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Stability of a liquid layer draining around a horizontal cylinder:
Interplay of capillary and gravity forces
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We study the drainage of a viscous liquid film coating the outside of a solid horizontal
cylinder, where gravity acts vertically. We focus on the limit of large Ohnesorge numbers
Oh, where inertia is negligible compared to viscous effects. We first study the evolution of
the axially invariant draining flow, initiated at rest with uniform film thickness δ. Nonlinear
simulations indicate that for each δ, there is a threshold in the Bond number (Bo), which
compares the gravitational effects with surface tension, above which the draining liquid
bulk ruptures. This critical Bo is found to scale inversely with δ, and defines the existence of
a quasistationary pendant liquid curtain remaining sustained below the cylinder by surface
tension. The interface of the pendant curtain is unconditionally linearly unstable and is
prone to Rayleigh-Plateau-like, capillarity-driven, and Rayleigh-Taylor, gravity-driven,
instabilities. The linear stability of the quasistatic state along with an energy analysis of
the unstable mode illustrates that while the Rayleigh-Taylor instability is always present,
capillary effects dominate the instability at small Bo, which promotes the formation of
pearls enveloping the cylinder. In contrast, at large Bo, capillarity acts in a stabilizing way
and the instability is purely gravity driven, forming underside modulations. We present
the asymptotic energy repartition representing the different physical mechanisms at play
in the instability of the saturated curtains for a wide range of {Bo, δ}. The results of the
linear analysis agree with the preexisting experiments of de Bruyn [Phys. Fluids 9, 1599
(1997)] and nonlinear simulations of Weidner et al. [J. Colloid Interface Sci. 187, 243
(1997)] in the limit of a thin film and extend the results for thick films. Additionally, based
on the volume made available for droplet growth by the development of the most linearly
amplified wavelength, we build a tentative regime diagram that predicts the final patterns
emerging from the pendant curtain, namely, an array of saturated pearls or pendant drops or
the onset of three-dimensional droplet pinch-off. Furthermore, a transient growth analysis
accounting for the time evolution of the base state towards a saturated curtain conclusively
demonstrates that the initial flow evolution does not result in altering the most amplified
wavelength, thus rationalizing a posteriori the asymptotic analysis to predict the fate of the
three-dimensional patterns.

DOI: 10.1103/PhysRevFluids.9.063903

I. INTRODUCTION

Gravity-driven liquid films coating the outer side of a solid surface are ubiquitous in nature.
Some daily life examples are dew covering the strings of spider silk [1] and raindrop spread and
accumulation around tree branches [2], to name a few. Such a flow is also of interest for several
practical applications, for instance in coating industries [3–5], painting [6,7], vapor absorption
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[8–11], desalination [12], shell fabrication [13], and heat exchangers [14,15]. The motion of the
coating liquid film may be influenced by several factors, most chiefly the solid surface geometry as
well as the interplay of gravitational, capillary, and viscous forces. It is therefore not surprising that
the dynamics of coating film flows, their instabilities, and subsequent pattern formation have gained
attention in the last decade [16,17].

A particular coating flow configuration is the gravity-driven flow around a horizontal solid
cylinder. The interface of this draining film is prone to several instabilities that have been studied
extensively, both numerically and experimentally. A vast majority of the numerical analyses have
focused on the thin-film limit and exploited the lubrication approximation [18]. Balestra et al. [19],
for instance, investigated the conditions for fingering instability to occur during the spreading of
a thin film over a partially wetting horizontal cylinder. Several other studies addressed the liquid
motion, film thickness, and the centrifugal instability of a liquid-coated cylinder rotating around its
axis via thin-film equations [20–24] and reduced models developed for thicker films [25].

The evolution of the coating flow around a fully wetting horizontal cylinder in the absence of ro-
tation has also attracted several studies. Reisfeld and Bankoff [26] investigated the two-dimensional
isothermal and nonisothermal evolution of a thin liquid film of initially uniform thickness around
a stationary horizontal cylinder. Their study describes the flow as the drainage of the liquid film
around the cylinder that leads to the formation of a pendant liquid curtain at the bottom of the
cylinder. Note that they elucidated another mechanism, as confirmed by Ding et al. [27], for the
liquid film rupture on cylindrical substrates due to the wall dewetting under the destabilizing action
of disjoining pressure, resulting typically from attractive van der Waals forces [28,29], typically
materialized by a positive Hamaker constant. This situation, in which a dewetting instability
contributes to the film rupture, contrasts with wetting situations in which the conjoining pressure
[29] stabilizes the film under the action of repulsive van der Waals forces. However, we will make
the key assumption in the present study that the solid surface always remains wet. Thus, the possible
destabilizing effect of the van der Waals forces is neglected when liquid film thins down. Reisfeld
and Bankoff [26] also investigated the shape variation of the pendant interface as a function of the
thermal properties of the flow. A recent study of McKinlay et al. [30] explores in the thin-film limit
the late-time draining of such a flow when the quasistatic pendant curtain is connected to the slowly
draining thin liquid film remaining on top of the cylinder via an infinite sequence of alternating
dimples and ridges.

Limat et al. [31] investigated experimentally the gravity-driven dripping and jetting underneath
a horizontal cylinder subject to a continuous flow feed while de Bruyn [32] investigated experi-
mentally the instability of a thin liquid layer that covers a horizontal cylinder and measured the
early-time wavelength of the unstable patterns and observed that their growth was followed by
possible droplet pinch-off at large times when surface tension is weak compared to gravity. Using
nonlinear simulations of a similar isothermal flow configuration as in Reisfeld and Bankoff [26],
Weidner et al. [33] demonstrated the three-dimensional temporal evolution of the flow. Starting
from a core-annular state, initially perturbed by a low-level white noise, they depicted the flow
evolution in four phases: First, the axially invariant liquid bulk is pulled off without any evidence of
instabilities. After a while past the establishment of a pendant curtain, the second phase starts with
the appearance of growing small-amplitude longitudinal wavy perturbations at the bottom of the
interface. The third phase evidences nonlinearities that affect the growth of these wavy patterns and
lead to the formation of large drops separated axially by very thin liquid ridges, as well as possible
smaller satellite drops. In the fourth phase, the satellite drops may coalesce into bigger drops and
the interaction between single drops ceases.

Weidner et al. [33] highlighted that in the limit of small cylinder diameter with respect to the
capillary length, where surface tension is important, perturbations lead to an upward motion of the
flow that results in pierced droplets surrounding the cylinder, hereafter pearls. Later, Weidner [34]
reported a similar reversal of drop formation due to surface tension modification in the presence
of surfactants. Characteristics of the emerging patterns and their shape strongly resemble those of
the classical Rayleigh-Taylor instability [35,36] and of the capillary instability of the annular flow
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along a fiber [3], which is governed by the physical mechanism of the Rayleigh-Plateau instability
[37,38] pertaining to liquid jets.

While analyses of the aforementioned studies are limited to a thin-film layer, where the lubri-
cation approximation holds, the formation of a collected liquid bulk underneath the cylinder may
violate the thin-film assumption. Weidner et al. [33] reasoned in analogy with a static pendant drop
solution, where except for highly curved regions of the interface, a thin-film approximation results
in a fair prediction of the curtain interface. Even though the big picture of the flow is well depicted
by Weidner et al. [33], their final result after flow destabilization depends on the length of the
numerical domain. This is due to the symmetry condition that is imposed at the two axial ends of
their numerical domain. Furthermore, despite their effort to apply an initial white noise to the film,
the amplification of perturbations during the first phase (liquid pull-off), and its potential influence
on the final droplet size are not well understood. It is also questionable how far these analyses can
be generalized to an initially thick core-annular film.

The present study revisits the flow configuration as in Weidner et al. [33] from an arbitrary
thick-film viewpoint and aims at linking the pattern formation in such a flow with the linear interplay
between the capillary-driven and gravity-driven instabilities. This aim is pursued by means of the
linear stability analysis of the quasistatic pendant liquid curtain for a wide range of parameters.

This paper is structured as follows. The methodology is detailed in Sec. II. The problem
formulation and governing equations are presented in Sec. II A, from which the base flow is deduced
and discussed in Sec. II B. In Sec. II C, the formulation for the stability analysis and the linearized
governing equations are elaborated. The numerical methods are presented in Sec. II D. In Sec. III,
the results of the stability analysis are presented. In Sec. III A the influence of the Bond number on
the characteristics of the flow stability is summarized. In Sec. III B, the flow is investigated from
an energy perspective, and the base flow and the perturbed flow’s energy balance are detailed in
Secs. III B 1 and III B 2, respectively, followed by the obtention of an asymptotic energy diagram
in Sec. III B 3. Finally, the linear stability regime diagram and the large-time pattern formation are
discussed in Sec. III C.

II. GOVERNING EQUATIONS AND METHODS

A. Problem formulation

The outer wall of a rigid and immobile solid circular cylinder of radius Rw is coated with a
viscous liquid film. The schematic of the flow is presented in Fig. 1(a). The standard Cartesian
coordinates (x, y, z) are considered with the origin placed at the center of the solid cylinder. In-plane
coordinates are (x, y), and the gravity acceleration g, points in the −y direction. We consider a
Newtonian liquid of constant dynamic viscosity μ, surface tension γ , and density ρ, surrounded
by an inviscid immobile gas. The interface radius rint is parametrized in cylindrical coordinates
(r, θ, z) as F = r − rint(t, θ, z) = 0, using the same origin as the Cartesian one. The liquid-gas
interface is initially concentric with the cylinder and the liquid film thickness is constant around the
periphery of the wall, h0 = R − Rw, where R denotes the initial interface radius [Fig. 1(b)]. At di-
mensionless time t = 0, the initial condition writes rint(0, θ, z) = R. The dimensionless state vector
q = (u, p,Rint )T describes the liquid motion at any instance t , where u(t, x, y, z) = (ux, uy, uz )T

denotes the three-dimensional velocity field, p(t, x, y, z) denotes the pressure, and Rint = rint/R
denotes the dimensionless interface radius. We choose the initial interface radius R as the length
scale and its static pressure jump as the pressure scale. The intrinsic velocity scale associated
with a viscous liquid film of thickness h0 falling under its weight, presented by Duclaux et al.
[39], is chosen to make the state vector and the governing equations dimensionless. Additionally,
the advection timescale is constructed based on the aforementioned velocity and length scales
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FIG. 1. (a) Schematic of the liquid film coating the outside of a horizontal cylinder and the geometrical
parameters. The thick solid black line shows the cylinder wall of the radius Rw, centered at (0, 0, 0). The
liquid-gas interface is shown in the thin solid black line. Gray color marks the interior cross section of the solid
cylinder. The dashed black line represents the perturbed liquid-gas interface of the local radius rint and axial
wavelength λR. The inset shows the zoomed cross section of the perturbed interface. Gravity acts vertically,
perpendicular to the tube axis. (b) The initial x-y cross section of the liquid column.

as

L = R, U = ρgh2
0

μ
= ρgR2

μ
(1 − β )2,

P = γ

R
, T = L

U = μ

ρgR
(1 − β )−2, (1)

where β = Rw/R denotes the dimensionless wall radius. Consequently, the dimensionless value
of the initial film thickness is expressed as δ = h0/R = 1 − β. The flow is governed by the
conservation of mass and momentum equations, which in dimensionless form read

∇ · u = 0, (2)(
Bo

Oh

)2

δ4(∂t + u · ∇)u = ∇ · τ − Boey, (3)

respectively, where ∂ j denotes the partial derivative with respect to quantity j, and the stress tensor
τ is expressed as

τ = − pI + Bo δ2(∇u + ∇uT ). (4)

Two other dimensionless numbers appear in the governing equations: the Ohnesorge number,
Oh = μ/

√
ργ R, compares the viscous and inertial forces. The Bond number, Bo = ρgR2/γ ,

compares the gravitational and surface tension forces. Our study addresses the limit of inertialess
flow where (Bo/Oh)2δ4 � 1. One can reexpress (Bo/Oh)2δ4 as Reδ2 where the Reynolds number,
Re = ρUL/μ, is constructed upon the same scales presented in (1).
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FIG. 2. Base flow evolution for Oh → ∞, Bo = 0.4, δ = 0.2. (a) Snapshots of the flow field: color map
shows the velocity magnitude, arrows show the liquid velocity field, and the point S marks the lowest point of
the liquid film, θS = 3π/2. (b) Temporal variation of the relative liquid film thickness at the point S, H0

S /δ =
[R0

int(θS ) − β]/δ. (c) Film thickness variation as a function of the vertical velocity at the same point.

The no-slip boundary condition u = 0 is applied on the solid wall at r = β. On the shear-free
fluid-gas interface, the kinematic and dynamic boundary conditions are

∂tRint + u · ∇Rint = u · er at r = Rint, (5)

τ · n = −κn at r = Rint, (6)

respectively, where er denotes the unit radial vector, n = ∇(r − Rint )/‖∇(r − Rint )‖ denotes the
interface unit normal vector pointing outward from the origin of the coordinate system, ‖ · ‖ denotes
the Euclidean norm, and κ = ∇ · n denotes the mean curvature of the interface. To build intuition
about the flow characteristics and before describing the stability analysis and numerical method, we
illustrate the reference flow in Sec. II B.

B. Base flow

The base flow, denoted by q0, is the two-dimensional, in-plane, transient solution of the nonlinear
conservation equations (2)–(6) where the fluid is initially assumed at rest with constant initial
pressure p0(t = 0) = 1 and R0

int = 1. Due to the nonlinear nature of the interface conditions, finding
an analytical solution for such a flow is challenging. Hence, the temporal evolution of the flow is
computed numerically (see Sec. II D for details). Some snapshots from the base flow evolution are
shown in Fig. 2 for an exemplary case of δ = 0.2, and an intermediate Bond number Bo = 0.4. The
dynamics of the base flow, presented in Figs. 2(b) and 2(c), can be characterized by quantifying
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FIG. 3. Influence of the surface tension. The base flow dynamics for Oh → ∞, δ = 0.2, Bo =
{0.01, 0.4, 1.6, 2.5, 3, 3.1}: (a) Temporal variation of the relative liquid film thickness at the lowest point of
the interface. (b) Film thickness variation as a function of the vertical velocity at the same point. (c) The
large-time interfaces of the pendant curtains at Bo = {0.01, 0.4, 1.6, 2.5, 3}, and the dripping curtain at
Bo = 3.1 (green) for the same flows presented in panels (a) and (b). The black dashed circle shows the cylinder.
(d) Two-dimensional pendant vs dripping diagram in the δ-Bo plane: the black dashed line corresponds to the
best fit to the two-dimensional pendant to dripping transition: Bo = 0.61δ−1.

the relative liquid film thickness H0/δ = (R0
int − β )/δ at the lowest point of the interface where

the strongest gravitational effects are expected, i.e., at θ = 3π/2, and its vertical velocity. Drainage
begins with an immediate liquid pull-off around the solid cylinder that decays with time. The liquid
body forms a two-dimensional quasistatic pendant curtain as t → ∞.

Drainage dynamics are significantly influenced by surface tension and gravity effects, i.e., by
Bo. Figure 3 presents the influence of the Bond number. By increasing Bo, i.e., weakening the
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effect of surface tension against gravity, flow initially accelerates before decaying and the formation
of the quasistatic curtain gets delayed [Fig. 3(a)]. Exceeding a critical Bo value, the interface cannot
sustain the liquid weight anymore and the lowest point of the interface accelerates downward sharply
[green line in Figs. 3(a) and 3(b)], thus causing a two-dimensional rupture. Figure 3(c) shows the
interface of the quasistatic pendant curtain for several Bo values as well as one example of dripping
bulk after reaccelerating. While small Bo numbers sustain the quasicircular cross section of the
curtain, increasing Bo results in a stretched interface in the direction of gravity. The green line in
Fig. 3(c) depicts the falling liquid interface right after the acceleration of the curtain (at t = 855.8)
for Bo = 3.1. Figure 3(d) presents the region of saturation towards a static pendant curtain in the
δ-Bo plane. This diagram is obtained by following the nonlinear drainage simulations until the
maximal flow velocity magnitude drops below 10−5 (pendant) or the occurrence of the large-time
acceleration of the curtain measured at the lowest point of the interface (dripping). It was verified
for some marginal subcritical pairs of {Bo, δ} that lowering the velocity threshold down to 10−7

does not affect the critical parameters at the transition between these two behaviors. The dripping
occurs if Bo > 0.61δ−1, suggested by the best fit to the data from our simulations.

We now follow a scaling argument to rationalize the obtained threshold. In the case of a pendant
curtain, the capillary force per unit axial length ∝2γ overcomes the bulk weight, πρgR2δ(1 + β ).
This comparison implies the dripping threshold as Bo > (2/π )δ−1(1 + β )−1 where 2/π ≈ 0.64.
In the thick-film limit, β � 1 (remember that δ = 1 − β), the dripping threshold approaches
0.64δ−1, which is in good agreement with our numerics. Following this scaling argument, by
approaching the thin-film limit, β → 1, the dripping threshold should approach Bo > 0.32δ−1.
However, this scaling contradicts the numerical observation. Note that necking takes place at some
distance below the cylinder and the rupture occurs after the acceleration of merely the fraction of
the liquid that remains underneath the neck [see the green interface in Fig. 3(c)]. Therefore, the
proposed scaling analysis cannot pretend to find the correct prefactor. Our efforts to follow the
attempts to be more quantitative by Kofman et al. [40] for the prediction of the two-dimensional
dripping onset of a liquid film under an inclined plane were not conclusive and it proved difficult to
correctly identify the macroscopic system on which one should apply a force balance.

C. Linear stability analysis of the pendant curtain

To conduct the linear stability analysis of the quasistatic pendant curtain, presented in Sec. II B,
the state vector q = (u, p,Rint )T is decomposed into the sum of the steady saturated base flow
solution q0

∞ (subscript ∞ denotes large-time evaluation), and the infinitesimal time-dependent
perturbation q1 = (u1, p1, η1)T , i.e.,

q = q0
∞ + εq1 + O(ε2), ε � 1, (7)

where the amplitude ε is small. The normal mode of the perturbation q1 with the longitudinal
wavenumber k (associated with the wavelength λ = 2π/k) reads

q1 = q̃(x, y)exp[σ t + ikz] + c.c., (8)

where c.c. denotes the complex conjugate. All other functions in terms of the state vector can be
decomposed in a similar fashion. Namely, τ = τ 0 + ετ 1, n = n0 + εn1, and κ = κ0 + εκ1. (For

further details about the formulation of n1 and κ1, see Appendix C in Eghbali et al. [41].) In
the asymptotic limit of large times, a normal eigenmode perturbation with complex eigenvalue
σ = σr + iσi is unstable if σr > 0. An unstable eigenmode grows exponentially in time with the
growth rate σr . (Unless otherwise noted, the indices r and i denote the real and imaginary parts
of a complex number, respectively.) After casting the perturbed state of (7) into the governing
equations (2) and (3), with the static pendant curtain base state q0

∞ = (u0, p0,R0
int )

T , and neglecting
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the higher orders in ε, the linearized equations can be expressed as

∇ · u1 = 0, (9)(
Bo

Oh

)2

δ4[∂t u1 + (u0 · ∇)u1 + (u1 · ∇)u0] = ∇ · τ 1. (10)

The corresponding boundary conditions are as follows. On the solid cylinder boundary, r = β, the
no-slip condition implies u1 = 0 (yielding ũ = 0). As the geometry of the perturbed flow is un-
known, the interface conditions (5) and (6), applied on the perturbed liquid interface r = R0

int + εη1,
should be projected radially onto the base interface, r = R0

int, and ultimately linearized; a process
called flattening [see (A1) in Appendix A]. The kinematic condition once linearized implies

∂tη
1 +

(
−∂ru0

r + ∂ru0
θ ∂θR0

int

R0
int

− u0
θ ∂θR0

int(
R0

int

)2

)
η1 + u0

θ

R0
int

∂θη
1

︸ ︷︷ ︸
−G0η1

+ ∂θR0
int

R0
int

u1
θ = u1

r , at r = R0
int,

(11)

where (u0
r , u0

θ , 0)T and (u1
r , u1

θ , u1
z )T denote the velocity vectors of the base state and perturbations,

respectively, represented in the cylindrical coordinates. Even though in the case of a quasistatic
pendant curtain, u0 ≈ 0, we keep the corresponding terms in the linearized equations (11) and the
following equations. Introducing a normal eigenmode of the form (8) into (9) and (10), combined
with (11), leads to a generalized eigenvalue problem for σ and q̃ as

Lq̃ + c.c. = σBq̃ + c.c., (12)

where the linear operators L and B can be expressed as

L =

⎡
⎢⎣

(
Bo
Oh

)2
δ4F0 + Boδ2J −∇̃ 0

∇̃· 0 0(
er − ∂θR0

int

R0
int

eθ

)· 0 G0

⎤
⎥⎦,

B =
⎡
⎣

(
Bo
Oh

)2
δ4I 0 0

0 0 0
0 0 1

⎤
⎦, (13)

where F0ũ = −[(u0 · ∇̃ )ũ + (ũ · ∇ )u0] and Jũ = ∇̃ · [∇̃ũ + (∇̃ũ)T ]. Here, (er, eθ , ez ) denote the
unit direction vectors in the cylindrical coordinates (r, θ, z) used for parametrizingthe interface, and
the gradient operators and the velocity gradient tensors in the Cartesian coordinates read

∇ = (∂x, ∂y, ∂z )T , ∇u0 =

⎡
⎢⎣

∂xu0
x ∂yu0

x 0

∂xu0
y ∂yu0

y 0

0 0 0

⎤
⎥⎦,

∇̃ = (∂x, ∂y, ik)T , ∇̃ũ =

⎡
⎢⎣

∂xũx ∂yũx ikũx

∂xũy ∂yũy ikũy

∂xũz ∂yũz ikũz

⎤
⎥⎦. (14)

The interface dynamic condition (6), once linearized and considering the normal mode (8), reads

τ 0 · ñ + η̃ ∂rτ
0 · n0 + τ̃ · n0 = −(κ0ñ + κ̃n0), at r = R0

int. (15)

This condition is imposed while solving the system (12) numerically. (For further details on the
derivation of the interface conditions and their numerical implementation, see Appendices A and B,
respectively.)
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FIG. 4. The numerical domain for computing the base flow and linear stability analysis. Here, �xy denotes
the liquid bulk. The boundaries of the numerical domain are denoted by ∂�xy = ∂�w ∪ ∂�int , where ∂�w

represents the exterior wall of the cylinder with the radius of β, and ∂�int represents the gas-liquid interface.
The cross section of the interface is initially a circle of unit radius, concentric with the cylinder (sketched in
a black dashed line).

D. Numerical method

The base flow and linear stability analyses are carried out numerically by the finite element
software COMSOL MULTIPHYSICS. A triangular moving mesh is generated on the two-dimensional
domain shown in Fig. 4. The grid size is controlled by the vertex densities on the boundaries ∂�w

and ∂�int. The variational formulation of the base flow equations (2)–(6), linear stability Eq. (12),
and linearized Navier-Stokes equation (E2) are discretized spatially using quadratic (P2) Lagrange
elements for the geometrical shape function, u0, ũ, ū, η̃, and η̄, and linear (P1) Lagrange elements
for p0, p̃, and p̄. This discretization results in approximately Ndof = 400 000 degrees of freedom for
the base flow calculations as well as the linear stability analyses.

First, the base flow is computed using the laminar two-phase flow module incorporated with
the moving mesh module. The numerical time step is determined by the backward differentiation
formula with maximum differentiation order of 2. The solver is initialized by the backward
Euler consistent initialization with an initial step fraction of 10−9. At each time step, Newton’s
method is used to solve the nonlinear equations, where the relative tolerance for the iterative
solver convergence is set to 10−6. In the built-in module of COMSOL MULTIPHYSICS, the kinematic
condition (5) is replaced by its equivalent form and readily implemented enforcing u · n = umesh · n,
at ∂�int, where umesh denotes the moving mesh velocity. Following the computed base flow, the
first solution after the maximal velocity falls below 10−5 is considered as the static pendant
curtain. Then the linear stability analysis is conducted by solving the generalized eigenvalue
problem (12) for the static pendant curtain using the shift-invert Arnoldi method. (For more
details on the development of the variational formulation, implementation of the linearized Navier-
Stokes and linear stability eigenvalue problem and their corresponding boundary conditions, see
Appendix B.)

The computation time for obtaining the base flow for a given set of parameters followed by the
stability analysis for approximately 20 values of k is of the order of an hour on a single Intel core
at 3.6 GHz. Both the base flow and the stability analysis models are validated with the existing
solutions in the literature. (For more details about the series of validation tests, see Appendix C.)
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III. RESULTS

The results of the linear stability analysis are presented hereafter. To begin with, an overview of
the stability of the pendant curtain and the influence of Bo are presented in Sec. III A. Then both the
base flow and the perturbations feeding on the pendant curtain are further discussed from an energy
viewpoint in Sec. III B, enabling us to investigate the contributions of different physical mechanisms
in the formation of the pendant curtain and its instability and to complement the stability diagram by
identifying regions where either the Rayleigh-Plateau or the Rayleigh-Taylor instabilities dominate.
In Sec. III C, the most asymptotically amplified linear modes and the consequent pattern formation
are discussed, followed by sketching a provisional regime diagram of the pendant curtain predicted
by the linear analysis.

A. Linear stability of the pendant curtain

In this section, we present the linear stability characteristics associated with the quasistatic
pendant curtain coating the outside of a horizontal cylinder. We follow the same exemplary cases
of δ = 0.2, the base flows of which are presented in Sec. II B. We found that each set of parameters
exhibits only a single unstable mode whose dispersion curve, representing the growth rate σr (k),
is presented in Fig. 5(a). This mode is unstable within a range of wavenumbers 0 � k � kc, where
kc denotes the cut-off wavenumber, and exhibits a peak in its growth rate, σ max

r , at an associated
maximal mavenumber kmax. Starting from large surface tension compared to gravity, Bo = 0.01,
increasing Bo results first in a decrease in σ max

r (from Bo = 0.01 to Bo = 0.4) followed by a
rebound for large Bo (for Bo > 0.4). The cut-off wavenumber kc increases monotonously, whereas
kmax increases up to a saturated value k ≈ 1.05.

The perturbation eigenvelocity fields at kmax and three-dimensional rendering of the perturbed
interface with an arbitrary amplitude are presented for Bo = {0.01, 0.4, 3} in Figs. 5(b) and 5(c),
respectively. Each eigenstate q̃ is normalized with its rms value, and its phase is set such that the
axial velocity at the lowest point of the interface, ũz(θ = −π/2), becomes real valued. The unstable
mode features left-right symmetry, strong interface modulation at the bottom of the pendant curtain,
and an immobile interface at the top of the cylinder, θ = π/2. While intermediate and strong surface
tension to gravity ratios, Bo = {0.01, 0.4}, evidence the flow reversal towards the top side of the
cylinder, when gravity dominates at Bo = 3, interface perturbations take place only at the bottom
of the pendant curtain, promoting vertical fingers underneath the cylinder. Similar patterns were
reported through the nonlinear simulations of Weidner et al. [33] in the thin-film limit with large
surface tension. For one particular case of liquid roll up, they observed that the nonlinear evolution
of the perturbations results in lower surface energy at the cost of increasing the potential energy of
the liquid. On the contrary, for one case of gravity dominance, the nonlinear perturbation evolution
was reported in favor of the potential energy reduction despite increasing the surface energy. These
arguments suggest further study of the base flow and linear perturbations from an energy perspective
to quantify the effect of different physical mechanisms at play in the flow.

B. Energy analysis

In this section, we study the flow from an energy point of view in order to clarify the interactions
between capillary, viscous, and gravitational effects, and to quantify their respective contributions
to the formation and linear instability of a pendant curtain. Formerly, Hooper and Boyd [42],
Boomkamp and Miesen [43], Kataoka and Troian [44], and Li et al. [45] employed this method
to evaluate and compare the role of different physical mechanisms on the temporal instability of
various interfacial flows. We follow here the formulation of Eghbali et al. [46] who used the energy
analysis to elucidate the formation of interface whirl in gravity-driven liquid flow down an eccentric,
vertical fiber. Hereafter, the area increment in the bulk crosssection is denoted by dA�xy . On the
boundary j, the increment of the surface area is denoted by dA� j , and the increment of the arc
length is denoted by ds.
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FIG. 5. The influence of Bo on the linear stability of the pendant curtains whose base flows are presented
in Fig. 3. (a) Dispersion curve of the unstable eigenmode. (b) Eigenvelocity fields and eigeninterfaces of the
same unstable modes at kmax, corresponding to σ max

r . The color map presents the axial eigenvelocity: black
arrows show the in-plane eigenvelocity field, magenta arrows show the eigenvelocity at the base interface, and
the red line renders the base interface perturbed by an arbitrary amplitude. (c) The three-dimensional render of
the asymptotically most amplified perturbed interfaces, shown in panel (b); Oh → ∞, δ = 0.2.

Here, we study energy conservation in the flow, on different scales, from the base flow to the
perturbations. We focus on the base flow presented in Sec. II B and the unstable modes presented
in Sec. III A. More precisely, the energy analysis sheds light on the balance of the energy rate,
hereafter referred to as the energy equation, that is a direct result of the Navier-Stokes equations in
the absence of inertia. The energy equation can be expressed for the inertialess gravity-driven flow
down a horizontal cylinder as∫∫∫

�xy

Boδ2tr([∇u + (∇u)T ] · ∇u)dV︸ ︷︷ ︸
DIS

+
∫∫

∂�int

−(τ · n0) · u dA�int︸ ︷︷ ︸
BND

+
∫∫∫

�xy

−Bouy dV︸ ︷︷ ︸
POT

= 0,

(16)

where the bulk integral is defined on the volume increment dV = dA�xy dz, the surface integral is
defined on the columnar surface with the cross section ∂�int and axis in the z direction (see Fig. 4),
DIS denotes the rate of viscous dissipation in the bulk fluid, BND denotes the rate of interfacial
work conducted by the fluid, and POT denotes the rate of change of gravitational potential energy.
(For more details about the derivation of the energy equation, see Appendix D.) The energy equation
implies that the net rate of energy exchange in the flow is zero, where multiple physical mechanisms

063903-11



EGHBALI, DJAMBOV, AND GALLAIRE

100 102
-0.4

-0.3

-0.2

-0.1

0

0.1

Epot

Esur

10-2 100 102
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

POT0

SUR0

DIS0

(a) (b)

FIG. 6. Energy analysis of the base flow presented in Fig. 2. (a) Evolution of the surface energy Esur, and
potential energy Epot, per unit length. (b) The rate of viscous dissipation DIS0, surface energy SUR0, and
potential energy POT0.

may contribute to energy release and consumption. The sign of each term in (16) indicates whether
the energy is removed from (+) or released into (−) the flow by the respective mechanism.

1. Energy analysis of the base flow

The energy equation for the base flow presented in Sec. II B, computed per unit length in z, can
be expressed as

∫∫
�xy

Boδ2tr([∇u0 + (∇u0)T ] · ∇u0)dA�xy︸ ︷︷ ︸
DIS0

+
∫

∂�int

κ0n0 · u0ds︸ ︷︷ ︸
SUR0

+
∫∫

�xy

−Bou0
ydA�xy︸ ︷︷ ︸

POT0

= 0. (17)

In the case of the base flow, the dimensionless bulk potential energy per unit axial length (made
dimensionless by γ R2), evaluated with respect to the initial state, can be expressed as

Epot =
∫∫

�xy

Boy dA�xy , (18)

and the dimensionless surface energy per unit axial length evaluated with respect to the initial state
can be expressed as

Esur = SUR0|t − SUR0|0 =
∫

∂�int

ds

∣∣∣∣
t

− 2π. (19)

Figure 6(a) shows the temporal evolution of the potential and surface energies until reaching a
quasistatic pendant drop for {δ, Bo} = {0.2, 0.4} whose base flow is presented in Fig. 2. As the
liquid is pulled off the cylinder, the bulk potential energy is released. Being partially stored as
surface energy, the potential energy allows the interface to deform. This energy transfer slows down
and saturates later when the pendant curtain stagnates. The rates at which the energy is transferred
are presented in Fig. 6(b), which demonstrates that the excess potential energy is dissipated in the
bulk liquid.
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FIG. 7. Energy analysis of the perturbations and the influence of Bo. The presented modes are the same as
in Fig. 5. Energy terms are given in (20), and the gray curve shows the dispersion curve of the mode. The inset
of the left panel shows POT1. All of the rate of energy terms are normalized by

∫∫
∂�int

|η̃|2ds.

2. Energy analysis of the perturbed flow

The energy equation at the scale of linear perturbations computed along one wavelength results
in terms with an order of ε2, giving⎛

⎜⎜⎜⎜⎝
∫∫

�xy

Boδ2tr([∇̃ũ + (∇̃ũ)T ] · ∇̃ũ�)dA�xy︸ ︷︷ ︸
DIS1

⎞
⎟⎟⎟⎟⎠

r

+

⎛
⎜⎜⎜⎝

∫
∂�int

κ̃n0 · ũ�ds︸ ︷︷ ︸
SUR1

+
∫

∂�int

(η̃ ∂rτ
0 · n0) · ũ�dA�xy︸ ︷︷ ︸
POT1

⎞
⎟⎟⎟⎠

r

= 0, (20)

where � denotes the complex conjugate, DIS1 denotes the bulk viscous dissipation rate, and SUR1

and POT1 denote the contributions of capillarity and gravity to the rate of the work done by the fluid
at the perturbed interface, respectively. [For further details on the derivation of (20) and its different
terms, see Appendix D 1.] We recall that the subscript r here denotes the real part of a complex
number. As for the base flow, Eq. (20) unravels that the work exchanged at the perturbed interface
is partially dissipated in the bulk liquid, and the remainder (or deficit) is stored at (or released from)
the free surface in the form of surface energy.

Figure 7 shows the results of the energy analysis on the unstable mode for δ = 0.2 and Bo =
{0.01, 0.4, 3}. We remind the reader that the linear stability characteristics of this mode are presented
in Fig. 5. In the case of large surface tension to gravity ratios, typically Bo = 0.01, where the
base interface is quasicircular, both potential and capillary mechanisms drive the instability, since
their energy rates are both negative (see inset for POT1). However, the instability is dominated by
capillarity, as the majority of the energy exchange to the perturbations is provided by capillarity
(|SUR1| � |POT1|). By increasing Bo, which results in a vertically outstretched pendant curtain,
the instability becomes less favorable for the surface energy minimization. Ultimately, exceeding a
threshold for Bo, the instability is merely induced by the potential energy release, and capillarity
acts to stabilize the flow (SUR1 > 0 for Bo = 3 as seen in Fig. 7).

3. Asymptotic energy diagram of the static pendant curtain

The {δ, Bo} space is investigated to follow the linear stability of the pendant curtain. The pendant
state is found unconditionally unstable for a single unstable mode for which the gravitational effect
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FIG. 8. Linear stability energy diagram of the pendant curtain. The color bar indicates the energy ratio �.
Magenta dashed lines with the pentagram and square markers show � = 0 and � = 1 isovalues, respectively,
obtained by interpolation between linear analysis data. The subregion above the pentagrams is purely gravity-
driven Rayleigh-Taylor instability, and Bo < 0.05 indicates capillarity-dominant instability. The green line
shows the transition values proposed by de Bruyn [32].

is always destabilizing. Here, the maximal wavenumber, kmax, and the contribution of the involving
mechanisms are studied merely for this unstable mode. To compare the role of gravity and capillarity
in the flow destabilization, following the results presented in Sec. III B 2, we can define the capillary-
to-potential rate of energy ratio, hereafter referred to as the energy ratio, as

� = SUR1

POT1

∣∣∣∣
kmax

. (21)

The energy ratio includes two pieces of information at the most linearly amplified wavenumber,
kmax; firstly, as POT1 < 0 always, the sign of � indicates whetherthe capillarity acts as a stabilizing
mechanism (−) or as a destabilizing (+) one. Secondly, the magnitude of � indicates if the
instability is gravity dominated (|�| � 1) or capillarity dominated (|�| � 1). When |�| = O(1),
both mechanisms contribute to the curtain instability. Figure 8 presents the energy diagram colored
by the energy ratio. When surface tension dominates gravity, Bo � 0.05, the instability is capil-
larity dominated (warm colors). Although � > 45 for all of the data with Bo = 0.01, the color
bar is limited to 10 for better visibility of the energy diagram. Increasing Bo for a fixed δ reduces
the capillary contribution. Exceeding some threshold in Bo (marked by the magenta pentagrams),
capillarity becomes stabilizing and the instability turns purely gravity driven. The subregion of the
purely gravity-driven instability narrows down by increasing δ, and for δ � 0.4 this threshold is
very close and slightly inferior to the critical Bo for two-dimensional curtain dripping. [The gray
shaded area is the two-dimensional dripping presented in Fig. 3(d).] Our results extend the previous
investigations by Weidner et al. [33] and Weidner [34] in the thin-film limit and demonstrate that the
pearling mode, characterized by an upward motion of the flow, is prevalent for small initial interface
radius R compared to the capillary length, irrespective of fiberdiameter Rw, since our Bo number is
constructed on R.

de Bruyn [32] performed a leading order analysis by isolating destabilizing mechanisms and
proposed a critical Bond number (green line in Fig. 8) to transition from a capillary-driven instability
to a gravity-driven one. This critical value corresponds to when the maximal growth rate associated
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FIG. 9. Comparison of the wavelengths observed in the experiments of de Bruyn [32] (gray squares)
and the most amplified wavelength obtained from the linear analysis of the pendant curtain λmax (coulored
symbols). Dashed lines show the wavelength prediction by Goren [48] for a core-annular film in absence of
gravity (coulors are the same as the corresponding symbols of similar δ). The black dots indicate the most
unstable wavelength associated with the Rayleigh-Taylor instability of a thin liquid film under a flat plate, i.e.,
λmax

√
Bo = 2π

√
2 ≈ 8.89 [47].

with the Rayleigh-Taylor instability of a thin, flat film [47] dominates over that of the Rayleigh-
Plateau instability of a core-annular liquid film covering a cylinder [48].

C. Linear prediction: Pattern formation and three-dimensional pinch-off

Figure 9 shows the comparison between the emerging wavelengths observed in the experiments
of de Bruyn [32] (gray squares) and the wavelengths of the most unstable perturbations, λmax =
2π/kmax, obtained from the linear analysis of the pendant curtain (symbols) for a wide range of
{δ, Bo}. Those experiments were conducted by removing submerged cylinders from a liquid bath,
and in the case of thin cylinders, a thin liquid film was set by paintbrush. As a result, for each case,
the film thickness was selected naturally while detaching the covering film from the liquid bath or
paintbrush, and two-dimensional curtain pinch-off was avoided in the experiments.

The axes of the figure are inspired by the analytical solution obtained by Goren [48] for a core-
annular liquid film covering a cylinder in absence of gravity, represented as dashed lines. In the
surface-tension-driven regime, i.e., small Bond numbers, λmax

√
Bo = m(δ)β

√
Bo. Although this

scaling is similar for a curtain and a core-annular film, the values of m(δ) are higher for a pendant
curtain (1.27 ± 0.06 times higher for all studied thicknesses). This difference is possibly due to the
azimuthal asymmetry of the liquid bulk with respect to the solid wall, and the interface pinning at
the top of the cylinder. The prediction of our linear analysis is in agreement with the experiments
of de Bruyn [32] who calculated an average thickness of δ ≈ 0.5 for their smallest cylinders in the
capillary regime (corresponding to β

√
Bo < 0.1) and thin film at large Bond numbers by assuming

that the final pendant drops were perfect spheres.
When gravity becomes prominent by increasing Bo, λmax deviates from the aforementioned

scaling. This deviation is less notable for δ > 0.5 as the curtain experiences a two-dimensional
pinch-off before reaching a quasistationary state. For thinner films (δ < 0.3), however, the deviation
from the capillary scaling is more significant at larger Bond numbers. For δ � 0.1, λmax

√
Bo

seems to saturate to some values slightly larger than that of the fastest mode associated with the
Rayleigh-Taylor instability of a thin film under a flat substrate, i.e., 8.89 (black dots). This saturation
is also in accordance with the experiments of de Bruyn [32].
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FIG. 10. (a) kmax vs Bo for different values of δ obtained from the linear analysis of the pendant curtain.
(b) An exemplary evaluation of the drop pinching criteria for δ = 0.2: diamonds represent the maximum
plausible volume of a static three-dimensional droplet [33], crosses represent the volume of a droplet based
on the most linearly amplified wavenumber, Vdrop = 2π 2(1 − β2)/kmax, solid lines here show interpolation
between discrete data, and the black circle indicates the critical value for pinching; the pink region highlights
the drip parameters, and the white region highlights the pendant state. (c) Regime diagram based on the
encapsulated volume within the most linearly amplified perturbation, following the same sample calculation
as in panel (b): the gray region shows the two-dimensional curtain dripping in absence of perturbations; the
circles, pink and white regions indicate the post-instability state, the same as in panel (b); the black dashed line
shows the logarithmic interpolation between critical values.

Further growth of linearly unstable modes forms a single array of drops, either as pearls wrapping
around the cylinder, or pendant droplets underneath the cylinder that ultimately may or may not
pinch off. The approximate volume of the biggest, single, static three-dimensional droplet that can
suspend on or under a cylinder was calculated previously by Weidner et al. [33] via nonlinear
simulations on thin films. Their study showed that even though the amplification rate of perturbation
varies with time due to nonlinear effects, the fundamental wavelength of the perturbed interface does
not change significantly. They also noticed that in the case of a small Bond number, the final size of
the pearls was comparable to that predicted by the linear theory for a coating film on a fiber in the
absence of gravity. Inspired by this observation, our linear analysis suggests a tentative prediction
of the final state of the pendant curtain after instability, deduced from {δ, Bo} and kmax as follows.

Figure 10(a) exhibits kmax predicted by the linear analysis as a function of mean film thickness
and Bond number. Mass conservation implies that the volume contained within the most linearly
amplified wavelength is given by Vdrop = π (1 − β2)(2π/kmax). Comparing this value with the one
calculated by Weidner et al. [33] can indicate whether or not the patterns emerging from a pendant
curtain ultimately drip. An exemplary investigation for δ = 0.2 is shown in Fig. 10(b), where the
green crosses show the droplet volumes predicted for δ = 0.2 as a function of Bond number. The
purple diamonds mark the biggest hanging drop volume adapted from Weidner et al. [33], over
which pinch-off takes place. The intersection of these two curves indicates the dripping threshold.
Figure 10(c) sketches a tentative regime diagram obtained by following a similar calculation for
a wide range of {δ, Bo} pairs: the gray shade indicates the parameters’ range for which a two-
dimensional rupture occurs, the same as presented in Fig. 3(d). The pink designates the region where
the most linearly amplified mode results in a volume larger than what surface tension can withstand,
thus suggesting a three-dimensional pinch-off leading to dripping. For parameter combinations in
the white region, however, the pendant curtain transforms into an array of static pearls or pendant
drops. This diagram demonstrates that the parameters in the vicinity of the two-dimensional dripping
result in a three-dimensional rupture, irrespective of δ. Furthermore, a thick film of δ > 0.6 is
expected to always pinch off even when surface tension largely dominates gravity, i.e., at small
Bo.
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We recall that the regime diagram presented in Fig. 10(c) is attained from the asymptotic analysis
of the quasistatic pendant curtain. In other words, the aforementioned linear analysis does not
account for nonlinear effects like the possible formation of satellite pearls, or for amplification of the
perturbations before reaching a two-dimensional pendant equilibrium, i.e., for the possible transient
growth in the system. The formation of satellite pearls lowers the liquid volume encapsulated in
bigger cells and therefore should reduce the risk of dripping. Moreover, as a piece of evidence, the
nonlinear simulations of Weidner et al. [33] did not report for any of their simulations the appearance
of any measurable interface disturbances before reaching a pendant state. Later simulations of
Weidner [34] in the presence of surfactants led to a similar observation. In both studies, an initial
low-level white noise of dimensionless amplitude 10−6 was applied at the interface of a liquid
column at rest and concentric with the solid cylinder. In this study, we performed a rigorous transient
growth analysis towards comprehension of the short-term perturbations’ amplification that confirms
the wavelength selection predicted by the quasistationary pendant curtain analysis. As the transient
growth analysis does not alter the conclusions drawn by the linear stability analysis, its detailed
formulation and corresponding results are presented in Appendix E. Therefore the present analysis
should remain insightful as a conservative prediction. Yet, it remains interesting for future studies to
investigate the dynamics of the thinning liquid bridge between the two growing pearls, and possible
interactions that may result in the coalescence of adjacent pearls and potentially cause secondary
dripping events.

IV. SUMMARY AND CONCLUSION

In this work, we studied the gravity-driven flow of a viscous liquid film coating the outer wall
of a horizontal cylinder in the inertialess regime. A numerical solution was first computed for the
temporal evolution of an axially invariant base flow, starting from rest and of a uniform thickness.
The base flow exhibits a rapid liquid pull-off. For a fixed mean thickness, but depending on the
Bond number, two trends are observed at large times: either the draining film reaches a quasistatic
axially invariant pendant curtain (at small Bond numbers), or the liquid pull-off continues and
results in a two-dimensional pinch-off under the cylinder (at large Bond numbers). While at small
Bond numbers, surface tension sustains a quasicircular interface shape, increasing the Bond number
results in further deformation of the interface, stretching out vertically underneath the cylinder. A
similar effect of the Bond number on the deformation of the interface was observed in Eghbali et al.
[41] for a liquid film coating the inside of a tube. However, inside a tube, the surrounding solid
wall prohibits any two-dimensional rupture. The critical two-dimensional pinch-off Bond number
is found to scale as the inverse of the mean film thickness around the cylinder for all investigated
values of thickness. This scaling and its numerically obtained prefactor agree firmly with the critical
value obtained by a scaling analysis that equates the weight of the whole liquid bulk with the surface
tension in the thick-film limit. However, the scaling analysis fails to give an accurate prediction for a
thin film, as the dripping occurs following an interface necking at some distance below the cylinder.
As a result, the surface tension fails to retain a fraction of the liquid bulk that accelerates below the
neck.

Next, the stability of the quasistationary pendant curtain was investigated through a linear stabil-
ity analysis. The curtain is found unconditionally linearly unstable. The sole unstable mode features
a left–right symmetry, strong interface modulations at the bottom, and an immobile interface at the
top of the cylinder for all parameter ranges. A similar topbottom asymmetry in the unstable mode
was found in Eghbali et al. [41]. In both flows, the small film thickness in the vicinity of a solid
wall at the top of the interface forbids the interface from being perturbed. The unstable eigenmode
varies strongly with the Bond number; at small Bond numbers, where surface tension dominates
over gravity, the instability causes a flow reversal towards the top of the cylinder, resembling the
capillary-driven Rayleigh-Plateau instability. By increasing the Bond number, the flow reversal
weakens and ultimately vanishes, and the instability promotes the formation of vertical undulations
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under the cylinder, resembling the Rayleigh-Taylor instability. This observation is in accordance
with the nonlinear simulations of Weidner et al. [33] and Weidner [34] in the thin-film limit.

A parametric study was then conducted to cover the space of the dimensionless parameters
{Bo, δ}, along with the energy analysis of the base flow and unstable mode. The energy analysis
helps interpreting the formation of a pendant curtain as a process to minimize the gravitational
potential energy of the bulk flow, subject to a surface energy barrier. It furthermore demonstrates
that gravity is unconditionally destabilizing, whereas the role of surface tension varies with the Bond
number. At small Bond numbers, surface tension is destabilizing and dominates the instability.
The eigenflow reduces the surface energy, confirming the characteristics of the Rayleigh-Plateau
instability. In contrast, increasing the Bond number reduces the capillarity contribution to the
instability, and exceeding a threshold, surface tension turns stabilizing as the eigenmode reduces
only the gravitational potential energy, in analogy with the purely gravity-driven Rayleigh-Taylor
instability. Both limits are in accordance with the description given by Weidner et al. [33] in the
early stages of the appearance of disturbances to the flow in the thin-film limit. Nevertheless, their
nonlinear simulations addressed a stabilizing effect of gravity at a low Bond number when the
perturbations amplify beyond the linear range.

The present linear analysis also illustrates that the most linearly amplified wavenumber is
selected through a compromise between surface energy and potential energy reduction, and varies
as a function of the mean film thickness and Bond number, in agreement with the preexisting
experimental measurements by de Bruyn [32]. In the capillary regime, the most unstable wavelength
follows a similar but suitably adapted scaling as that of a core-annular liquid film, and deviates from
this scaling when gravity becomes comparable to the surface tension. Lastly, a regime diagram was
sketched for the viscous liquid films draining down the outer wall of a horizontal cylinder, based
on the asymptotic linear analysis of a quasistatic pendant curtain, postulating that the nonlinearity
does not affect the selection of the most amplified wavelength and all of the liquid contained within
this wavelength concentrates in one drop. This diagram proposes a tentative regime boundary as a
function of the Bond number and the mean film thickness to predict whether the emerging pattern
leads into a three-dimensional pinch-off or forms a static array of wrapping pearls or pendant drops.
This prediction states that a pearl of large mean thickness eventually pinches even at a very low
Bond number; an intuitively reasonable prediction.

Finger [19,49] and pearl [50–52] formation in the viscous flow on top of a cylindrical substrate
have been addressed extensively. However, one should note that the contact line plays an essential
role in those cases, hence they differ in nature from the instabilities reported in our analysis.
Additionally, the critical pinch-off threshold may be affected by the dynamics of the meniscus
connecting two adjacent drops, and the possible formation and coalescence of satellite pearls.
Therefore, a direct numerical simulation of a three-dimensional static drop may verify or improve
the accuracy of our tentative droplet pinch-off boundary in the regime diagram.

Another direction for future investigations is to evaluate the flow instability when the cylinder
is inclined so that a longitudinal component of gravity creates axial flow motion, forming a single
rivulet under the cylinder [53].
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APPENDIX A: DERIVATION OF THE INTERFACE BOUNDARY CONDITIONS

In this section, the derivation of the interface boundary conditions is elaborated for the perturbed
flow. These conditions are imposed at the perturbed interface, i.e., at r = R0

int + εη1, while η1 is
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already an unknown of the problem. By using the Taylor expansion, that is, projecting radially at
the base interface, i.e., at r = R0

int(θ, t ), any flow quantity at the perturbed interface can be readily
approximated. This projection is referred to as flattening and for an arbitrary function f (r, θ, z, t )
can be expressed as

f |(r=R0
int+εη1,θ,z,t ) = f |(r=R0

int,θ,z,t ) + εη1∂r f |(r=R0
int,θ,z,t ) + O(ε2). (A1)

By substituting the decomposed state vector of (7) into the interface conditions (5) and (6), then
using the normal mode (8), and applying the aforementioned flattening, we can formulate these
conditions as a set of equivalent constraints at the boundary of the base interface. The linearized
form of the kinematic condition (5) writes

∂t
(
R0

int + εη1
) + (u0 + εu1) · ∇(R0

int + εη1) = (u0 + εu1)·er at r = R0
int + εη1, (A2)

where the gradient vector in the cylindrical coordinates can be expressed as ∇ = (∂r, 1/r∂θ , ∂z )T .
Applying (A1) to (A2) and using the normal mode (8) readily results in (11).

The linearized dynamic condition (6) writes

(τ 0 + ετ 1) · (n0 + εn1) = −(κ0 + εκ1)(n0 + εn1) at r = R0
int + εη1. (A3)

Applying (A1) to (A3) and using the normal mode (8) readily results in (15). In order to express
interface conditions in the Cartesian coordinates, the terms that are expressed in the cylindrical
coordinates should be transformed by employing the Jacobian transformations as

er = cos θex + sin θey, eθ = − sin θex + cos θey,

∂r = cos θ ∂x + sin θ ∂y, ∂θ = t0 · ∇s

t0 · ∇sθ
, (A4)

where t0 denotes the unit tangent vector, and ∇s = ∇ − n0(n0 · ∇) is the tangential derivative at
the base interface. Both conditions (11) and (15) include the normal vector and the curvature of the
perturbed interface whose formulation is identical to that given in Eghbali et al. [41]. For further
details concerning the numerical implementation of the boundary conditions, see Appendix B.

APPENDIX B: VARIATIONAL FORMULATION OF THE LINEAR STABILITY ANALYSIS
AND IMPLEMENTATION OF ITS BOUNDARY CONDITIONS

Implementation of the numerical scheme and development of the variational formulation associ-
ated with the governing equations presented in Sec. II are elaborated in this appendix, recalling that
the numerical domain is shown in Fig. 4. To develop the variational form of (12), firstly the normal
mode of (8) is applied to the system of Eqs. (9)–(11). Then it is internally multiplied by the vector
of the test functions ψ = [ψp, ψu, ψη], where ψu = [ψux , ψuy , ψuz ]. The resulting scalar product is
integrated at �xy, which in the linear order writes{∫∫

�xy

ψ�
p(∇̃ · ũ)dA�xy (B1)

+
∫∫

�xy

ψ�
u ·

((
Bo

Oh

)2

δ4σ ũ

)
dA�xy (B2)

+
∫∫

�xy

ψ�
u ·

((
Bo

Oh

)2

δ4(u0 · ∇̃ũ + ũ · ∇u0)

)
dA�xy (B3)

+
∫∫

�xy

tr[τ̃ T · (∇̃ψu)�]dA�xy (B4)
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FIG. 11. Numerical model validation. (a) Base flow: temporal evolution of the film thickness at the lowest
point of the interface; solid line presents the solution from the present numerical study, and the red circles
present the solution obtained by Weidner et al. [33]; Oh → ∞, Bo = 1.21, β = 10/9. (b) Linear stability
analysis: dispersion curves of the two least stable modes associated with the gravity-driven viscous film flow
down a centered cylinder, namely, |m| = {0, 1}. The continuous lines present the analytical solution obtained
from the Stokes equations, and the circles represent the results from the present numerical model. Craster and
Matar [54] considered a similar perturbation as in Eq. (7) with the normal mode of exp[σ t + ikz + imθ ], a
typical choice for the axisymmetric configurations. Note that the present model, in the Cartesian coordinates,
does not expand in the azimuthal wavenumber m; Oh → ∞, Bo = 1, δ = 0.4.

+
∫

∂�int

[τ̃ 0 · ñ + η̃ ∂rτ
0 · n0 + (κ0ñ + κ̃n0)] · ψ�

uds (B5)

+
∫

∂�int

ψ�
η (σ η̃)ds (B6)

+
∫

∂�int

ψ�
η

[(
−∂ru0

r + ∂ru0
θ ∂θR0

int

R0
int

− u0
θ ∂θR0

int(
R0

int

)2

)
η̃ + u0

θ

R0
int

∂θ η̃ + ∂θR0
int

R0
int

ũθ − ũr

]
ds

}

(B7)

+ c.c. = 0. (B8)

It should be noted that in a complex system, the applied scalar product is Hermitian, defined as
〈a, b〉 = a� · b where the superscript � denotes the complex conjugate. This variational equation
can be readily implemented and solved in COMSOL MULTIPHYSICSTM. It is sufficient to solve the first
part (in {}) and the c.c. is known consequently. The step-by-step derivation of this equation and its
matrix representation is similar to that presented in Eghbali et al. [41].

APPENDIX C: VALIDATION OF THE NUMERICAL MODEL

The present numerical scheme is validated hereafter. Several measures are taken to ensure the
correspondence of the model, based on the asymptotic limits and analytical solutions, if any.

1. Base flow model

The present base flow model is validated with Weidner et al. [33] who employed the lubrication
approximation [18] to simulate the nonlinear gravity-driven evolution of a thin film around a solid
horizontal cylinder. Figure 11(a) shows the temporal evolution at the lowest point of the interface
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FIG. 12. Mesh convergence proof for Oh → ∞, Bo = 0.4, δ = 0.2: (a) base flow: H0
S /δ vs |u0

y |; (b) linear
stability analysis: σ max

r vs Ndof . All of the results presented in this paper are obtained from M3.

for {Oh → ∞, Bo = 1.21, β = 10/9}. The present model results in a solution of the base flow in
firm agreement with the solution of Weidner et al. [33].

2. Linear stability analysis model

The present linear stability model is validated with the analytical solutions that Craster and Matar
[54] presented for the gravity-driven coating flow down a vertical centered cylinder (where gravity
points in the z direction in Fig. 1). The corresponding base flow is parallel and can be expressed in
cylindrical coordinates as

u0
z = δ−2

2

(
ln

r

β
− r2 − β2

2

)
, p0 = 1, R0

int = 1. (C1)

For the linear stability analysis, Craster and Matar [54] employed the long-wavelength approxima-
tion [55] and compared the results with the analytical solution, in terms of Bessel functions, obtained
by solving the full Stokes equations [48]. Unlike the present study that is formulated in the Cartesian
coordinates, Craster and Matar [54] used the axisymmetry of the flow and considered a perturbation
as in (8) with the normal mode exponent of exp[σ t + ikz + imθ ] where m denotes the azimuthal
wavenumber. Figure 11(b) presents the agreement between the present linear stability model and
the analytical solution for a thick film δ = 0.4. It should be noted that despite the axisymmetric
nature of the validated case, this presented validation holds also for an arbitrary interface. For this
aim, the geometrical symmetry in the numerical reference frame is broken by setting the origin of
the coordinates system at an arbitrary location inside the liquid film, (x, y) = (0.2, 0.7).

3. Grid independency

A convergence study for the base flow evolution and the linear stability of the most unstable
eigenvalue is presented in Fig. 12 for {Oh → ∞, Bo = 0.4, δ = 0.2}. Mesh resolution is controlled
by setting a prefactor multiplied by the number of divisions at the solid wall and interface bound-
aries. Mesh convergence is obtained for the presented grids. All of the presented results in the
paper are obtained employing M3.

APPENDIX D: DERIVATION OF THE ENERGY EQUATION

In this section, the derivation of the energy equation is elaborated. The dimensional form of the
momentum equation (3) in the inertialess limit is given in Eghbali et al. [46]. Following the same
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formalism, the dimensionless form of the energy equation, obtained under the scaling presented in
Sec. II, can be expressed as∫∫∫

�xy

Boδ2tr([∇u + (∇u)T ] · ∇u)dV︸ ︷︷ ︸
DIS

+
∫∫

∂�j

−(τ · n0) · u dA�j︸ ︷︷ ︸
BND

+
∫∫∫

�xy

−BouydV︸ ︷︷ ︸
POT

= 0.

(D1)
Each underbrace denotes the physical mechanism associated with the respective term, as follows:

(1) DIS: the rate of viscous dissipation in the bulk fluid.
(2) BND: the rate of work done by the fluid through the moving boundaries.
(3) POT: the rate of change of gravitational potential energy.
The no-slip condition implies u = 0 at ∂�w, thus yielding (16).

1. Energy equation for the perturbed flow

The energy equation for the perturbed flow is obtained by substituting the perturbed state vector
(7) with the normal mode (8), into (16) and integrating it over one wavelength �z = λ = 2π/k. The
resulting integral is of the order ε2 and determines the energy equation for the linear perturbations,
which implies

2π

k
exp(2σrt )

⎡
⎢⎢⎢⎢⎣

∫∫
�xy

Boδ2tr([∇̃ũ + (∇̃ũ)T ] · ∇̃ũ�)dA�xy︸ ︷︷ ︸
DIS1

+
∫

∂�int

−(τ · n0) · ũ�ds︸ ︷︷ ︸
BND1

⎤
⎥⎥⎥⎥⎦ + c.c. = 0.

(D2)
We remind one that the normal mode (8) is complex, hence the integrals of terms in ε1 order vanish
due to the periodicity of the perturbations over λ. As (2π/k) exp(2σrt ) > 0, it can be factorized and
simplified. We hereafter only focus on the real part of (D2), which writes

(DIS1 + BND1)r = 0. (D3)

Let us recall (15), and that for a quasistatic pendant drop where u0 ≈ 0, τ 0 = −p0I . Except for the
thin film covering the upper side of the cylinder, where η̃ ≈ 0 and pressure follows the lubrication
pressure, bulk pressure is hydrostatic, p0 ≈ −Boy. Thus, BND1 can be decomposed as

BND1 = SUR1 + POT1, (D4)

where SUR1 denotes the capillary contribution to the rate of work at the perturbed interface, and
POT1 denotes the rate at which the fluid works against the hydrostatic pressure to perturb the
interface. These terms can be expressed as

SUR1 =
∫

∂�int

κ̃n0 · ũ�ds, (D5)

POT1 =
∫

∂�int

(η̃ ∂rτ
0 · n0) · ũ�ds, (D6)

thus giving (20).

APPENDIX E: TRANSIENT GROWTH ANALYSIS

As the base flow presented in Sec. II B evolves temporally, we perform a transient growth analysis
to study the evolution of the perturbations from the initial state until the formation of the pendant
curtain. In contrast with the linear stability analysis, the transient growth analysis accounts for the
temporal dependency of both the base flow and perturbations.
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Exponential growth is no longer imposed by the perturbation ansatz

q1 = q̄(t, x, y)exp[ikz] + c.c., (E1)

the evolution of which is instead a straightforward extension of (12) as

L(t )q̄ + c.c. = B∂t q̄ + c.c., (E2)

recalling that L(t ) is also parametrized by k. We seek an initial perturbation of the interface
q̄(0, x, y) = [0, 0, η̄(0)]T , that is the most amplified by (E2) after a time t = T , where T is named
the temporal horizon, with respect to some objective function, for which we chose the associated
interfacial energy density per unit axial wavelength

e(T ) = k

2π

∫
∂�int

∫ 2π/k

0
|η̄(T )eikz + c.c.|2dz ds. (E3)

The optimal transient gain is thus defined as

G(T ) = max
η̄(0)

e(T )

e(0)
. (E4)

An imperfect initial flow structure or experimental artifacts might project on this optimal one and
might be greatly amplified, possibly triggering a nonlinear regime and/or being directly comparable
with the experimentally observed patterns, thus making the linear stability analysis results irrelevant.
In practice, we make use of the initial condition’s axisymmetry and decompose the initial perturba-
tion into Fourier modes. The simulation of the linear evolution of these modes allows us to construct
a propagator matrix, the leading eigenvalue of which is directly the optimal transient gain, with the
Fourier coefficients of the optimal initial condition as its associated eigenvector (see Eghbali et al.
[41] for more details). This is in contrast with the frozen frame approach, whereby a perturbation
normal mode as in (8) is still applied to each time instant of the base flow (i.e., frame) but with an
evolving rate σ , parametrically dependent on time. At each separate frame, a dispersion relation can
be obtained from (12) on the frozen base state pertaining to this time instant. Such an assumption
becomes more relevant when the base flow evolves significantly slower than the perturbations [41].
As in this study, the base flow saturates towards its stationary pendant curtain state; it is expected,
but yet to be verified, that the transient evolution of the perturbations will ultimately converge onto
the asymptotic dispersion relation associated with the frozen frames.

For the transient growth analysis, the linearized conservation equation (E2) issolved over the
corresponding time horizon with a dimensionless time step of 0.1. Then, the resulting propagator
matrices are computed and imported to MATLAB, where the optimal transient gain (E4) is computed
(similar to [41]). Propagator matrices were then computed with −5 � m � 5 for several values
of k.

We present the results of the transient growth analysis for three pairs of parameters {Bo, δ},
shown in Fig. 13(a), in the vicinity of the three-dimensional pinch-off separatrix, obtained in
Sec. III C. As it is constructed using the drop volumes, corresponding to the most unstable wave-
lengths, predicted by the asymptotic frozen-frame linear stability analysis of the pendant state, it
is especially important to evaluate any transient effects, which might amplify potentially different
wavelengths before the full saturation of the pendant curtain, thus possibly modifying the size and
end-fate of the drops. Figures 13(b)–13(d) present the optimal transient gains as a function of the
time horizon, for different wave numbers k. We observe no appreciable transient growth, which is
consistent with the lack of measurable interface disturbances before the saturation of the pendant
curtain in the nonlinear simulations of Weidner et al. [33]. In each panel, the solid black line
represents the large-time asymptotically most unstable wave number predicted by linear stability
analysis among the discretized values of k [as given in Fig. 10(a)]. It is seen to also correspond to
the transiently most amplified wave number.

Finally, Fig. 13(e) compares the optimal transient growth rates of the different wave numbers,
calculated from the slopes in the log-linear optimal transient gain plots, at the time horizon T = 10
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FIG. 13. Transient growth analysis: (a) Three pinching pairs of {Bo, δ} analyzed in the vicinity of
the critical pinch-off separatrix (dashed line). (b) Point (i): {Bo, δ} = {1.1, 0.1}. (c) Point (ii): {Bo, δ} =
{0.3, 0.3}. (d) Point (iii): {Bo, δ} = {0.06, 0.5}. Panels (b)–(d) present the optimal transient gain G, as a
function of the temporal horizon T , for different wave numbers k. The thick black line represents the transient
gain of the most amplified wavenumber at T = 10. (e) Dispersion curves of the same points obtained by the
linear stability analysis of the quasistationary curtain, t → ∞ (gray circles), linear stability analysis of the
frozen frame at t = 10 (green circles), and from the slope of the optimal gain at t = 10 (red crosses).

(crosses), to the frozen-frame dispersion relations, obtained for t = 10 (shown in green) and for
the saturated curtain t → ∞ (shown in gray). This suggests that, already at t = 10, the system’s
evolution appears to be well captured by the quasistationary stability analyses. It is reduced to the
slow succession of the dispersion relations, frozen frame after frozen frame. Furthermore, since
these dispersion relations seem to retain their qualitative shape, the wavelength selection does not
appear to be affected by the transient nature of the drainage flow. We conclude that the asymptotic,
quasistationary, modal stability analysis should be sufficient for the tentative determination of a
criterion for three-dimensional pinch-off.

063903-24



STABILITY OF A LIQUID LAYER DRAINING AROUND …

[1] H. Elettro, S. Neukirch, F. Vollrath, and A. Antkowiak, In-drop capillary spooling of spider capture thread
inspires hybrid fibers with mixed solid–liquid mechanical properties, Proc. Natl. Acad. Sci. USA 113,
6143 (2016).

[2] S. R. Herwitz, Raindrop impact and water flow on the vegetative surfaces of trees and the effects on
stemflow and throughfall generation, Earth Surf. Processes Landforms 12, 425 (1987).

[3] D. Quéré, Fluid coating on a fiber, Annu. Rev. Fluid Mech. 31, 347 (1999).
[4] A. Q. Shen, B. Gleason, G. H. McKinley, and H. A. Stone, Fiber coating with surfactant solutions, Phys.

Fluids 14, 4055 (2002).
[5] C. Duprat, C. Ruyer-Quil, S. Kalliadasis, and F. Giorgiutti-Dauphiné, Absolute and convective instabilities

of a viscous film flowing down a vertical fiber, Phys. Rev. Lett. 98, 244502 (2007).
[6] G. W. S. Blair, Rheology and painting, Leonardo 2, 51 (1969).
[7] R. Zenit, Some fluid mechanical aspects of artistic painting, Phys. Rev. Fluids 4, 110507 (2019).
[8] H. Chinju, K. Uchiyama, and Y. H. Mori, “String-of-beads” flow of liquids on vertical wires for gas

absorption, AIChE J. 46, 937 (2000).
[9] J. Grünig, E. Lyagin, S. Horn, T. Skale, and M. Kraume, Mass transfer characteristics of liquid films

flowing down a vertical wire in a counter current gas flow, Chem. Eng. Sci. 69, 329 (2012).
[10] S. M. Hosseini, R. Alizadeh, E. Fatehifar, and A. Alizadehdakhel, Simulation of gas absorption into

string-of-beads liquid flow with chemical reaction, Heat Mass Transfer 50, 1393 (2014).
[11] H. Ding, P. Xie, D. Ingham, L. Ma, and M. Pourkashanian, Flow behaviour of drop and jet modes of a

laminar falling film on horizontal tubes, Int. J. Heat Mass Transfer 124, 929 (2018).
[12] A. Sadeghpour, Z. Zeng, H. Ji, N. Dehdari Ebrahimi, A. L. Bertozzi, and Y. S. Ju, Water vapor capturing

using an array of traveling liquid beads for desalination and water treatment, Sci. Adv. 5, eaav7662 (2019).
[13] A. Lee, P. T. Brun, J. Marthelot, G. Balestra, F. Gallaire, and P. M. Reis, Fabrication of slender elastic

shells by the coating of curved surfaces, Nat. Commun. 7, 11155 (2016).
[14] Z. Zeng, A. Sadeghpour, G. Warrier, and Y. S. Ju, Experimental study of heat transfer between thin liquid

films flowing down a vertical string in the Rayleigh-Plateau instability regime and a counterflowing gas
stream, Int. J. Heat Mass Transfer 108, 830 (2017).

[15] Z. Zeng, A. Sadeghpour, and Y. S. Ju, Thermohydraulic characteristics of a multi-string direct-contact
heat exchanger, Int. J. Heat Mass Transfer 126, 536 (2018).

[16] J. Eggers and E. Villermaux, Physics of liquid jets, Rep. Prog. Phys. 71, 036601 (2008).
[17] F. Gallaire and P.-T. Brun, Fluid dynamic instabilities: Theory and application to pattern forming in

complex media, Philos. Trans. R. Soc. London, Ser. A 375, 20160155 (2017).
[18] A. Oron, S. H. Davis, and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys. 69,

931 (1997).
[19] G. Balestra, M. Badaoui, Y.-M. Ducimetière, and F. Gallaire, Fingering instability on curved substrates:

Optimal initial film and substrate perturbations, J. Fluid Mech. 868, 726 (2019).
[20] E. B. Hansen and M. A. Kelmanson, Steady, viscous, free-surface flow on a rotating cylinder, J. Fluid

Mech. 272, 91 (1994).
[21] R. C. Peterson, P. K. Jimack, and M. A. Kelmanson, On the stability of viscous free–surface flow

supported by a rotating cylinder, Proc. R. Soc. London, Ser. A 457, 1427 (2001).
[22] J. Ashmore, A. E. Hosoi, and H. A. Stone, The effect of surface tension on rimming flows in a partially

filled rotating cylinder, J. Fluid Mech. 479, 65 (2003).
[23] P. L. Evans, L. W. Schwartz, and R. V. Roy, Steady and unsteady solutions for coating flow on a rotating

horizontal cylinder: Two-dimensional theoretical and numerical modeling, Phys. Fluids 16, 2742 (2004).
[24] W. Li and S. Kumar, Three-dimensional surfactant-covered flows of thin liquid films on rotating cylinders,

J. Fluid Mech. 844, 61 (2018).
[25] A. W. Wray, D. T. Papageorgiou, and O. K. Matar, Reduced models for thick liquid layers with inertia on

highly curved substrates, SIAM J. Appl. Math. 77, 881 (2017).
[26] B. Reisfeld and S. G. Bankoff, Non-isothermal flow of a liquid film on a horizontal cylinder, J. Fluid

Mech. 236, 167 (1992).
[27] Z. Ding, Z. Liu, R. Liu, and C. Yang, Breakup of ultra-thin liquid films on vertical fiber enhanced by

Marangoni effect, Chem. Eng. Sci. 199, 342 (2019).

063903-25

https://doi.org/10.1073/pnas.1602451113
https://doi.org/10.1002/esp.3290120408
https://doi.org/10.1146/annurev.fluid.31.1.347
https://doi.org/10.1063/1.1512287
https://doi.org/10.1103/PhysRevLett.98.244502
https://doi.org/10.2307/1571925
https://doi.org/10.1103/PhysRevFluids.4.110507
https://doi.org/10.1002/aic.690460508
https://doi.org/10.1016/j.ces.2011.10.049
https://doi.org/10.1007/s00231-014-1343-z
https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.111
https://doi.org/10.1126/sciadv.aav7662
https://doi.org/10.1038/ncomms11155
https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.066
https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.060
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1098/rsta.2016.0155
https://doi.org/10.1103/RevModPhys.69.931
https://doi.org/10.1017/jfm.2019.197
https://doi.org/10.1017/S0022112094004398
https://doi.org/10.1098/rspa.2000.0780
https://doi.org/10.1017/S0022112002003312
https://doi.org/10.1063/1.1758943
https://doi.org/10.1017/jfm.2018.153
https://doi.org/10.1137/16M1060686
https://doi.org/10.1017/S0022112092001381
https://doi.org/10.1016/j.ces.2018.12.058


EGHBALI, DJAMBOV, AND GALLAIRE

[28] Intermolecular and Surface Forces, 3rd ed., edited by J. N. Israelachvili (Academic Press, San Diego,
2011), pp. 661–674.

[29] R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys. 81, 1131
(2009).

[30] R. A. McKinlay, A. W. Wray, and S. K. Wilson, Late-time draining of a thin liquid film on the outer
surface of a circular cylinder, Phys. Rev. Fluids 8, 084001 (2023).

[31] L. Limat, P. Jenffer, B. Dagens, E. Touron, M. Fermigier, and J. E. Wesfreid, Gravitational instabilities of
thin liquid layers: Dynamics of pattern selection, Physica D (Amsterdam, Neth.) 61, 166 (1992).

[32] J. R. de Bruyn, Crossover between surface tension and gravity-driven instabilities of a thin fluid layer on
a horizontal cylinder, Phys. Fluids 9, 1599 (1997).

[33] D. E. Weidner, L. W. Schwartz, and M. H. Eres, Simulation of coating layer evolution and drop formation
on horizontal cylinders, J. Colloid Interface Sci. 187, 243 (1997).

[34] D. E. Weidner, Suppression and reversal of drop formation on horizontal cylinders due to surfactant
convection, Phys. Fluids 25, 082110 (2013).

[35] L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable
density, Proc. London Math. Soc. s1-14, 170 (1882).

[36] G. I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their
planes. I, Proc. R. Soc. London, Ser. A 201, 192 (1950).

[37] J. A. F. Plateau, Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires
(Gauthier-Villars, Paris, 1873), Vol. 2.

[38] L. Rayleigh, On the instability of jets, Proc. London Math. Soc. s1-10, 4 (1878).
[39] V. Duclaux, C. Clanet, and D. Quéré, The effects of gravity on the capillary instability in tubes, J. Fluid

Mech. 556, 217 (2006).
[40] N. Kofman, W. Rohlfs, F. Gallaire, B. Scheid, and C. Ruyer-Quil, Prediction of two-dimensional dripping

onset of a liquid film under an inclined plane, Int. J. Multiphase Flow 104, 286 (2018).
[41] S. Eghbali, Y. M. Ducimetière, E. Boujo, and F. Gallaire, Liquid film instability of an internally coated

horizontal tube, Phys. Rev. Fluids 8, 053901 (2023).
[42] A. P. Hooper and W. G. C. Boyd, Shear-flow instability at the interface between two viscous fluids,

J. Fluid Mech. 128, 507 (1983).
[43] P. A. M. Boomkamp and R. H. M. Miesen, Classification of instabilities in parallel two-phase flow, Int. J.

Multiphase Flow 22, 67 (1996).
[44] D. E. Kataoka and S. M. Troian, A theoretical study of instabilities at the advancing front of thermally

driven coating films, J. Colloid Interface Sci. 192, 350 (1997).
[45] F. Li, X.-Y. Yin, and X.-Z. Yin, Axisymmetric and non-axisymmetric instability of an electrically charged

viscoelastic liquid jet, J. Non-Newtonian Fluid Mech. 166, 1024 (2011).
[46] S. Eghbali, L. Keiser, E. Boujo, and F. Gallaire, Whirling instability of an eccentric coated fibre, J. Fluid

Mech. 952, A33 (2022).
[47] M. Fermigier, L. Limat, J. E. Wesfreid, P. Boudinet, and C. Quilliet, Two-dimensional patterns in

Rayleigh-Taylor instability of a thin layer, J. Fluid Mech. 236, 349 (1992).
[48] S. L. Goren, The instability of an annular thread of fluid, J. Fluid Mech. 12, 309 (1962).
[49] D. Takagi and H. E. Huppert, Flow and instability of thin films on a cylinder and sphere, J. Fluid Mech.

647, 221 (2010).
[50] B. J. Carroll, The equilibrium of liquid drops on smooth and rough circular cylinders, J. Colloid Interface

Sci. 97, 195 (1984).
[51] F. Brochard-Wyart, J. M. Di Meglio, and D. Quéré, Theory of the dynamics of spreading of liquids on

fibers, J. Phys. 51, 293 (1990).
[52] G. McHale, S. M. Rowan, M. I. Newton, and N. A. Käb, Estimation of contact angles on fibers, J. Adhes.

Sci. Technol. 13, 1457 (1999).
[53] S. Aktershev, S. Alekseenko, and A. Bobylev, Waves in a rivulet falling down an inclined cylinder, AIChE

J. 67, e17002 (2021).

063903-26

https://doi.org/10.1103/RevModPhys.81.1131
https://doi.org/10.1103/PhysRevFluids.8.084001
https://doi.org/10.1016/0167-2789(92)90160-O
https://doi.org/10.1063/1.869280
https://doi.org/10.1006/jcis.1996.4711
https://doi.org/10.1063/1.4818443
https://doi.org/10.1112/plms/s1-14.1.170
https://doi.org/10.1098/rspa.1950.0052
https://doi.org/10.1112/plms/s1-10.1.4
https://doi.org/10.1017/S0022112006009505
https://doi.org/10.1016/j.ijmultiphaseflow.2018.02.007
https://doi.org/10.1103/PhysRevFluids.8.053901
https://doi.org/10.1017/S0022112083000580
https://doi.org/10.1016/S0301-9322(96)90005-1
https://doi.org/10.1006/jcis.1997.5018
https://doi.org/10.1016/j.jnnfm.2011.06.001
https://doi.org/10.1017/jfm.2022.876
https://doi.org/10.1017/S0022112092001447
https://doi.org/10.1017/S002211206200021X
https://doi.org/10.1017/S0022112009993818
https://doi.org/10.1016/0021-9797(84)90286-8
https://doi.org/10.1051/jphys:01990005104029300
https://doi.org/10.1163/156856199X00587
https://doi.org/10.1002/aic.17002


STABILITY OF A LIQUID LAYER DRAINING AROUND …

[54] R. V. Craster and O. K. Matar, On viscous beads flowing down a vertical fibre, J. Fluid Mech. 553, 85
(2006).

[55] O. Reynolds, IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments,
including an experimental determination of the viscosity of olive oil, Philos. Trans. R. Soc. London 177,
157 (1886).

063903-27

https://doi.org/10.1017/S0022112006008706
https://doi.org/10.1098/rstl.1886.0005

