, lower than what
is seen experimentally at the start of the drying process according to contact angle measurements,
the resulting scaled capillary number is C̃a = 3.5 × 10−5, implying that the limit C̃a � 1 will be
applicable throughout most of the drying process. We are thus justified in performing the asymptotic
expansion:

htot = htot,0 + C̃a htot,1 + · · · ,

it is readily found that

∂

∂r

[
1

r

∂

∂r

(
r
∂htot,0

∂r

)]
= 0. (10)

This equation can be integrated three times. Since we require a nonsingular solution at r = 0, there
will be two degrees of freedom to specify after integration.

Following Popov, it is convenient to split the free surface height into the contributions htot =
h(r, t ) + H (t ), as indicated in Fig. 4(a). Regardless of whether a surface layer has formed or not,
H (t ) represents the height of the jammed deposit at the jamming shock front. We will assume that
the jammed solute is an incompressible porous solid. When jammed particles do not span the drop
thickness, they move vertically with the free surface but not horizontally. Once jammed particles
span the entire thickness of the drop the deposit becomes stationary. The latter of these regimes
occurs on the domain r ∈ [l (t ), 1], where l (t ), the position of the shock front, is to be found. Since
the ∂htot/∂t = 0 beyond the shock front, the jammed solute continuously repins the drop. After
integrating Eq. (10) and applying the boundary condition h(l (t ), t ) = 0, we have

htot,0 = A(l2 − r2) + H, (11)

where A is time-dependent. An additional condition, verified experimentally by Deegan [44], is that
the free surface gradient should be continuous at r = l (t ):

∂htot,0

∂r

∣∣∣∣
r=l

= −2Al = d

dr

∣∣∣∣
r=l

H (l−1(r)) = Ḣ

l̇

−→ Ḣ = −2All̇, (12)

where l−1(r) is the inverse function of l and so is the time at which the shock front passes through
position r. To find another component equation of our system, we look at the global mass balance
(solvent and solute), which states that the rate of change of the total droplet mass must be equal to
evaporative losses:

1

t f

d

dt

{∫ l

0
rhtot,0 dr +

∫ t

0
|(Hll̇ )(t ′)| dt ′

}
= Ȧl4

4t f
= −

∫ 1

0
rJevap dr . (13)

The second term on the left side of this expression is the mass in the deposit phase [i.e., r >

l (t ) so excluding the surface layer], which grows by an amount |Hlδl| over time δt . Note that in
this equation we are implicitly assuming that the densities of the solvent and solute are equal and
that the jammed region remains saturated with solvent throughout drying. This latter assumption is
supported by the fact that the mass of the drop changes linearly through most of the drying process
[44]. We are also assuming that jammed particles at the surface do not impede evaporation. Under
diffusive evaporation, this assumption is likely to remain valid as long as the jammed regions are
saturated, since the evaporation rate is determined by the vapor distribution in the gas phase and the
Dirichlet boundary condition for the vapor concentration on the drop surface, �∗ = �∗

0, is still a
good approximation even when jammed particles are present. Therefore the quasisteady diffusion
problem from which Eq. (4) is derived would be unchanged. Under kinetic evaporation, particles
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near the drop surface may impede evaporation as there is a reduced surface area available for the
liquid-vapor phase transition. Thus, in this regime we may expect the evaporation rate to be reduced
by a factor of (1 − φ)|z=htot [45]. Such a reduction is unlikely to make a significant difference to
our results in limits (1) and (2), as in the former limit the jammed region occupies only a small
region near the contact line (meaning the global evaporation profile is nearly unchanged) and in the
latter limit jammed particles span the entire drop surface, so the evaporation profile is still uniform.
Therefore, it is likely that while particles impeding evaporation would affect the dynamics of surface
layer formation, our results would remain qualitatively unchanged.

As noted above, diffusive evaporation in presence of thermal convection currents can lead to
Jevap profiles that mimic the kinetic case. Therefore, at least as far as this case is concerned, our
assumption that Jevap is independent of that local solute concentration remains valid. Of course,
unimpeded evaporation in the jammed regions is possible only if the capillary pressure is large
enough to force the solute through the porous deposit. We refer the reader to Routh and Russel [16]
for an in-depth analysis and justification of this assumption.

For completeness, and to determine the most appropriate timescale in this problem, it is worth
looking at the case in which there is no particle jamming. Clearly in this case we will always be in
the pre-touchdown regime with H = 0, l = 1. The global mass balance then becomes

Ȧ

4t f
= −

∫ 1

0
rJevap dr = −1

2
, (14)

for both kinetic and diffusive evaporation. It is convenient to scale our time coordinate so that
dry-out is achieved at t = 1. This requires that we set t f = 1

2 . It is worth noting, however, that
with jamming present t = 1 will not necessarily represent the true dry-out time, as post-touchdown
there may be complications such as film de-wetting processes. Since in our model the jammed
regions remain saturated with solvent at all times, it is unclear how to define true dry-out. A sensible
definition might be the time at which φ = φc everywhere so that the suspension is incompressible
everywhere and no further deformation can take place. This issue will be addressed in future work.

With our chosen values of t f , the solvent balance condition becomes

Ȧl4 = −1, (15)

regardless of which evaporation model we are using.
The next step in our analysis is to find the depth-averaged radial velocity profile. As this quantity

is derived directly from the continuity equation for the fluid, it will be the same whether there is any
surface jamming or not. Again following Popov, we have

〈u〉 = (rhtot )
−1

{
1

t f

[
1

2

( r

l

)2
− 1

4

( r

l

)4
]

−
∫ r

0
r′Jevap(r′) dr′

}
. (16)

Though it is not needed in our model, the exact z dependence of the velocity in the presence of
a surface layer can be inferred through simple physical arguments. In a porous solid the fluid
flow is described by Darcy’s law: ∇∗ p∗ = −(1/k∗)(u∗

f − u∗
s ), where k∗ is the permeability and

u∗
f , u∗

s are the fluid (solvent) and solute velocities, respectively. Thus, the pressure obeys Laplace’s

equation, ∇∗2 p∗ = 0, in the surface layer. Given this and the fact that the pressure at the top of
the jammed layer is equal to the atmospheric pressure, the pressure drop across the surface layer
is at least of the same order of magnitude as along it. Letting �p∗ denote this pressure drop, we
see that the scales for the radial and vertical velocities are U ∗ = k∗�p∗/R∗ and W ∗ = k∗�p∗/εR∗
respectively, meaning when ε is small the flow is predominantly vertical. Hence, if b(r, t ) represents
the height of the jammed surface layer, the relevant boundary condition at z = b is u = 0. This
means that there is a transition from a free surface flow to a Poiseuille flow where the surface layer
has formed (see the left of Fig. 4 for reference). It is worth emphasizing that the derivation of this
boundary condition is the only application of Darcy’s law in our model. Since the geometry of
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our problem is axisymmetric, fluid and particle fluxes may be obtained directly from the relevant
transport equations without ever needing to solve for the pressure distribution.

So far we have two consitutive equations [(12) and (15)] for our system comprising A, H , l
and the solute volume fraction φ. These are two of the equations originally derived by Popov. The
remaining two are limited to vertically homogeneous suspensions and thus require modification. To
close our system, we must first examine the particle transport dynamics.

IV. PARTICLE TRANSPORT

Neglecting any surface layer for the moment, particle transport in our system is modeled
according to an advection-diffusion equation:

∂φ

∂t∗ + 1

r∗
∂

∂r∗

[
r∗

(
u∗

aφ − D∗ ∂φ

∂r∗

)]
+ ∂

∂z∗

[
w∗

aφ − D∗ ∂φ

∂z∗

]
= 0, (17)

where u∗
a and w∗

a are the radial and vertical advective velocity components, respectively (equal to
the the solvent velocity prior to jamming) and D∗ is the solutal diffusion coefficient mentioned
earlier. In general D∗ and the suspension viscosity μ∗ may be φ-dependent [46]. In particular, if
particles aggregate and form clusters before jamming, this would result in an increase in the effective
particle size and hence a reduction in the diffusion coefficient. Consequently, jamming would occur
more readily among these aggregates, and so the expected time taken for surface layer to form, as
discussed in Sec. IV B, for instance, would decrease. Beyond this effect, however, we expect such
dependencies to make little difference to our results as we will be neglecting horizontal diffusion
and most of the constitutive equations of our model are a direct consequence of mass conservation.
For instance, the fluid velocity (which is the velocity of both the solute and solvent in our model)
is determined via direct integration of the continuity equation, and so any variations in viscosity are
irrelevant. In dimensionless variables, with (u∗

a,w
∗
a ) = U ∗(ua, εwa), Eq. (17) reads

1

t f

∂φ

∂t
+ 1

r

∂

∂r
[ruaφ] + ∂

∂z

[
waφ − 1

ε2Pe

∂φ

∂z

]
= 0, (18)

with the Péclet number as introduced in Sec. I. Note that the radial diffusion term is omitted since
we will always be assuming the Pe � 1 limit. In particular, there is no need for a finite radial
Péclet number in this setting since the coffee ring forms through jamming rather than the balance of
advection and diffusion, as considered elsewhere [15,47]. It is also worth noting that the advection
strength increases with decreasing drop height, and so we expect this approximation to become
better further into the evaporative process.

Accounting for interface motion, the no-flux condition at the liquid-air interface z = htot is[(
1

t f

∂htot

∂t
+ ua

∂htot

∂r
− wa

)
φ + 1

ε2Pe

∂φ

∂z

]
z=htot

= 0. (19)

It will be instructive to combine this condition with the kinematic boundary condition on the bulk
fluid, which reads [

1

t f

∂htot

∂t
+ ua

∂htot

∂r
− wa

]
z=htot

+ Jevap = 0

−→
[

1

ε2Pe

∂φ

∂z
− Jevapφ

]
z=htot

= 0. (20)

When expressed in this way we can intuitively picture how vertical concentration gradients are
affected by the local evaporation strength.

The rest of this section will be organized as follows: First, we will examine the ε2Pe � 1
asymptotics in the case of a flat interface. Motivated by these results and the consistency of the
boundary condition with Eq. (20), we will propose a 1D interpolation between the surface capture
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and vertically homogeneous regimes which is consistent with these limits but also provides some
insight into the intermediate cases.

A. The surface capture limit

Since the ε2Pe � 1 limit in our model simply gives the results outlined by Popov [19], we
examine the opposite limit, ε2Pe � 1, in which diffusion is not present at all in the bulk.

The model setup will be similar to that outlined in Fig. 4, except the jammed layer spans the
free surface instantaneously. With no diffusion present, the solute concentration is constant along
streamlines (this is evident simply by combining the incompressibility condition with the advection
equation). Thus, if we have φ(r, z, 0) = φ0 initially, it will remain at this value everywhere in the
bulk of the fluid, with particles concentrated at the boundaries such that the total solute mass is
conserved. Thus, a sharp transition from φ0 to φc occurs when the solute jams with no intermediate
values. This means we have to solve only for b using the governing equation:

φc − φ0

t f

∂b

∂t
= φ0

[
u
∂b

∂r
− w

]
z=b

+ φc

t f

∂htot

∂t
. (21)

This is obtained from Eq. (18) by noting that jammed particles in the surface layer move at a
vertical velocity wa = t−1

f ∂t htot and therefore using the substitutions φ = φ0�(b − z) + φc�(z − b)

and (ua,wa) = (u,w)�(b − z) + (0, t−1
f ∂t h)�(z − b), where � is the Heaviside step function. It

is worth noting that the assumption of jammed solute moving at the same velocity as the free
surface can introduce problems with incompressibility if the surface area of the air liquid interface
changes during evaporation. For example, in an experimental work by Pauchard and Allain [9] on
the drying of polymer solutions it was found that the surface layer prevents changes surface area but
does not impede evaporation, ultimately leading to buckling instabilities. Fortunately, the change in
surface area is minimal for low aspect ratio drops, so this issue can be neglected. By integrating the
incompressibility condition vertically up to z = b, we may write Eq. (21) as

φc − φ0

t f

∂b

∂t
= 1

r

∂

∂r
[rb〈u〉bφ0] + φc

t f

∂htot

∂t
. (22)

There is a clear interpretation for each of the terms on the right-hand side. The first is due to
advection of particles into the column at a given radial coordinate, the second is due to the receding
surface sweeping through the bulk and picking up particles.

Note that for the advective term in (22) we can simply use the flux found via the continuity
equation. This is because all the radial fluid flow compensating for evaporation occurs in the free
region, as argued in Sec. III, meaning b〈u〉b = htot〈u〉. One caveat with this modeling assumption
is that it is inconsistent with the treatment of the region where the layer spans the entire substrate.
Clearly, radial flow must exist in this region to compensate for evaporative losses. There is thus a
flow discontinuity in our model at r = l (t ). In order to satisfy global solute mass conservation in
our model, we must allow b to approach zero discontinuously: b(r = l (t )−, t ) > 0. Hence, even in
the surface capture limit, our model still has distinct surface layer and coffee ring deposit regions.
With aid of the suspension’s continuity equation (9a) we can integrate Eq. (22) directly from the
initial condition b(r, 0) = htot(r, 0) to give

b(r, t ) = htot(r, t ) − φ0

φc − φ0
Jevap(r)t f t . (23)

Thus, the thickness of the jammed surface layer htot − b grows linearly with time and has a spatial
profile which mimics the evaporative flux density. This simple observation tells us that the kinetic
evaporation limit is most likely to yield uniform deposits, as most of the solute mass per unit area
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comes from the surface layer. The shock propagation condition required to close this system is

l̇ = − φ0

φc − φ0
t f 〈u〉b

∣∣∣∣
r=l

. (24)

In order to proceed to the general case of intermediate ε2Pe values, we must now allow for z
dependence in the concentration field that is neither uniform nor a step function, as found in the
limiting cases.

B. Solutal diffusive boundary layer structure: Case of a flat interface

Before focusing on the droplet geometry, we will first examine the simpler case of a flat interface
with spatially uniform evaporation. The ε2Pe � 1 asymptotic result in this geometry can be used
to inform the more general model applied to an axisymmetric drop. If the height of this interface
is prescribed as htot = 1 − t , then continuity requires that t f = 1/Jevap. There are two regimes we
must consider: (1) the development of a diffusive boundary layer when surface jamming has not yet
occurred and (2) the propagation of a jammed surface layer once the jamming threshold has been
reached. A numerical treatment of a similar problem, in which the elastic properties of the layer
are also considered, can be found in Ref. [29]. We also refer the reader to Ref. [45] for an analysis
similar to the one given here. Since there is no induced capillary flow in our current problem,
Eq. (18) becomes a simple 1D diffusion equation:

Jevap
∂φ

∂t
= 1

ε2Pe

∂2φ

∂z2
. (25)

Focusing initially on the pre-jamming regime, the associated boundary conditions are
1

ε2Pe

∂φ

∂z
− Jevapφ = 0, z = htot, (26a)

∂φ

∂z
= 0, z = 0. (26b)

When we introduce the new coordinates,

z̃ = ε2PeJevap(htot − z), t̃ = t, (27)

then the governing PDE becomes

1

ε2PeJevap

∂φ

∂ t̃
= ∂φ

∂ z̃
+ ∂2φ

∂ z̃2
, (28)

with the boundary conditions
∂φ

∂ z̃
+ φ = 0, z̃ = 0, (29a)

∂φ

∂ z̃
= 0, z̃ = ε2PeJevaphtot. (29b)

When ε2Pe is large, we can effectively consider condition (29b) as a boundary condition at
z̃ → ∞ providing we are not too close to the end of evaporation, i.e., 1 − t̃ � (ε2PeJevap)−1. It can
be shown that

φ = φ0[1 + (ε2PeJevap t̃ − z̃ + 1)e−z̃] (30)

is an exact solution to Eq. (28) which satisfies both boundary conditions and conserves particle
number, but does not match the initial condition. This is the solution that the system approaches
at large times; the effect of violating the initial condition decays with time over the negligible
timescale (ε2PeJevap)−1. We note that the term φ0(1 − z̃)e−z̃ contributes significantly only when
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z̃ � 1. Thus, when z̃ � 1 it can be neglected when compared to the φ0 term. Likewise, when z̃ ∼ 1
the term φ0 ε2PeJevap t̃ e−z̃ will dominate for times t � 1/(ε2PeJevap). We also note that the depth
average 〈(1 − z̃)e−z̃〉 equates to 0, so neglecting this term does not introduce issues with particle
conservation. Therefore, we will opt for the following approximate expression:

φ = φ0(1 + ε2PeJevapt̃ e−z̃ ), (31)

which now matches the initial condition. Switching back to original coordinates gives

φ = φ0 + φ0 ε2PeJevapt exp[−ε2PeJevap(htot − z)]. (32)

Once the jamming threshold has been reached, φ can not rise any further past φc. We thus have
a jammed surface layer which propagates slightly faster than the speed of the free surface as a
consequence of mass conservation. The Robin boundary condition at z = htot becomes a Dirichlet
condition at z = b, so that

φ = φc, z = b, (33a)

∂φ

∂z
= 0, z = 0. (33b)

To solve for the extra variable b we must refer to the mass conservation condition:

0 = d

dt

∫ b

0
φ dz +φc

(
∂h

∂t
− ∂b

∂t

)
. (34)

Making a similar rescaling to Eq. (27), but replacing htot with b, we obtain

1

ε2PeJevap

∂φ

∂ t̃
= −ḃ

∂φ

∂ z̃
+ ∂2φ

∂ z̃2
. (35)

We will again seek a quasistationary solution, this time using the ansatz φ = φ0 + (φc −
φ0) exp(ḃz̃), which is valid so long as ḃ changes slowly. Substituting this expression into the mass
conservation condition, we obtain the following equation for b:

0 =
∫ b

0

∂φ

∂t
dz −φc

= 1

ε2Pe Jevap

∫ ε2Pe Jevapb

0

(
ε2Pe ḃ

∂

∂ z̃
+ ∂

∂ t̃

)
[φ0 + (φc − φ0)eḃz̃] dz̃ −φc ≈ −ḃ(φc − φ0) + φc.

(36)

The final line in the equation above is obtained by first approximating the upper integration limit
as ε2Pe Jevapb → ∞ and then neglecting all terms of order (ε2Pe Jevap)−1 in the resulting expression.
Matching the initial condition (i.e., the moment jamming occurs, at t = tc) gives us

φ = φ0 + (φc − φ0) exp

[
− φc

φc − φ0
ε2PeJevap(b − z)

]
, (37a)

b = 1 − φct − φ0tc
φc − φ0

, (37b)

where tc = (φc − φ0)/(φ0ε
2PeJevap) is the jamming delay time predicted by the theory in the

pre-jamming regime. Figure 5 shows how this solution compares with the full numerical solution
of equation (25) for ε2PeJevap = 50. The axes are scaled appropriately to show collapse onto a
universal curve predicted by the asymptotics. Clearly, if ε2Pe < (φc − φ0)/(φ0Jevap) we will not see
any surface layer formation at least until very late times, which are outside the range of applicability
of the asymptotic solution due to the application of the boundary condition at z̃ → −∞ being
invalid. We will return to the significance of tc in the general model. One caveat with the present
analysis is that in switching from expression (31) to (37a), we introduce problems with solute mass
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FIG. 5. Simulations of the 1D evaporation-diffusion problem with φc/φ0 = 25 and ε2PeJevap = 50, so that
the jamming delay time is tc = 0.48. In the lower panel, b(t ) has also been calculated numerically by coupling
it to the concentration distribution using the relation ḃ = −(ε2Pe Jevap)−1(∂2

z φ)/(∂zφ)|z=b. The top and bottom
panels correspond to pre- and post-jamming, respectively. In each case the axes are appropriately scaled to
show collapse onto a universal curve, as predicted by Eqs. (32) and (37).
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conservation due to the instantaneous change in the exponential decay rate from 1 to |ḃ|. It was
found from the direct simulations that the decay rate approaches |ḃ| even before jamming is seen at
the free surface, a feature which has not been accounted for in our analytical result. This discrepancy
is negligible when φ0/φc � 1, as will mostly be the case in this study. Nonetheless, one possible
work-around is to allow for a nonphysical discontinuity in b when t = tc, such that the overall
particle number is conserved. Since the profile of φ is well captured by the solution ansatz in the
post-jamming regime, introducing this discontinuity allows the b value predicted by the ansatz to
“catch up” with the numerical result, so a good agreement between the two is seen thereafter. We
have adopted this approach in the subsequent to section in order to ensure solute mass conservation
in the simulations of the axisymmetric drop.

Note that, despite the presence of evaporation-induced fluid flow in the case of an axisymmetric
drop, the boundary conditions (20) and (26a) are the same (since we are using a thin drop
approximation). Based on this observation, we will use the results of this section to construct an
ansatz for the z dependence of φ for the axisymmetric drop.

C. 1D interpolation between vertical homogeneity and surface capture

With the diffusive boundary layer structure established, we are in position to construct an
interpolation model which captures both the vertically homogeneous dynamics at low values of
ε2Pe and surface layer formation at larger values. Regardless of the value of this parameter (ε2Pe),
the initial state will be the same: a uniform particle distribution in the bulk with no surface layer at
all. The governing equation for particle transport prior to jamming is then

1

t f

∂

∂t
[htot〈φ〉] + 1

r

∂

∂r
[rhtot〈uφ〉] = 0. (38)

As evaporation progresses, we may start to see surface jamming near the contact line. At this stage
we can look at the full 2D mass balance:

1

t f

∂φ

∂t
+ ∇ · J = 0, (39)

with the flux term J = (Jr, Jz ) being

J =
[

uφ − 1

ε2Pe

∂φ

∂z
ez

]
�(b − z) + 1

t f

∂ (htot )

∂t
ezφc�(z − b). (40)

Integrating up to the free surface z = htot > b, we obtain via the Leibniz rule

0 =
∫ htot

0

{
1

t f

∂φ

∂t
+ ∇ · J

}
dz

= 1

t f

∂

∂t
[htot〈φ〉] − 1

t f

∂htot

∂t
φ

∣∣∣∣
z=htot

+ Jz

∣∣∣∣
z=htot

+ 1

r

∂

∂r

(
r
∫ htot

0
Jr dz

)
− ∂htot

∂r
Jr

∣∣∣∣
z=htot

= 1

t f

∂

∂t
[htot〈φ〉] + 1

r

∂

∂r
[rhtot〈uφ〉] −

(
1

t f

∂htot

∂t
+ ∂htot

∂r
u

)
φ

∣∣∣∣
z=htot

+ 1

t f

∂htot

∂t
φc. (41)

All terms in the final line cancel since φ = φc and u = 0 in the surface layer. Replacing htot〈uφ〉
with b〈uφ〉b, we obtain

1

t f

∂

∂t
[htot〈φ〉] + 1

r

∂

∂r
[rb〈uφ〉b] = 0. (42)

This will be one of the component equations in our system. We can use this expression to find
a global solute conservation condition analogous to Eq. (24) in the surface capture limit. Since the

064304-14



COLLOIDAL DEPOSITS FROM EVAPORATING SESSILE …

solute does not evaporate, we have

0 = d

dt

{∫ l

0
rhtot〈φ〉 dr +

∫ t

0
|φcHl l̇|(t ′) dt ′

}

= l̇ lhtot〈φ〉|r=l +
∫ l

0
r

∂

∂t
(htot〈φ〉) dr +|φcHl l̇|

−→ l̇ = − t f b〈ub〉b

Hφc − htot〈φ〉
∣∣∣∣
r=l−

= − t f 〈uφ〉b

φc − 〈φ〉b

∣∣∣∣
r=l−

. (43)

The shock propagation has been obtained from the last line using Eq. (42) and noting that htot =
H and htot〈φ〉 = φc(H − b) − b〈φ〉b at r = l . Note that in the limit of large ε2Pe, in which φ = φ0

for z < b, we recover expression (24), as expected. Based on the findings of the previous section,
before surface jamming we will assume a diffusive boundary layer structure of the form

φ = φ0 + (φ̄(r, t ) − φ0) exp[−ε2PeJevap(htot − z)]. (44)

The additional degree of freedom offered by the prefactor φ̄ is calculated according to the solute
mass conservation condition. Once jamming has occurred at the surface, φ̄ will be fixed at φc and
b will become the adjustable parameter instead. Rather than evolving b at the same rate as the free
surface, we solve for it (again, using solute mass conservation) via the expression below:

φ =
⎧⎨⎩

φ0 + (φc − φ0)
× exp

( − φc

φc−φ0
ε2PeJevap(b − z)

)
, z < b

φc, b < z < htot.

(45)

Although these expressions mimic the asymptotic result for large ε2Pe, they also become the
desired vertically uniform distribution when ε2Pe � 1. Thus, we expect this interpolation to be
consistent with both asymptotic limits. Though in principle it is possible to calculate the depth
average of the product uφ using their known z dependencies, this is cumbersome and assumes in
any case that u is independent of the local solute concentration. We will therefore assume that

〈uφ〉g ≈ 〈u〉g〈φ〉g, (46)

where here g represents either the free surface height or the height of the bottom of the jammed
surface layer depending on whether it has formed yet. Of course, expression (46) becomes exact
in the vertically homogeneous and surface capture limits. Refer to Appendix B for the numerical
solution methodology. To validate our averaging assumption as well as the diffusive boundary layer
expression in the context of an axisymmetric drop, simulations of the full 2D advection-diffusion
problem wherein φ0/φc is small were performed using the finite element library OOMPH-LIB [48]
(details of these simulations can be found in Appendix A). In the absence of particle jamming,
our interpolation model can be solved analytically using the method of characteristics. The depth-
averaged solute volume fraction is [32]

〈φ〉 = φ0
(1 − t )−1/2 − r2

1 − r2
(47)

for kinetic evaporation, and [32]

〈φ〉 = φ0(1 − t )−1/4(1 − r2)−1/2{1 − [1 − (1 − r2)3/2](1 − t )3/4}1/3 (48)

for diffusive evaporation. The prefactor φ̄ and thus the full solute concentration field can be inferred
by depth-averaging equation (44). In Figs. 6 and 7 we have compared the diffusive boundary layers
from full 2D simulations to those predicted by the characteristic solutions for kinetic and diffusive
evaporation, respectively. The profiles are taken at t = 0.3, which allows time for φ to relax towards
the similarity form from the initial condition. We find good agreement in the kinetic and diffusive
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FIG. 6. Comparisons of the diffusive boundary layer in the kinetic evaporation regime for radii ranging
from r = 0 to r = 0.95 at t = 0.3. Shown in red is characteristic solution (47). Black-blue curves are obtained
from direct simulation. φ̄ is the value of φ at the free surface, obtained either from simulation or by depth-
averaging equation (44) and using the known characteristic solution. All particle jamming effects are neglected.
In the lower panel, axes are appropriately scaled to show collapse onto a single curve as predicted by the
solution ansatz. In the inset, we show relaxation towards the solution ansatz over uniform time increments
from t = 0.01 to t = 0.1. All particle jamming effects are neglected.

evaporation regimes across a range of radii from r = 0 to r = 0.95, despite the fact that radial
variations in Jevap not being factored in to our diffusive boundary layer expression (though this
likely explains why the discrepancy is largest towards the contact line, where Jevap diverges, in the
case of diffusive evaporation).

Recent work by Ramírez-Soto and Karpitschka [49] has pointed to the importance of Taylor
dispersion in the modeling of multicomponent drying droplets. Since no vertical averaging has been
done to obtain the numerical results in Figs. 6 and 7, Taylor dispersion is naturally accounted for.
Thus, the fact that a good agreement is still observed when compared to our ansatz justifies our
neglecting Taylor dispersion in our model development.
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FIG. 7. Comparisons of the diffusive boundary layer in the diffusive evaporation regime for radii ranging
from r = 0 to r = 0.95 at t = 0.3. Shown in red is characteristic solution (48). Black-blue curves are obtained
from direct simulation. φ̄ is the value of φ at the free surface, obtained either from simulation or by the depth-
averaging equation (44) and using the known characteristic solution. In the lower panel, axes are appropriately
scaled to show collapse onto a single curve as predicted by the solution ansatz. In the inset, we show relaxation
towards the solution ansatz over uniform time increments from t = 0.01 to t = 0.1. All particle jamming effects
are neglected.

V. RESULTS

Our results are organized as follows: In Sec. V A we compare our 1D interpolation model (includ-
ing its limits discussed above) with the experimental findings of Li et al. [26]. An attempt is made to
estimate the model parameters based off the supplementary information from this work. Since the
models developed here break down at the point of touchdown of either the free surface or jammed
surface layer, a full comparison with the dried deposit morphology cannot yet be made. Nonetheless,
we can still compare the coffee ring height and shape in the vertically homogeneous limit, as this
part of the suspension remains static throughout drying. Also, by the point of touchdown in the
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FIG. 8. Comparisons of the vertically homogeneous and surface capture profiles with the experimental
results of Li et al. [26]. In the vertically homogeneous case, the profiles represent just before film touchdown,
whereas in the surface capture limit profiles are taken just before the jammed surface layer meets the substrate.
Plots are suitably normalized such that

∫ 1
−1 |r|m dr = 1.

surface capture limit almost all solute is part of the coffee ring or jammed surface layer. Therefore,
very little change will be seen in the mass profile htot〈φ〉 as drying continues.

Following this, in Sec. V B we have conducted a parameteric study to determine which model
parameters (or combinations thereof) determine the coffee ring thickness and existence/radial extent
of the jammed surface layer.

Finally, in Sec. V C we will analyze the early-time dynamics for both the vertically homogeneous
and surface capture limits, deriving scaling laws for the growth of the width, 1 − l , and height, H , of
the deposit region with time. These scaling laws also allow us to predict the variations in 1 − l and
H as the initial solute volume fraction φ0 is varied. The latter results compare well with numerical
results even at late times, beyond their expected validity for early times.

A. Comparisons with experiment

The green profiles shown in Fig. 8 are deposit morphologies reported by Li et al. [26] at
ambient temperatures of 25 ◦C (upper plot) and 75 ◦C (lower plot). For the sake of comparison,
we shall suppose that in the former of these there is no surface layer (ε2Pe � 1) and in the latter
a surface layer forms instantaneously (ε2Pe � 1). This is a reasonable assumption since the Péclet
number is temperature-dependent through the evaporation-flux density, J ∗, and the solutal diffusion
coefficient, D∗, and the net result of these dependencies is that Pe increases monotonically with
temperature. Though the initial solute volume fraction was not stated for these particular profiles,
we can estimate it from the given information. Since the contact line remains pinned throughout
drying, the deposit profiles in each case indicate a contact radius of R∗ = 1.91 mm. With a quoted
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contact angle of θc = 43◦, the aspect ratio is ε = tan(θc/2) = 0.394, and so we find the initial
drop volume (assuming a spherical cap geometry) to be V ∗

initial = ε(3 + ε2)πR∗3/6 = 4.52 mm3.
Assuming that the deposit remains static when φ reaches φc everywhere, the volume of the deposit
then satisfies φ0V ∗

initial = φcV ∗
deposit. This ultimately yields the values φ0 ≈ 0.0235 for the upper plot

and φ0 = 0.0193 for the lower plot. Using these values, we find good agreement in the deposit
morphology when compared with the vertically homogeneous and surface capture limits of our
model. In particular, we are able to see the transition from coffee ring to uniform deposit with
increasing evaporation rates.

In both scenarios the experimental profiles exhibit very strong agreement with the kinetic
evaporation model, reproducing both the deposit height and coffee ring thickness. The assumption
of diffusive evaporation produces less strong agreement, especially in the surface capture regime in
which our model still predicts a strongly enhanced deposit at the contact line. It is surprising that
the kinetic profiles should show better agreement, as the drying conditions in the experiments were
isothermal with precise humidity controls, ruling out any contributions from thermal convection in
the surrounding air (discussed in Sec. II). Under these conditions it is generally assumed that the
mode of evaporation is diffusive [50]. Li et al. also note the use of surfactants to adhere particles to
the drop surface. One could argue that such surfactants would affect only the conditions for particle
arrest at the drop surface. If so, since the subsequent growth of the surface layer is determined solely
by mass conservation, the final distribution of particles would be unchanged in the limit where the
surface layer forms instantly. Nonetheless, since surfactants are not accounted for in our model, the
comparison is reduced to a qualitative level. Another reason a full quantitative comparison cannot
yet be made is that the theoretical profiles shown here are taken at the point of free surface/jammed
surface layer touchdown, at which point there is still solvent yet to evaporate. Progress in resolving
this issue (at least in the vertically homogeneous limit) has already been made [41].

The agreement seen here suggests that our simple theoretical treatment of particle jamming at
the liquid-air interface, based solely on evaporation kinetics and particle jamming, is sufficient to
describe the fundamental physics of the surface capture phenomenon. It is also noteworthy that the
surface capture layer observed in our model bears a strong resemblance to the gel layer observed in
the experiments of Jalaal et al. [51] (see in particular the upper panels of Fig. 5 from this reference).

B. Parametric study of the 1D interpolation model

In the case of a 1D flat interface, it was found that the jamming delay time depends on the two
independent system parameters φ0 and ε2Pe only through the combination (φc − φ0)/(φ0ε

2Pe).
For instance, if Jevap = 1 then no surface layer will form at all if ε2Pe < (φc − φ0)/φ0. A natural
question is whether this behavior extends to the axisymmetric drop.

Simulations indicate that this combination roughly determines the radial extent of the surface
layer when the film touches down, though the final coffee ring width at this stage will depend on
the individual choices for φc and ε2Pe; see Figs. 9 and 10 for reference. We remind the reader that
the discontinuity seen in each of these figures at r = l (t ) is an artifact of the model arising from the
fact that we have neglected diffusion in the horizontal direction. This modeling choice, however,
reflects the relative importance of horizontal and vertical diffusion: Inclusion of the former is likely
to make very little difference to our results as the dimensions of the coffee ring are determined
primarily through jamming. In Fig. 11 we test our hypothesis further by finding the minimal vertical
Péclet number, (ε2Pe)critical, required for the surface layer to propagate to r = 0.5 by the time of
touchdown. A good agreement is seen across a range of φ0 values and for both evaporation models.
Note that if surface jamming is never achieved, then our model is identical to Popov’s (at least
concerning the width of the coffee ring and the solute mass per unit area m ∝ htot〈φ〉). It was found
numerically that, for initial dilutions under 10% of φc, an ε2Pe value significantly larger than 1 is
usually required to see any surface layer formation. For example, with φc/φ0 = 20 no surface layer
was seen for ε2Pe � 37 under kinetic evaporation or ε2Pe � 92 under diffusive evaporation. Since
m is typically the quantity of interest in CRE modeling as it reflects dried deposit morphology,
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FIG. 9. Color maps showing the progression of the jammed surface layer for a variety of φ0 and ε2Pe
values such that the ratio [(φc/φ0) − 1]/ε2Pe is held constant at 0.2. A kinetic evaporation model is used. The
color scale has been suitably set so that the diffusive boundary layers are visible. The vertical green dashed line
shows the radial position of the jammed surface layer at the point of film touchdown.

FIG. 10. Color maps showing the progression of the jammed surface layer for a variety of φ0 and ε2Pe
values such that the ratio [(φc/φ0 ) − 1]/ε2Pe is held constant at 0.1. A diffusive evaporation model is used.
The color scale has been suitably set so that the diffusive boundary layers are visible. The vertical green dashed
line shows the radial position of the jammed surface layer at the point of film touchdown.
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FIG. 11. The minimum vertical Péclet number, (ε2Pe)critical, required for the jammed surface layer to
propagate to r = 0.5 by the point of film touchdown. On the right axis, we have additionally plotted
[(φc/φ0) − 1]/(ε2Pe)critical to demonstrate that this ratio remains roughly constant as φc/φ0 is increased. Solid
and dashed lines correspond to kinetic and diffusive evaporation respectively.

this suggests that the assumption of vertical homogeneity commonly used in coffee ring literature
may be applicable for ε2Pe ∼ 1 and even larger values. A similar conclusion was made recently by
Larsson and Kumar in a study of 1D thin films with infinite extent [21].

We have additionally plotted regime diagrams in Fig. 12 to indicate how far across the drop
surface the jammed surface layer is expected to propagate for a given pair of φc/φ0 and ε2Pe values
(the dashed white lines in these diagrams correspond to propagation to r = 0.5). Interestingly, the
intermediate region, in which there is a jammed surface layer that does not reach r = 0, is wider for
diffusive evaporation than for kinetic evaporation. This is due to the fact that the value of ε2PeJevap

decreases near the center of the drop in the diffusive case, meaning the sharpness of the diffusive
boundary layer as described by Eq. (44) will decrease, and so the jammed surface layer is less likely
to cover the entire drop surface.

C. Scaling laws and dynamics at early times

At early times, one can derive scaling laws to determine the growth of the width and height of
the coffee ring deposit in both the vertically homogeneous and surface capture regimes. To do so,
we will look at the initial perturbations l = 1 − l ′, H = H ′ and A = 1 − A′, where l ′, H ′ and A′ are
small. It is then readily found from Eq. (12) that H ′ = 2l ′, and so the deposit region initially grows
as a triangular wedge, regardless of the regime we are in (i.e., vertically homogeneous or surface
capture) or evaporation model we are using.

Following the arguments of Deegan [44] and Popov [19], we begin by deriving scaling laws in
the vertically homogeneous regime. Letting r0(t ) denote the initial coordinate of a particle reaching
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FIG. 12. Regime diagrams indicating the radial extent of the surface layer by the time of touchdown. The
red, purple, and green regions correspond to a fully propagated, partially propagated, and no surface layer,
respectively. The dashed white line in each diagram corresponds to the surface layer reaching r = 0.5 (these
lines are also shown in Fig. 11).

the jammed region at time t , it is clear from solute mass conservation that

VD(t ) = φ0

∫ 1

r0(t )
rhtot(r, 0) dr = φ0

4

(
1 − r2

0

)2
,

where VD(t ) is the volume of solute in the deposit at time t (omitting the 2π prefactor). We may de-
termine r0(t ) by looking at particle trajectories, ϕ(t ), which evolve according to ∂tϕ = 〈u〉(ϕ(t ), t ).
Taking l ∼ 1 in Eq. (16) gives

∂ϕ

∂t
=

{ 1
4

ϕ

1−t , kinetic evaporation,

1
4

(1−ϕ2 )−1/2−(1−ϕ2 )
ϕ(1−t ) , diffusive evaporation.

(49)

Solving each of these expressions gives ϕ(t ) = ϕ(0)(1 − t )−1/4 in the kinetic regime and 1 −
(1 − ϕ(t )2)3/2 = [1 − (1 − ϕ(0)2)3/2](1 − t )−3/4 in the diffusive regime. The coordinate r0 is then
found by setting ϕ(t ) = l ∼ 1 and ϕ(0) = r0(t ), so that

r0(t ) =
{

(1 − t )1/4, kinetic evaporation,

{1 − [1 − (1 − t )3/4]2/3}1/2, diffusive evaporation.
(50)
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Since the deposit region initially grows as a triangular wedge, its volume is VD(t ) = φcH ′l ′/2 =
φcl ′2 (again omitting the 2π prefactor). We can thus use the expressions above to find the dynamics
of l ′ at early times. To leading order in t , we find that

l ′ ≈

⎧⎪⎨⎪⎩
1
4

√
φ0

φc
t, kinetic evaporation,

32/3

27/3

√
φ0

φc
t2/3, diffusive evaporation.

(51)

The
√

φ0/φct2/3 dependence was first derived by Deegan [44] and was found to agree with
experimental findings within the margins of experimental error. We will now look at the surface
capture regime. In this limit the thickness of the jammed surface layer is known analytically, and so
it is easier to find the early time dependence for l ′. Appealing to the shock propagation condition
(24) as well as Eq. (23), we find

l̇ = − φ0

φc − φ0

t f

H − φ0

φc−φ0
t f Jevapt

htot〈u〉|r=l

−→ l̇ ′ ≈ φ0

φc − φ0
t f

{
l ′

2l ′−[φ0/(φc−φ0 )]t f t , kinetic evaporation,

l ′
(2l ′ )3/2−[φ0/(φc−φ0 )]t f t/2 , diffusive evaporation.

(52)

These are solved via the following power-law expressions:

l ′ ≈
{

1
2

φ0

φc−φ0
t, kinetic evaporation,

1
2

(
φ0

φc−φ0
t
)2/3

, diffusive evaporation.
(53)

Interestingly, although the same time dependence is found in both the vertically homogeneous
and surface capture limits for a given evaporation model, the dependence on φc/φ0 is different. It is
natural to ask whether the dependence of l on φc/φ0 can be inferred, at least up to an arbitrary scale
factor, from expressions (51) and (53). In Fig. 13 we show this to be the case: providing the ratio
φc/φ0 is large enough, the scaling relation at late times (t = 0.8 shown here) is still as predicted
by the early time power law, though the prefactor is different (note that the x axes for these plots
are φc/φ0 rather than φc/φ0 − 1, though the difference is negligible when this ratio is sufficiently
large). The same scaling relations were also found to hold for the deposit height H .

VI. DISCUSSION

We have studied the combined effects of particle jamming and surface capture in evaporating
particle suspensions through a simple 1D modeling framework. One key modeling assumption we
have made is that particles forming a jammed surface layer move with the free surface, but are
not advected any further by the fluid flow. This assumption is contrary to other existing theoretical
frameworks used to describe surface capture [30,31], in which there is no jamming so particles that
adhere to the free surface are still advected along the surface towards the contact line. It should be
emphasized that our assumption, which arises naturally with the inclusion of jamming, is crucial
to qualitatively reproduce the deposit morphology seen experimentally by Li et al. [26] at high
evaporation rates. In particular, under kinetic evaporation our model predicts a a deposit which is
uniform everywhere except very close to the contact line in the limit ε2Pe � 1.

For intermediate values of ε2Pe, we have proposed a diffusive boundary layer expression to
specify the z dependence of the solute volume fraction a priori. We find that our expression agrees
well with direct simulations of the full advection-diffusion problem when φc/φ0 is large (the dilute
limit), though further verification of our modified expression for once a surface layer has formed is
needed. One of three possible outcomes emerge in our simulations of the 1D interpolation model:
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FIG. 13. Doubly logarithmic plots of the deposit width 1 − l as a function of φc/φ0 for both the kinetic
and diffusive evaporation regimes. Red plots represent the vertically homogeneous limit, and blue plots
represent the surface capture limit. Each plot point shown corresponds to a simulation terminated at t = 0.8.
To demonstrate agreement with Eqs. (51) and (53) up to a scale factor, black lines with gradients −1/2, −1,
and −2/3 are also shown.

(1) There is no surface layer formation. In this case, the predictions of our model for the solute
mass per unit area m ∝ hφ are identical to those predicted by Popov’s model.

(2) A surface layer forms, but only propagates part way across the drops surface.
(3) A surface layer forms and spans the entire free surface.
Interestingly, outcome 1 can happen even for ε2Pe considerably larger than unity. This suggests

that the vertical averaging approximation, which is of widespread use in CRE modeling, is valid
beyond the regime ε2Pe � 1 providing we are interested only in the deposit morphology at the end
of evaporation. Depending on the outcome, we can run out simulations until either the free surface
or the jammed surface layer meets the substrate at r = 0. In the vertically homogeneous limit, this
is not such an issue as by this stage most of the solute is part of the coffee ring deposit. However,
the surface capture profiles are clearly incomplete.

In future work we aim to lift this modeling restriction by tracking all jammed particle fronts
implicitly. This technique will be outlined and implemented in a related article [41] for the vertically
homogeneous case. In that work we will demonstrate that simulations can be continued until the
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solute has jammed everywhere (and thus no more deformation can occur since the suspension is
incompressible everywhere) and that extension to arbitrary contact sets can be easily achieved using
the finite element method.

Finally, we note that since the primary aim of this work was to make the minimal adjustments
to Popov’s model to account for surface capture, the Marangoni effect, either solutal or thermal,
has been neglected throughout. Though our study has been restricted to a single component fluid
laden with particles, binary fluids can exhibit complex dynamics as a result of the Marangoni effect.
For instance, inward directed solutal Marangoni flow, such as that observed by Thayyil Raju et al.
[52] in water-glycerol droplets, can lead to the formation of a secondary cluster of particles, termed
the Marangoni ring, which forms just below the air-liquid interface at a radial position near the
contact line. Outward Marangoni flow may, however, be more relevant to the surface capture effect
described here; in particular, it was found by Bruning et al. [53] in a study of evaporating salty
droplets that this flow initiates surface layer formation under conditions where a surface layer would
otherwise not be observed. Therefore, accounting for multicomponent fluids could be a natural
direction for generalization of the model.

The data that support the findings of this study are openly available in figshare at [54].
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APPENDIX A: NUMERICAL METHOD: 2D ADVECTION-DIFFUSION SIMULATION
IN THE DILUTE LIMIT

For direct simulation of the solute transport problem with jamming effects omitted, we solved the
axisymmetric advection-diffusion equation with a prescribed underlying velocity field u = uer +
wez:

1

t f

∂φ

∂t
+ 1

r

∂

∂r

[
r

(
uφ − 1

Pe

∂φ

∂r

)]
+ ∂

∂z

(
wφ − 1

ε2Pe

∂φ

∂z

)
= 0. (A1)

Under the lubrication approximation, the field u can be inferred from the depth average 〈u〉 and the
incompressibility condition. In the kinetic evaporation regime we have

u = 3r

4(1 − t )

z

h

(
2 − z

h

)
, w = 3

2

[
−

( z

h

)2
+ 1 + r2

3

( z

h

)3
]
, (A2)

and in the diffusive evaporation regime

u = 3

4(1 − t )r
[(1 − r2)−1/2 − (1 − r2)]

z

h

(
2 − z

h

)
,

w = −9

4
(1 − r2)−1/2

( z

h

)2
+

[
5

4
(1 − r2)−1/2 − 1

2
(1 − r2)

]( z

h

)3
. (A3)

Equation (A1) is subject to the no-flux boundary conditions:
∂φ

∂r
= 0, r = 0, (A4a)

∂φ

∂z
= 0, z = 0, (A4b)[

1

t f

∂φ

∂t
+ u

∂h

∂r
− w

]
φ − 1

Pe

∂h

∂r

∂φ

∂r
+ 1

ε2Pe

∂φ

∂z
= 0, z = h(r, t ) = (1 − t )(1 − r2).

(A4c)
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In order to resolve compatibility issues arising between the advection term derived from the
lubrication equations and the governing PDE, an additional vertical boundary is added at r = 1 − δ

(where δ = 0.005) over which no flux is applied. When Pe is large, this merely changes the position
of the sharp radial diffusive boundary layer. As long as the coordinates of interest (i.e., the sample
r values in Figs. 6 and 7) are far enough away from the contact line, the value of δ used does not
matter.

Since the mesh conforms to the free surface of the drop, the nodal positions also change
throughout the simulation. When calculating time derivatives this change is accounted for using
the arbitrary Lagrangian-Eulerian (ALE) relation:

∂φ

∂t

∣∣∣∣
Eulerian

= d

dt

∣∣∣∣
node

φ − vmesh · ∇φ, (A5)

where (∂φ/∂t )|node is evaluated using the history of values at the node at its previous positions, and
vmesh is the local mesh velocity.

The equations were discretized and solved using the finite element library OOMPH-LIB [48].
The computational mesh was formed of nine-node quadrilateral elements, and adaptive quad-tree
refinement was used to resolve the sharp diffusive boundary layer. Time integration was performed
using the BDF2 timestepping scheme.

APPENDIX B: NUMERICAL METHOD: 1D INTERPOLATION MODEL

For the 1D interpolation model introduced in Sec. IV C, Eqs. (12), (15), (42), (43), and (44) or
(45), depending on whether or not a jammed surface layer has formed, comprise the system to be
solved numerically. The advection problem is solved on the contracting domain r ∈ [0, l (t )] using
the ALE relation to evaluate time derivatives:

1

t f

[
d

dt
− ṙ j

∂

∂r

]
(htot〈φ〉)| j + 1

r j

1

r j − r j−1
[rb〈u〉b〈φ〉b] j

j−1 = 0, ṙ j = r j l̇/l. (B1)

Here the notation [·] j
j−1 refers to the difference in values at nodes j and j − 1. The unknown

prefactor φ̄ was calculated internally at each time step using its relation to the depth-averaged
concentration:

〈φ〉 = φ0 + φ̄ − φ0

ε2PeJevaphtot
[1 − exp(−ε2PeJevaphtot )]. (B2)

If at a given position r, φ̄ is found to be greater than φc, then we are in the post-jamming regime.
A smoothing parameter method is used to interpolate the update equation for b between the two
regimes:

∂b

∂t
=

(
∂b

∂t

)−
�δ

(
φc − φ̄

φ0

)
+

(
∂b

∂t

)+
�δ

(
φ̄ − φc

φ0

)
, (B3)

where (
∂b

∂t

)−
= Ȧ(l2 − r2), (B4a)(

∂b

∂t

)+
= ∂t [htot(φc − 〈φ〉)]

(φc − φ)
[
1 − exp

( − φc

φc−φ0
ε2PeJevap

)] . (B4b)
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Expression (B4a) follows directly from Eqs. (11) and (12), while expression (B4b) can be derived
by integrating Eq. (45) up to the free surface and taking a time derivative. A tanh approximation of
the Heaviside step function is used for �δ:

�δ (x) = 1
2 [1 + tanh(x/δ)]. (B5)

After spatial discresization, a first-order ODE system of the form ẏ = f (t, y), where y =
(l, A, H, 〈φ〉1, . . . , 〈φ〉N , b1, . . . , bN ) and N is the number of nodes, is obtained. This system was
solved implicitly using ode15s in MATLAB.
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