
PHYSICAL REVIEW FLUIDS 9, 063904 (2024)

Neural networks in feedback for flow analysis and control

Tarcísio C. Déda * and William R. Wolf
University of Campinas, Campinas, São Paulo, Brazil

Scott T. M. Dawson
Illinois Institute of Technology, Chicago, Illinois, USA

(Received 15 December 2023; accepted 6 May 2024; published 12 June 2024)

This work presents a methodology for analysis and control of nonlinear fluid systems
using neural networks. The approach is demonstrated in four different study cases: the
Lorenz system, a modified version of the Kuramoto-Sivashinsky equation, a streamwise-
periodic two-dimensional channel flow, and a confined cylinder flow. Neural networks
are trained as models to capture the complex system dynamics and estimate equilibrium
points through a Newton method, enabled by back-propagation. These neural network
surrogate models (NNSMs) are leveraged to train a second neural network, which is
designed to act as a stabilizing closed-loop controller. The training process employs a
recurrent approach, whereby the NNSM and the neural network controller are chained
in closed loop along a finite time horizon. By cycling through phases of combined random
open-loop actuation and closed-loop control, an iterative training process is introduced to
overcome the lack of data near equilibrium points. This approach improves the accuracy
of the models in the most critical region for achieving stabilization. Through the use of L1
regularization within loss functions, the NNSMs can also guide optimal sensor placement,
reducing the number of sensors from an initial candidate set. The data sets produced during
the iterative training process are also leveraged for conducting a linear stability analysis
through a modified dynamic mode decomposition approach. The results demonstrate the
effectiveness of computationally inexpensive neural networks in modeling, controlling,
and enabling stability analysis of nonlinear systems, providing insights into the system
behavior and offering potential for stabilization of complex fluid systems.

DOI: 10.1103/PhysRevFluids.9.063904

I. INTRODUCTION

Neural networks (NNs) are powerful tools for data-driven mathematical modeling, finding a
range of applications in the field of fluid mechanics such as flow modeling, analysis, optimization,
and control [1–5]. Recent advances in experimental data sampling, the accessibility of data from
increasingly complex simulations, and the widespread availability of libraries that facilitate the
design and training of NNs has encouraged their rapid development. In this context, NNs have been
applied to data compression, model order reduction, flow analysis, turbulence modeling, and feature
extraction, all leveraging their power as general nonlinear function approximators. In the field of
turbulence modeling, deep neural networks have been used to improve the prediction capabilities
of Reynolds-averaged Navier-Stokes (RANS) closure models [6,7]. In the area of flow estimation
and reconstruction, Milano and Koumoutsakos [8] presented one of the first applications of neural
networks in fluid mechanics for reconstructing near-wall turbulent flow fields. More recently,

*tarcisio.deda@gmail.com

2469-990X/2024/9(6)/063904(35) 063904-1 ©2024 American Physical Society

https://orcid.org/0000-0002-8298-9478
https://orcid.org/0000-0001-8207-8466
https://ror.org/04wffgt70
https://orcid.org/0000-0002-0020-2097
https://ror.org/037t3ry66
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.9.063904&domain=pdf&date_stamp=2024-06-12
https://doi.org/10.1103/PhysRevFluids.9.063904


DÉDA, WOLF, AND DAWSON

for example, Fukami et al. [9] employed convolutional neural networks (CNNs) to accurately
reconstruct turbulent flows from coarse flowfield images.

Considering reduced-order modeling, Lui and Wolf [10] combined deep neural networks and
proper orthogonal decomposition (POD) to build accurate models of unsteady flows involving
transient features, rewriting the Navier-Stokes equations as a set of nonlinear ordinary differen-
tial equations. More recently, Miotto and Wolf [11] employed vision transformers and CNNs to
extract quantities of interest such as aerodynamic coefficients and skin friction from flow-field
visualizations. These authors demonstrated that neural network models based on input images were
effective in interpolating and extrapolating between flow regimes, offering a promising alternative
for sensors in experimental campaigns and for building surrogate models of complex unsteady
flows. Representations of complex systems were studied by Page et al. [12], who employed deep
convolutional networks combined with frequency domain analyses in latent spaces to obtain a
simplified phase space in a Kolmogorov flow. Regarding prediction modeling with limited data
sensing, flow reconstruction from a sparse distribution of probes was performed by Deng et al.
[13]. In this study, the authors employed POD methods based on long short-term memory (LSTM)
networks, being able to accurately predict flow fields. Further studies exploring this idea were
conducted by Manohar et al. [14] by employing flow reconstruction from sparse pressure probes
using LSTM-based networks to more complex two-dimensional (2D) flows, which resulted in more
accurate reconstructions when compared to POD-based low-dimensional subspaces.

In the field of flow control, different techniques based on training NNs are found in the literature
to either build a model for enabling control design [15,16] or to directly infer a suitable control law
for a given task. Training of NN-based models for control design was conducted by Bieker et al.
[16], who applied limited sensor data supported by delay coordinates, and by Morton et al. [15],
in an approach that modeled the dynamics of a cylinder flow with models trained to learn state
mappings to span a Koopman invariant subspace. Regarding model-free approaches, reinforcement
learning (RL) can be highlighted as a promising tool for automatic training of control strategies
with applications to drag reduction, for example. In their work, Rabault et al. [17], Ren et al.
[18], and Castellanos et al. [19] developed RL strategies to train controllers able to reduce drag
in a confined cylinder flow through a set of measurements from velocity probes. Their sensor and
actuation setups are employed to test the techniques proposed in the current work. Similarly, Li and
Zhang [20] considered RL strategies to suppress vortex shedding utilizing stability analyses and
unstable equilibrium computation of the underlying system to obtain improved results. Approaches
based on RL have also been successfully applied to complex turbulent flows in both experimental
[21] and computational [22] setups, being able, in some cases, to stabilize the flows [23] or reduce
drag [24,25]. Reinforcement learning has also been applied to gliding control in different flow
setups [26,27] and to open-loop setups where high complexity of the operating parameter space
makes it justifiable to employ machine learning optimization instead of brute force searches [28].
Comprehensive reviews of RL for flow control can be found in Refs. [29,30].

Models based on sparse identification of nonlinear dynamics (SINDy) [31] have been combined
with order-reduction techniques, such as POD, as an alternative to black-box NN models, being able
to find simpler and more intuitive models based on a library of interpretable functions. The approach
can be applied for building nonlinear models with control inputs, which can be leveraged for closed-
loop control applications [32]. On the topic of flow optimization through open-loop control, genetic
algorithms can be a candidate tool for parameter search. In such cases, studies have been performed
to find the best active control setup to improve a fitness function that aims to reduce drag in a
bluff body [33], to maximize the thrust vectoring angle in a supersonic jet [34], and to find the best
open-loop rotation values in order to reduce drag and symmetrize the wake of the flow past a cluster
of cylinders [35].

Traditional feedback control design approaches often rely on well-established control theory, for
which the literature provides techniques that can ensure optimality, robustness, adaptability, or the
achievement of specific performance characteristics such as settling (convergence) time. Such linear
control methods have been applied for the control of a variety of flow problems [36], such as cavities

063904-2



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

[37,38], bluff-body wakes [39,40], and unsteady aerodynamic systems [41–43]. However, the broad
application of such approaches in fluid mechanics is limited by the fact that they typically rely
on linear approximations of the dynamics near desired equilibrium points. Furthermore, building
data-driven linear models of flows is also hindered by the fact that signals sampled from fluid flows
can be governed by nonlinear phenomena such as chaos, limit cycles, multiple equilibria, switching,
and hysteresis. In the case of unstable flows (more specifically globally unstable flows), data sets
containing measurements at (approximately) linear regions near equilibrium can be totally absent.
Alternatively, nonlinear control techniques, which include sliding-mode control [44,45], feedback
linearization [46], backstepping control [47], extremum seeking control [48], and switched control
[49], can be applied to the task of controlling nonlinear systems, although stabilization relative to
a natural equilibrium point may still require a suitable model with some level of accuracy near
equilibrium. Differentiable nonlinear models built from data can be leveraged for model predictive
control (MPC), which employs real-time optimization to a cost function within a finite horizon.
Although MPC still presents similar limitations near the linear regions for some flows—such as
difficulties in stabilizing the system—it has been successfully applied to different flow control
problems [15,16,50,51]. For example, near stabilization of the flow past a cluster of cylinders was
achieved by Maceda et al. [52].

The determination of optimal or advantageous locations to place sensors to enable full state
reconstruction has been explored through a variety of methods, including via gappy proper orthog-
onal decomposition [53], a pivoted QR decomposition of an identified set of basis functions [54],
data-driven dynamical models with Kalman filters [55,56], and shallow decoder neural networks
[57]. A machine learning control strategy with the appropriate setup of loss functions can at the
same time seek the control objective and a sparse sensor selection from an initial candidate set,
as sought in the present work. An example of this type of approach is presented by Paris et al.
[58], where an L0 regularization scheme is proposed to find the best probing locations. As well
as state reconstruction, the problem of sensor placement arises in flow control problems, where the
placement of both sensors and actuators is important, and can be optimized and analyzed using linear
control theory [59–61]. The sensor placement methodology employed in the present work differs
from these previous methods and utilizes a modified neural network loss function that incorporates
the L1 norm of node (and thus physical location) weights. The use of L1-norm-based loss functions
has been applied to find sparse solutions in a range of flow analysis problems, such as to find a
reduced set of dynamic mode decomposition (DMD) modes to represent flow dynamics [62], and
to find spatially localized resolvent modes [63,64].

In the present work, we present an approach that enables nonlinear control design by utilizing
neural network architectures to model both the system and control law. To achieve stabilization
of complex systems exhibiting nonlinear dynamics, a neural network controller (NNC) is trained
in closed loop with a neural network surrogate model (NNSM), which is built from data obtained
from a real plant [51]. The methodology is proposed as a candidate solution to overcome the afore-
mentioned lack of measurements near the linear region of unstable nonlinear systems. The training
framework also allows for optimal sensor placement by automatic selection from a set of candidate
probes. Here, through penalization of model inputs, a sparse configuration is aimed that exclude the
less relevant sensors. Furthermore, a by-product consisting of data sets that contain measurements
from approximately linear regions of the state space is leveraged for the data-driven estimation of
equilibrium points—which are used as control setpoints—and for conducting a data-driven linear
stability analysis. This novelty allows for approaching both problems without the need to modify
the solver and enables the construction of linearized flow models involving complex geometries, as
well as other nonlinear systems. Moreover, it potentially enables equilibrium estimation and stability
analysis through data gathered from experimental applications.

Explicit training of models through the present supervised machine learning approach presents
several advantages over reinforcement learning for direct control training, although the setup in-
volves additional steps such as building a model for the plant. These advantages include the ability to
obtain insightful linear models from the black-box neural networks, as well as other procedures that

063904-3



DÉDA, WOLF, AND DAWSON

FIG. 1. Schematic of the NNSM where the red (blue) nodes are related to weights penalized by the L2 (L1)
regularization. A ReLU function is employed in the nodes with a white mark, while a linear function is used
for the other nodes.

can be enabled with it, such as linear stability analysis and equilibrium estimation. Another relevant
benefit emerges at the moment data are already sampled and available: any number of different
models and controllers can be trained with different hyperparameters and objective functions,
without the need to run expensive simulations or experiments again—as opposed to reinforcement
learning, which requires online interactions between the environment and the actors being trained.
The capabilities of the proposed methodology are demonstrated through analysis and control of
four different plants, namely, the Lorenz system, a modified version of the Kuramoto-Sivashinsky
equation, a streamwise-periodic 2D channel flow, and a confined cylinder flow. The remainder of this
work is organized as follows: Sec. II describes the tools and techniques introduced and employed
along the work, while Sec. III describes in detail the proposed iterative approach for training the
NNs. In Sec. IV, we describe the different systems and/or plants to which the techniques are applied.
Section V then presents the results for each choice of plant. Finally, the benefits and limitations of
the approaches presented are discussed in Sec. VI.

II. METHODOLOGY

A. Neural network surrogate models

In this work, NNSMs are employed to represent the dynamics of complex systems, such as fluid
flows. Given a fixed time step �t , we are interested in discrete systems of the form

xk+1 = F (xk, uk ), (1)

where x is the vector containing the system states, u is the vector of control inputs, and the subscripts
represent the discrete time steps such that time t = k�t . The state vector x consists of a set of sensor
measurements from which the dynamics can be inferred using data-driven methods. This set of of
measurements consists of a subset of the true plant full set of states.

From a data set containing measurements of both x and u from the plant, for multiple time steps,
a NNSM is trained to approximate F (x, u). A schematic of the neural network, with its inputs and
outputs, is presented in Fig. 1. Here, the symbol F̃ is used to denote the function represented by the
NNSM, and thus a good fit would imply F̃ ≈ F . The network is composed of fully connected hidden
layers which employ a rectified linear unit (ReLU) activation function given by f (si ) = max(0, si ),
whereas a linear function f (si) = si is used for the output layer. Here, si can be understood as each
element of a given array s = Wr + h, where W and h are composed of the trainable weights and

063904-4



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

biases and r is the input fed to the layer, which is also the output from the previous layer. In this
context, F̃ is a nonlinear function composed of a combination of activation functions parametrized
by the trained weights and biases [65]. The data for training and prediction are normalized so the
average for each input and output is zero and the standard deviation is 1. We also point out that
the present NNs have low complexity, being kept at a maximum of two hidden layers for the cases
studied in this work (with further details provided in Appendix A).

Another idea explored and applied in the current work is related to the problem of sensor
selection. We propose an approach that uses an initial complete set of candidate sensors that could
be reduced by somehow penalizing their count during the neural network training process. There
are several reasons to incorporate such an approach into the proposed methodology. First, using a
smaller number of sensors reduces the total number of training parameters in the NNSM, which
in turn reduces the amount of training data required. Second, real-world flow control applications
typically use limited real-time measurements, and selecting a small number of sensors that are
optimal for control has practical advantages. Finally, the incorporation of sensor selection into the
NN training process allows for optimal sensor locations to be identified without relying on any prior
knowledge or intuition of the system dynamics. Note that, here, optimality refers to an adequate
sensor configuration that is at the same time reduced in number of probes and able to keep the
NNSM capable of estimating the dynamics of the plant (which is more precisely described in this
section by a cost function).

The approach proposed here consists of searching for a subset of relevant sensors among an initial
set of candidates. To do so, we implement a layer of trainable parameters that are used to weight
the NNSM inputs. These weights are penalized using an L1 regularization. The main objective is
the production of a sparse layer excluding unnecessary measurements. Hence, after training, the
weights below a given threshold (in absolute values) are truncated to zero. For the initialization,
each weight value is set to 1.

To avoid these weights getting too low by the cost of growing hidden layer weights, an L2
regularization is applied to the hidden layers. This ensures that the input weights can only decrease
if they are irrelevant to estimate the output, which is still the full set of states in a future time instant.
Figure 1 illustrates such configuration. The loss function

L = wx

nns
·

ns�Ns∑
i=1

gi � gi + r2‖wh‖2 + r1‖ws‖1, (2)

gi = {[xk+1]i − [F̃ (xk, uk )]i} � sx, (3)

is used for evaluation of the network convergence, where g is the array of differences between the
training data and the NNSM output normalized by the standard deviation sx of the states sampled
for the training data. The index i refers to each of the ns sampled measurements. If more than an
upper bound of Ns samples are available, we (randomly) subsample Ns data points in order to reduce
computational costs of the iterative procedure that will be explained in the next section. One should
note that the present notation employs the Hadamard (elementwise) product � and division �, as
well as the L1 and L2 vector norms, ‖ · ‖1 and ‖ · ‖2, respectively. Furthermore, wx = [1, . . . , 1](1×n)

is always used, wh is the stacked weights array for the hidden layers, ws is the array of weights for
the sparsity layer, n is the total number of candidate sensors, and r1 and r2 are the L1 and L2
regularization factors. In practice, r1 can be adjusted such that larger values tend to provide sparser
configurations at the cost of possibly reducing the accuracy of the model. The parameter r2 can
be increased to avoid the hidden layer weights to grow indefinitely larger to compensate for the
sparsity layer weights becoming small. It is important to mention that, since the network weights
and biases of the hidden layers are initialized randomly, the process of selecting sensors is stochastic
and, therefore, we should expect that different runs for the same problem could result in different
sensor configurations.

In practice, the final model can be viewed as a function of a reduced vector xr containing nr � n
values, corresponding to the nonzero components of the sparsity weights, ws. Although this is not

063904-5



DÉDA, WOLF, AND DAWSON

done in the current work, pruning could also be conducted to reduce the complexity of the neural
network by excluding unnecessary connections [66]. Regardless of pruning, it is now possible to
evaluate the NNSM as a function with the following form:

xk+1 = F̃r (xrk, uk ), (4)

so the full state vector is reconstructed from the reduced set of measurements. Similarly, we can
define a function that predicts the components of the state corresponding to identified sensor
locations,

xrk+1 = F̃rr (xrk, uk ). (5)

In short, F̃r and F̃rr are evaluated with the reduced set of states, but the former outputs the full set
of states while the latter outputs the reduced set. Both F̃r and F̃rr are used for different goals in the
present work, as will be made clear in the following sections.

B. Estimation of equilibrium state

To tackle equilibrium estimation, a linearization of the NNSM is obtained through back-
propagation. In the first step, the reduced states matrix Arr(nr×nr ) is obtained for the time-invariant
system of the form

drk+1 = Arrdrk + Bruk , (6)

drk = xrk − xr
∗, (7)

where Arr(nr×nr ) and Br(nr×m) are constant matrices obtained from the Jacobian of F̃rr evaluated at a
given equilibrium operating condition xr

∗ and u∗ as follows:

∇F̃rr = [Arr Br] =
[
∂F̃rr

∂x
∂F̃rr

∂u

]
=

⎡
⎢⎢⎢⎣

∂ f̃1

∂x1
. . .

∂ f̃1

∂xnr

∂ f̃1

∂u1
. . .

∂ f̃1

∂um

...
. . .

...
...

. . .
...

∂ f̃nr
∂x1

. . .
∂ f̃nr
∂xnr

∂ f̃nr
∂u1

. . .
∂ f̃nr
∂um

⎤
⎥⎥⎥⎦. (8)

Here, f̃i is the ith element in the output of F̃ . The elements of ∇F̃rr are obtained by automatic
differentiation through back-propagation of the neural network models, allowing for constructing
matrices Arr and Br.

In this work, u∗ = 0 is considered for calculation of a natural equilibrium point of the system,
i.e., the equilibrium point related to the uncontrolled system. To compute ∇F̃rr , an initial guess x∗

r0
is used. The first estimate for the matrix Arr is obtained by taking the first nr columns of ∇F̃rr , while
the remaining columns compose Br [see Eq. (8)]. The Newton method is employed to search for an
equilibrium point for F̃rr .

Since u∗ = 0, the system of the form

xrk+1 = Arrxrk + br (9)

is considered, where br is an invariant vector. In this context, br is introduced to add a bias that
shifts equilibrium from the origin. For a given equilibrium point xr

∗,

xr
∗ = Arrxr

∗ + br, (10)

which gives

xr
∗ = (I − Arr )−1br. (11)

The first guess for br0 is obtained by evaluating

bri = F̃rr (x∗
ri, 0) − Arrx∗

ri, (12)

063904-6



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

ALGORITHM 1. Equilibrium estimation using linearization of the NNSM.

1: Obtain reduced states matrix Arr and Br using Eq. (8)
2: br0 ← F̃rr (x∗

r0, 0) − Arrx∗
r0 � Compute br0 using Eq. (12)

3: x∗
r1 ← (I − Arr )−1br0 � Update xr

∗ using Eq. (11)
4: for i = 1 to N − 1 do � Iterative process
5: bri ← F̃rr (x∗

ri, 0) − Arrx∗
ri � Update br using Eq. (12)

6: x∗
ri+1 ← (I − Arr )−1bri � Update xr

∗ using Eq. (11)
7: Update reduced states matrix Arr and Br at updated equilibrium point
8: end for
9: x∗ ← F̃r (x∗

rN , uk ) � Map to full set of sensors
10: return x∗

with i = 0, which comes from the linear approximation of F̃rr . With br, xr
∗ can be updated by

evaluating Eq. (11), which can subsequently be used to update the reduced states matrix Arr and Br
via Eq. (8), and then br via Eq. (12). The iterative process can be repeated to obtain an estimate of
the equilibrium point. If desired, the equilibrium point can be mapped to the full set of sensors by
evaluating

x∗ = F̃r (xr
∗, 0). (13)

The complete procedure is synthesized in Algorithm 1. Rather than iterating for a fixed number
of steps, one could alternatively employ a stopping criterion based on the size of the update, or
estimated error. It is important to mention that this approach is better suitable when the spectrum of
Arr does not contain eigenvalues at 1 + 0j (integrator poles). In these cases, there is a continuous
space of possible equilibrium points, any of which can be found by applying the Newton method.
An alternative method for refining the equilibrium estimate, which is based on dynamic mode
decomposition with control (DMDc) and which we observe can give improved results, will be
described in Sec. II D.

C. Neural network controller

NNCs are employed as a candidate for controlling complex nonlinear systems. A nonlinear
control law of the form

uk = K (xrk ) (14)

is implemented as a machine learning model, where the reduced set of states xrk are real-time
measurements used to evaluate the control signal. A recurrent network is built for the training task
as shown in Fig. 2. The model is trained such that a set of initial conditions is brought closer to the
equilibrium point x∗

r0 along iterations within a fixed discrete horizon nh.
The training data consist of a set of measurements X0 = [xr0,1 xr0,2 . . . xr0,p] containing p

samples of the nr-state system at an initial time k = 0. Note that the subscript 0 refers to the initial
condition in the context of the finite-time closed-loop recurrent network, not to the simulation initial
condition. The following loss function is targeted for minimization:

L = 1

p nh

⎛
⎝we

n
·

p∑
j=1

nh∑
i=1

ei, j � ei, j + wu

m
·

p∑
j=1

nh−1∑
i=0

ui, j � ui, j

⎞
⎠, (15)

ei, j = w f � (x̃i, j − x∗), (16)

where p is the size of the training data set. Here, w f is an array consisting of the inverse of the
standard deviations of the data sampled for training. As in the NNSM case, this is done in order
to avoid states with larger numerical amplitudes from being more important in the cost function.

063904-7



DÉDA, WOLF, AND DAWSON

FIG. 2. Schematic of the NNC training where the initial data set is propagated through recurrent evaluations
of the NNSM and NNC. Only the NNC weights and biases are updated during training in order to bring the
states xr1�i�nh, j closer to xr

∗.

Furthermore, the weight vector we has all elements equal to 1/nr , which averages the result of the
sum using an equal weighting of the states. Similarly, wu has all elements equal to wu, a scalar
hyperparameter used to penalize the control inputs. Within the scope of this recurrent approach, the
states x̃i, j are the ones found through forward propagation of an input x0, j , where index i corresponds
to the ith time step within the discrete loop and index j is related to the jth state vector in the data set
X0. In short, this loss function is composed of two competing terms: the first one is for penalizing
the controlled error of the states relative to the target equilibrium point along the finite horizon, and
the second one penalizes the control input energy, also along that same horizon. The parameter wu

can be tuned to prioritize one term over the other. This approach is similar to those used in classical
optimal control methods, such as the linear quadratic regulator (LQR).

The hidden NNC layers are implemented with ReLU activation, except for the output layer
that has a sigmoid activation, which is normalized to limit the control effort within the desired
range. Once the training process is finished, the NNC block is used independently of the training
loop to evaluate the control law in real time through Eq. (14). In the present work, all of the
NNCs are implemented with a single hidden layer containing eight nodes, which means they are
computationally inexpensive as required for real-time applications. Appendix A further describes
the hyperparameters employed. General guidelines for the implementation of the proposed NN
framework are presented in Appendix B.

D. Linear stability analysis

Linear stability theory can be employed to elucidate mechanisms underlying the generation and
amplification of flow instabilities. Here, we aim to employ the proposed neural network models
to conduct linear stability analyses of unsteady flows, thereby illuminating physical mechanisms
associated with unstable equilibrium points. In particular, with such an approach, it will be possible
to compute the frequencies and growth rates of the most unstable modes and their associated
eigenfunctions.

In an unsteady flow, a Reynolds decomposition allows the splitting of the flow states x(xc, t )
in a base flow x∗(xc), here obtained at the equilibrium point, plus a time-dependent fluctuation
component x′(xc, t ). In the present notation, xc represents the spatial coordinates. If the fluctuations
are sufficiently small, the equations can be linearized about the base flow and the Navier-Stokes
equations can then be written in the following linear form:

∂x′

∂t
= Ax′, (17)

063904-8



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

where the matrix A = A(x∗) is a linear operator. For a system that is homogeneous in the
streamwise (xc) and spanwise (zc) directions, the evolution of linear disturbances by Eq. (17) can be
investigated by a direct analysis of the operatorA with the transformation

x′(xc, yc, zc, t ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
x̂(α, yc, β, ω)ej(αxc+βzc−ωt ) dα dβ dω, (18)

where both the streamwise and spanwise wavenumbers α, β ∈ R, and the frequency ω ∈ C.
In discrete form, and under the transformation of Eq. (18), Eq. (17) can be written as

−jωv̂ = Av̂. (19)

In this case, the linear operator becomes A = A(x∗, α, β ), and it can be analyzed for each separate
wavenumber pair (α, β ) as an eigenvalue problem:

V� = AV. (20)

In this equation, the columns v̂ j of V are the eigenvectors of A, and the eigenvalues λ j = −jω j

are the corresponding diagonal entries of �. Here the frequency and growth rate are the real and
imaginary parts of ω j , respectively.

There are several ways in which the identified NNSMs and NNCs can be leveraged to conduct
stability analyses of the underlying dynamical systems. Most directly, we could utilize the matrix
Arr arising from the linearization of the NNSM obtained through back-propagation [Eq. ((8). Rather
than linearizing the global nonlinear model, we can alternatively identify a linear model directly
from data taken near the equilibrium point, which is the method used in the present work. This
approach amounts to performing a linear regression inspired in DMDc [67]. The idea comes from
the fact that the controlled system can be slightly perturbed, producing a rich set of data near the
equilibrium point, where the dynamics of the system tends to be approximately linear.

Given a data set X = [d0 . . . dp−1] containing p consecutive full state measurements, a data set
U = [u0 . . . up−1] containing the control inputs history, and a data set X′ = [d1 . . . dp] containing
full state measurements with a unit shift, matrices A and B can be inferred as follows:

G = X′�†, (21)

G ≈ [
A B

]
, (22)

� =
[

X
U

]
. (23)

As shown, matrix � is built from X and U. By calculating its Moore-Penrose inverse �†, it is
possible to compute G, from which approximations for A and B can be extracted.

Note that X is composed of the deviation of the states from their estimated equilibrium values,
as shown in Eq. (7). Admitting that the estimation of this equilibrium x∗ is not exact, the proposed
linear regression can be contaminated. To account for such imperfect estimation, a modification to
this method is proposed, where a matrix O = [1 . . . 1](1×p) containing 1s is employed. This allows
for the modified procedure:

H = X′�†, (24)

H ≈ [
A B c

]
, (25)

� =
⎡
⎣X

U
O

⎤
⎦. (26)

For systems with no integrator poles, this modification allows for the estimation of a system of the
form

dk+1 = Adk + Buk + c, (27)

063904-9



DÉDA, WOLF, AND DAWSON

where c is a constant vector that displaces the equilibrium point of the new states d from zero.
Beyond providing a better estimation of A to conduct stability analysis, the addition of the constant
c allows for the correction of the previous estimate of x∗. Although this is not done in the current
work, it could also be used, for example, to compensate control loop measurements to improve NNC
results. Since the NNC is trained to control the NNSM and, furthermore, x∗ is an equilibrium point
for the NNSM, c could be used to adapt the NNC loop for the real plant.

To reduce computational costs, two different sets of matrices are used based on the sparse
configuration obtained as described in Sec. II A:

(i) The first is obtained by using the reduced states data set Xr = [dr0 . . . drp−1]. Replacing X
by Xr, the algorithm produces a matrix Ar(n×nr ) which maps the reduced set of sensors to the full
set at the next time step, as well as B and c.

(ii) The second set of matrices is obtained by also using Xr with the further substitution of
X′ by a reduced matrix Xr

′. This produces the same matrices Arr(nr×nr ) and Br(nr×m) shown in
Sec. II B—with potentially better accuracy—as well as the reduced bias vector cr.

A stability analysis can be conducted by finding the eigenvectors Vri and eigenvalues λi from
the square matrix Arr, where i = 1, 2, . . . , nr . Since each vector Vri is an eigenvector of Arr, each
ArrVri is also an eigenvector of Arr, which allows the mapping

Vi(n×1) = Ar(n×nr )Vri(nr×1) (28)

to estimate the eigenvectors across all sensor states. This mapping is employed in this work for
visualization of modes projected over the full set of candidate sensors.

III. ITERATIVE TRAINING

A key aspect of the proposed methodology is the development of a training methodology that
ensures that both the NNSM and NNC are trained with sufficient quantities of data, particularly
in the regions of state space where model accuracy is important for control effectiveness. To train
and improve the neural network models employed in this work, an iterative training algorithm is
proposed. Four different modes of data sampling are considered for training the NNSM and the
NNC. Each mode produces data that are compiled for training both networks. They are as follows:

(1) Uncontrolled sweep mode: the system is perturbed by an open-loop control signal with no
closed-loop control.

(2) Controlled sweep mode: the system is controlled in closed loop at the same time that it is
perturbed by an open-loop signal.

(3) Release mode: the plant runs with no control and no open-loop perturbation, allowing for
better visualization of the next mode and to test whether the system can be successfully controlled
from an initially uncontrolled state.

(4) Control mode: the system is controlled in closed loop with no open-loop perturbation.
All open-loop perturbations applied in this work are random staircase signals with constant

step length. This choice is inspired in classical approaches for modeling linear systems that take
advantage of square wave perturbations, which are simple to implement and at the same time able
to excite a range of frequencies of the dynamical systems. In the case of linear systems, a fixed
amplitude disturbance is sufficient, since a different amplitude would roughly provide the same
response multiplied by a constant factor. In this work, a random staircase is used to account for
multiple amplitudes, provided the applications involve nonlinear systems. It is important to mention
that, although it is expected that this approach should provide suitable sweeping of the state space,
there is no guarantee that specific regions are reached, for example, if the states get stuck in regions
presenting unstable limit cycles or hysteresis [51].

The uncontrolled sweep is the first mode employed so as to produce data with control input
history. A number of samples are gathered from the perturbed plant. These first samples are used
to compute the means and standard deviations used for data normalization of the neural network’s
inputs and outputs. These data are also used for training the NNSM, estimating its equilibrium point

063904-10



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

ALGORITHM 2. Data sampling algorithm.

1: for i = 1 to n do
2: if i==1 then
3: Run uncontrolled sweep mode to gather data
4: Compute parameters for normalization
5: else
6: Reduce the amplitude of open-loop perturbations by a factor α

7: Run controlled sweep mode to gather data around the estimated equilibrium
8: end if
9: Update the database with the new data
10: Train NNSM with the updated database
11: Truncate negligible weights in the sparsity layer
12: Estimate equilibrium from NNSM
13: Train NNC with the updated database
14: Run release mode to allow the system to reach its natural behavior
15: Gather data in release mode
16: Run control mode to drive the system to a new behavior and test control effectiveness
17: Gather data in control mode
18: end for

xr
∗, and training the NNC, all for the first time. The NNSM sparsity layer has its negligible weights

truncated according to a threshold (further described in Appendix A), which accounts for identifying
and updating the relevant sensor locations.

The second mode to be run is the release mode, which allows the system to achieve its natural
(uncontrolled) behavior, i.e., a limit cycle or a chaotic attractor, for example. The control mode
is applied after the system completely or partially returns to its natural operation. When the NNC
is turned on, the dynamics of the controlled system drives the plant states to work under a new
behavior, which can tend to a new limit cycle, to a new chaotic attractor, or even to an equilibrium
point—which can either be or not be desirably close to the estimated equilibrium x∗.

Data are gathered in each of these three steps, building a database that grows along the iterative
process. After they are run, the process is repeated for a number of iterations, but instead of doing
an uncontrolled sweep, the controlled sweep mode is applied in every iteration beyond the first one.
In each NNSM training step, a set of ns samples is taken, including measurements from the current
and the previous iterations. We use the total number of measurements available, unless that number
is greater than a threshold Ns. In this case, we randomly sample Ns measurements from the entire
available data set. Similarly, in each NNC control step, we randomly sample p points from the entire
data set to build X0. The idea is to leverage the fact that the controlled system should have a tendency
to get closer to the equilibrium point, and by perturbing the controlled system appropriately, a larger
set of data is obtained around this equilibrium. When a new iteration begins, the amplitudes of
the open-loop perturbations are reduced by a constant factor 0 < α � 1, so that data are gathered
closer to the actual plant equilibrium. At each iteration, the NNSM and the NNC are retrained with
new data collected from the full database and the equilibrium point is updated using the retrained
NNSM. Algorithm 2 synthesizes the steps described, and a schematic showing the phase portrait for
the Lorenz system is also presented in Fig. 3. Each iteration in this figure depicts 1000 measurements
sampled during the sweep modes (uncontrolled for iteration 1, controlled for subsequent iterations).
As the iterations advance, the closed-loop control tends to bring states closer to the origin, which is
an equilibrium point for the Lorenz system. This enhances the estimate of the equilibrium point, and
it can be seen in the smaller limits of the axes, as shown for the higher iterations. Also, beginning in
iteration 7, since the perturbations are reduced between iterations, they become unable to shoot the
controlled states out of the main stable orbit around the now-stabilized equilibrium.

063904-11



DÉDA, WOLF, AND DAWSON

0
30

25
0

50

0
-30 -25

0
30

25
0

50

0
-30 -25

0
30

25
0

50

0
-30 -25

0
30

25
0

50

0
-30 -25

0
30

25
0

50

0
-30 -25

0
30

25
0

50

0
-30 -25

0
0.5

0.5
0

0.05

0
-0.5 -0.5

0
0.5

0.5
0

0.05

0
-0.5 -0.5

0
0.5

0.5
0

0.05

0
-0.5 -0.5

FIG. 3. Phase portraits of the Lorenz system for data sampled during the sweep modes at different
iterations. Note that for iterations 7–9 the axes limits are considerably smaller. The red dot indicates the origin,
which is an equilibrium point for the Lorenz system.

For the stability analysis, only the data produced by the last sweep mode is used since it may
contain more accurate data near the equilibrium point, hopefully ruled by approximately linear
dynamics. One of the advantages of using such a type of data is enabling DMD-based techniques
to identify structures corresponding to eigenvectors of the equilibrium-linearized system, even for
systems exhibiting strong nonlinearities.

IV. STUDY CASES

This section outlines the four systems that will be used to test and validate the proposed
methodology. For each of these cases, the iterative training process to identify the NNSM and NNC
is conducted by using the sampled training data and minimizing the loss functions presented in
Eqs. (2) and (15). In some test cases, we utilize this framework to conduct stability analysis and/or
sensor placement tasks.

A. Lorenz equations

The first study case for this work is the Lorenz system, whose dynamics are described by the
following set of nonlinear ordinary differential equations:

ẋ = σ (y − x), (29)

ẏ = ρx − y − xz + u, (30)

ż = −βz + xy, (31)

063904-12



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

FIG. 4. Actuation and sensor setup for controlling the modified KS equation. The colored dots represent
the control input profiles Bi at each of the 60 black dots measured initially (candidate sensors).

where σ = 10, β = 8/3, and ρ = 28 are chosen for the present analysis. With this set of parameters,
the uncontrolled system [u(t ) = 0] behaves as a chaotic attractor. The goal is to apply the techniques
proposed in this work to find an equilibrium point, i.e., to stabilize the system bringing the states
towards this point through an NNC law uk = K (xk, yk, zk ). We also compute a linear model to
obtain the system poles. Since the Lorenz system with the chosen parameters presents three distinct
unstable equilibrium points with u(t ) = 0, the equilibrium point search can lead to different results
that strongly depend on the choice of the initial guess x∗

r0. Here, we choose x∗
r0 = [0.1, 0.1, 0.1], so

convergence to [0, 0, 0] is expected.

B. Modified Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky (KS) equation is given by the following nonlinear partial differential
equation:

∂v

∂t
+ v

∂v

∂xc
= − 1

R

(
P

∂2v

∂x2
c

+ ∂4v

∂x4
c

)
, (32)

where R is equivalent to the Reynolds number in a fluid flow, and P represents a balance between
energy production and dissipation. This system has been used to emulate, for example, combustion
instabilities in flame fronts [68,69] and hydrodynamic instabilities in shear flows [70]. In this
context, xc is the spatial coordinate and v(xc) is the variable of interest.

It is clear that, for any constant c, v(xc) = c corresponds to an equilibrium point, i.e., ∂v/∂xc = 0.
Since we are interested—among other goals—in computing an equilibrium point for this system,
we propose a modified version of the KS equation given by

∂v

∂t
+ v

∂v

∂xc
= − 1

R

(
P

∂2v

∂x2
c

+ ∂4v

∂x4
c

)
− Q

L

∫ L

0
(v(xc) − V ) dxc +

m∑
i=0

Bi(xc)ui. (33)

The new term −Q/L
∫ L

0 (v(xc) − V ) dxc corresponds to a spatial average of the difference between
v(xc) and a chosen equilibrium V . We make use of this modification to ensure that the equilibrium
point v(xc) = V is unique for ui(t ) = 0. A globally unstable configuration is set by choosing R =
0.25, P = 0.05, Q = 0.0005, V = 0.2, and L = 60 with periodic boundary conditions. The control
term

∑m
i=0 Bi(xc)ui comes similarly to the approach proposed by Fabbiane et al. [70], where m is

the number of control inputs, Bi(xc) is a window function for each actuator, and ui represents the
control signals.

The equation is discretized in the present simulation with �xc = 1 and �t = 0.025, producing
the state vector x(60×1). Sampling for control is made each 400 time steps, thus giving a control
time step �tc = 10. Three actuators are employed by using Gaussian window functions centered
at xc = 10, xc = 30, and xc = 50. Sampling of v is conducted at each of the 60 discrete grid
points. Figure 4 shows a sensor and actuation schematic. In this context, the goal is to train an

063904-13



DÉDA, WOLF, AND DAWSON

FIG. 5. Actuation setup for controlling the 2D channel flow. Each pair of actuators works in opposition,
ensuring zero-net mass flux.

NNC to allow for the evaluation of the control law u(3×1) = K (xr(nr×1)), where nr � 60. In this test
case, we conduct equilibrium estimation, sensor placement, control, and stability analysis. For the
equilibrium estimation, we choose an initial guess equal to 0.1 for each point (x∗

r0 = [0.1, . . . , 0.1]).

C. Periodic 2D channel flow

Another problem we consider is a streamwise-periodic channel flow. We employ numerical
simulations using the open-source Nek5000 computational fluid dynamics (CFD) code previously
applied for RL control [20] to solve the incompressible Navier-Stokes equations for a Reynolds
number Re = 8000, based on the half-channel height h and the velocity at the channel center line, U .
The channel length is set to L = 36h so that two unstable modes appear, at streamwise wavelengths
L/5 and L/6. A total of m = 8 control inputs u1, . . . , u8, which forms the control input vector u(8×1),
modulates the velocities of eight pairs of actuators, which are implemented as Dirichlet boundary
conditions imposing a specified jet velocity. Each pair works in opposition to ensure a zero-net mass
flux, being weighted by a parabolic window function as depicted in Fig. 5.

The distribution of candidate sensors is presented in Fig. 6. The chosen locations are concentrated
near the wall to capture velocity fluctuations from hydrodynamic instabilities. A vertical line of 50
sensors is also employed for comparison with stability analysis computed from the solution of the
Orr-Sommerfeld equation. In total, 332 candidate sensor positions are chosen, where horizontal and
vertical velocities vx(xc, yc) and vy(xc, yc) are sampled, totaling 664 signals that compose the state
vector x(664×1), which can be used to evaluate u(8×1) = K (xr(nr×1)), where nr � 664. The initial
guess x∗

r0 for the equilibrium point is 1 for vx probes and 0 for vy probes. Results presented in the
next section show that for this test case it is not required to have a more sophisticated guess (such
as the mean flow). For the present channel flow, we are interested in equilibrium estimation, sensor
placement, control, and stability analysis.

D. Confined cylinder flow

Finally, the study of a 2D confined flow past a cylinder is presented. For this task, a Nek5000
setup [20] is employed considering a Reynolds number Re = 150 based on the cylinder diameter D

FIG. 6. Initial candidate sensor positions for the channel flow. The dimensions are distorted for better
visualization.

063904-14



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

FIG. 7. Initial candidate sensor positions for the confined cylinder flow. The box represents the spatial
domain used in the simulation.

and maximum velocity U of the inflow profile. The initial configuration of sensors is equivalent to
the one presented by Rabault et al. [17], depicted in Fig. 7, where 153 locations are chosen, totaling
306 velocity measurements for u and v velocity components [leading to the state vector x(306×1)].
No-slip wall boundary conditions are applied at the top and bottom limits of the domain.

The actuation scheme is presented in Fig. 8. A single control input u modulates minijets in
opposition, thus providing zero-net mass flux. The actuation here is implemented using Dirichlet
boundary conditions, which set the normal velocities at the wall. For this problem, we are interested
in finding an equilibrium point (only to estimate a control setpoint), sensor placement, and flow
control through the NNC law u = K (x(nr×1)), where nr � 306. We use the same strategy as in the
channel flow case to make an initial guess for the equilibrium point, which is choosing 1 for vx

probes and 0 for vy probes.

V. RESULTS

A. Lorenz equations

To assess the performance of the proposed techniques, results for the low-order Lorenz system
are presented. Starting with the problem of estimating an equilibrium point for this system, Fig. 9
presents the values of each state at each iteration. Two plots compare this computation using both
the back-propagation-based linearization of the neural network (as described in Sec. II B) and the
alternative version employing the modified DMDc method proposed in Sec. II D. In both cases, a
convergence towards equilibrium at x = y = z = 0 is seen. It is clear that, for the initial iterations,
better approximations are obtained using back-propagation [Fig. 9(a)]. The fact that DMD-based
techniques rely on data sampled from approximately linear systems compromises their performance
when the plant is strongly nonlinear. In some cases, the linearization of a nonlinear model at the
point of interest can provide better results when nonlinearities cannot be neglected, as shown in
Ref. [51]. On the other hand, for the later iterations, the DMD-based approach is able to provide
more accurate results, since the closed-loop control is able to maintain states near equilibrium, i.e.,
operating almost as a linear system [Fig. 9(b)].

FIG. 8. Actuation scheme applied to the cylinder flow. Blowing and suction devices in opposition are
modulated by a single control input.

063904-15



DÉDA, WOLF, AND DAWSON

FIG. 9. Equilibrium point estimation along iterations. (a) The estimation through back-propagation, where
more accurate estimates are made at first iterations. (b) The fixed estimation through the DMDc variant, where
better approximations are found in the last iterations. In this case, the red dots are hidden behind the blue ones.

The stabilization of the controlled Lorenz system is depicted in Fig. 10, where signals are
presented against time for iterations 1 and 4. For the former case, depicted in Fig. 10(a), it is
still not possible to obtain a stabilizing controller. This might be due to poor estimation of the
dynamics near the equilibrium point obtained for such iteration. On the other hand, at iteration 4
shown in Fig. 10(b), the trained NNC is able to fully stabilize the plant, bringing the states close to
x = y = z = 0. This case was studied with longer periods in which the control was kept turned on
(not shown here for brevity), revealing that the system was indeed stabilized, being able to return
to and remain at equilibrium even after transient perturbations. As seen in Fig. 9(a), the equilibrium
point for iteration 4 is estimated at x ≈ 0.14, y ≈ −0.01, and z ≈ 0.53, which is close enough to
allow for the NNC to stabilize the plant (though subsequent iterations have much more accurate
estimates).

Finally, a modal stability analysis is conducted, where poles are computed for the controlled
Lorenz system. The modified DMDc approach is applied to data obtained from a single iteration of
the sweep mode. Similarly to what is observed in Fig. 9(b), later iterations tend to provide better
approximations of equilibria. Figure 11 presents results for iterations 4 and 9. For comparison, the
Lorenz system equations are linearized analytically, and the obtained poles si are discretized so that
zi = esi�t . These poles are presented as “ground truth” in Fig. 11. As also shown in Fig. 3, at iteration
4, the perturbed controlled system is driven to nonlinear orbits. At iteration 9, sampled states
are concentrated much closer to equilibrium, thus providing better approximations through linear
regression (see Fig. 3). It is important to remember that these are not the linearizations employed
for estimating the equilibrium points used to train the NNC. For that, we use the back-propagation
approach, also presented for iteration 4 in Fig. 11. This explains why, even though the linearization
is poorly fit to the actual system, the system is still stabilized. Further studies involving the proposed
Lorenz system are presented in Appendix C, where we briefly discuss some aspects regarding the
robustness of the designed control systems.

063904-16



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

FIG. 10. Sweep, release, and control modes (s.m., r.m., and c.m., respectively) for iterations (a) 1 and (b) 4.
The trained NNC is unable to stabilize the system in iteration 1, in contrast to the trained control system in
iteration 4, where stabilization is achieved. This can be seen by comparing both control modes.

B. Modified Kuramoto-Sivashinsky equation

For the modified KS equation, two different training approaches are presented. They only differ
in terms of application of the sparsity layer. One of the cases does not include the sparsity layer
on the neural network (i.e., the full set of sensors is employed), whereas the other case includes a
sparsity layer to reduce the number of sensors required. In this second case, the total number of
sensors used to infer a model for the system dynamics, as well as to conduct closed-loop control,
is reduced from 60 to 9, as represented in Fig. 12. In both cases, the trained process is conducted
along ten iterations of sweep, release, and control. We observe in Fig. 12 that the sparse sensors are
selected to be approximately evenly distributed throughout the domain, with three sensors located

FIG. 11. Poles of the discrete-time Lorenz system obtained by linearization of the controlled system
compared to ground truth positions. (a) At iteration 4, the approximation is still not satisfactory, which is
explained by the nonlinear dynamics present in the data employed. (b) At iteration 9, the estimated poles are
found considerably closer to the ground truth solution.

063904-17



DÉDA, WOLF, AND DAWSON

FIG. 12. Sparse configuration obtained in training for the case with sensor placement, where nine sensors
are kept for the KS equation.

across each of the three Gaussian functions defining the actuators, and with one sensor at or slightly
downstream of each of the actuator peaks.

Figure 13 shows the calculation of the equilibrium points along xc found in each case using
Newton’s method and the modified DMDc. It is possible to observe in Fig. 13(a) that the modified
DMDc is able to enhance the accuracy of the equilibrium point when the full set of sensors is
employed. However, as a trade-off for reducing the number of sensors, Fig. 13(b) shows that the es-
timate of the equilibrium is worsened with sparse sensors. Despite this, the trained NNC is still able
to stabilize the system, as exemplified in Fig. 14, where the waves are controlled until convergence.
We further observe that the system remains stable as long as the controller is turned on.

For the modal stability analysis of the modified KS equation, the computed poles are shown in
Fig. 15. The ground truth poles are obtained by linearizing Eq. (33) with a discretization performed
using fourth-order centered finite difference schemes for all spatial derivatives. The poles are
found by computing the eigenvalues si of the matrix built from the approximation (with periodic
boundary conditions) and transformed to their discrete version zi = esi�t . The map obtained with
the proposed technique is fairly accurate, with good preservation of frequency and growth rates of
the eigenvalues closest to the unit circle. Since the sparse case is composed of only nine sensors,
only nine eigenvalues are found.

FIG. 13. Estimated equilibrium points of the KS equation found with the (a) full and (b) sparse set of
sensors. The true equillibrium is v(xc ) = 0.2.

063904-18



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

FIG. 14. Space-time map showing the growth (decay) of disturbances in the KS equation before (after)
turning the controller for the (a) full and (b) sparse set of sensors. The black vertical line highlights the instant
when the control is turned on.

C. Periodic 2D channel flow

The 2D channel flow case is studied with dynamic sensor placement. The final distribution
of probes after 19 iterations of training (with sweep, release, and control modes) is presented in
Fig. 16. It is possible to notice the preference for horizontal velocity probes (u) rather than vertical
(v) ones. The sensor placement is able to achieve a reduction from 664 to 181 signals; 148 and 33
correspond to u and v velocity probes, respectively. The spatial distribution of these chosen sensors
shows that almost all of the near-wall u sensors are included, possibly highlighting the importance

FIG. 15. Poles of the discrete-time modified KS system obtained by linearization of the controlled system
compared to the ground truth solution. The (a) full and (b) sparse sensor approaches are compared. Most of the
ground truth poles are concentrated close to the origin, making them harder to visualize.

063904-19



DÉDA, WOLF, AND DAWSON

FIG. 16. Probe locations employed with sparse sensing, where the number of probes is reduced from a
total of 664 to 181, from which 148 are used for the horizontal velocity component, while 33 are used for the
vertical one. The grey dots are deactivated by the sparsity layer.

of near-wall information for estimating and controlling (with wall-based actuation) the system
dynamics.

With feedback of the signals probed at the locations obtained through training, the NNC is able
to completely stabilize the flow. A comparison of the uncontrolled and controlled flows is presented
in Fig. 17, where v-velocity contours are shown. As expected, the actuation and the flow field do
not converge to the exact equilibrium, since its estimate is not perfect, especially considering that,
for control, we employ the approximation obtained through Newton’s method (see Sec. II D). The
controlled flow is presented in two ways: (1) using the same contour range of the uncontrolled flow,
and (2) with a more saturated contour range that allows one to notice some small residual velocity
fluctuations. When employing the same scale as that of the uncontrolled case, the bias becomes
nearly imperceptible. For the uncontrolled case, the snapshot represents a frame captured from an
unsteady flow, where the flow structures are transported from left to right, while the controlled case
is simply a steady state.

The present flow includes two unstable modes. These are computed through the eigendecomposi-
tion of the associated Orr-Sommerfeld operator, which is discretized using a pseudospectral method
with Chebyshev polynomials utilizing the toolbox by Weideman and Reddy [71]. The wavelengths
of the unstable modes obtained by the Orr-Sommerfeld equation correspond to 1/6 (mode 1) and
1/5 (mode 2) of the channel length. This is in agreement with the wavelengths of the dominant
structures observed in simulations of the uncontrolled nonlinear system, as shown in Fig. 17(a).

By applying the modified DMDc approach to the data obtained near equilibrium, two unstable
pairs of modes are found, corresponding to the two unstable modes of the true linearized system. For

FIG. 17. Comparison of uncontrolled and controlled flows through visualization of v-velocity contours (see
Movie 1, Supplemental Material [74]). For the controlled case, a more saturated contour range is also shown
in the bottom plot, and one can see that the actuation does not converge to zero due to an imperfect estimation
of the equilibrium.

063904-20



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

TABLE I. Eigenvalues for unstable modes 1 and 2 for 2D channel flow. The real and imaginary parts
correspond to the growth rates and frequencies, respectively.

Mode 1 Mode 2

Ground truth 1.8601 × 10−3 ± j2.6403 × 10−1 6.8185 × 10−4 ± j2.0206 × 10−1

Modified DMDc 2.0545×10−3 ± j2.6396 × 10−1 7.4956×10−4 ± j2.0214 × 10−1

this case, the discrete poles zi found with the modified DMDc are converted to a continuous version
si = ln (zi )/�t , so that one can directly infer the corresponding growth rates and frequencies. A
comparison between the true and estimated unstable eigenvalues is shown in Table I, where close
agreement is observed. In these results, the imaginary part corresponds to the oscillation frequency
while the real component provides the growth rate. The higher relative error found for the growth
rate when compared to the frequency can be explained by the transient timescales being too slow
compared to the discretization time �t . Since �t needs to be small enough to capture the signals
without significant aliasing—i.e., the sampling rate needs to be at least large enough to capture the
most important frequencies present in the measured signals—and the timescale of the oscillations is
considerably faster than the growth rate, the discrete time horizon to capture the long-term growth
becomes too large. In this context, we ensure that the sampling time �t is chosen so that the
sampling rate 1/�t is always larger than twice the highest frequency present in the signal, thus
satisfying the Shannon-Nyquist sampling rate required to resolve this frequency. The value chosen
here is �t = 1.05 units of time, which corresponds to an angular frequency of 2π/�t ≈ 6. This
value is larger, for example, than twice the frequencies found in Table I. This sampling rate is also
three orders of magnitude larger than the growth rates of the unstable modes.

The present approach is also able to provide the associated eigenvectors. In Fig. 18, the absolute
values of the u- and v-velocity eigenvectors related to each pair of eigenvalues are plotted. Here,
these eigenvectors are mapped to the vertical line of sensors for comparing with the ground truth
values. Despite displaying a slight asymmetry for the proposed method, which could likely be
improved by adding more sensor points, the comparisons are in good agreement. The eigenmode
shapes shown in Fig. 18 can potentially provide insight into the sensor locations chosen (Fig. 16).
In particular, the fact that near-wall streamwise velocity sensors are chosen is consistent with the
leading eigenmodes having large amplitude near the wall. Conversely, the fact that the selected
wall-normal velocity sensor locations are farther from the wall could be related to the fact that this
component of the eigenmodes increases in amplitude farther away from the wall.

FIG. 18. Unstable modes for the 2D channel flow. Ground truth and estimated results are compared in
terms of absolute values for the eigenvectors mapped to the vertical line of sensors.

063904-21



DÉDA, WOLF, AND DAWSON

FIG. 19. Demonstration of the application of the sparsity layer for the confined cylinder flow. The total
number of measurements is reduced from 306 to 47 (25 and 18 probes for the horizontal and vertical velocity
components, respectively). The grey dots are deactivated by the present L1 regularization.

D. Confined cylinder flow

As was the case in Sec. V C, this system is modeled and controlled while also incorporating
a sparsity layer in the NNSM to select sensors. In doing so, the NNSM training process for the
confined cylinder flow selects a total of 47 sensors from the candidate set of 306 sensors: 25 and 18
points for u and v velocity components, respectively. While the number of sensors is significantly
reduced, as presented in Fig. 19, the NNC approach with iterative training is able to successfully
stabilize this flow. To provide an overview of the training process, the lift coefficient over the
cylinder is presented in Fig. 20 for the first three iterations. In the first iteration, the NNSM and
the NNC are trained using only open-loop data. For this iteration, the lift fluctuations are only
slightly reduced when flow control is turned on. For the following iterations, the models are trained
using both open- and closed-loop data, which improves the results, as more data are available near
the equilibrium point, where the system is approximately linear.

While the stabilization is not completely achieved by the end of the second iteration, a reduction
in the main oscillations can be observed. By the third iteration, complete stabilization is achieved
through control.

Important features observed in the controlled flow are shown in Fig. 21, which shows the
convergence history of the drag and lift coefficients, as well as of the control input, during
the control stage of the third iteration. The present flow control approach is able to suppress both the

FIG. 20. Evolution of lift coefficient for three iterations of the sweep (blue), release (yellow), and control
(red) stages for the confined cylinder flow.

063904-22



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

FIG. 21. History of drag and lift coefficients, and control effort for the third iteration in the control mode.
Gray lines show uncontrolled solution.

drag and lift coefficient fluctuations. At the same time, the mean drag is also reduced. The complete
stabilization also ensures that only a minimum effort is required to keep the system operating with
small oscillations and drag losses. Residual efforts are due to imperfect estimation of equilibrium,
and may also be required for compensating eventual perturbations. Figure 22 shows u-velocity
contours for the uncontrolled and controlled cases. In the former, vortex shedding develops along
the wake, inside the plane channel. On the other hand, a steady solution is obtained for the
controlled case.

To contextualize these observations, we now discuss prior control results for this confined
cylinder configuration. The most direct comparison can be made with the work of Li and Zhang [20],
who also attempted to stabilize the flow. Since their chosen flow and goals are very similar to those
considered in the present work, they provide a good basis for comparison. The previous authors
proposed an approach for the stabilization problem using reinforcement learning to train neural
networks capable of minimizing the vortex shedding energy, which is translated to a reward function
that takes the velocity fluctuations at selected probe locations. Such calculations could be done by
either subtracting the mean flow or the equilibrium flow found through selective frequency damping
(SFD) from the measured velocity probes. By using the former approach, convergence was not ob-
served, whereas using the equilibrium states from SFD enabled stabilization. The results, however,
required manual positioning of probes through a heuristic approach informed by considering the
wavemaker region obtained from the overlap regions of leading direct and adjoint eigenmodes.
Furthermore, the prior computation of the equilibrium through SFD is a dedicated step that

FIG. 22. Comparison of uncontrolled and controlled u-velocity fields (see Movie 2, Supplemental Material
[74]). The former is represented by a snapshot taken at the flow natural limit cycle. For the controlled case, the
snapshot is captured after stabilization is achieved.

063904-23



DÉDA, WOLF, AND DAWSON

requires additional simulation-intrusive computations. By contrast, our approach enables automatic
equilibrium (and eigenmode) computations, which do not require the use of modified numerical
solvers. Li and Zhang [20] found that successful control of the confined cylinder flow resulted in a
small, nonzero mean control signal (i.e., control jet flow rate), which we also observe here. In our
case, this is on the order of ū ≈ −6 × 10−4, which is too small to observe on the right-hand plot
of Fig. 21.

One of the clearest advantages of using reinforcement learning, as opposed to the techniques
proposed in the present work, is that a model is not needed for the plant to be controlled. By querying
the system through a series of episodes, the RL training process refines the control strategy over
time, getting closer to the objective in a model-free approach. The absence of an auxiliary model,
however, makes it difficult to redesign the control law without the need to run the experiments
again with a different reward function, which might be potentially expensive for flow problems.
Our approach has the advantage of being able to retrain models by leveraging a previously sampled
data set. Similarly, retraining the controller with new hyperparameters by leveraging a previously
trained model is more straightforward. Typically, closed-loop control offers a degree of resilience to
variations in the plant. This means that models do not need to be absolutely precise; the controller
should function effectively with the actual plant, provided the model adequately reflects the core
dynamics of the system. On the other hand, for the stabilization problem, an adequate fit near the
equilibrium points requires data sampling in these regions, which can be a tricky feat to accomplish.
In this work, the iterative approach is proposed to solve this issue, and the production of a rich data
set of points at both quasilinear regions and strongly nonlinear ones is shown to be valuable for
building the NNSMs. Furthermore, we mention again the ability of inquiring the black-box NNSMs
with the goal of obtaining interpretable features such as a linearized model and the equilibrium
points.

It is more difficult to make a direct comparison with other prior control studies of this system,
primarily due to the different control objectives considered. The current work aims for stabilization,
whereas other prior investigations considering this confined cylinder flow [17,72] focused on drag
minimization. As we holistically approach the control problem proposing methods that also provide
estimates of the equilibrium, the stabilization task is directly enabled through NNC training. For this
confined cylinder flow, a drag reduction is seen through stabilization; the lift and drag oscillations
are suppressed, and the control input required to keep the controlled system at the unstable
equilibrium approaches zero. While we find a drag reduction of 2.6% for the fully stabilized flow,
larger drag reduction—5.7% at Re = 100 and 21.6% at Re = 200—are reported by Varela et al.
[72]. This suggests that the optimal solution for drag reduction is not the flow at its equilibrium.
This can be verified, for example, in the strong overshoot seen in CD (Fig. 21), where the maximum
drag reduction is reached before the flow is stabilized. In fact, in iteration 1, the control system
produces an average drag reduction of 3.4%, lower than the stabilized flow at iteration 3 of 2.6%.

VI. CONCLUSIONS

In the present work, neural networks are applied to perform as surrogate models of nonlinear
dynamical systems, and also as controllers for stabilizing such systems. The proposed approach is
first tested with the Lorenz set of ordinary differential equations, as well as with a modified version
of the Kuramoto-Sivashinsky partial differential equation. Then, flow control is demonstrated for
a periodic 2D channel flow, for which a data-driven linear stability analysis is also conducted and,
finally, for a more complex case of a confined cylinder flow. The trained neural networks provide
adequate surrogate models that achieve all the present results with a single hidden layer, except
for the confined cylinder case, which employs two layers. In the same fashion, the neural networks
obtained to control the investigated systems are also single-layer models with only a few neurons.
Despite the simple individual neural network architectures, through a recurrent training strategy the
present framework is able to obtain effective controllers. Results also support the efficacy of neural
networks for learning complex system dynamics, as well as to obtain important flow features, such

063904-24



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

as equilibrium points, and leading eigenmodes of the linearized system about these fixed points.
Although these data-driven models are trained as black boxes, relevant information can be extracted
by using back-propagation.

In this work, several different nonlinear unstable systems are investigated, and their dynamics do
not naturally converge to equilibrium points. This behavior hinders data sampling that represents
the plant dynamics close to such points, where linear approximations should be able to inform the
main eigenvalues and linear modes. As a solution for this problem, we propose the application of
NNC with an iterative training of the models. As well as achieving stabilization, this method proves
to be an efficient approach for equilibrium computation, sensor placement, and modal stability
analysis. As demonstrated by results, the iterative approach is key for bringing the system closer to a
progressively better estimation of the equilibrium point. In all the cases presented, the first iteration
is unable to provide accurate results, especially for equilibrium computation and modal analysis.
Even for the control task, stabilization is not achieved, for example, in the cylinder flow case. The
improvement achieved with the iterative process puts the presented NN approach as an efficient
and accurate candidate for flow stabilization and data-driven flow analysis, with the possibility of
enabling limited sensor allocation.

The first plant studied with the proposed methodology is the Lorenz system. With the chosen
numerical parameters, its dynamics results in a chaotic attractor featuring three different equilibrium
points. While not explicitly shown, it was found that the initial guess for the equilibrium point has
an important role in the iterative process, which means in general that, if initial guesses are too far
from an equilibrium of interest, the algorithm may converge to another point, which might not be de-
sirable. In the case presented in the Results section, the initial choice at x = y = z = 0.1 converges
near the origin after a few iterations. Results from this first test indicate that the iterative training
of the NNSM and NNC successfully overcomes the lack of data sampled near the equilibrium. As
the control strategy improves and the perturbations are reduced in amplitude, data sets containing
more measurements near equilibrium are built, improving the quality of linear approximations
and the control design aiming stabilization. Linear regression through DMD-based algorithms is
also enabled for a considerably broader range of plants, taking advantage of data produced by
controlled nonlinear systems that are brought closer to linear operation through feedback control.
The modification to the DMDc method used in this work also helps extend the analyses to systems
whose equilibrium points are unknown or poorly estimated, allowing for a model fitting that also
enhances estimates of equilibrium bias.

The present methodology is next applied to control a more complex problem, a modified version
of the Kuramoto-Sivashinsky equation. This modified equation is proposed in order to force a single
equilibrium point instead of a continuous space of possibilities. This test case allows the study of
the effectiveness of sensor placement through L1 regularization of the inputs. Again, equilibrium
estimation and feedback control obtain satisfactory results, even with a reduction in the number
of sensors from 60 to 9. Although this reduction slightly worsens the estimation of equilibrium
and, therefore, adds further errors to control convergence, tuning the L1 regularization through the
choice of a single hyperparameter leads to a configuration with an intermediate number of sensors
at reduced accuracy cost. Even so, the application of Newton’s method with linearization of the
NNSM through back-propagation is able to provide an equilibrium point estimation that allows for
stabilization and, therefore, to obtain the approximately linear data set subsequently used to identify
the dominant eigenmodes of the linearized system.

Application of the NNC is then applied to the Navier-Stokes equations. As a first case, stabi-
lization of a 2D streamwise-periodic channel flow is sought, where the capability of conducting a
linear stability analysis is also explored for a flow configuration with two unstable modes. The L1
regularization is applied in this case and, from a total of 664 measured signals, training is able to
reduce sensing to 181 probes. Stabilization is achieved with eight pairs of actuators in opposition
through NNC, which enables sampling of data close to equilibrium, i.e., of signals described by
approximately linear dynamics. The data are used for performing a linear regression through a
modified DMDc. The unstable eigenvalues and eigenmodes computed by this technique show good

063904-25



DÉDA, WOLF, AND DAWSON

agreement with those obtained directly from the solution of the linear Orr-Sommerfeld operator.
The different magnitudes of the growth rate and frequency of the unstable modes result in different
levels of accuracy for their estimation, with the growth rates being close to zero. In this sense, the
frequencies present lower relative errors than the growth rates due to the large discrete time intervals
associated with the latter for the chosen time step. The natural growth rate corresponds to a very
small component of the measured signal compared to the effect of the uncontrolled frequency.

Finally, control of a confined cylinder flow is also presented. The setup chosen with actuators in
opposition is the same proposed in different studies found in the literature [17,20]. Here, we assess
the ability of the neural network model to stabilize a complex system through the iterative training
framework. Even for this more complex case, the NNC is built from a single layer containing only
eight nodes. Results show that flow control suppresses the lift and drag oscillations from vortex
shedding and also reduces the mean drag by bringing the flow to its equilibrium point. Not only
is the system successfully controlled, but additionally the low complexity of the NNC suggests
that there is room for applying the technique to considerably more complex fluid systems without
prohibitive costs. For this confined cylinder configuration, prior work [20] found that RL control
performance could be improved through equilibrium computation and linear stability analysis in the
vicinity of this equilibrium. Here, we achieve similarly successful control results without needing
to perform these auxiliary computations explicitly, but where the results of such computations are
available as a by-product of our modeling and control methodology.

In each of the examples featuring partial differential equations across a spatial domain, we have
utilized a sparsity layer in the NNSM to reduce the number of sensor measurements (and thus model
inputs). While the resulting sensor locations are chosen to optimize a given cost function, they are
not necessarily unique solutions, in the sense that alternative sensor locations may be obtained for
different realizations (with different random input signals and randomly initialized NN weights) of
the training procedures. This is clear from observing that the identified sensors do not follow the
same symmetry properties of the flow configurations. That being said, the chosen sensor locations
do reveal some aspects of the underlying physics. For the modified KS equation, the sensors are
distributed throughout the domain, in accordance to the translation invariance of the problem (aside
from the actuator locations). For the 2D channel flow, the sensor locations indicate the importance
of near-wall streamwise velocity measurements, with a sparser set of measurements away from the
wall. The asymmetry in the chosen locations of the wall-normal velocity probe locations is perhaps
due to the fact that the instabilities in this system consist of mode shapes where the vertical velocity
component extends across the whole domain, so taking measurements at both the upper and lower
walls may be unnecessary. In the confined cylinder flow, we find that sensors both close to the
cylinder and downstream in the wake are chosen, indicating the importance of measurements in
both regions for suppressing the natural vortex shedding behavior. While beyond the scope of the
present work, it could be interesting to compare the identified sensor locations with those obtained
from alternative methods [54–57].

The modeling and control framework utilized here is similar in principle to that used in classical
linear control theory, with separate models for the plant and controller connected in feedback. While
nonlinear control is substantially more complex, here we show that relatively simple neural networks
can be used to develop effective nonlinear models for both the plant and controller, when trained
with a method that promotes the generation of large quantities of near-equilibrium data. Future
work could also utilize linearization of the plant and/or controller models for linear control design,
with better authority over the plant behavior through well-studied control design techniques that can
ensure robustness, optimality, or specific pole placement.

While it was demonstrated that the proposed methodology could be used to identify modal
linear amplification mechanisms, future work could extend these methods to study nonmodal
amplification, such as transient growth and resolvent analysis. Data-driven implementations of such
analyses have been implemented previously [73], though for non-normal systems it may be more
difficult to obtain accurate results without adjoint operators and/or data, which may require further
modifications to the methodology presented here.

063904-26



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

We finally emphasize that the methods and results are obtained from nonintrusive methods in the
sense that only the nonlinear system (with appropriate control inputs) has been used. This means
that the methodology could in principle be applied (for both control and flow physics analysis) in
an experimental setting. This, as well as the application to systems presenting a higher degree of
complexity, remains the subject of future work.

ACKNOWLEDGMENTS

The authors acknowledge the financial support received from Fundação de Amparo à Pesquisa
do Estado de São Paulo, FAPESP, under Grants No. 2013/08293-7 and No. 2021/06448-0. The
first author is supported by FAPESP Ph.D. scholarships No. 2019/19179-7 and No. 2022/00469-8,
which are also acknowledged. S.T.M.D. acknowledges support from NSF Award No. 2238770. The
computational resources used in this work were provided by CENAPAD-SP (Project No. 551), and
by LNCC via the SDumont cluster (Project SimTurb).

APPENDIX A: HYPERPARAMETERS

In this Appendix, the chosen values for the hyperparameters in each case are presented. They
are organized in Table II. Regarding the iterative training, the “number of iterations” corresponds to
how many times the proposed training steps are conducted. It is expected that at each iteration the
perturbed plant controlled by NNC tends to produce more data near equilibrium. The “number of
steps in sweep,” “number of steps in release,” and “number of steps in control” correspond to the
number of measurements sampled in each mode at each iteration.

The open-loop control signal is parametrized by a “control input saturation value,” which
defines the possible uniform interval of random values it can assume. The staircase signal has a
step width given by the “number of time steps for each stair step (open-loop signal)”. Also, the
“maximum amplitude decay at each iteration” parameter makes sure the open-loop signal is reduced
in amplitude at each training iteration.

From each mode (sweep, release, and control), data are sampled for training, but the data-set
size is limited to a “maximum number of points sampled for training NNSM.” This ensures that
the training cost does not increase beyond a certain point. An “NNSM learning rate” is defined for
the ADAM optimization algorithm, and the model is updated through a “number of epochs at each
training iteration for the NNSM.” The “number of neurons at NNSM hidden layers” hyperparameter
defines the number of layers, which is given by the number of elements in the array of numbers,
and the number of neurons in each layer, which is the value at each position. Note that, except
for the cylinder case in Table II, all NNSM models are trained with a single layer. For assessment
of possible overfitting, an “NNSM training set ratio” as a fraction of sampled data is also chosen,
which allows for the comparison of losses between a training set and a testing set of samples. The
“hidden layers L2 regularization” parameter is the r2 variable defined in this work. “Use sparsity
layer” is a Boolean that determines if sparse sensor placement is used. If so, we can set the “sparsity
layer L1 regularization” parameter (r1) and the “sparsity layer truncation tolerance” that determines
the absolute value below which the input layer weights are truncated to zero. The input layer is
organized according to the “number of control inputs” and the “number of states” measured.

Similarly a “maximum number of points sampled for training NNC” is also defined to avoid
excessive complexity, as well as the “NNC learning rate” for ADAM and the “number of epochs
at each training step for NNC.” The “training finite horizon length” in number of steps (nh) is also
presented. For the NNC, an “NNC training set ratio” as a fraction of sampled data is also chosen.
The “number of neurons at NNC hidden layers” is always the same in all cases, which consists of
a single layer containing eight neurons. “NNC control saturation” stands for the limits of control
effort that NNC can provide. It is implemented as an output layer consisting of weighted sigmoid
functions. The “control input weight in loss function” corresponds to wu.

063904-27



DÉDA, WOLF, AND DAWSON

TABLE II. Hyperparameters for each case studied.

Description Lorenz KS, full sensing
KS, sparse

sensing Channel flow
Cylinder

flow

Number of training iterations 25 10 10 19 3
Number of steps in sweep 1000 2000 2000 1800 2000
Number of steps in release 80 400 400 300 300
Number of steps in control 80 100 100 900 300
Control input saturation value
(±)

4.5 × 10+1 3.0 × 10−1 3.0 × 10−1 1.6 × 10−1 6.0 × 10−2

Number of time steps for each
stair step (open-loop signal)

20 10 10 10 10

Stair signal maximum
amplitude

4.5 × 10+1 3.0 × 10−1 3.0 × 10−1 1.6 × 10−1 6.0 × 10−2

Maximum amplitude decay at
each iteration

6.5 × 10−1 8.0 × 10−1 8.0 × 10−1 8.0 × 10−1 9.0 × 10−1

Maximum number of points
sampled for training NNSM

4000 4000 4000 4000 4000

NNSM learning rate 6.0 × 10−3 6.0 × 10−3 6.0 × 10−3 5.0 × 10−3 1.0 × 10−2

Number of epochs at each
training iteration for NNSM

1000 1000 1000 2000 2000

Number of neurons at NNSM
hidden layers

[18] [18] [18] [80] [100, 80]

NNSM training set ratio
(fraction of sampled data)

7.0 × 10−1 7.0 × 10−1 7.0 × 10−1 7.0 × 10−1 7.0 × 10−1

Hidden layers L2
regularization

1.0 × 10−5 1.0 × 10−5 1.0 × 10−5 1.0 × 10−5 1.0 × 10−5

Use sparsity layer False False True True True
Sparsity layer L1 regularization 1.0 × 10−4 1.0 × 10−5 1.0 × 10−4

Sparsity layer truncation
tolerance

3.0 × 10−3 3.0 × 10−3 3.0 × 10−3

Number of control inputs 1 3 3 8 1
Number of states 3 60 60 664 306
Maximum number of points
sampled for training NNC

1000 1000 1000 1000 1000

NNC learning rate 4.0 × 10−3 1.0 × 10−2 1.0 × 10−2 1.0 × 10−2 1.0 × 10−2

Number of epochs at each
training step for NNC

100 200 200 300 300

Training finite horizon length 10 50 50 140 140
NNC training set ratio (fraction
of sampled data)

9.0 × 10−1 9.0 × 10−1 9.0 × 10−1 9.0 × 10−1 9.0 × 10−1

Number of neurons at NNC
hidden layers

[8] [8] [8] [8] [8]

NNC control saturation 4.5 × 10+1 3.0 × 10−1 3.0 × 10−1 1.6 × 10−1 6.0 × 10−2

Control input weight in loss
function

5.0 × 10−3 5.0 × 10−3 5.0 × 10−3 1.0 × 10−1 1.0 × 10−1

Initial guess for equilibrium
point

[1.0 × 10−1,
1.0 × 10−1,
1.0 × 10−1]

[1.0 × 10−1, . . .,
1.0 × 10−1]

[1.0 × 10−1, . . .,
1.0 × 10−1]

1.0 for
x-velocity,

0.0 for
y-velocity

1.0 for
x-velocity,

0.0 for
y-velocity

Number of steps for Newton
method (equilibrium
estimation)

10 10 10 10 10

063904-28



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

Finally, regarding equilibrium computation, the “initial guess for equilibrium point” is presented
for each case, corresponding to the first guess used in the first training iteration. At each of these
iterations, the estimation of equilibrium is updated along a “number of steps for the Newton
method.”

APPENDIX B: IMPLEMENTATION OVERVIEW AND GENERAL GUIDELINES

The NNSMs have demonstrated the capability to model the present nonlinear systems, while the
NNC proved to be capable of stabilizing such systems. However, the convergence and functionality
of the control system depends on the selection of hyperparameters, whose choices can make a
considerable difference in the performance. In this section, we provide general guidelines for setting
up the training process. Although the quality of the models and control systems are affected by the
hyperparameters, it is important to mention that different values of such parameters could present
equally satisfactory results in terms of control performance. Hence, the guidelines provided here are
not necessarily the only possible path. Also, the comparison between two different hyperparameter
setups will only make sense within a same study case.

As mentioned in the main text, the first step consists of gathering data through open-loop sweeps.
These data will be used in the first iteration to train the NNSM. It is recommended to select a number
of steps for the sweep step that is large enough to properly sweep the state space. This roughly
means that systems with more complex dynamics should require a larger number of time steps in
the data set. One can conclude, for example, that the number of data points used in the Lorenz
case could be smaller by comparing with the other cases (since it has only three states). In fact,
we sample way more points than what is actually needed, which is not a problem since simulating
the Lorenz system is computationally inexpensive. For the control step, we recommend utilizing
a window that could encompass the control convergence time. Increasing the window beyond this
could lead to the sampling of redundant data at the equilibrium point. The release mode is mainly
used for visualization and testing, so it is not the most important parameter of concern. However, it
is important to consider that very large release windows would make the fit more prone to prioritize
the dynamics of the uncontrolled plant in the competition to reduce the loss function. The open-loop
signal is set by trial and error, by analyzing the produced signals and trajectories to see if they are
drifting away from their natural responses. The same amplitude is set for saturating the controller,
although some extrapolation could also be tried. The number of time steps for each staircase step
in the control input is set to values that are not too large, avoiding the trajectories to stick to fixed
orbits or forced equilibrium points.

Now, the complexity of the networks, which include the number of layers and the number of
nodes in each layer, can be chosen. For the NNSM, in general, our recommendation is to set the
smaller values that would make the loss function converge satisfactorily. This helps avoid both
excessive computation and overfitting. For the cylinder case, it was noticed that a single layer did
not lead to a proper reduction of the loss function during training. Hence, the model complexity
was increased by adding one extra hidden layer and more nodes until the loss function converged
to satisfactory values. For the NNC, the procedure is similar: starting from a very simple controller,
increase the complexity until the NNC loss function converges properly. For both the NNSM and
the NNC, the balance between the number of training epochs and learning rate should be such
that the number of epochs is the smallest possible by increasing the learning rate without making
the training process unstable. Very high learning rates can make the loss function oscillate during
training, hindering convergence.

The open-loop signal decay is set together with the global number of training iterations. If the
overall process becomes too (computationally) expensive, the total number of iterations could be
reduced and the decay intensified in an attempt to obtain data near equilibrium earlier. The maximum
number of points used to train both networks is chosen only based on computational capabilities.
Fixed values for the L2 regularization factor are recommended to avoid indefinite growth of the

063904-29



DÉDA, WOLF, AND DAWSON

hidden layer weights. The L1 factor, on the other hand, can be adjusted for balancing the NNSM
accuracy and the number of sensors. Since the contribution of the L2 regularization factor to the
loss function represents a quadratic growth with an increase of the weights, modest changes to the
L1 factor do not require a change in the L2 regularization.

The fixed horizon length for the NNC training is adjusted according to the control convergence
time. For example, if a large control input weight is chosen, a slower convergence might occur,
which could require an increase in the horizon length. If the latter is too small, the controller
might not be well trained for regions near equilibrium. One important thing to mention is that,
since the NNC training process relies on a recurrent setup, increasing horizon lengths can quickly
make the algorithm computationally prohibitive. Finally, regarding the Newton method, we tested
different initial guesses for the Lorenz case. As expected, this leads to convergence to different
equilibrium points, since the present Lorenz setup depicts three different equilibrium points. For
the flow configurations, we simply used the reference values of velocity as initial guess, i.e., 1 for
horizontal and 0 for vertical velocity components. This choice was shown to be reasonable for the
tested cases. Another option would be to use estimates based on the mean flow.

APPENDIX C: REMARKS ON ROBUSTNESS

In this Appendix, we present a brief discussion about the robustness of the closed NNC loop.
We choose the Lorenz system due to the possibility of running computationally inexpensive tests.
We show the results by employing the controller trained at iteration 4—discussed in Sec. V A—for
different types of undesirable phenomena that could make the control not work properly. In all
cases, the controller is employed as designed, but in some cases, we also propose modifications
to the methodology that could further increase the robustness of the control system. Selected from
a series of trial-and-error tests, we present the threshold conditions beyond which the controller
saturates or fails to keep the Lorenz system in the regions near equilibrium.

First, in Figs. 23(a) and 23(b) we show the results of modifying the control input from u =
K (x, y, z) to u = K (x, y, z) + δ0 sin(ωd k). We choose a low frequency ωd and increase δ0 to more
than one-third of the saturation value (45 in absolute value) chosen for u (see Table II). With δ0 = 17,
the states move away from the region near [0, 0, 0]. This happens when u saturates and, therefore,
increasing the saturation levels should enhance the ability to keep the states closer to equilibrium.
Furthermore, allowing the controller to output higher efforts also tends to increase the robustness to
disturbances.

The effects of quantization in the digitization of the signals are also tested. In Figs. 23(c) and
23(d), it is shown that the states move away from near the equilibrium when a resolution of four lev-
els (equivalent to two-bit quantization) is used. With eight levels (three-bit quantization), the states
are kept in the region close to equilibrium. As expected, a low resolution in quantization worsens
the performance of control and this needs to be taken into account in real-world applications.

In this work, a standard fourth-order Runge-Kutta scheme is used to simulate the Lorenz system.
We verified that the maximum time step for the simulation to stay stable is �t = 0.1. In the simula-
tions shown in the present work, we use �t = 0.05. Exclusively for the cases shown in Figs. 23(e)
and 23(f) we use a time step of 0.03 for the Runge-Kutta method and sample the states every six
steps (�t = 0.18) or every seven steps (�t = 0.21). Since the control law uk = K (xk, yk, zk ) is
a static nonlinear function, i.e., it does not depend on past measurements, it is generalizable for
other values of �t beyond that used for training. However, when �t is too large, the effects of
aliasing make it impossible for the control loop to keep working properly. This is a limitation
of digital control, and a minimum sample rate is required independently of the control technique
itself.

Another test that is presented encompasses the addition of noise to the measured signals.
Independent Gaussian noise is applied to each of the three states, with a mean value of zero and
standard deviations of σs = 0.5 and σs = 0.6, as shown in Figs. 23(g) and 23(h). In each case, the
same σs is used for x, y, and z. The reason that makes the states move away from near the equilibrium

063904-30



NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

FIG. 23. Controlled Lorenz system subject to different undesirable phenomena. The vertical black line
depicts the moment when the control is turned on. The colored curves represent the measured states seen by
the controller.

point is the high amplification of noise produced by the controller that makes the control input
saturate, rendering the loop unable to hold the states. One possible solution to this issue within the
scope of NNC is the implementation of a state estimator. Since the NNSM can be linearized in
different regions of the input space, the implementation of an extended Kalman filter should be a
candidate approach to solve this issue, allowing for the controller to receive cleaner signals and thus
avoiding the amplification of noise.

Finally, we check the capability of the NNC to control a modified version of the Lorenz equations.
We keep the β and ρ values from the equations the same as the originals and modify the parameter σ

from σ = 10 to σ = 4 and σ = 3, as shown in Figs. 23(i) and 23(j). The choice of reducing σ instead
of increasing comes from the fact that making it larger tends to drive the simulation numerically
unstable. When the modification reaches σ = 3, the controller loses its ability to maintain the system
states close to [0, 0, 0]. In this scenario, the controller is permanently locked at saturation levels.
One possible solution to improve the control functionality when considerable plant variations are

063904-31



DÉDA, WOLF, AND DAWSON

expected is to modify the discrete formulation from

xk+1 = F (xk, uk )

to

xk+1 = F (xk, uk, h),

where h is a parameter space that could contain, for example, the Reynolds number of a flow.
This approach would clearly suffer from requiring that h is somehow measured or estimated,
although there can be some margin for inaccuracies, as it is expected in closed-loop control systems
and shown in the example tested. In this scenario, the NNC could be trained as a control law
u = K(xr, h).

As a final comment regarding the proposed tests, we mention that we also tried to apply
measurement noise and larger values of �t to reconduct the iterative training process from scratch.
Interestingly, the training provided controllers with similar performance as the original case, starting
to present issues only when the limits σs ≈ 0.6 or �t ≈ 0.21 were exceeded—values similar to those
shown in Fig. 23. This means that adding noise to the measurements does not make it impossible to
train adequate models, as long as overfitting is properly avoided. It also indicates that we can build
discrete models (NNSMs) for the Lorenz system that can work at values of �t that are considerably
higher than the ones allowed by the Runge-Kutta scheme.

[1] M. Gad-el-Hak, Modern developments in flow control, Appl. Mech. Rev. 49, 365 (1996).
[2] C. Lee, J. Kim, D. Babcock, and R. Goodman, Application of neural networks to turbulence control for

drag reduction, Phys. Fluids 9, 1740 (1997).
[3] J. Kutz, Deep learning in fluid dynamics, J. Fluid Mech. 814, 1 (2017).
[4] M. P. Brenner, J. D. Eldredge, and J. B. Freund, Perspective on machine learning for advancing fluid

mechanics, Phys. Rev. Fluids 4, 100501 (2019).
[5] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, Machine learning for fluid mechanics, Annu. Rev.

Fluid Mech. 52, 477 (2020).
[6] J. Ling, A. Kurzawski, and J. Templeton, Reynolds averaged turbulence modelling using deep neural

networks with embedded invariance, J. Fluid Mech. 807, 155 (2016).
[7] C. Xie, X. Xiong, and J. Wang, Artificial neural network approach for turbulence models: A local

framework, Phys. Rev. Fluids 6, 084612 (2021).
[8] M. Milano and P. Koumoutsakos, Neural network modeling for near wall turbulent flow, J. Comput. Phys.

182, 1 (2002).
[9] K. Fukami, K. Fukagata, and K. Taira, Super-resolution reconstruction of turbulent flows with machine

learning, J. Fluid Mech. 870, 106 (2019).
[10] H. F. S. Lui and W. R. Wolf, Construction of reduced-order models for fluid flows using deep feedforward

neural networks, J. Fluid Mech. 872, 963 (2019).
[11] R. F. Miotto and W. R. Wolf, Flow imaging as an alternative to non-intrusive measurements and surrogate

models through vision transformers and convolutional neural networks, Phys. Fluids 35, 045143 (2023).
[12] J. Page, M. P. Brenner, and R. R. Kerswell, Revealing the state space of turbulence using machine learning,

Phys. Rev. Fluids 6, 034402 (2021).
[13] Z. Deng, Y. Chen, Y. Liu, and K. C. Kim, Time-resolved turbulent velocity field reconstruction using a

long short-term memory (LSTM)-based artificial intelligence framework, Phys. Fluids 31, 075108 (2019).
[14] K. H. Manohar, C. Morton, and P. Ziadé, Sparse sensor-based cylinder flow estimation using artificial

neural networks, Phys. Rev. Fluids 7, 024707 (2022).
[15] J. Morton, A. Jameson, M. J. Kochenderfer, and F. D. Witherden, Deep dynamical modeling and control

of unsteady fluid flows, Adv. Neural Info. Proc. Sys. 31 (2018).

063904-32

https://doi.org/10.1115/1.3101931
https://doi.org/10.1063/1.869290
https://doi.org/10.1017/jfm.2016.803
https://doi.org/10.1103/PhysRevFluids.4.100501
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1103/PhysRevFluids.6.084612
https://doi.org/10.1006/jcph.2002.7146
https://doi.org/10.1017/jfm.2019.238
https://doi.org/10.1017/jfm.2019.358
https://doi.org/10.1063/5.0144700
https://doi.org/10.1103/PhysRevFluids.6.034402
https://doi.org/10.1063/1.5111558
https://doi.org/10.1103/PhysRevFluids.7.024707


NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

[16] K. Bieker, S. Peitz, S. L. Brunton, J. N. Kutz, and M. Dellnitz, Deep model predictive flow control with
limited sensor data and online learning, Theor. Comput. Fluid Dyn. 34, 577 (2020).

[17] J. Rabault, M. Kuchta, A. Jensen, U. Réglade, and N. Cerardi, Artificial neural networks trained through
deep reinforcement learning discover control strategies for active flow control, J. Fluid Mech. 865, 281
(2019).

[18] F. Ren, J. Rabault, and H. Tang, Applying deep reinforcement learning to active flow control in weakly
turbulent conditions, Phys. Fluids 33, 037121 (2021).

[19] R. Castellanos, G. Cornejo Maceda, I. De La Fuente, B. Noack, A. Ianiro, and S. Discetti, Machine-
learning flow control with few sensor feedback and measurement noise, Phys. Fluids 34, 047118 (2022).

[20] J. Li and M. Zhang, Reinforcement-learning-based control of confined cylinder wakes with stability
analyses, J. Fluid Mech. 932, A44 (2022).

[21] D. Fan, L. Yang, Z. Wang, M. S. Triantafyllou, and G. E. Karniadakis, Reinforcement learning for bluff
body active flow control in experiments and simulations, Proc. Natl. Acad. Sci. USA 117, 26091 (2020).

[22] L. Guastoni, J. Rabault, P. Schlatter, H. Azizpour, and R. Vinuesa, Deep reinforcement learning for
turbulent drag reduction in channel flows, Eur. Phys. J. E 46, 27 (2023).

[23] T. Sonoda, Z. Liu, T. Itoh, and Y. Hasegawa, Reinforcement learning of control strategies for reducing
skin friction drag in a fully developed turbulent channel flow, J. Fluid Mech. 960, A30 (2023).

[24] T. Lee, J. Kim, and C. Lee, Turbulence control for drag reduction through deep reinforcement learning,
Phys. Rev. Fluids 8, 024604 (2023).

[25] O. A. Mahfoze, A. Moody, A. Wynn, R. D. Whalley, and S. Laizet, Reducing the skin-friction drag of a
turbulent boundary-layer flow with low-amplitude wall-normal blowing within a Bayesian optimization
framework, Phys. Rev. Fluids 4, 094601 (2019).

[26] G. Novati, L. Mahadevan, and P. Koumoutsakos, Controlled gliding and perching through deep-
reinforcement-learning, Phys. Rev. Fluids 4, 093902 (2019).

[27] A. Jing, Z. Tang, J. Gao, and G. Pan, An improved ddpg reinforcement learning control of underwater
gliders for energy optimization, in 2020 3rd International Conference on Unmanned Systems (ICUS)
(IEEE, New York, 2020), pp. 621–626.

[28] H. Ghraieb, J. Viquerat, A. Larcher, P. Meliga, and E. Hachem, Single-step deep reinforcement learning
for open-loop control of laminar and turbulent flows, Phys. Rev. Fluids 6, 053902 (2021).

[29] C. Vignon, J. Rabault, and R. Vinuesa, Recent advances in applying deep reinforcement learning for flow
control: Perspectives and future directions, Phys. Fluids 35, 031301 (2023).

[30] J. Viquerat, P. Meliga, A. Larcher, and E. Hachem, A review on deep reinforcement learning for fluid
mechanics: An update, Phys. Fluids 34, 111301 (2022).

[31] S. L. Brunton, J. L. Proctor, and N. J. Kutz, Discovering governing equations from data by sparse
identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA 113, 3932 (2016).

[32] E. Kaiser, J. N. Kutz, and S. L. Brunton, Sparse identification of nonlinear dynamics for model predictive
control in the low-data limit, Proc. R. Soc. A 474, 20180335 (2018).

[33] F. Zigunov, P. Sellappan, and F. Alvi, A bluff body flow control experiment with distributed actuation and
genetic algorithm-based optimization, Exp. Fluids 63, 23 (2022).

[34] F. Zigunov, M. Song, P. Sellappan, and F. S. Alvi, Multiaxis shock vectoring control of overexpanded
supersonic jet using a genetic algorithm, J. Propul. Power 39, 249 (2023).

[35] C. Raibaudo, P. Zhong, B. R. Noack, and R. J. Martinuzzi, Machine learning strategies applied to the
control of a fluidic pinball, Phys. Fluids 32, 015108(2020).

[36] D. Sipp and P. J. Schmid, Linear closed-loop control of fluid instabilities and noise-induced perturbations:
A review of approaches and tools, Appl. Mech. Rev. 68, 020801 (2016).

[37] C. W. Rowley and D. R. Williams, Dynamics and control of high-Reynolds-number flow over open
cavities, Annu. Rev. Fluid Mech. 38, 251 (2006).

[38] A. Barbagallo, D. Sipp, and P. J. Schmid, Closed-loop control of an open cavity flow using reduced-order
models, J. Fluid Mech. 641, 1 (2009).

[39] S. J. Illingworth, Model-based control of vortex shedding at low Reynolds numbers, Theor. Comput. Fluid
Dyn. 30, 429 (2016).

063904-33

https://doi.org/10.1007/s00162-020-00520-4
https://doi.org/10.1017/jfm.2019.62
https://doi.org/10.1063/5.0037371
https://doi.org/10.1063/5.0087208
https://doi.org/10.1017/jfm.2021.1045
https://doi.org/10.1073/pnas.2004939117
https://doi.org/10.1140/epje/s10189-023-00285-8
https://doi.org/10.1017/jfm.2023.147
https://doi.org/10.1103/PhysRevFluids.8.024604
https://doi.org/10.1103/PhysRevFluids.4.094601
https://doi.org/10.1103/PhysRevFluids.4.093902
https://doi.org/10.1103/PhysRevFluids.6.053902
https://doi.org/10.1063/5.0143913
https://doi.org/10.1063/5.0128446
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1098/rspa.2018.0335
https://doi.org/10.1007/s00348-021-03356-8
https://doi.org/10.2514/1.B38846
https://doi.org/10.1063/1.5127202
https://doi.org/10.1115/1.4033345
https://doi.org/10.1146/annurev.fluid.38.050304.092057
https://doi.org/10.1017/S0022112009991418
https://doi.org/10.1007/s00162-016-0389-6


DÉDA, WOLF, AND DAWSON

[40] T. L. Flinois and A. S. Morgans, Feedback control of unstable flows: A direct modelling approach using
the eigensystem realisation algorithm, J. Fluid Mech. 793, 41 (2016).

[41] S. L. Brunton, S. T. Dawson, and C. W. Rowley, State-space model identification and feedback control of
unsteady aerodynamic forces, J. Fluids Struct. 50, 253 (2014).

[42] B. Herrmann, S. L. Brunton, J. E. Pohl, and R. Semaan, Gust mitigation through closed-loop control. II.
Feedforward and feedback control, Phys. Rev. Fluids 7, 024706 (2022).

[43] G. Sedky, A. Gementzopoulos, F. D. Lagor, and A. R. Jones, Experimental mitigation of large-amplitude
transverse gusts via closed-loop pitch control, Phys. Rev. Fluids 8, 064701 (2023).

[44] S. Shi, S. Xu, J. Gu, and H. Min, Global high-order sliding mode controller design subject to mismatched
terms: Application to buck converter, IEEE Trans. Circuits Syst. I 66, 4840 (2019).

[45] S. Baek, J. Baek, and S. Han, An adaptive sliding mode control with effective switching gain tuning near
the sliding surface, IEEE Access 7, 15563 (2019).

[46] F. Alyoussef and I. Kaya, A review on nonlinear control approaches: Sliding mode control back-stepping
control and feedback linearization control, in International Engineering and Natural Sciences Con-
ference (IENSC 2019) (Science & Education Group (INESEG), Diyarbakır, Turkey, 2019), Vol. 2019,
pp. 608–619.

[47] A. Zulu and S. John, A review of control algorithms for autonomous quadrotors, Open J. Appl. Sci. 4,
547 (2014).

[48] T. C. Déda and W. R. Wolf, Extremum seeking control applied to airfoil trailing-edge noise suppression,
AIAA J. 60, 823 (2022).

[49] L. N. Egidio, G. S. Deaecto, J. P. Hespanha, and J. C. Geromel, Trajectory tracking for a class of switched
nonlinear systems: Application to PMSM, Nonlinear Anal. Hybrid Syst. 44, 101164 (2022).

[50] H. Arbabi, M. Korda, and I. Mezić, A data-driven Koopman model predictive control framework for
nonlinear partial differential equations, in 2018 IEEE Conference on Decision and Control (CDC) (IEEE,
New York, 2018), pp. 6409–6414.

[51] T. Déda, W. R. Wolf, and S. T. M. Dawson, Backpropagation of neural network dynamical models applied
to flow control, Theor. Comput. Fluid Dyn. 37, 35 (2023).

[52] G. Y. C. Maceda, Y. Li, F. Lusseyran, M. Morzyński, and B. R. Noack, Stabilization of the fluidic pinball
with gradient-enriched machine learning control, J. Fluid Mech. 917, A42 (2021).

[53] K. Willcox, Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition,
Comput. Fluids 35, 208 (2006).

[54] K. Manohar, B. W. Brunton, J. N. Kutz, and S. L. Brunton, Data-driven sparse sensor placement for
reconstruction: Demonstrating the benefits of exploiting known patterns, IEEE Control Syst. Mag. 38, 63
(2018).

[55] P. Sashittal and D. J. Bodony, Data-driven sensor placement for fluid flows, Theor. Comput. Fluid Dyn.
35, 709 (2021).

[56] J. Graff, A. Medina, and F. D. Lagor, Information-based sensor placement for data-driven estimation of
unsteady flows, AIAAJ 61 (2023).

[57] J. Williams, O. Zahn, and J. N. Kutz, Data-driven sensor placement with shallow decoder networks,
arXiv:2202.05330.

[58] R. Paris, S. Beneddine, and J. Dandois, Robust flow control and optimal sensor placement using deep
reinforcement learning, J. Fluid Mech. 913, A25 (2021).

[59] K. K. Chen and C. W. Rowley, H2 optimal actuator and sensor placement in the linearised complex
Ginzburg–Landau system, J. Fluid Mech. 681, 241 (2011).

[60] B. Jin, S. J. Illingworth, and R. D. Sandberg, Optimal sensor and actuator placement for feedback control
of vortex shedding, J. Fluid Mech. 932, A2 (2022).

[61] G. A. Freire, A. V. Cavalieri, F. J. Silvestre, A. Hanifi, and D. S. Henningson, Actuator and sensor
placement for closed-loop control of convective instabilities, Theor. Comput. Fluid Dyn. 34, 619 (2020).

[62] M. R. Jovanović, P. J. Schmid, and J. W. Nichols, Sparsity-promoting dynamic mode decomposition,
Phys. Fluids 26, 024103 (2014).

[63] C. S. Skene, C.-A. Yeh, P. J. Schmid, and K. Taira, Sparsifying the resolvent forcing mode via gradient-
based optimisation, J. Fluid Mech. 944, A52 (2022).

063904-34

https://doi.org/10.1017/jfm.2016.111
https://doi.org/10.1016/j.jfluidstructs.2014.06.026
https://doi.org/10.1103/PhysRevFluids.7.024706
https://doi.org/10.1103/PhysRevFluids.8.064701
https://doi.org/10.1109/TCSI.2019.2933164
https://doi.org/10.1109/ACCESS.2019.2894911
https://doi.org/10.4236/ojapps.2014.414053
https://doi.org/10.2514/1.J060634
https://doi.org/10.1016/j.nahs.2022.101164
https://doi.org/10.1007/s00162-023-00641-6
https://doi.org/10.1017/jfm.2021.301
https://doi.org/10.1016/j.compfluid.2004.11.006
https://doi.org/10.1109/MCS.2018.2810460
https://doi.org/10.1007/s00162-021-00584-w
https://doi.org/10.2514/1.J063015
https://arxiv.org/abs/2202.05330
https://doi.org/10.1017/jfm.2020.1170
https://doi.org/10.1017/jfm.2011.195
https://doi.org/10.1017/jfm.2021.948
https://doi.org/10.1007/s00162-020-00537-9
https://doi.org/10.1063/1.4863670
https://doi.org/10.1017/jfm.2022.519


NEURAL NETWORKS IN FEEDBACK FOR FLOW ANALYSIS …

[64] B. Lopez-Doriga, E. Ballouz, H. J. Bae, and S. T. M. Dawson, A sparsity-promoting resolvent analysis
for the identification of spatiotemporally-localized amplification mechanisms, in AIAA SCITECH 2023
Forum (AIAA, Reston, VA, 2023), p. 0677.

[65] K. Gurney, An Introduction to Neural Networks (CRC Press, Boca Raton, FL, 2018).
[66] O. Zahn, J. Bustamante, Jr., C. Switzer, T. L. Daniel, and J. N. Kutz, Pruning deep neural networks

generates a sparse, bio-inspired nonlinear controller for insect flight, PLoS Comput. Biol. 18, e1010512
(2022).

[67] J. L. Proctor, S. L. Brunton, and J. N. Kutz, Dynamic mode decomposition with control, SIAM J. Appl.
Dyn. Syst. 15, 142 (2016).

[68] G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames – I. Derivation of
basic equations, Acta Astronaut. 4, 1177 (1977).

[69] Y. Kuramoto, Diffusion-induced chaos in reaction systems, Prog. Theor. Phys. 64, 346 (1978).
[70] N. Fabbiane, O. Semeraro, S. Bagheri, and D. S. Henningson, Adaptive and model-based control theory

applied to convectively unstable flows, Appl. Mech. Rev. 66, 060801(2014).
[71] J. A. Weideman and S. C. Reddy, A Matlab differentiation matrix suite, ACM Trans. Math. Software 26,

465 (2000).
[72] P. Varela, P. Suárez, F. Alcántara-Ávila, A. Miró, J. Rabault, B. Font, L. M. García-Cuevas, O. Lehmkuhl,

and R. Vinuesa, Deep reinforcement learning for flow control exploits different physics for increasing
Reynolds number regimes, Actuators 11, 359 (2022).

[73] B. Herrmann, P. J. Baddoo, R. Semaan, S. L. Brunton, and B. J. McKeon, Data-driven resolvent analysis,
J. Fluid Mech. 918, A10 (2021).

[74] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.9.063904 for ani-
mated visualizations of the flows stabilized by neural network controllers.

063904-35

https://doi.org/10.1371/journal.pcbi.1010512
https://doi.org/10.1137/15M1013857
https://doi.org/10.1016/0094-5765(77)90096-0
https://doi.org/10.1143/PTPS.64.346
https://doi.org/10.1115/1.4027483
https://doi.org/10.1145/365723.365727
https://doi.org/10.3390/act11120359
https://doi.org/10.1017/jfm.2021.337
http://link.aps.org/supplemental/10.1103/PhysRevFluids.9.063904

