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In this work, a numerical study on the inertial migration of particle suspension in a cir-
cular pipe with thermal effect is performed by means of the lattice Boltzmann method and
the discrete element method. Both constant temperature and varied temperature conditions
are taken into consideration. The migration behavior and the heat transfer are well charac-
terized in terms of the circumferential and radial positions as well as the Nusselt number.
The results show that particles tend to migrate toward the pipe bottom due to the thermal
buoyancy when the fluid’s temperature is higher than the particle’s. For a single particle
with constant temperature, it is shown that the variation of circumferential equilibrium
position can be well regressed by the Richardson number and divided into three zones,
i.e., an inertial lift dominating zone, a transition zone, and a buoyancy dominating zone.
Both the radial equilibrium position and the Nusselt number are sensitive to the Reynolds
number and increase consistently with the Grashof number. For particle suspension with
constant temperature, similar migration behavior is observed with an enlarged transition
zone. However, a nonmonotonic variation of the radial equilibrium position as well as
the Nusselt number is discovered, which is attributed to the particle crowding effect. For
varied temperature conditions, the migration process is affected by the heat capacity ratio
and the Prandtl number, which determine the heating rate of the particle. Nevertheless, the
radial equilibrium position is irrelevant with the thermal effect, which only depends on the
Reynolds number and resembles the isothermal condition.

DOI: 10.1103/PhysRevFluids.9.064302

I. INTRODUCTION

Particle transport in Poiseuille flow is a classic subject in the investigation of multiphase flow
and holds significant importance in engineering applications [1,2]. Particle inertial migration is
an interesting phenomenon that was first discovered by Segré and Silberberg [3] in 1961. It was
found that randomly distributed particles migrate toward a specific equilibrium position between
the centerline and the wall of the channel or pipe. For particle-laden flow in a circular pipe, inertial
migration leads to the formation of a particle annulus close to the wall, while particles migrate to
four points near the middle of the wall in a square channel [4]. Currently, due to the applications
in microfluid for particle mixing, sorting, and capturing, particle inertial migration has been widely
investigated [5-8].

Numerous studies have been conducted through theoretical analyses, experiments, and numerical
simulations to investigate the particle inertial migration process. Theoretically, a singular pertur-
bation expansion method [9] and matched asymptotic expansion [10,11] have been adopted to
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predict the equilibrium position of particle inertial migration. Experimentally, it was found by Han
et al. [12] that the particle migration process is significantly influenced by the Reynolds number
and solid volume fraction of suspension. Matas et al. [13] conducted experiments with various
particle sizes, and the results aligned with theoretical analysis employing matched asymptotic
expansion. Additionally, Di Carlo et al. [14] discussed the finite size effect of particles and
the lift force through experimental and numerical approaches. Numerically, the fictitious domain
method [15] and the lattice Boltzmann method (LBM) [16—18] have been employed to investigate
the migration mechanism and particle equilibrium positions. Recently, the inertial migration of
nonspherical particles was investigated in several studies [19-21], revealing that the streamwise
particle velocity and migration velocity are affected by particle shapes due to the difference in
particle rotation. Furthermore, for migration involving deformable particles, damped oscillations
[22] and a faster velocity for particles around the channel center [23] are observed. In the case of
migration involving a deformable biconcave capsule, as a representation of a red blood cell, the
equilibrium particle position is influenced by the bistable flow modes, i.e., the rolling and tumbling
motion [24].

Particle migration behavior is influenced while introducing additional effects [25-29], where
thermal effect is one of the most important factors for particle-laden flow [30-34]. Thermal
buoyancy, originating from thermal convection, is a key factor influencing particle movement.
Currently, numerous investigations focusing on the effect of thermal convection in the particle
settling process have been carried out. For instance, when a cold particle settles in a hot fluid, the
particle migrates toward the wall or oscillates laterally with the increase of the Grashof number
[35,36]. The well-known draft-kissing-tumbling (DKT) process for a pair of particles is also
influenced by the thermal effect, leading to particle separation for cold particles and aggregation
for hot particles [37]. For two settling particles, it was observed by Yang [38] that the DKT
phenomenon occurs earlier and the oscillations of particle trajectories are enhanced due to thermal
convection. Additionally, Hashemi e al. [39] investigated the settling process of a group of hot
particles, revealing that the settling velocity is reduced due to the effect of the thermal buoyancy
and the development of asymmetric vortex shedding compared with the isothermal single particle
condition.

Undoubtedly, the thermal convection resulting from the temperature gradient between the par-
ticles and the fluid makes a big difference compared with the isothermal condition, especially for
the microfluidic applications. However, to the best of our knowledge, limited attention has been
paid to such kind of study. Hu and Guo [40] numerically studied the effect of thermal convection
on particle migration in a two-dimensional (2D) Poiseuille flow. A notable discovery was that the
symmetric equilibrium positions about the centerline converge to a single equilibrium position
below the channel center when the Grashof number reaches a critical value. This phenomenon
was further investigated by Liu and Wu [41], who found that the critical Grashof number, beyond
which a lateral equilibrium position shift occurs, is dependent on the Reynolds number and the
particle-to-channel size ratio. Additional studies involve numerical investigations on the particle
migration in simple shear flow with thermal fluids [42,43].

However, previous studies on inertial migration in thermal fluids are insufficient due to the
following limitations. Firstly, most studies are confined to 2D cases and focus only on single-particle
behavior, which deviates from realistic applications where particle suspensions are commonly
encountered. Secondly, the temperature difference between the particle and the fluid is assumed
to be constant in most studies, which is short of a physics foundation. In practice, it is expected that
the dynamic migration behavior should be strongly related to the temperature evolution of both the
particle and the fluid. Nevertheless, very few studies considering these factors comprehensively can
be found in the existing literature.

In this work, the lattice Boltzmann method (LBM) coupled with the discrete element method
(DEM) was employed to numerically investigate the particle inertial migration in a three-
dimensional circular pipe in the presence of thermal convection. The migration behavior as well as
the heat transfer of both single-particle and dilute suspensions with constant and varied temperature
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FIG. 1. Directions of discrete velocity in the D3Q19 model.

are investigated. The current work is organized as follows. The numerical method is described in
Sec. II. The physical model and the validation tests are introduced in Sec. III. Section IV gives the
detailed results and discussion, and the conclusions are drawn in Sec. V.

II. NUMERICAL METHOD
A. Lattice Boltzmann method

In this work, a double-population lattice Boltzmann method with a single relaxation time model
is adopted [44,45]. The governing equations are expressed as follows [46]:

At .
fix+eAt 1+ At) — fi(x, 1) = —t—[fi(x, ) — f7Ax, )] + FAt, (1)
f
At .
gi(X + €At t + At) — gi(x,1) = —T—[g,-(x, 1) — gl (x, 0] + SiAt, (2)

8

where f;(x,t) is the distribution function of fluid and g;(x, 7) is the distribution function of tem-
perature. F; and §; are the external body force and heat source terms, respectively. In this work, no
external heat source is considered, so §; is ignored. At is the time step. 7y and t, are the relaxation
times for fluid and temperature, respectively. e; is the discrete velocity, as shown in Fig. 1.

The equilibrium distribution functions are expressed as

feq _ 1+ € -u (e; - ll)2 u? 3)
i P 2 2¢4 2¢2 ]
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in which c; is the lattice sound speed and is equal to 1/+/3, and w; is the weight coefficient where
6 = 1/18,and w7, 13 = 1/36. The macroscopic fluid density p, temperature 7', and
the fluid velocity u are obtained based on the distribution function,

p=7 fn (5)
pu=>" fie;+ %F, (6)
T = Zgi, (7)

where F is the macroscopic body force. The external body force in Eq. (1) is determined following

Guo’s force scheme [47],
Fe(1- S AP ®)
i = —— Joi| —— + ——e¢ |- L.
2‘L’f Csz, C4

R

.....

In order to couple the flow field and the temperature field, the Boussinesq approximation is
adopted as

p = poll = B(T — Trer)], (€))

where py is the fluid density at the reference temperature 7. and S is the fluid thermal expansion
coefficient. The fluid buoyancy force originated from temperature difference and its magnitude per
unit volume is defined as

Fp = —p0gB(T — Tret), (10)

where g is the gravitational acceleration. By employing the Chapman-Enskog multiscale expansion,
the microscopic lattice Boltzmann equation can recover to the macroscopic governing equations for
mass, momentum, and energy transport, which can be written as follows:

ap
E‘FV'(PU):O, (11)
ou )
p§+p(u~V)u=—Vp+uV u+F, (12)
aT
— 4+ V.-(Tu)=V - (aVT), (13)

ot

where p is the fluid dynamic viscosity and « is the thermal diffusion coefficient. p is the fluid
pressure and is determined by

p=c.p. (14)

Through Chapman-Enskog expansion the fluid kinematic viscosity and the thermal diffusion coef-
ficient are related to the relaxation parameters,

5 At
v =c; (rf - 7), (15)

@ —c2<f N) (16)
= s g_ 7 .

B. Fluid-solid coupling

In this work, a modified bounce-back scheme with second-order accuracy is adopted [48,49].
When simulating the movement of a solid particle within a fluid domain, the solid boundary of the
particle is typically not precisely positioned on any lattice node. Assume that the solid boundary lies
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between a fluid node x; and a solid node x; at time ¢, and the exact position of the solid boundary is
defined as x;,. The relative location of the solid boundary is described with a weighting parameter,
g, which is defined as

xXr—Xx
_ xr—ml (17)
|xf - xsl
The distribution function at the boundary is calculated with first-order interpolation,
Jixp, 1 + A1) = qfi(xy, 1) + (1 — @) fiXpp, 1), (18)

where f;(xy,t) and fij(xyr, t) are the existing distribution functions at the node x; and the nearest
node Xy, respectively. Then, a bounce-back operation is performed at the solid boundary instanta-
neously,

u, - €;

foi(Xp, t + A1) = fi(Xp, t + At) = 2w;p , (19)

2
Cy

where u, is the velocity of the solid boundary and e; the points from the fluid to the solid. Finally,
the undetermined distribution function f_;(Xs, t + At) is calculated by the first-order interpolation
with the new f_;(X;, t + At) and the existing distribution function f_;(Xss, t + At) as

1 q
(Xp t A+ A) = —— F (X, t + AL) + —— F (X, |+ AL). 20
S-i(xy ) 1+qf(b )1+qf(ff ) (20)

In order to reduce the numerical error in calculation, the momentum exchanging method with
Galilean invariance is employed [48]. The hydrodynamic force and torque at the solid boundary are
evaluated with total momentum exchange, by summing up all the contributions from every lattice
direction and the node near the solid boundary:

Fr=) " (e —w)f;i"(xp, 1) — (e_; — W) f-i(xp, 1 + AD)], 1)
all xp i
My= "> (6 —x) x [(& = wp) ;T (Xp, 1) = (e — ) filXp, £+ A)]. (22)
all xp i@

In the above equations, fi+(xf, t) is the post-collision distribution function, f_;(xs,t -+ At) is
the bounced-back distribution function from the solid boundary calculated with Eq. (20), and x,
is the position of the particle center. In terms of temperature boundary condition, the Dirichlet
boundary condition is adopted for all calculations in this work. A general bounce-back scheme for
the concentration boundary is employed, and the undetermined temperature distribution function is
given as follows [50]:

g-i(Xp, t + A1) = —gf (X7, 1) + 2, T, x [1.0 + 4.5(e; - up)* — 1.5/u,/*], (23)

in which 7} is the temperature at the boundary while —g/ (x,¢) is the post-collision distribution
function.

C. Discrete element method

The soft sphere model is adopted in the current work, and the particle can translate and rotate
freely in the computational domain according to Newton’s second law,

dU
md_tp = Ff +F,, (24)
e
Id—t” =M, +M,, (25)

where U, is the particle translational velocity, &), is the rotational velocity, m is the particle mass,
and / is the moment of inertia. Fy and M are the force and torque exerted on the particle from the
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fluid, respectively. It should be noted that the fluid lubrication force is not considered in the current
work, as the wet collision mechanism is not completely understood so far [51] and it is still very
tricky to deal with the discrete element method and the lubrication model at the same time.

F. and M, are the force and torque exerted on the particle from particle-particle contact,
respectively. F. and M, can be expressed as

F. = F,n + Fit,, (26)
dF; t;
M, = % + M, (tg x n) + M;n, 27

where d is the particle diameter, F, is the normal force, F; is the tangential force, M, is the rolling
resistance, and M, is the twisting resistance. n, t;, and tg are the unit vectors of the normal force,
tangential force, and rolling direction, respectively.

The normal force is described by the Hertz model considering the influence of damping and is
expressed as

Fy = —k;8)° — v, - m, (28)

where 7, is the normal dissipation coefficient and v, is the relative velocity at the contact point. §, is
the overlap at the normal direction and it is defined as 6, = r,,; + 1, ; — |x; — x;| for particles with
radius r,, and position x. k, is the normal stiffness and it is defined as

4
ky = gEﬁe, (29)
11 1
S . (30)
R rp,i rp,j
11— 1=
1_ i , 31
E E, + E; (1)

where E and R are the effective elastic moduli and radius, respectively. v is the Poisson’s ratio. The
sliding model is adopted as

Fy = —krér — nrv; - L, (32)

where k7 is the spring stiffness coefficient in the tangential direction, v is the relative sliding veloc-
ity, and 77 is the sliding dissipation coefficient. & = ;0 v,(t) - tydt is the tangential displacement.
The rolling model is given as

M, = —krEr — nrVL - tr, (33)
where v, = —R(; — ;) x n is the rolling velocity, tg = v./|v.| is the rolling direction, &z =

fﬁo vy (t) - trdt is the rolling displacement, kg is the rolling stiffness, and ng is the rolling damping
coefficient. The twisting model is given as

M; = —ko&p — noQ2r, (34)
where kp and no are the torsional stiffness and dissipation coefficient, respectively. Qr =
(; — ;) - nis the relative twisting rate, and §p = fﬁo Q7 (t)dt is the twisting displacement.

The energy equation to update the particle temperature under the varied temperature condition is
given as follows:

dT,
mep, 2 = fwrf “myds + O, (35)

where Cp; is the heat capacity of the solid particle, 7, is the particle temperature, T is the fluid
temperature, A is the heat conductivity of fluid, n, is the normal direction at the boundary, and
O, is the heat source originated from the particle. It should be noted that the heat conduction

064302-6



NUMERICAL INVESTIGATION ON PARTICLE INERTIAL ...

Equilibrium position \
6
R g
0= r g = \

FIG. 2. Schematic of (a) geometry adopted in simulations and (b) particle position description in the YZ
plane.

between particles is not considered due to its very tiny contribution. In addition, the Biot number
of the particle is assumed to be small enough, so that the temperature gradient inside the particle is
ignored.

III. PHYSICAL MODEL AND VALIDATION

In this section, we begin by introducing the physical model adopted in the present work, followed
by a mesh validation. Then, two model validations are performed. The first one is the validation for
fluid-solid coupling, while the second focuses on the thermal effect on particle movement.

The simulation geometry in the current study is shown in Fig. 2. The particle is initially placed
in a cylindrical pipe full of Newtonian fluid. The initial velocities of both the fluid and the particle
are set as zero. The fluid is driven by a pressure gradient implemented via a constant body force
along the X direction, where periodic boundary conditions are imposed. The particle moves along
the mainstream in the X direction, and migrates to a steady equilibrium position in the YZ plane from
the initial position after a certain time. Particle position in the YZ plane is described using the polar
coordinate which is symmetric about the Z axis. Throughout the migration process, the particle is
influenced by multiple mechanisms including the wall repulsion, the Magnus force, the Saffman
force, the lift force due to the curvature of the velocity, and the vertical buoyancy forces arising
from thermal convection [40]. Note that, in the present work, we set the particle temperature lower
than the fluid and wall temperatures, so that consequently the direction of thermal buoyancy is along
the negative direction of the Z axis. The cylindrical wall is set as a no-slip boundary with constant
temperature T,, = 1. Meanwhile, the initial fluid temperature is the same as the wall temperature
Ty = 1 and the particle temperature is initially set as 7, = 0.

The particle inertial migration with thermal effect is controlled by several dimensionless numbers
including the Reynolds number (Re), the Grashof number (Gr), the Richardson number (Ri), the
Prandt]l number (Pr), the heat capacity ratio of solid and fluid (Cp;), and the density ratio between
solid and fluid (p,), which are given as

HU
Re = —1 (36)
vr
T, —T,0)H>
Gr = 880w — T . IO (37)
f
. Gr
Ri = @, (38)
Pr— % (39)
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TABLE 1. Parameters used in simulations in dimensionless lattice units.

Parameter Value
Pipe length (L) 160
Pipe diameter (H) 80
Particle diameter (d) 8
Kinematic viscosity (vy) 0.05
Reynolds number (Re) 80, 160, 240
Grashof number (Gr) 10°-10°
Prandtl number (Pr) 0.7,7,70
Heat capacity ratio (Cp,) 1-100
Particle temperature (7},) 0
Wall temperature (7,,) 1
C
Cpy = 12, (40)
P
Cpy
P
pr = 0 41
P

In the above equations, Uy is the velocity of fluid flow and Cpy is the heat capacity of fluid.
Re is used to scale the fluid inertial effect in this process. Gr is the parameter to characterize the
relative strength of natural convection to buoyancy force. Ri is the combination of Gr and Re, which
represents the importance of natural convection with respect to forced convection.

Table I lists the simulation parameters employed in this work, which are in dimensionless
lattice units. The corresponding key physical parameters are given as the pipe length 4 x 1073 m,
the kinematic viscosity 1 x 107°m?/s, and the fluid density 1000 kg/m?>, respectively. The ratio
between particle size and pipe diameter d /H is fixed as 0.1 in this study. In addition, for simulations
with a constant temperature difference between the particle and wall, Pr is fixed as 7. Note that Cp,
is only meaningful for varied particle temperature simulations. Therefore, for simulations with a
constant particle temperature, Cp, is regarded as infinity, which implies that the particle temperature
does not change with time. Meanwhile, the particles in the current work are assumed to be neutrally
buoyant, indicating that the density ratio between solid and fluid is o, = p/p, = 1.

A mesh validation is first conducted by varying the particle diameter, where d/H and d /L are
fixed as 0.1 and 0.05, respectively. Other parameters including Re = 160, Gr = 160, and Pr = 7 are

08

Amosr 7/R

04+

S

0.0 . X 0.0 02 04 0.6 0.0 02

tulH?

Oj4 0:6
tulH?

(b) (c)

FIG. 3. Particle (a) circumferential position, (b) radial position, and (c) Nusselt number as a function of
dimensionless time with different d.
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FIG. 4. Particle’s radial equilibrium radial position for isothermal inertial migration.

fixed in the validation. The results are shown in Fig. 3, which demonstrate that d = 8 is a sufficient
resolution to describe the particle behaviors in migration.

Then, two model validations are performed to verify the numerical method. In the first one,
the inertial migration of a neutrally buoyant particle under isothermal condition is simulated, in
order to confirm that the current model is capable of reproducing the well-known inertial migration
phenomenon and predicting the particle’s translation and rotation in fluid. The particle is initially
released at r = 0.2R, and the geometry is the same as the model displayed in Fig. 2. Additionally,
Re ranges from 20 to 320 and Pr is maintained as 7. The simulation results are shown in Fig. 4.
It is clear that the current numerical model well captures the trend of equilibrium position with
the increase of Re, compared with the theoretical result through a matched asymptotic expansion
method [13].

Q=1
d=10
L,=160 T,y=0
pr =11
g Tp=0
z
L,=80
L =80

S
y / X
FIG. 5. Schematic of particle settling with constant heat source.
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FIG. 6. Dimensionless particle (a) velocity and (b) position as a function of dimensionless time.

Figure 5 shows the physical model of the second validation in order to verify the particle move-
ment under thermal convection. In this part, a spherical particle with an inner heat source settles in a
rectangular enclosure chamber. The wall temperature is set as 7,, = 0 at all the boundaries. Initially,
the particle with the same temperature 7, = 0 as the fluid is released from the center of the box.
Res and Uys are used to describe the particle property, which are defined as

U.,esd
Reper = —o, (42)
vy

Ut = |/ % 43)

Furthermore, the particle temperature increases during the process due to the presence of inner
heat source Q,, which is defined as

_ 0,d
Qp = ,
pfcprref(Th - Tc)

where 7, and T, are defined implicitly by Gr. Qp =1 is maintained in this work. Due to the
gravitational force, the particle firstly settles down along the negative direction of the Z axis.
Then, with the increase of particle temperature, the buoyancy exerted on the particle increases and
drives the particle to move upward along the positive direction of the Z axis. The dimensionless
controlling parameters in the validation are Re..s = 40, Pr = 0.7, Gr = 1000, Cp, = 1.0, p, = 1.1,
and Q, = 1.0. As shown in Fig. 6, the dimensionless position and velocity of the particle in our
simulation are compared with previous works, where good agreements are observed [52-55]. It is
convincing that our current model is suitable for describing the thermal effect when the particle’s
temperature is different from the fluid’s temperature.

(44)

IV. RESULTS AND DISCUSSION
A. Migration of a single particle with constant temperature

In this section, the migration of a single particle is firstly investigated. The Pr in this section
are all maintained at 7. In Fig. 7, the particle trajectories in the YZ plane of different Gr with the
same Re = 160 and yy = zp = 0.2R are displayed. The time interval between each point is 5000. It
is shown that, when Gr = 1, the migration process is similar to the isothermal migration, in which
the particle directly migrates toward the wall and reaches an equilibrium position close to the wall.
When Gr is 200 and 1000, the particle firstly migrates along the radial direction toward the wall
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—O—Gr=200
—/—Gr= 1000

——Gr=10000

FIG. 7. The trajectory of particle migration in the YZ plane when Re = 160.

and reaches a radial equilibrium position. Then, due to the constant effect of buoyancy, the particle
maintains the radial equilibrium position but moves downward to the bottom of the pipe, i.e., to
a relatively larger circumferential position. However, as Gr reaches 10 000, the natural convection
is more significant and the particle directly migrates toward the equilibrium position around the
bottom of the pipe and approaches closer to the wall.

To further explore the equilibrium position of the migration, we conducted simulations with
different Re, Gr, and initial positions. Four different initial positions are listed in Table II. We focus
on the equilibrium circumferential and radial positions at the steady state, which do not change with
time. The results of the particle positions are shown in Fig. 8.

According to Fig. 8(a), it is evident that the circumferential equilibrium position is determined
by Ri and all data collapse to a single curve for a specific initial position, indicating that Ri
is appropriate for correlating particle equilibrium circumferential positions. Consistent trends are
observed for different initial positions, where ¢y increases with Ri. In addition, when Ri exceeds
107!, all particles reach the bottom of the pipe with 0eq = 7. Therefore, three distinct zones can
be identified based on different ranges of Ri. In the case of Ri < 1073, the thermal effects are
negligible, and the particles tend to migrate directly toward the wall without any change in the initial
circumferential position, which is similar to the isothermal condition in that only inertial migration
is observed. Therefore, the zone with Ri < 1073 is defined as the inertial lift dominating zone.
With the Ri range spanning from 10~ to 10~!, the buoyancy resulting from thermal convection
becomes comparable to the inertial lift, thereby establishing a sensitive correlation between 6.4 and
Ri. A transition zone is thus identified within the specific range of 10~ < Ri < 107!, in which the
particle equilibrium position moves toward the pipe bottom with an increase of Ri. Subsequently,
when Ri > 107!, all particles with different initial positions converge to the same circumferential
equilibrium position at the bottom of the pipe since the buoyancy attains sufficient strength to

TABLE II. Dimensionless parameters of different particle initial position.

Parameter A B C D

yo/R 0.200 0.200 0.600 0.200
z20/R 0.200 —0.200 0.000 0.600
6o/ 1 0.250 0.750 0.500 0.102
ro/R 0.283 0.283 0.800 0.632
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FIG. 8. The particle’s (a) circumferential and (b) radial equilibrium positions as a function of Ri and Gr,
respectively. The curves indicate the fitting lines of different initial position in panel (a) and different Re in
panel (b). The vertical dashed lines divide the graph into three zones according to the range of Ri, while the
horizontal dashed-dotted lines indicate the initial circumferential positions.

dominate over the inertial lift. Hence, for the range Ri > 10~!, the buoyancy dominating zone is
defined.

Apart from the circumferential position, the radial equilibrium position of particles is also
investigated, as shown in Fig. 8(b). In contrast to circumferential equilibrium positions, radial
equilibrium positions, which are primarily influenced by Re, are found to be insensitive to initial
positions. The effect of Gr is only evident when Re is small (Re = 80) and Gr > 10%, which is
due to the competitive relationship between inertial migration and thermal effect. As Gr increases,
the buoyancy breaks the original radial force balance of inertial migration and gradually pushes the
particle toward the bottom of the pipe, as depicted in Fig. 7. When Gr is quite large (Gr > 10%),
where the particle is already focused around the bottom area, the buoyancy keeps pushing the
particle toward the bottom wall, resulting in a smaller particle-wall distance, i.e., a larger radial
position. A stronger wall repulsion force is thus produced to balance the buoyancy. For larger
Reynolds numbers Re = 160 and Re = 240, the original radial equilibrium positions are larger
due to the inertial effect, so that the effect of thermal effect, which leads to the increase of radial
position, becomes much less obvious.

Except for particle equilibrium position, the intensity of particle heat transfer is also investigated,
which is evaluated through the dimensionless Nusselt number that is defined as

hd
Nu=—, 45
u=- 45)
where / is the convective heat transfer coefficient. In the simulation, Nu is calculated through the

integration of the heat transfer at the lattice around the particle, which is expressed as

N ocal d
Nu = M’ (46)
$ds
N d_or @7
Ulpcal = - —-
local Tp — TO an

For the inertial migration with a single particle when the particle initial position is case A in
Table II, the variation of Nu with Gr is illustrated in Fig. 9. It can be seen that Nu increases insignif-
icantly with Gr, and the increase is more significant when Gr > 10%. The trend of Nu increase aligns
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FIG. 9. The relation between Nu and Gr for the condition of a single particle with constant temperature.

with the req increase with Gr in that the data variation is more obvious when Re = 80, in which the
inertial effect is relatively weaker than other cases with larger Re. The observed increase of Nu
is indeed correlated with the migration of the particle toward the wall and the concurrent increase
in req. As the particle position approaches the wall, the thermal convection around the particle is
strengthened due to a more pronounced temperature difference in its closer proximity to the wall,
which implies intensified thermal effects associated with the particle’s migration toward the wall.

B. Migration of dilute suspension with constant temperature

The particle suspension with constant particle temperature is investigated in this section. The
solid volume fraction of dilute suspension is maintained at 1% and the Prandtl number in this section
is fixed as 7. Particles are initially distributed with random positions. The particle equilibrium
position and temperature distribution of a flow field with different Gr when Re = 160 are illustrated
in Fig. 10. Generally, the migration scenario of particle suspension migration is similar to that of
the single particle. For instance, particles migrate directly toward the wall and are focused to an
annulus between the center of the pipe and the wall when Gr is small (Gr = 10°) as shown in
Fig. 10(a). Notably, particle trains along the flow direction at the annulus are observed, which have
been reported in numerous previous studies with isothermal conditions [19,56-58]. As Gr increases
to 10°, the equilibrium positions move downward and the particles tend to focus to the lower half
annulus with the similar radial positions. Furthermore, with a larger Gr (Gr = 5 x 10°), particles
are concentrated at the bottom of the pipe, aligning along the main flow direction.

The variations of the circumferential and radial equilibrium positions are illustrated in Fig. 11.
To describe the particle positions in suspension, where the number of particles is n, the average
equilibrium circumferential position 6,, = ¥ and radial position r,, = % are adopted, respec-
tively. In terms of circumferential positions as shown in Fig. 11(a), the migration behavior can also
be divided into three zones depending on the Ri range, which is similar tothe case of single-particle
migration. When Ri < 1072, namely, in the inertial lift dominating migration zone, the 0, is
approximately 0.5m. This is attributed to the random particle distribution, which is not sensitive to
the initial position of an individual particle. With an increase of the range of Ri, particles gradually
migrate to the bottom of the pipe. However, it can be seen that the Ri range of the transition zone
(1072 < Ri < 10") is larger than the range of the single-particle condition (1073 < Ri < 1071).
This discrepancy is caused by the crowding of cold particles, where the temperature difference
and natural convection arenot as significant as the single-particle situation, leading to a weakened
buoyancy effect.
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(b)

FIG. 10. Particle equilibrium positions and temperature distribution in the YZ plane when X = 1 and in the
XZ plane when Y = 40 at (a) Gr = 10°%, (b) Gr = 10°, and (c) Gr = 5 x 10° when Re = 160, respectively.

As shown in Fig. 11(b), the average radial position of dilute suspension is significantly dependent
on Re and almost does not change with Gr when Gr < 10~!. Subsequently, with the increase of
Gr, r,y initially decreases and then increases, which shows a completely different nonmonotonic
trend from the single-particle case as illustrated in Fig. 8(b). This is caused by the temperature
disturbance due to the particle crowding effect, which does not exist for the singleparticle condition.
As discussed in Sec. IV A, the particle migrates toward the pipe bottom with the increase of Gr.
However, in the case of dilute suspension, particles gather together during the downward motion,
where the local temperature field is disturbed due to the crowding particles and a low temperature
zone is formed around the pipe bottom, as displayed in Fig. 10(b) with Gr = 10°. Consequently, the
buoyancy force is weakened and the downward migration of some particles issuppressed because of

1.0 1 1
Br 033 0—0—0—0—0
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1 1 0.80 | —_—
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FIG. 11. The average particle (a) circumferential position as a function of Ri and (b) the average radial
position as a function of Gr for particle suspension with constant temperature.
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FIG. 12. (a) The average Nusselt number, (b) the average fluid temperature as a function of Gr, and (c) the
probability density function of the fluid temperature.

the decrease in the effective temperature difference, which leads to a crescent particle distribution
and the decrease of r,,. With the further increase of Gr (Gr > 10° ), the thermal effect overwhelms
the particle crowding effect during the migration and nearly all the particles are aligned close to the
bottom wall, which leads to the increase of ry.

To further elucidate the nonmonotonic variation of r,, and evaluate the influence of the particle
crowding effect, several quantities with respect to the temperature field are characterized, which
include the average Nusselt number of particles (Nuy,), the average fluid temperature (77 ,y) as well
as the probability density function (PDF) of the fluid temperature. The average Nusselt number is

defined as Nu,, = Z:;Nu. The average fluid temperature is calculated as the mean temperature value
of all the fluid lattices and the PDF represents the statistical property of the fluid temperature field.
Figure 12(a) shows the Nu,, as a function of Gr with different Re. When Gr < 10%, Nu,, is almost
irrelevant with Gr but mainly affected by Re. When Gr > 10°, the nonmonotonic trend, which is
similar to the variation of r,, displayed in Fig. 11(b), is observed again. This similarity implies a
close relation between r,, and Nu,,. As can be inferred from Eq. (47), Nu,, is a direct description
of the local temperature gradient around the particles. When Gr = 10°, the low-temperature zone
due to the crowding particles suppresses the heat transfer, resulting in a decrease of Nu,,. Then, as
Gr > 107, the particles are more concentrated at the bottom of the pipe, leading to a much reduced
low-temperature zone. Meanwhile, particle positions get closer to the pipe bottom wall with constant
T,, = 1. Therefore, the temperature difference between the particles and fluid is increased again and
Nu,y increases correspondingly. It is noteworthy that, when Gr > 10°, the Nuy, of different Re
seems to collapse onto a single curve, suggesting that the fluid convection is not the primary effect
but the conduction between the particle and the pipe wall dominates the heat transfer.
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Figure 12(b) shows the variation of Ty ,, as a function of Gr, where a monotonic increase is
observed. The T ,, represents the overall status of the fluid temperature field and can somehow
reflect the degree of particle gathering. If the particles are evenly distributed in the pipe, the
low-temperature zone created by the cold particles becomes large, which results in a lower value of
Tf.ay. The monotonic increase of Ty ,, indicates that the particles get much closer to each other as
Gr increases. Moreover, the differences of Ty ,, for different Re are tiny, implying that the particle
gathering behavior is similar for different Re. However, T ,, is not able to characterize the spatial
location of particle gathering. Figure 12(c) further illustrates the PDFs of the fluid temperature in
the upper and the lower half pipe, respectively, in order to demonstrate the nonuniformity of the
temperature field. It is shown that when Gr = 1, the PDFs are similar for both the upper and the
lower pipe, where the peaks are around 0.6, suggesting a uniform temperature distribution in the
entire region. As Gr is increased to 10°, the peaks of the upper and lower pipes move to around 1 and
0.95, respectively. The nonuniform temperature distribution becomes evident, where the PDF for the
lower pipe is much wider. Then, when Gr = 5 x 10°, the PDF of the upper pipe is concentrated to
a sharp peak around 1, and the peak of the lower pipe moves close to 1 again. In this stage, the
temperature of the upper pipe is almost uniform at 7 = 1, while the temperature of the lower pipe is
still in wider distribution but with larger value. The findings of Fig. 12(c) provide further evidence
ofthe temperature disturbance due to the particle crowding effect, which strongly supports the above
discussions and analyses.

C. Migration with varied particle temperature

In real applications, particle temperature variation influenced by the surrounding environment is
also important. Therefore, we take the temperature variation of the particle into consideration and
discuss its impact on the migration. Under this circumstance, the effects of two more important
parameters, i.e., the relative heat capacity (Cp,) and the Prandtl number (Pr), which determine the
heating rate of the particle, are introduced. Since the particle temperature is varied, the buoyancy
force exerted on the particle changes not only with the position, but also with time. As a result,
the particle migration behavior becomes more complicated. In this section, the migrations of both
singleparticle and dilute suspensions- are discussed. For singleparticle migration with varied particle
temperature, the initial particle position is fixed with case A in Table II.

Figure 13 illustrates the typical particle trajectories as well as the particle temperature evolution,
where Re is fixed as 160. The trajectories are similar tothose of the constant temperature condition.
However, Cp, and Pr play an important role on influencing the equilibrium position, since the
buoyancy is related to the temperature difference between the particle and fluid. The particle
temperature is varied and related to the heat transfer process, which is in turn influenced by the
temperature difference and position. Observations from the trajectories indicate that, for smaller Pr
and Cp,, the particle temperature increases more rapidly, so that the migration is more prone to be
the isothermal condition. Conversely, for larger Pr and Cp,, the migration is affected by buoyancy
for a longer time and it resembles the constant temperature difference condition.

Then, the equilibrium positions when Cp, = 100 and Pr = 7 are shown in Fig. 14. According
to Fig. 14(a), similar to the situation of a single particle with constant temperature, three zones of
the circumferential equilibrium position can be determined depending on the range of Ri. However,
it can be seen that the transition zone is extended and the range is around 10~ < Ri < 0.2. In
addition, it is shown from Fig. 14(b) that the particle’s radial equilibrium position is only determined
by Re for the varied temperature process but is irrelevant with Gr, which is distinct from the constant
temperature case. This is because the particle’s temperature eventually becomes the same as the
fluid’s, and the migration always goes back to the isothermal case, where the radial equilibrium
position only depends on Re.

Figure 15 further compares the particle equilibrium circumferential position with different Pr
and Cp,. The results are consistent with the analysis from the trajectory displayed in Fig. 13. With
a decrease of Cp, and Pr, the evolution of 6,, moves to the right, which results in the enlargement
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FIG. 13. Single particle’s (a) migration trajectory and (b) temperature evolution with different Cp, when
Pr = 7, and (c) migration trajectory and (d) temperature evolution with different Pr when Cp, = 10 and Gr =
2000.

of the transition zone and the requirement of a much larger Ri to induce the particle migration
toward the pipe bottom. This is because it takes a shorter time for the particle to reach the boundary
temperature for small Cp, and Pr, only during which the buoyancy possesses an effect on the particle
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FIG. 14. (a) The circumferential and (b) radial equilibrium positions for a single particle with varied
temperature when Cp, = 100 and Pr = 7.
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FIG. 15. The circumferential equilibrium position as a function of Ri for a single particle with varied
temperature when Re = 160.

movement. To expedite the particle’s movement toward the bottom of the pipe within a shorter time,
a more substantial buoyancy effect is needed, corresponding to a larger Ri.

Then, the particle suspension with varied temperature is investigated. Particles are randomly
distributed in the pipe with 7, = O initially. All simulations are set with Cp, = 10, Pr =7, and
Re = 160. The 6,, of particles at different time points is recorded while r,, is not studied since it has
been found that r,, is only related to Re for varied temperature conditions, as shown in Fig. 14(b).
The evolution of 6,, with time is plotted in Fig. 16(a). For all simulation conditions, 6,, is initially
around 0.5 due to the random distribution. It is shown that when Gr is small (Gr < 1 x 10*), the
average circumferential positions do not change significantly with time, which is located around
Oay = 0.5 during the migration. However, when Gr > 1 x 10°, the evolution of 0.y undergoes
three stages, which first rises rapidly, followed by a dropping down, and then gradually rises again
to the equilibrium state. Firstly, the temperature difference between the particles and the fluid is
large at the beginning of the migration, where the strong thermal effect quickly pushes the particles
toward the pipe bottom, leading to the rapid increase of 6,,. Then, due to the increase of particle
temperature, the temperature difference between the particle and the surrounding fluid becomes
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FIG. 16. Particle’s average (a) circumferential equilibrium position and (b) temperature as a function of
time when Cp, = 10, Pr = 7, and Re = 160.
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FIG. 17. Particle positions when (a) tv/H? = 0.039, (b) tv/H* = 0.78, and (c) tv/H? = 3.9 with the
conditions of Cp, = 10, Pr = 7, Re = 160, and Gr = 5 x 10°.

smaller. Hence, the effect of thermal buoyancy is weakened and the particles crowded at the pipe
bottom start to rearrange due to the fluid inertial effect. During this process, 6,y firstly decreases and
then increases to the final steady state, where a slightly larger 8,, & 0.77 compared to the initial
state is reached. For the condition 1 x 10* < Gr < 1 x 10°, the three stages are also observed,
and 6,, is located between 0.5 and 0.77. Figure 16(b) displays the time evolution of the average
particle temperature. It can be seen that the particle temperature rises rapidly from the beginning
of the migration and it almost reaches the equilibrium temperature when the particle rearrangement
finishes at around tv/H 2 — 1. Furthermore, from the inset of Fig. 17(b), it is observed that there is
still a tiny temperature difference AT =~ 0.005 between the particles and the fluid due to the very
low heat transfer rate approaching the steady state. This tiny temperature difference accounts for the
slightly larger 6,, at the equil ibrium state when Gr > 1 x 10°.

Figure 17 shows a straightforward description of the evolution of particle positions with large Gr
at different time points. Figure 17(a) denotes the particle crowding around the pipe bottom at the
beginning, which corresponds to the first peak observed in Fig. 16(a) for Gr > 1 x 10°. Figure 17(b)
illustrates the rearrangement of the particles during the second state, where the particles seem to be
levitated and the 6,, decreases from the first peak value. Figure 17(c) shows the final equilibrium
state, in which the particle temperature approaches the wall temperature and the entire system
resembles the isothermal condition. It is interesting that the particle trains are observed again, as
mentioned in Sec. IV B, which is believed to be evidence of the fluid inertial effect. To highlight the
evolution of particle trains, different colors are utilized to identify the distinct trains. It is found that
the particle trains are mixed at the beginning, start to take shape during the particle rearrangement,
and eventually develop into the stabilized form at the equilibrium state.

V. CONCLUSIONS

In this study, the inertial migration of neutrally buoyant particles with thermal effect in a circular
pipe is investigated by a coupled LBM-DEM numerical approach. Single-particle and dilute particle
suspensions with both constant temperature and varied temperature conditions are investigated,
respectively. Both the circumferential and the radial positions in terms of the cylindrical coordinates
are adopted to describe the particle migration behavior. Furthermore, the heat transfer during the
migration is evaluated via the dimensionless Nusselt number. The main findings of the current study
are summarized as below.

(1) Generally, it is found that the particles tend to migrate toward the pipe bottom due to
the thermal buoyancy when the fluid’s temperature is higher than the particle’s. However, the
particle’s circumferential equilibrium position is found to be controlled by the initial position and
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the Richardson number, while the radial equilibrium position is determined by the Reynolds number
as well as the Grashof number.

(2) For the migration of a single particle with constant temperature, three zones are identified to
describe the circumferential equilibrium position 6 in terms of Ri, including an inertial lift domi-
nating zone with Ri < 1073, a transition zone with 10~ < Ri < 107!, and a buoyancy dominating
zone with Ri > 10~!. For the radial equilibrium position r, it appears to increase with the increase
of Gr. But the increment is only evident for a small Reynolds number, which is Re = 80 in the
current study. Meanwhile, the heat transfer rate, which is characterized by Nu, strongly depends on
Re and increases insignificantly when Gr > 10°.

(3) For the migration of a dilute suspension with constant temperature, the evolution of the
average circumferential equilibrium position 6,, is similar to the single-particle situation except
for an enlarged transition zone. However, the average radial equilibrium position r,, and Nusselt
number Nu,, perform a nonmonotonic variation as a function of Gr, which is due to the temperature
disturbance caused by the particle crowding in the near wall area around the pipe bottom.

(4) For a single particle with varied temperature, the heat capacity ratio Cp, and the Prandtl
number Pr determine the migration behavior, which exhibits the characteristic of isothermal condi-
tion for larger Cp, and Pr but resembles the constant temperature condition for small Cp, and Pr.
Additionally, the transition zone of the evolution of 6 is enlarged with the decrease of Cp, and Pr.
The radial equilibrium position r is found to be only determined by Re but irrelevant with Gr.

(5) For the migration of particle suspension with varied temperature, the particles’ average
circumferential positions evidently do not change with time and are located around 6,, = 0.57
when Gr is lower than a threshold value and other parameters are fixed, which is Gr = 10> and
Cp, = 100, Pr =7, and Re = 160 in the current study. Once Gr > 10°, a three-stage fluctuation is
observed and the final 6.,y is discovered to be slightly larger than 0.57. Moreover, the formation
of particle trains is also revealed in the migration with thermal effect, which is only reported in
previous works on isothermal migration.
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