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Linear stability of turbulent channel flow with one-point closure
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For low enough flow rates, turbulent channel flow displays spatial modulations of large
wavelengths. This phenomenon has recently been interpreted as a linear instability of the
turbulent flow. We question here the ability of linear stability analysis around the turbulent
mean flow to predict the onset and wavelengths of such modulations. Both the mean flow
and the Reynolds stresses are extracted from direct numerical simulation (DNS) in periodic
computational domains of different size. The Orr-Sommerfeld-Squire formalism is used
here, with the turbulent viscosity either ignored, evaluated from DNS, or modeled using a
simple one-point closure model. Independently of the closure model and the domain size,
the mean turbulent flow is found to be linearly stable, in marked contrast with the observed
behavior. This suggests that the one-point approach is not sufficient to predict instability,
at odds with other turbulent flow cases. For generic wall-bounded shear flows we discuss
how the correct models for predicting instability could include fluctuations in a more
explicit way.

DOI: 10.1103/PhysRevFluids.9.063906

I. INTRODUCTION

It has been known since the 1960s that many wall-bounded shear flows display a complex
organization akin to laminar-turbulent patterning [1] at intermediate Reynolds numbers, Re. This
phenomenon was later reproduced, first experimentally in flows of much larger aspect ratio [2–4],
then in several numerical studies [5–8]. A large number of recent studies, both experimental
and numerical, have described how banded patterns or solitary stripes emerge from the laminar
flow after the triggering by localized finite-amplitude disturbances [9–14]. The leading scenario
is largely based on the development of a large-scale flow at the interface between laminar and
nonlaminar zones [9]. The route from the turbulent flow to the banded patterns, on the contrary,
happens spontaneously and does not require any finite-amplitude perturbation. The emergence of
the laminar-turbulent patterns starting from the fully turbulent regime is illustrated in Fig. 1 as Re is
decreased. The authors of Ref. [3], suspecting an instability of the spatially homogeneous turbulent
flow, modeled the emergence of the resulting patterns using a noisy supercritical Ginzburg-Landau
formalism. Later numerical evidence [15–17] demonstrated that the precursors of patterning were
to be found in the form of low-amplitude modulations of the homogeneous turbulent flow, which
is known from simulations at higher Re. Finally, an explicit dispersion relation for the underlying
instability was reconstructed from costly numerical data, using a response function procedure, and
this spatial modulation could be interpreted as a linear instability of the turbulent flow as a whole,
i.e., including all its fluctuations [18].

It is natural to wonder whether the onset of modulation can be predicted from simpler concepts,
such as linear stability, and at a much lower cost. However, linearization about an unsteady turbulent
flow is fraught with mathematical difficulties if all temporal and spatial fluctuations are taken into
account. It would thus be desirable to average out the fluctuations and perform the linear stability
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FIG. 1. Onset of laminar-turbulent patterning in turbulent channel flow. Midplane (y = 0) wall-normal
velocity v(x, z, t ). From top to bottom: Reτ = 100, 90, 85, 80 in the stationary regime.

analysis of the mean flow. However, because of the nonlinearity of the original equations, that for
the mean flow includes correlations of the fluctuations and calls for turbulent closures.

Following this line of thought, it was conjectured that turbulent mean flows are marginally stable
[19], an idea furthermore suggested as a governing principle used to predict mean flows. Focusing
on the canonical case of channel flow between two infinite plates, driven by a pressure gradient, this
hypothesis was later dismissed in favor of strict stability [20,21], in the sense that all eigenvalues
of the linearized problem are strictly negative. However, the range of values of Re considered in
these studies was always too high to be relevant to the pattern formation problem of interest here.
The present paper is devoted to a similar stability analysis of turbulent channel flow restricted to the
range of Re values where laminar-turbulent patterns are known to occur.

There has been a long debate as to whether the linear stability or instability of the mean turbulent
flow could be considered as a reliable prediction [21,22]. It fails in some cases when the spectral
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distribution of energy of the mean flow is not steep enough [23], but it proved accurate in other
situations, such as the two-dimensional cylinder wake [24], in rotating channel flow [25], thermoso-
lutal convection [26], and more recently in turbulent convection [27] and magnetohydrodynamic
turbulent flows [28]. Furthermore, finite-time stability [29] of the turbulent mean flow indicates
strong transient growth, at spanwise scales consistent with the appearance of both near-wall streaks
and large-scale streaks [30,31]. This encouraging result suggests that linearization about a mean
flow can contain decisive information about the fluctuation fields and be a predicting tool.

The wall turbulence community has possibly ignored the possibility that such instabilities of
the turbulent regime could occur at low rather than at high Re. Nevertheless, linearizing around
a well-defined mean flow, as formally done at high Reynolds number, remains a priori a relevant
approach to capture the emergence of the long wavelength modulation observed in shear flows when
decreasing the Reynolds number. As a further motivation to consider the instability formalism, a
recent low-order model for the mean flow of a companion shear flow (the so-called Waleffe flow) has
been recently suggested [32], and the fixed point associated with the mean turbulent flow displays
indeed a linear instability precisely at the onset of the turbulent bands.

In this work we revisit the approach using the Orr-Sommerfeld-Squire formalism applied to this
problem by focusing on the relevant parameter range. Both the mean flow and the turbulent viscosity
are extracted from direct numerical simulation in periodic computational domains of varying size.
As an alternative the turbulent viscosity can also be modeled using a simple one-point closure model.
The mean turbulent flow is found to be linearly stable, regardless of the choice of one-point model
and domain size, in marked contrast with the observed behavior. We conclude that one-point closure
models associated with one-dimensional base flows do not capture the essence of the instability
mechanism and discuss how the proper fluctuations could be included in a more explicit way.

II. CLOSURE FORMALISM

A. Instability formalism for mean flows

We start from the original momentum equations in vector form,

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ∇ · (ν∇u), (1)

which together with the incompressibility condition ∇ · u = 0 forms the Navier-Stokes equations.
In Eq. (1), u = (ux, uy, uz ) is the (dimensional) three-dimensional velocity field, p the pressure
field, ν the kinematic viscosity, and ρ the fluid density. x denotes the streamwise coordinate, y
the wall-normal coordinate where the walls are at y = ±h, and z is the spanwise coordinate. A
dimensionless Reynolds number Reτ = uτ h/ν can be built based on the friction velocity uτ , related
to the imposed mean wall-shear stress τ by the relation ρu2

τ = τ .
Any averaging (·) satisfying Reynolds conditions [33] is admissible here, such that a priori the

average U = u of a velocity field u(x, y, z, t ) can also depend on x, y, z, and t . By applying the
chosen averaging to all terms of the original equation (1) one obtains

∂U
∂t

+ (U · ∇)U = −∇P + ∇ · (ν∇U ) − ∇ · (u′ ⊗ u′), (2)

where u′ = u − U , and the term u′ ⊗ u′ forms the Reynolds stress tensor. This mean flow equa-
tion for U is not closed. The standard strategy amounts to deriving an evolution equation for the
Reynolds stress, which in turn will depend on higher order correlations. To make progress, the
resulting hierarchy of equations must then be truncated with a closure model.

When the flow geometry is simple enough—little or no anisotropy, zero or small curvature,
etc.—as is the case here, a reasonable assumption, the Boussinesq hypothesis, consists in assuming
that the Reynolds stress anisotropy tensor is aligned with the strain tensor of the mean flow. The
proportionality coefficient νt is called the turbulent eddy viscosity. An explicit expression for νt is
called a one-point closure model, in contrast to closure models based on the correlations between

063906-3



P. V. KASHYAP, Y. DUGUET, AND O. DAUCHOT

several spatial locations. Equation (2) can then formally be rewritten in the more compact form

∂U
∂t

+ (U · ∇)U = −∇P + ∇ · (νT ∇U ), (3)

where νT = ν + νt .
The mean flow equation has a particular steady solution U∗ corresponding to the stationary

turbulent flow found at high Re (and different from the laminar Poiseuille solution). The channel
flow geometry is furthermore invariant by translation in the streamwise and spanwise directions.
In such a case, a homogeneous and steady turbulent flow is observed: all turbulent statistics of this
flow, in particular the mean flow and the turbulent viscosity, become independent of t , x, and z. The
turbulent viscosity can be evaluated as

νt = − u′
xu′

y
d
dyUx

. (4)

Because Eq. (3) is also a nonlinear PDE, there is no reason why U∗ should be the only station-
ary solution. More specifically, the symmetries associated with the translation invariance in the
streamwise and spanwise directions can be spontaneously broken following a classical instability
scenario. In the simplest case, such a scenario would start by the linear destabilization of the solution
U∗, which we now investigate by applying the Orr-Sommerfeld-Squire formalism to the mean flow
equation (3).

B. Orr-Sommerfeld-Squire system

Assuming a small perturbation Ũ (x, y, z, t ) added to U∗(y), it obeys the linearized equation

∂Ũ
∂t

+ (Ũ · ∇)U∗ + (U∗ · ∇)Ũ = −∇P̃ + ∇ · (νT ∇Ũ ). (5)

The linear stability analysis follows closely the classical Orr-Sommerfeld theory (see, e.g.,
Ref. [34]), except that (i) the laminar base flow U lam(y) is replaced by the mean base flow U∗(y)
and (ii) the viscosity νT depends on y [35]. Equation (5) can also be obtained from the triple
decomposition suggested in Ref. [21], where the total flow is decomposed into a mean flow, a
coherent wave part and less organized turbulent fluctuations.

Because of the spatial and temporal translation symmetries of Eq. (3), we use the classical
velocity ansatz Ũ ∼ Û (y)ei(αx+βz−ωt ), where α and β are respectively the axial and spanwise wave
number and ω = ωr + iωi a complex number, with ωr the angular frequency and ωi the growth
rate of the perturbations. Expanding all scalar fields on a basis of N Chebyshev polynomials
(N = 65, throughout the study), the original system takes, for each choice of α and β, the form
of a generalized matrix eigenvalue problem [34,36] Aq = −iω q, where

A =
(

	−1LOS 0
−iβU ′ LSQ

)
, (6)

with

LOS = −iα(U	 − U ′′) + νT 	2 + 2ν ′
T 	D+ ν ′′

T (D2 + k2) + νT 	 + ν ′
TD (7)

and

LSQ = −iαU + νT 	 + ν ′
TD. (8)

The vector q contains the wall-normal velocity Ûy and the wall-normal vorticity ω̂y, respectively,
expressed at all (discrete) collocation points in y. The differential operators areD = d/dy (just like
the prime symbol) and 	 := D2 − k2, with k2 = α2 + β2. The formulation is identical to that in
Ref. [35].
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C. Teachings from the Squire theorem

Since the formalism is mathematically similar to the Orr-Sommerfeld-Squire, a legitimate ques-
tion is the applicability and the consequences of the Squire transformation. As a consequence of this
transformation, if there exists a solution of the Orr-Sommerfeld eigenvalue problem its growth rate
satisfies the scaling ωi(α, β, Re) = α ci(k2, α Re), where ci is the imaginary part of a complex phase
velocity. Accordingly for any solution parametrized by (α1, β1, ωi1, R1), there exists an identical
solution with k2

2 = k2
1 , ωi2 = α2ωi1/α1, and R2 = α1R1/α2. This is usually used to prove that if there

is a three-dimensional linear instability of a laminar plane shear flow (ωi1 = 0, α1 > 0, β1 > 0) for a
given critical Reynolds number Rec, then there is a two-dimensional one (ωi2 = 0, α2 > α1, β2 = 0)
emerging at a lower critical Reynolds number [37]. But it also says that there are other marginally
stable modes at higher Reynolds number (ωi2 = 0, α2 < α1, β2 > β1). In the usual case, the insta-
bility sets in when increasing the Reynolds number and this second part of the theorem is useless,
since the base flow is already unstable. Here, in contrast, we are looking for an instability taking
place when decreasing Re. Using the theorem, one would conclude that there are unstable modes
at all Reynolds numbers (ωi2 = 0, α2 → 0, β2 > β1, R2 → ∞). This is certainly not backed by
experimental or numerical evidence.

Note that the scaling leading to the Squire transformation does not hold strictly, because the
base flow and the turbulent viscosity depend on the Reynolds number, in contrast with the laminar
flow. Nevertheless, close enough to the three-dimensional critical value of Re, one does not expect
any rapid change of the base flow and a weaker formulation of the theorem should hold. In such
a scenario, given that all observations point towards a well defined three-dimensional pattern, this
suggests that the Orr-Sommerfeld-Squire formulation, or equivalently any linear stability analysis
of the mean flow alone, is likely to fail at predicting the observed instability where both critical α

and β are nonzero. In the present work, we will actually show explicitly that this is indeed the case
for the plane channel flow.

D. Models for the turbulent viscosity

The Boussinesq eddy viscosity model itself does not prescribe the form of the turbulent viscosity
νt (y), which depends on the flow geometry and the Reynolds number. We consider here three
different simple explicit models for νt .

The most drastic one trivially assumes vanishing Reynolds stresses: νt = 0. It amounts to the
wishful hypothesis that linearization around the mean flow could be carried out as if it were
a solution to the Navier-Stokes equations. Counterintuitively perhaps, this procedure leads in
some flow cases to physically correct results [23,24] and it should hence not be immediately
discarded.

Second, we use an analytical closure model, popular for high-Reynolds-number channel flow,
proposed by Cess [31,38]. The Cess formula reads

νT

ν
= 1

2

(
1 + κ2Re2

τ (1 − η2)2(1 + 2η2)2{1 − exp [(|η| − 1)Reτ /A]2}
9

) 1
2

+ 1

2
, (9)

where η = y/h and with κ = 0.426 and A = 25.4 as in [31]. The Cess formula has been used also in
similar studies of turbulent mean flow stability in, e.g., Refs. [21,27,30,35]. Note that the previous
model with vanishing Reynolds stresses corresponds to a special case of the Cess closure with
κ = 0.

Other popular modeling possibilities for turbulent channel using one-point closures are the k − ε

and k −  closures, where νt is imposed as a scalar field built on the mean kinetic energy and
dissipation. Linear stability analysis of the k −  model with prescribed constants has been shown
to predict strict stability of the mean plane Couette flow [39]. Because of the many constants
involved in this model, usually determined from benchmarks performed at high Re rather than in
the transitional regime, we did not pursue this approach here.
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In the framework of unsteady RANS modeling (URANS), closures obtained by the compressible
form of the Spalart-Allmaras turbulence model have also been considered. In particular, in the study
of Ref. [40], the turbulent viscosity is considered as an unknown fluctuating variable in its own
right. Fluctuations of νt are hence also taken into consideration through the use of yet another
closure model. However, the models used in such studies, for instance, the Spalart-Allmaras model
in Ref. [40], are phenomenological rather than based on any governing principle. This approach has
hence not been pursued here.

Instead, we propose a more direct approach, in avoiding the formulation of any model and
directly estimating νt (y) from direct numerical simulation (DNS), numerically evaluating the
Reynolds stresses and the mean flow U ∗

x (y), and using Eq. (4). The apparent singularity at
y = 0, where the denominator vanishes, is avoided by using L’Hôpital’s rule. Stability around a
numerically determined turbulent mean flow is now routinely evaluated, e.g., in resolvent analysis
studies [41]. However, considering the Reynolds stresses under a data-driven approach (as in, e.g.,
Ref. [42]) has, to our knowledge, not been attempted in linear stability studies despite the marginal
additional cost.

III. NUMERICAL DATA

All simulations were performed with the MPI-parallel spectral solver Channelflow2.0 [17,43] in
a domain of size Lx × Lz = 250 × 125 and averaged over times up to t = 4 × 103 time units. They
ran at the French computation center IDRIS using up to 640 cores. The pseudospectral resolution is
based on 1024 modes in both x and z (including dealiasing with the 2/3 rule) and 65 in y, which is
comparable to [16].

The averages considered in this study, i.e., the steady mean flow and the Reynolds stresses,

U (y) = lim
T →∞

1

T

∫ T

0
u(x, y, z, t )dt, (10)

u′
xu′

y(y) = lim
T →∞

1

T

∫ T

0
[(ux − Ux )uy](x, y, z, t )dt, (11)

have been evaluated in practice as time averages and computed over 4000 time units after excluding
transients.

Different computational domains have been tested for this study, respectively Lx = 2Lz =
4π, 25, 50, and 100. Note that the computational domain size is not directly related to the wave
numbers α and β emerging from stability analysis. For Lx = 4π , the Reynolds stresses are not
symmetric in y over moderate observation times and statistics are slow to converge. This asymmetry
in y of the flow fields in computational domains that are too small has long been documented
[44] and we discard the corresponding data. For the larger system sizes Lx = 25, 50, and 100,
the results are quantitatively similar as demonstrated, for instance, by the mean flow profiles U ∗

x (y),
computed by DNS for different values of Reτ from 110 down to 96 and for different domain sizes
that are compared in Fig. 2. All results displayed in the following were obtained with a system size
Lx = 100. We also checked that the fluctuations extracted from the present DNS simulations match
those in the literature; see Fig. 3.

Finally Fig. 4 compares the turbulent viscosity profiles, evaluated directly from the DNS sim-
ulations using Eq. (4) or from the Cess formula, Eq. (9). Not so surprisingly, the Cess formula,
designed for high Reynolds flows, underestimates the turbulent viscosity.

IV. STABILITY RESULTS

The eigenvalues of the linear operator defined by Eqs. (6), (7), and (8) have been computed using
Python for values of α and β on a discrete grid. To illustrate the results, we have picked two specific
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FIG. 2. Mean flow U ∗
x (y) from DNS for Reτ from 110 to 96, used for the linear stability analysis. Different

domain sizes have been used without any strong influence on the statistics.

FIG. 3. rms streamwise velocity fluctuations for Reτ = 110 (left) and Reynolds stress 〈u′
xu′

y〉 for Reτ from
110 to 96 (right) versus y+. Includes a comparison to [5].

FIG. 4. Turbulent viscosity νt for Reτ = 102, evaluated directly from DNS using Eq. (4) (dots), interpo-
lated near the midplane y = 0 using l′Hospitals rule and using the Cess formula of Eq. (9) (line).
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FIG. 5. Complex eigenvalues in the ω plane for Reτ = 110 (top row) and Reτ = 96 (bottom row). Left
column: (α, β ) = (0.18, 0.42) (the critical wave vector in Ref. [18]). Right column: (α, β ) = (0, 0).

values of (α, β ), respectively (0.18,0.42), the marginal wave vector expected from the response
analysis conducted in [18], expressed in units of 2π/h, and (0,0). Figure 5 displays the growth rate
of the perturbation for two values of Reτ larger than the expected instability threshold Rec

τ , estimated
in [18]. In all cases the growth rates are strictly negative except for two neutral modes corresponding
to the neutral directions x and z: perturbations to the mean relax towards the linearly stable mean
flow U ∗. For (α, β ) = (0, 0) all modes are stationary and decaying. For (α, β ) = (0.18, 0.42) the
modes are propagating.

We have explored a large range of values for the wave numbers (α, β ). Figure 6 displays the
isolevels of the growth rate in the (α, β ) plane for the same two values of Reτ . In both cases (α, β ) =
(0, 0) is the least stable mode. This points out the lack of selection of an oblique structure under
linear processes.

Finally, we explore the dependence of the growth rate on Reτ . As shown in Fig. 7 for β = 0 and
in Table I, the decay rate of the least stable mode is weakly affected by the value Reτ in the range of
values investigated. This result suggests that the stable eigenvalues in question are robust and that
minute modifications of other parameters (such as spatial resolution, averaging time, etc.) will not
have a strong influence on the conclusions.

To conclude this analysis, we compare eigenspectra obtained from different closures (Fig. 8).
A least stable branch of eigenvalues emerges in the case νt = 0, without any counterpart once
Reynolds stresses are included, whether based on the Cess formula or on the DNS data: Reynolds
stresses stabilize the homogeneous mean turbulent flow U ∗.
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FIG. 6. Isocontours of growth rate ωi(α, β ). Reτ = 110 (left) and Reτ = 96 (right).

V. DISCUSSION AND OUTLOOKS

The dynamical origin of laminar-turbulent patterns and localized turbulent bands in wall-
bounded shear flows has puzzled researchers for decades. The formation of such structures can
be either investigated as a finite-amplitude instability of the laminar flow, as done in several
recent studies [10,12,13], or directly as a linear instability of the homogeneous turbulent flow
[3]. In the case of pressure-driven channel flow, recent work has concluded that laminar-turbulent
patterns emerge from homogeneous turbulent flow below a Reynolds number Reτ of about 95 via
a modulational instability [18]. In the present numerical study we have focused on the channel
case and investigated the ability of linear stability analysis conducted around the mean flow to
predict the onset of modulation. Several simple one-point closures have been employed to link
the Reynolds stresses to the mean velocity field. In all cases the homogeneous mean flow, which
depends only on the wall-normal variable y, appears as linearly stable for all values of the Reynolds
number investigated. Moreover, the least stable mode has in all cases kx = kz = 0, at odds with the
nonzero wave vector of the modulated state. This result appears robust with respect to domain size
and numerical resolution. It is moreover consistent with the predictions from the Squire theorem
although this theorem does not strictly apply here because the base flow depends on Re.

There are several lessons to be learned from the failure of the analysis in predicting the observed
instability. First, because the linear instability of the mean flow is not better predicted when the
turbulent viscosity profile is directly measured from the DNS data, we can conclude that it is not the
specific choice of a turbulent viscosity model that matters most. It is therefore tempting to conclude
that any one-point closure or eddy viscosity model is doomed to fail at capturing the mechanism
of the instability. In fact, this is precisely what our discussion about the applicability of the Squire
transformation in Sec. II C suggests.

TABLE I. Growth rate associated with the least stable eigenvalue as a function of Reτ for the three closure
models investigated.

Reτ DNS Cess A = 0

110 −0.00115673 −0.00122346 −0.00040783
102 −0.00124783 −0.00133929 −0.00047432
100 −0.00127355 −0.00137158 −0.00049348
98 −0.00129956 −0.00140540 −0.00051383
96 −0.00132725 −0.00144086 −0.00053546
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FIG. 7. Stability in DNS. Isocontours of growth rate in the (α, Reτ ) plane for β = 0.

FIG. 8. Eigenvalues in the complex ω plane for Reτ = 96. The values of the wave numbers are varied over
the range α � 0.4, β � 0.9.
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There are however alternative directions to investigate. One direction is to look beyond the
Boussinesq theory for the constitutive relation; another is to consider a more complex base flow.
When performing the linear stability analysis of Eq. (3), the turbulent viscosity is assumed to remain
independent of x and z. In other words, the fluctuations were averaged over the three homogeneous
coordinates, respectively the streamwise direction x, the spanwise direction z, and the time t . It is
likely that such an extreme spatial coarsening of the fluctuations carried out here is responsible for
the fact that the linear instability does not develop. In particular, at the moderate Reynolds numbers
considered here, the so-called homogeneous turbulent flow is mainly structured around elongated
coherent structures such as streamwise streaks (see the kx − kz energy spectra in Ref. [18], which
have a peaked distribution about 100ν/uτ ). These structures are not properly captured by the mean
flow which is based on z averaging. In addition, the infinitely long time scale associated with the
mean flow is probably not needed given that modulations can appear in DNS over a time scale of
O(100) time units [17].

This suggests a more careful coarsening of the fluctuations, taking into account such structures
as streaks into the base flow of interest for the stability study. The instability of optimally growing
streaks has already been invoked in several works [45,46] as a plausible explanation for the
larger-scale streaks observed in high-Re turbulent shear flows. Moreover, as is visually clear from
Fig. 1, streaks are typically small scale compared to the large scale modulations. It is thus only as
a collective instability that the present large-scale modulations found below Re ≈ 100 can arise.
Investigating spatially subharmonic instabilities of streaks at the relevant parameter values, for
instance using recent methods based on the Bloch wave formalism [47,48], is hence a promising
pathway in the quest for predicting the onset of laminar-turbulent patterns.
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