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From low-frequency oscillations to Markovian bistable stall dynamics
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We study the dynamics of a fixed wing at stall in a wind tunnel by measuring the
aerodynamic forces. We report experimental evidence of a critical Reynolds number from
which low-frequency oscillations in the force are replaced by random bistable dynamics. In
this new regime, the flow explores each state intermittently with long residence times. This
stochastic process can be modeled as a continuous Markov chain, and equivalently, it shows
a superexponential scaling for the mean residence times. Furthermore, the probability
density function of the lift coefficient exhibits the characteristic heavy tail of extreme
events. Extreme minima and maxima are at the origin of the transitions. We analyzed
the evolution of these tails using extreme-value theory to identify the bifurcation points
of the associated dynamical system. The results are in good agreement with a user-defined
threshold method, the advantage being the unambiguity in the computation.
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I. INTRODUCTION

Following the pioneering work of Prandtl [1], one calls stall regime any flow pattern that involves
a massive detachment of the boundary layer from a wall. Stall has been studied in various geometries
like backward-facing steps, cavities, and airfoils, among others; for a nice review on the subject, see,
e.g., Ref. [2]. Stall in airfoils appears as the angle of attack α increases and can be classified as one
or a combination of three main types [3] that take into account the behavior of the separation point
and the appearance or not of a laminar separation bubble. The dynamics of the bubble and hence,
the laminar to turbulent transition of the boundary layer, is believed to be at the origin of complex
stall phenomena in airfoils, such as low-frequency oscillations [4–8] or hysteresis [6,9–12]. These
phenomena, in turn, may have a dramatic effect on profile efficiency (wind turbine, propulsion, etc.)
or be a source of mechanical damage. Low-frequency oscillations are global oscillations of the flow
with a defined frequency much lower than the vortex-shedding frequency [4], while hysteretic loops
in the lift force usually occur when two flow states coexist over a finite range of α, resulting in
bistability [9]. Parameters like velocity, geometry, free stream turbulence, and acoustic disturbances
can either amplify, delay, or suppress the appearance of low-frequency oscillations and hysteresis
[4,13]. It has been shown [6,14] that large-scale modes dominate the dynamics at stall, involving
saddle-node and Hopf bifurcations in the case of low-frequency oscillations [6]. Multistability has
been encountered in several fluid mechanic systems ranging from small-scale flows [15–19] to
large-scale geophysical flows [20–22] and in the transition to turbulence [23–25]. They all share
common statistical features such as exponential statistics of the residence times, defined as the
time lapse in each state, and their mean values orders of magnitude larger than any hydrodynamic
timescale of the flows [25–27]. All these characteristics make this process fall into the theory of
Markov chains in which the transitions between states are considered rare events, namely events
in which the probability of occurrence is low, and they are approximately exponentially distributed
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FIG. 1. Experimental setup showing the wing of chord c and span s, the rotation plate, which controls the
angle of attack α, on which the force balance is mounted, and the hot wire placed in the wake.

[28]. Rare events are at the origin of extreme events [29] as they result from the synergistic action
between a low-probability event and the intrinsic dynamics of the system [30]. Extreme events are
large deviations from normality exhibited by specific observables of a system. For a comprehensive
review of extreme events in fluid dynamics systems, see Ref. [30]. Under this framework, extreme
rare events can either be analyzed by using tools of residence-time statistics or extreme-value laws
as both are equivalent [31–33]. In this article, we experimentally study the stall dynamics of a
thin symmetric airfoil (NACA0012) for Reynolds numbers ranging from 50 000 to 110 000 (see
definition in the next section). We confirm that low-frequency oscillations can actually be observed
on the lowest range of the Reynolds numbers, as reported in the numerical and experimental
studies of Refs. [5,34,35]. We discovered that beyond a critical value of the Reynolds number,
the airfoil dynamics transits into random memoryless switches between the fully attached and the
fully detached flow states, replacing the low-frequency oscillations. In this new regime, the expected
hysteresis loop is not observed due to the intermittent dynamics, which connects the two branches
of solutions for a fixed angle of attack. To the best of our knowledge, this intermittent bistable
dynamics has never been reported in airfoil stall dynamics yet and we show that it can be described
by the theory of continuous Markov chains and extreme rare events.

II. EXPERIMENTAL SETUP

All the experiments were carried out in a closed-loop wind tunnel with a 450 × 450 mm2 test
section. The turbulence intensity is constant for all the velocities tested and equal to 0.4%. The
model analyzed is a 3D-printed NACA0012 wing with a chord length c = 120 mm and a span
s = 450 mm (Fig. 1). The wing is flushed on one side to an endplate which in turn is connected
to a balance-rotating platform (Fig. 1). This system allows to rotate the model with a resolution of
0.02◦ and to measure lift (L) and drag forces with a resolution of 1 mN. We also carried out hot-
wire (HW) measurements to differentiate between purely aerodynamic effects and airfoil vibrations
in the spectra of the forces. The probe model was P15 used together with a Mini CTA 54T30
from DANTEC, see Fig. 1 for its position in the flow. The temperature in the test section was
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FIG. 2. Phase diagram (α, Re) showing the two observed regimes. Green-shaded area corresponds to the
range of existence of the low-frequency regime (LFO) while the cyan-shaded area corresponds to bistability.
The abrupt transition between the LFO regime and bistability is marked by the vertical line at Re = Rebs. The
blue triangles mark the start of the stall zone, the red circles the extreme angles between which the LFOs are
observed, and the magenta squares the extreme angles of the bistable dynamics.

measured via a thermocouple with an accuracy of 0.1 ◦C. Six Reynolds numbers were analyzed:
Re = U∞c/ν ∈ [5.31; 6.54; 7.84; 9.03; 10.3; 11.60] × 104, where U∞ is the velocity at the inlet of
the test section and ν the air viscosity at the flow temperature. In order to accurately characterize
phenomena around stall, the same rigorous measuring protocol was used for each of them. First,
the stall zone is identified by doing quick measurements with large �α steps; once the region was
identified, small �α steps and long measurements were performed. For the bistable case, the values
adopted for the acquisition time and �α were based on previous explorations that revealed the
sensitivity of this phenomenon to small changes in the angle of attack and the long characteristic
times associated. A moving average filter of 1 s was applied in order to highlight the bistability.
For all measurements, the sampling frequency was set at 1 kHz. Most of the analysis shown in this
article was done over the lift coefficient CL = 2L/(ρU 2

∞cs), where L is the lift force, although drag
and hot-wire data were also analyzed and highlighted to the phenomena around stall.

III. DYNAMICS AND BIFURCATIONS

A. Dynamic regimes

As already stated, two different regimes were observed around stall when increasing Re. In
order to analyze their evolution, Fig. 2 was constructed by finding the range of existence of each
phenomenon in the α-Re plane. The phase diagram is divided into two main regions: (i) below
Rebs ≈ 9 × 104, the flow exhibits a low-frequency regime (LFO), for a certain range of angle of
attack which depends on Re, and (ii) above Rebs, the LFO regime disappears and a bistable regime
appears over a range of angles of attack which also depends on Re. Below Rebs, LFOs are observed
for angles of attack between the two red-circle dashed lines, while above Rebs, bistability is observed
for angles of attack between the two magenta square-dashed lines. Stall angles defined as the values
from which the lift decreases are also added as a reference. Low-frequency oscillations are observed
when increasing Re above a certain threshold Relfo ≈ 3 × 104 (not shown in the figure). The range
of existence in α diminishes as Re increases until the critical Reynolds number Rebs is reached,
from where the phenomenon is not visible anymore. The characteristic signature of LFO is found
by looking at the power spectral density (PSD) of any of the measured variables. In Fig. 3(b),
the hot-wire spectrum is shown along with the corresponding time series Fig. 3(a), for a typical
Re in this regime. A clearly defined peak is visible around St = 0.007 where St = f c sin(α)/U∞
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FIG. 3. Hot-wire (a) time signal and (b) power spectral density (PSD), in the low-frequency oscillation
regime at Re = 5.31 × 104. The broadband spectrum of oscillations is centered on St ≈ 6 × 10−2.

is the Strouhal number based on the projected cross section of the wing and f the frequency in
Hz. This low-frequency large-band peak is characteristic of wings showing thin airfoil stall [4,5,8].
Increasing Re in this zone only shifts the peak to a slightly larger value of the Strouhal number, up to
St ≈ 0.01 at Rebs. This low-frequency peak is far from the wing-free vibration frequency. The latter
can be computed with the following equation [36]: f1 = (1.8752/2π )

√
EI/ρBs4, where E is the

Young’s modulus, I the second-order area moment, ρ the density, B the cross section and s the span
of the wing. With the dimensions and material of the airfoil, it yields f1 ≈ 15 Hz and St ≈ 0.045,
which is about an order of magnitude larger than that of the LFO. Beyond Rebs, low-frequency
oscillations are replaced by intermittent bistable dynamics distinguished by two different states that
are intermittently explored in time. Only at Rebs both regimes could be observed. For a given Re in
the bistable regime, hot-wire time series [Fig. 4(a)] shows a random switching between two states
and the spectra [Fig. 4(b)] exhibits the characteristic 1/ f 2 behavior at low frequencies [15] with
no sign of the low-frequency peak. Another remarkable feature of each phenomenon is the small
range of their existence in α, going as small as �α = 0.18◦. As the focus of this article is on the
intermittent dynamics, from now on, all the results shown will be for a typical Re in this regime,
particularly Re = 1.16 × 105. Similar results have been obtained for the other two Re tested in the
bistable zone.

We also analyzed the influence of vibrations, surface roughness, boundary conditions, and
installation effects on the bistable regime. When both ends of the wing are fixed, the bistability
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FIG. 4. Hot-wire (a) time signal and (b) power spectral density (PSD), in the bistable regime at Re =
1.16 × 105. The characteristic slope in St−2 is clearly visible on the Strouhal range St � 10−3.
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FIG. 5. CL vs α. Inset: zoom around stall exhibiting the bistability and its evolution. In the bistable range,
the blue circles mark the high CL associated with flow state A, the red squares the low CL associated with flow
state D. The black circles represent, for each value of α, the time-averaged value of CL .

threshold is shifted towards larger values of the Reynolds numbers, but the dynamics remain
qualitatively the same. We interpret the delay of the transition as a consequence of the attenuation
of the vibrations and, consequently, a reduction in the available energy to promote random jumps.
Wind-tunnel characteristic frequencies were also ruled out as a possible source of excitation for
bistability. As stated in Sec. II, the wind tunnel is a closed loop so for a fan with n blades, the
blade-pass frequency is fb = nr where r is the rotating speed of the fan wheel. In our experiment
fb = 100 Hz, which is way larger than the timescales associated with the bistability. Preliminary
tests done over an aluminum NACA 0012 profile with a smooth surface showed the intermittent
bistable behavior around stall for a larger Rebs, showing that the phenomenon is robust against
surface roughness. This is similar to the influence of rugosity in the drag crisis on a sphere,
which is universal in some aspects, but still strongly affected by some effects, notably rugosity
[37,38]. Thicker rugosity of 3D-printed wing promotes turbulence and hence an earlier transition to
bistability, whereas the smooth surface of an aluminum wing delays the transition to larger values
of the Reynolds number. Regarding simulations, intermittent bursts in aerodynamic coefficients
were observed in a NACA 4412 far from stall [39]. All of these results show the universality and
robustness of this phenomenon, but also the nonuniversality of the transition threshold.

B. Random switching dynamics

The mean behavior of the lift coefficient versus α is shown in Fig. 5. Samples inside the bistable
region were acquired for 30 minutes and in steps of �α = 0.04◦ while outside this region, the
time was 2 minutes and �α = 1◦. The mean lift (CLm ) evolution is typical of thin airfoils [9,40],
showing a small change of slope at small angles due to the formation of the recirculation bubble,
a soft decrease during stall followed by an increase at high angles. The inset in Fig. 5 follows
closely the progression of the bistability, revealing two bifurcation points at α = αA ≈ 10.90◦ and
αD ≈ 10.72◦, between which two stable branches of high and low lift, respectively, associated with
an attached (A) or detached (D) flow regime, both coexist. The values corresponding to each branch,
i.e., CLA ,CLD are the two most likely values of CL in the bimodal probability mass functions (PMF).
The bifurcation angles are determined by looking at the ratio between the probability associated with
CLA ,CLD . When this ratio goes below 10−3, we consider the dynamics monostable. It is important to
note that no hysteresis of the mean lift nor of the onset of bistability αbs was observed in decreasing
and increasing ramps of the angle of attack. An interesting feature is that once bifurcated, each state
remains almost the same throughout the bifurcation with only a small shift in value, and the overall
average CLm depends mostly on the time spent in each state. This fact is well understood while
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FIG. 6. Time series (left) and probability mass functions (PMF) (right) of CL for (a) α = 10.70◦, (b) α =
10.82◦, and (c) α = 10.94◦. The PMF are stitched on a high-lift state CLA (a) or a low-lift state CLD (c), or
both (b).

seeing Fig. 6 in where the PMF and the time series for three different angles are shown. At lower
α [Fig. 6(a)] one state, A, prevails even though some attempts to explore D are visible. When α

increases, D occurs more frequently [Fig. 6(b)], until a monostable state is reached when D prevails
over A [Fig. 6(c)]. Another salient feature is the standard deviation associated with each state. As
it is clearly seen in the time series of Fig. 5, the fluctuations of the lift force in state D are much
larger than those in state A, which is reflected in the width of the PMF peaks. High lift and small
fluctuations (state A) are related to a mostly attached boundary layer state while low lift and large
fluctuations (state D) are associated with a mostly separated boundary layer, as previously reported
in Refs. [6,41].

IV. STATISTICS OF THE RANDOM SWITCHING DYNAMICS

In this section, the statistics of the bistability are analyzed with the aim of understanding the
nature of the stochastic process and its evolution with the control parameters. Measurements with a
duration of 1 hour were performed for several angles in the region of interest as they showed fairly
converged statistics and a reasonable overall time for a given set. Nevertheless, isolated 8-hour
acquisitions were also done to verify the statistical convergence.

A. Continuous Markov chains and superexponential scaling

After a temporal filtering of 1 s, the signal is binarized to extract the residence times τi , i ∈ [A, D]
of each state. The complementary cumulative distribution function (CCDF) of the residence times
exhibits an exponential trend P(τi, α) ∝ exp[−τi/τ̄i(α)], where τ̄i(α) is the mean residence time, as
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FIG. 7. Complementary cumulative distribution function (CCDF) of the residence times τA in state A (top)
and τD in state D (bottom) for increasing or decreasing angle of attacks α (as marked by the arrow on the right
figures). Dashed lines represent the exponential distribution fitted on the data.

shown in Fig. 7 for several angles of attack. The exponential distribution is typical of a memoryless
random process, which can thus be described as a continuous Markov chain. The state space of the
Markov process contains the two states S = {A, D}. In addition, as in bistable systems cited in the
introduction, the mean residence times in each state are much larger than any typical time scales of
the system. For example, compared to the convective time c/U∞ the residence time is four orders
of magnitude higher. The transitions between states can hence be considered as rare events, e.g., the
probability of seeing a transition is low.

The evolution of the mean residence time τ̄i(α) (inverse of slopes in Fig. 7) with our control
parameter α is presented in Fig. 8 in a double log-linear scale. The linear behavior is compatible
with a double-exponential functional shape similar to other subcritical systems like in the transition
to turbulence [23,42,43] and the flow around a pendulum [16]. The crossing between lines has a
particular interpretation which will be discussed in the next section. Note that because the range
of angles of incidence is small (not even a decade), any superexponential law could be a good
fit for the data, as was already mentioned in Hof et al. [24] on the transition to turbulence. This
superexponential scaling directly results from the previously stated equivalence between continuous
Markov chains and extreme-value theory.

B. Extreme rare events analysis

As already established, the transitions between states can be considered as rare events. Addition-
ally, we showed the rise of an extreme-value law as a consequence of the memoryless property of
the process. All these facts lead us to consider extreme events as responsible for the transitions. To
support this theory, the probability density function (PDF) of CL was plotted for two different angles
of attack (see Fig. 9): one at the beginning of the bistable range [Fig. 9(a)] and another one at the end
[Fig. 9(b)]. The comparison is made against a Gaussian fit of the core of the PDF. The PDFs show
the characteristic heavy tail typical of systems showing extreme events in both cases. We can also
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FIG. 8. Mean residence time τ̄ evolution with the angle of attack α for states A (blue circles) and D (red
squares). Solid lines are the double-exponential fits of the associated residence-time distributions.

look at the amplitudes of these events in terms of the standard deviation of the Gaussian fit. They
span from 10 to 20 times this value, showing the large deviation from normality expected from these
types of events. We note that in Fig. 9(a) the extreme events are smaller values of CL, e.g., minima,
and in Fig. 9(b) larger values, e.g., maxima. In the attached state A, the system undergoes extreme
minima in CL, triggering the transitions to D. In state D, extreme maxima bring back the flow to
state A. We can now see the interest in knowing more about the distribution of maxima CLmax and
minima CLmin . Extreme-value theory states that in the asymptotic limit, i.e., when the sample size
n → ∞, these distributions converge to the generalized extreme-value distribution (GEV) [32] with
the following cumulative density function:

P = exp

{
−

[
1 + ξ

(
x − μ

σ

)]−1/ξ
}

, (1)

where μ is the location parameter, σ is the scale parameter, and ξ is the shape parameter. The latter
is related to the kind of tail from the parent distribution, and consequently, it will determine the type
of extreme-value law. We call parent distribution the probability distribution of CL. When ξ < 0,
the extremes follow a Weibull distribution, and the tail of the parent distribution is bounded. When
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FIG. 9. Probability density function of CL showing the characteristic heavy tails of extreme events, when
flow state (a) A or (b) D dominates in the flow dynamics. The dashed line is a Gaussian fit of the dominant
peak.
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FIG. 10. Shape parameter ξ vs α for the maxima (blue circles) and for the minima (red squares). Insets in
black showing lift coefficient PDF (parent distribution) evolution with α. The insets show the evolution of the
pdf of the lift coefficient when the angle of attack increases, from the single- flow state with high lift (a) to the
single-flow state with low lift (e), via the bistable regime (c) and intermediate regimes (b) and (d).

ξ > 0, the extreme events follow a Frechet distribution. The tail corresponds to a heavy one with
a power-decay law, as in Fig. 9. When ξ = 0, the extreme-value law corresponds to a Gumbel
distribution and an exponential-decay tail from the parent distribution. Therefore, by following
the evolution of the sign of ξ with α we have insight into the behavior of extreme events in the
bistable regime and hence into the probability of transition. This statistical procedure was applied
in Refs. [32,44] as a tool to detect the critical value of a control parameter in turbulent flows.
Here, “critical value” is understood as the one producing a qualitative change in the dynamics,
e.g., a bifurcation. This threshold corresponds to a change of sign in ξ , meaning the transition
from a Weibull to a Frechet distribution or vice versa, depending on the type of extreme events
analyzed (maximum or minimum). We apply this method to our time series following the steps
and recommendations detailed in Refs. [32,44] with special care in the convergence of the GEV fit.
All results are summarized in Fig. 10 along with representative PDFs of the parent distribution CL

to help the understanding. For the maxima (blue circles), negative values of ξ are observed until
α ≈ 10.78◦, then a zero crossing between α ≈ 10.78◦ and α ≈ 10.82 with positive values up to
α ≈ 10.94◦ where ξ becomes negative again. The first zero crossing can be interpreted by looking
at Fig. 8. The angle of equal mean residence time for states A and D is between α ≈ 10.78◦ and
α ≈ 10.82◦; before that angle, the system spends more time in A, and afterward, in D. This reversal
of states coincides with the first change of sign in Fig. 10. By looking at PDFs inset, we can see the
aforementioned reversal of probabilities. The second zero crossing corresponds to the bifurcation
angle αA determined in Sec. III B by means of a peak ratio criteria. Here, the PDF right before the
transition [see Fig. 10(d)] shows the characteristic heavy tail (Frechet), and after this angle, this tail
disappears and is replaced by a bounded one (Weibull) like Fig. 10(e). Doing the same analysis for
the minima (red squares) we see that ξ goes from negative to positive around α ≈ 10.70◦; this value
is close to the one previously defined for αD, i.e., the beginning of the bistable range. The system
goes from bounded fluctuations [Fig. 10(a)] to sporadic bursts of extreme minima [Fig. 10(b)].
Then ξ continues to be positive until it crosses zero again between α ≈ 10.78◦ and α ≈ 10.82◦.
corresponding to the reversal of states. We can point out that αA is only identified when looking at
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the maximum and αD at the minimum. This is because, in the first case, we look at the right tail
of the distribution (state A) and, in the second case, the left tail of the distribution (state D). It is
important to note that GEV are usually applied to distributions that are unimodal. Here we apply
the GEV in an original way to distributions showing bimodality, i.e., in the bistable range. This use
is subsequently validated by the smooth evolution of the shape parameter over the whole range of α

for the maximum and minimum distributions. The GEV, when fitted to our bimodal data, captures
well the dominant peak and the tail of interest (maxima or minima). Had we split the signal into
two states, the result would have always been a Gumbel distribution (ξ = 0), missing the reversal
of states.

V. DISCUSSION AND CONCLUSIONS

The experiments revealed an unexpectedly rich dynamics with two very different regimes
(Fig. 2): at low Reynolds numbers, a deterministic oscillatory regime with a well-defined frequency,
while at large Reynolds numbers, the dynamics is stochastic with no sign of oscillations. This
represents a transition from a monostable system with a limit cycle to a bistable system with random
transitions between states. The experimental results and the study of Ref. [6] suggest that the two
deterministic states A and D appear and disappear through two saddle-node bifurcations, one direct
for α = αD(Re), the second indirect for α = αA(Re). This indicates that an unstable flow regime,
presumably transiently observed during the transitions between states A and D, also coexists with
the A and D branches, which should collide with the A branch in αA and with the D branch in αD,
as detailed in Ref. [6]. In contrast to Refs. [6,41] where A and D were absorbing states, the novel
result here is that both states are explored intermittently over time, all other parameters being fixed.
The hysteresis loop usually observed at stall could not be observed due to the intermittent switches
between the two states, favored by the turbulent background fluctuations in the flow, analogously
to the effect of thermal noise or inlet boundary conditions in other bistable systems [45,46]. By
analyzing the bistability statistics, we have shown that the process can be modeled as a continuous
Markov chain. Former studies have already made analogies between such continuous Markov chains
and extreme-value laws in order to compute transition thresholds for the order parameter [16]. Here,
we highlighted the mathematical link between continuous Markov chains and extreme-value laws
expressed by the superexponential behavior of the mean residence times. Based on the hypothesis
that extreme rare events are responsible for the transitions, we modeled the tail of the observable
using extreme-value theory. We used this model to compute the bifurcation points of our system in
an unambiguous manner without the need to define thresholds by hand. Following Ref. [47] and
although sometimes found in the literature, no critical dynamical value of the order parameter is
sought, beyond which the system would irremediably change of state, since these bistable systems
are likely to transit from one state to the other regardless of their current state. The current state of
the system only affects the probability it has to transit from one state to the other.

Although outside of the scope of this article, a stochastically forced model of the double
saddle-node bifurcation, together with a particle image velocimetry-based investigation of the flow
structures are currently under investigation.
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