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Understanding the receptivity of hypersonic flows to free-stream disturbances is crucial
for predicting laminar to turbulent boundary layer transition. Input-output analysis as
a receptivity tool considers which free-stream disturbances lead to the largest response
from the boundary layer using the global linear dynamics. Two technical challenges are
addressed. First, we restrict the allowable forcing to physically realizable inputs via a
free-stream boundary modification to the classic input-output formulation. Second, we
develop a hierarchical input-output (H-IO) analysis which allows us to solve the three-
dimensional problem at a fraction of the computational cost otherwise associated with
directly inverting the fully three-dimensional resolvent operator. Next, we consider Mach
5.8 flows over a sharp cone and two blunt cones with 3.6 mm and 7.2 mm spherically
blunt tips. H-IO correctly predicts that the sharp cone boundary layer is most receptive
to slow acoustic waves at an optimal incidence angle of 10◦, validating the method. We
then investigate the effect of free-stream disturbances on the blunt cone boundary layer and
identify two distinct vorticity-dominated receptivity mechanisms for the oblique first-mode
instability at 10 kHz and an entropy layer instability at 40 and 70 kHz. Our results reveal
these receptivity processes to be highly three-dimensional in nature, involving both the
nose tip and excitation along narrow bands at certain azimuthal angles along the oblique
shock downstream. We interpret these processes in terms of critical angles from linear
shock/perturbation interaction theory. Finally, we show how these receptivity processes
vary with frequency and nose tip bluntness, and demonstrate how this methodology might
be applied to transition prediction from first principles.
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I. INTRODUCTION

Laminar to turbulent boundary transition continues to be a critical area of research for accurate
prediction of aerodynamic performance during high-speed flight. The increased heating and skin
friction from turbulence in the boundary layer makes delaying transition, or at least understanding
where the transition front will most likely occur, a priority.

It is well known that boundary layer instabilities have significant influence on transition to
turbulence. Linear stability analysis [1] decomposes the dynamics of small fluctuations about a
locally parallel flow into wall-normal eigenfunctions, or modes, each of which may grow or decay
exponentially downstream according to their eigenvalues. The development of the parabolized
equations [2] relaxed the parallel assumption such that the mean boundary layer can be treated as
slowly growing in the streamwise direction, a good assumption for high-speed boundary layers well
away from complex geometry and shock waves. Global methods depart from the local framework
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and adopt a BiGlobal or TriGrobal framework [3,4], depending on whether the eigenvalue problem
or initial value problem is posed in two or three spatial dimensions. Resolvent analysis [5–8] is a type
of global analysis which decomposes the global linear dynamics into an orthogonal set of modes
(also termed directions) which optimally describe the linear growth of the harmonic linearized
equations. A special case of resolvent analysis—input-output analysis—specifies input and output
maps to restrict the allowable types of forcing and responses. This is most often done by restriction
to subspaces of the state space [9–12]. Extension of input-output analysis to compressible flows and
hypersonic flows has also shed valuable insight on the worst-case linear instabilities which may exist
in the flow [13–16]. Recent work by Kamal et al. restricting the input to physically realizable forcing
types, for example, free-stream planar waves [17], has made input-output analysis a more useful tool
to study the receptivity of the boundary layer to free-stream disturbances that could occur naturally
in a wind tunnel or atmospheric environment. Incorporation of the receptivity process into stability
analysis is a critical step to move away from empiricism and toward a first-principles approach to
transition prediction.

Since Stetson’s seminal experiments [18], much attention has been focused on the effect of nose
bluntness on transition over conical test articles. Small nose-tip bluntness delays transition when
compared to sharp articles, and in this regime, increasing bluntness leads to increasing transition
delay. At some point, however, the trend reverses and an increase in nose-tip bluntness causes the
transition front to revert upstream. Analysis of the Stetson boundary layers via modal methods
successfully predicted transition delay, but not transition reversal [19–25]. The delay of transition
from nose-tip bluntness arises from the generation of an entropy layer by the blunt tip. Tip bluntness
creates a strong curved bow shock and a region of rotational, high-entropy fluid in the inviscid flow
region above the leading edge boundary layer. This entropy layer persists for a streamwise extent
before it is swallowed by the slowly growing boundary layer. The entropy layer swallowing length
[26,27] is a key feature for assessing the stability of boundary layer with blunt tips or leading
edges. Early analysis of entropy layer instabilities [28,29] showed that entropy layer instabilities
in compressible flows over blunted plates were dominated by temperature and density fluctuations.
These fluctuations amplify in the inviscid region, outside the boundary layer, along the generalized
inflection point. Further analysis showed that while linear stability theory could predict an entropy
layer instability, its amplification rate was very small [30]. The identification of nonmodal growth
as a possible mechanism has been investigated [31], and it has been demonstrated—via optimal
growth methods—that the entropy layer can, under optimal forcing, amplify traveling waves far
more than modal analysis predicted. The underlying mechanism was found to strongly resemble
the Orr mechanism [32,33], a well-known nonmodal growth mechanism in low-speed shear flows
[34,35]. The receptivity of these traveling structures to free-stream disturbances, however, was not
addressed. The same mechanisms were also identified and connected to the receptivity process
using the input-output framework [12]. The worst-case free-stream disturbances were found to
impinge on the shock in a compact region above the entropy layer, generating entropy and vorticity
waves postshock. Furthermore, it was found that the entropy layer could amplify these axisymmetric
disturbances by an order of magnitude via a rotation and deceleration mechanism as the disturbances
convected downstream.

In order for transition models to be predictive, it is imperative to understand the receptivity
of high-speed boundary layers. In other words, a predictive model must meaningfully connect
realistic disturbance environments (e.g., wind tunnels, atmospheric turbulence) to the initiation of
modal mechanisms (if they exist) as well as other nonmodal growth mechanisms in the boundary
layer. Early receptivity studies of the compressible boundary layer showed a compelling connection
between slow acoustic waves in the boundary layer edge vicinity and the efficient destabilization
of boundary layer modes [36–38]. Synchronization of the fast and slow acoustic boundary layer
modes destabilizes the slow acoustic mode at the upstream neutral point, initiating exponential
growth as the mode resonates between critical layers in the boundary layer (this is the well-known
Mack second-mode instability [1,20,39,40]). For flows over flat plates and sharp cones, this work
has been extended to predict that slow acoustic waves in the free stream, outside of the shock, are
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the most important waves for activation of the Mack mode. However, free-stream vortical waves
also play a role and can also activate modal boundary layer growth [41–43]. Recent experiments
involving Schlieren imaging of Mach 6 flow over ogive-cylinder geometries revealed the presence
of low-frequency instabilities in addition to the high-frequency Mack second mode [44]. PSE
calculations suggested these observations could be explained by oblique first-mode instability [45],
although this is difficult to confirm using Schlieren imaging alone. The PSE calculations, however,
do not take into account the presence of the shock or the receptivity to the free stream and consider
growth only on the cylinder portion of the geometry, downstream of the ogive and nose tip. To
include the effect of the shock wave and its receptivity, axisymmetric I/O analysis of sharp and blunt
cones at Mach 6 revealed the presence of a new type of low-frequency instability that depended on
acoustic reflection between the boundary layer at the surface of the cone and the underside of the
shock [12], providing an alternate explanation of the experimental observations. While much of the
previous work has been focused on axisymmetric disturbances, recent work by Buchta and Zaki
showed that two-dimensional waves are not sufficient to interpret experimental measurements and
that three-dimensional waves must be included [46]. Therefore, a predictive model must also include
the effects of three-dimensionality in the disturbance field.

Inclusion of three-dimensionality dramatically increases the computational cost associated with
global methods, including input-output analysis, especially in terms of overhead memory. One
approach is to use iterative methods, which significantly relax the large overhead memory require-
ments at the cost of several iterative steps. One class of matrix-free iterative methods, time-stepping
methods [47,48], has been successfully applied within the resolvent analysis framework. These
methods do not require explicit formulation of the discrete matrix problem and use far less memory
and computational time for test problems and low-speed flow applications [49,50], especially for
low-frequency dynamics of systems for which there is a large separation in gain between the leading
and suboptimal resolvent modes. For problems without these features, time-stepping methods can be
expensive due to the CFL condition and multiple power iterations required to resolve gains without
a large separation. Another approach is to use direct methods are built on the explicit formation
of the discrete operator, which is then directly factored, usually by LU decomposition. Once these
factors are computed, the resolvent action can be efficiently applied to a vector by two back-solve
operations with the lower and upper factors. Direct methods are very efficient for one-dimensional
and small two-dimensional problems, but scale poorly with respect to computational time and
overhead memory requirements as the number of discrete degrees of freedom increase. One of the
more commonly used direct solvers, the MUMPS package [51,52] has been developed in order to
exploit sparsity and domain decomposition in the computation of the direct solution. One included
feature of this software is the Block Low-Rank (BLR), which can reduce the overhead memory
footprint. Hierarchical methods built on exploiting low-rank behavior are a promising approach
because they are designed to use memory efficiently to reduce computational cost, while still
avoiding the full direct matrix factorization.

In this paper, we apply I/O analysis to the interaction of fully three-dimensional free-stream
disturbances to sharp and blunt cones at Mach 5.8. To overcome the computational expense of fully
three-dimensional I/O analysis, we have developed a “hierarchical I/O analysis” methodology that
has enabled the calculations described below. Importantly, our approach accurately captures the
interaction of free-stream disturbances with the shock wave using a shock-kinematic boundary
condition (SKBC) [12] so that transmission and reflection amplitudes match that of theory [53].
The SKBC, which we extend in this paper to three-dimensional interactions, bears some similarity
to shock-fitting methods [54], although it takes advantage of the separation between baseflow and
perturbation quantities in keeping with theory [53]. While shock-capturing methods may be efficient
at computing steady baseflows, they are problematic for delicate receptivity calculations because
they are known to generate spurious waves when unsteady perturbations interact with the shock
[55–57]. Last, in order to study sensitivity to realizable free-stream disturbances (which satisfy
the free-stream dispersion relation), we follow the approach of Kamal et al. [17] and restrict
the allowable inputs to our calculations to correspond to a decomposition of acoustic, vortical,
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and entropic plane-waves at various angles of incidence. Besides providing a realizable basis
onto which realistic free-stream disturbance fields can be projected, I/O analysis starting from
the plane-wave decomposition allows us to identify to which types of waves the cone is most
receptive and at which angles. The interaction of oblique plane waves with a round cone is a fully
three-dimensional problem and, as we will see, reveals the importance of highly three-dimensional
receptivity processes.

The remainder of this paper is organized as follows. In Sec. II we outline the governing equations,
adapt the realizable input/output analysis framework [17] for receptivity to realizable disturbances
in the free stream, describe a hierarchical approach to efficiently computing three-dimensional I/O
analysis, and comment on the numerical methods used. In Sec. III we present a verification case
using a sharp cone boundary layer and extend the method to blunt-tipped cones over a range of
frequencies, highlighting insights into the receptivity process. Finally, in Sec. IV we summarize our
findings and outline a path for future work.

II. METHODOLOGY

A. Compressible Navier-Stokes equations with spanwise/azimuthal parameterization

We begin by solving the axisymmetric compressible Navier-Stokes equations to obtain steady
base flows. The general form is

∂U

∂t
+ ∇ · ( �FI + �FV ) = 0, (1)

where U = [ρ, ρu, ρv, ρw, E ]T is the vector of conservative state variables, and �FI , �FV are the
inviscid and viscous flux vectors, respectively. We then expand the problem in terms of a mean and
fluctuating component in a cylindrical (x, r, θ ) coordinate system

U (x, r, θ ) = Ū (x, r, θ ) + Ũ (x, r)eimθ , (2)

where Ū is a steady solution to Eq. (1), and Ũ is a small amplitude perturbation to the mean
flow, parameterized with an azimuthal wavenumber m. Owing to the axisymmetry of the base
flow, substitution of this expression into Eq. (1) decouples azimuthal derivatives according to
wavenumber m. In other words, the problem is reduced to a series of two-dimensional x-r planes,
each having a different wavenumber. Once we have this parametrization, we extract the resulting
global system Jacobian from the numerical solver using complex step differentiation at each discrete
wavenumber.

B. Shock-kinematic boundary condition

In order to study the receptivity of hypersonic flows to free-stream disturbances, perturbations
must pass through a vehicle’s bow shock. While standard shock-capturing schemes model steady
shock waves efficiently, they introduce errors in unsteady perturbation fields interacting with the
shock [55,57]. Owing to the hyperbolic nature of the flow, unsteady numerical errors created at
the shock propagate and contaminate the downstream domain. This is especially problematic for
boundary layer transition prediction, as instabilities in the downstream flow amplify small distur-
bances until they eventually cause transition. It is therefore important for these small disturbances to
be of physical rather than numerical origin. To avoid errors introduced by standard shock-capturing
schemes, the authors have previously developed a shock-kinematic boundary condition (SKBC)
[12] which ensures shock/perturbation interaction in our calculations remains consistent with theory
[53]. The SKBC is similar to shock-fitting methods [25,58], but with explicit terms added to capture
the interaction of the shock with small perturbations. While our original formulation was valid
for two-dimensional and axisymmetric problems, we extend it here to handle the interaction of
three-dimensional disturbances with shock waves.
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FIG. 1. Schematic of the shock-kinematic boundary condition. The function X (y, z, t ) describes the dis-
placement of the shock as a function of space and time.

To model shock/perturbation interaction in a Cartesian frame, consider a stationary shock
aligned normal to the x axis, subject to small perturbations, as depicted in Fig. 1. The base-
flow passes through the shock from left to right, although there may be an oblique component
with respect to the y and z directions. For the time-domain problem, the SKBC can be written
compactly as

A3� = A1Q1�
+
1 − A2Q2�

−
2 + ζXy + βXz, (3)

where � contains the outgoing characteristics with respect to the shock, along with the instan-
taneous shock velocity. The vectors �+

1 and �−
2 contain those characteristics which are incident

upon the shock wave, and the terms Xy and Xz are the local shock inclinations (partial derivatives)
with respect to the y and z coordinate directions. The matrices A1, A2, and A3 are built from the
linearization of the Rankine-Hugoniot equations in the reference frame of three-dimensionally
moving shock, and the matrices Q1 and Q2 perform a change of variables from primitives to
characteristics. While the derivation for the two-dimensional case has been previously published
by Cook and Nichols [12], the full three-dimensional derivation is provided for completeness in the
Appendix.

Practically, disturbances in the preshock region near the shock are measured from the preshock
grid cells and used to compute the shock displacement at each cell face along the shock. Similarly,
the postshock disturbances are used to measure the slow acoustic characteristic incident from the
postshock side. The shock inclinations Xy and Xz can also be measured at each cell along the shock.
Together, the SKBC uses these measured quantities to solve for the shock velocity along with the
characteristics outgoing from the shock. The shock position is then updated from the shock velocity
together with a numerical time-stepping scheme. The outgoing characteristics are added to the
postshock fluxes in the postshock cell, at which point the regular numerical method of the simulation
is used to solve for the remainder of the postshock cells. One way to understand the SKBC is as
a coupled supersonic outflow boundary condition and a subsonic inflow boundary condition with
some extra degrees of freedom to store and update the shock position.

C. Input-output analysis for receptivity

Input-output (I/O) analysis, which is based on resolvent analysis [5–8], considers the linear gain
between arbitrary input forcing and output response with respect to some norm [59,60]. Unlike
other stability analyses, I/O analysis does not assume anything about the spatial structure of the
flow and so can handle complex flow features in a natural way. In the present flow configuration,
the total system response directly incorporates the interaction of perturbations with the bow shock,
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the stagnation region, and strongly accelerating flow around the blunt tip, as well as the rest of the
flow downstream on the main body of the cone. Assuming that small disturbances to the flow are
time-harmonic, we can obtain the transfer function

ŷ(x, r, θ ) = C(−iωI − A)−1B f̂ = H (ω) f̂ . (4)

This transfer function maps input into the system via the linear mapping B and measures a
system output via the linear mapping C. With a proper construction of input/output operators,
discretization, and norms, we compute a subset of the singular value decomposition of the transfer
function, such that H (ω) = U
V H , where the columns of U and V contain unitary basis directions
of the outputs and inputs, respectively. The inputs are scaled by 
, which contain the gains in
descending order. This provides a very natural way for understanding the mechanisms present in
the flow as well as the types of forcing to which those mechanisms are receptive. In order for this
analysis to be both feasible and informative, we have to carefully consider how to structure the
inputs and outputs according to the particular questions we want to investigate, as well as consider
efficient computational techniques. In the following subsections, we describe (1) the formulation of
I/O analysis for receptivity to the physical state versus receptivity to volumetric forcing, (2) proper
construction of the input and output matrices to reflect boundary layer receptivity to physically
realizable free-stream disturbances, and (3) a hierarchical input-output (H-IO) method for efficiently
and feasibly computing the full three-dimensional I/O analysis over axisymmetric flows.

1. Receptivity to state vs receptivity to volumetric forcing

When constructing I/O analysis for receptivity applications, it is important to carefully consider
how to construct the input such that it corresponds to our particular research question. Equation (4)
considers the inputs to be nonlinear volumetric forcing terms to the Navier-Stokes equations;
however, when considering boundary layer transition applications for I/O analysis, we are less
interested in the sensitivity of a flow to the nonlinear terms, and more interested in how some
spatial regions of the state (e.g., the state of the boundary layer) are sensitive to other regions
of the state (e.g., the free-stream disturbance state). In other words, we wish to define our linear
gain optimization in a framework in which the input norm has the same units as our output norm,
such that the gain between the input and output directions takes on a more physically interpretative
meaning. One way to accomplish this goal is to reframe the governing equations such that the
forcing terms are directly summed to the state prior to their multiplication by the Jacobian:

q̇(x, r, θ, t ) = A(q(x, r, θ, t ) + B f ). (5)

Distributing the matrix multiplication yields

q̇(x, r, θ, t ) = Aq(x, r, θ, t ) + AB f . (6)

Another simplification occurs if the time-oscillating forcing terms B f satisfy the Navier-Stokes
equations. After the Fourier transform in time and output measurement, we have −iωB f̂ = AB f̂ ,
and Eq. (4) becomes

ŷ(x, r, θ ) = C(−iωI − A)−1(−iω)B f̂ = H (ω) f̂ . (7)

Forcing that satisfies the linearized equations does not occur automatically. Consider the case
where, after discretization, B is a matrix that spatially applies the forcing in the preshock region
only. Furthermore, let us assume that B ensures that the multiplied forcing term B f is a superposition
of propagating acoustic waves. If we compute the I/O analysis and examine the forcing directions,
while the units of the forcing are now consistent with the output response directions and the forcing
terms are physically realizable, the free-stream state that results from this forcing is not, in fact, a
superposition of propagating acoustic waves. This happens because the preshock state acts as an
accumulator for the forcing terms. In this case the problem we have posed is the receptivity to a
free-stream acoustic source, which is not the same as receptivity to free-stream acoustic waves. The
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questions we want to pose is how the flow is receptive to disturbances that already exist in the state,
irrespective of their source, e.g., atmospheric turbulence and wind-tunnel acoustics.

One way to accomplish this is to treat the preshock forcing terms as a boundary condition instead
of volumetric forcing. We define a state-decoupling matrix D such that we remove the rows of
A which couple the free-stream degrees of freedom to itself. This can be accomplished by left
multiplying A with

D = In − Bd Id BT
d , (8)

where In and Id are identity matrices of appropriate dimensions. The matrix Bd is the subset
of the identity matrix which maps to the free-stream degrees of freedom. With this decoupling
accomplished, the final formulation of the I/O problem is

ŷ(x, r, θ ) = C(−iωI − DA)−1(−iω)B f̂ = H (ω) f̂ . (9)

This applies the forcing term as a boundary condition to the governing equations, which ensures
that preshock state contains the spatially mapped B f forcing. In other words, if we construct B such
that forcing is a superposition of free-stream waves, the preshock state is also a superposition of
free-stream waves, applied as a boundary condition with respect to the postshock flow.

2. Input/output matrix construction

We will now turn our attention to the construction of the B and C matrices. Recent work in
realizable I/O analysis by Kamal et al. [17] considered a restriction of the input-output formulation
to physically realizable inputs, e.g., a superposition of two-dimensional planar waves of various
types. They accomplish this by adopting a formalism which allows them to solve for the scattered
solution in terms of incident waves. In this section, we adopt this approach, but for three-dimensional
waves restricted to a uniform free stream. In contrast to the scattering formalism approach, we
instead consider how the input forcing might be applied as a boundary forcing term in the free
stream. Following Kamal et al. [17], we consider the construction of the matrix B such that the
forcing is a superposition of planar waves which satisfy the Euler equations, but restricted to a
uniform free stream only. We begin by defining our forcing as wave amplitudes for five types of
three-dimensional free-stream waves as functions of wave angle ψ with respect to the streamwise
direction,

f̂ (ψ ) = [a−(ψ ), as(ψ ), auv (ψ ), aw(ψ ), a+(ψ )]T , (10)

where a− and a+ are the amplitudes of the slow and fast acoustic waves, as are the amplitudes of
entropy waves, and auv and aw are the vortical waves. Note that we have two relevant coordinate
systems. We want to describe the receptivity of an axisymmetric flow (x-r-θ coordinates) to three-
dimensional free-stream waves (x-y-z coordinates). In general, we need two wave angles to describe
three-dimensional planar waves; however, because the flows we consider are axisymmetric, all
three-dimensional wave angles can be mapped onto two-dimensional waves in the flow coordinate
system through simple rotation around the symmetry axis, and so we consider only a single
free-stream wave angle.

We can now describe the input matrix as a decomposition of linear mappings from these
amplitudes into the state space

B f̂ (ψ ) = PQSN−1 f̂ (ψ ), (11)

where S is the spatial distributor matrix, Q is the wave decomposition matrix, P is the rotation
matrix, and N is the normalization matrix.
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The spatial distributor matrix S can be defined as

S = exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i(k− · x) 0 0 0 0

0 i(kc · x) 0 0 0

0 0 i(kc · x) 0 0

0 0 0 i(kc · x) 0

0 0 0 0 i(k+ · x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where the wavenumber vectors k±,c = k±,c(ψ ) must satisfy their corresponding dispersion relations
for propagating waves in a uniform flow: ω = u · k± ± c|k±| for acoustic waves and ω = u · kc

for purely convected waves. The matrix Q decomposes the spatially distributed waveform into the
proper amplitudes of primitive variables corresponding to different wave types such that φ̂(x, r, θ ) =
QS f̂ (ψ ), where φ = [p, u, v,w, ρ]T :

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1
− cos ψ

ρa 0 − sin ψ 0 cos ψ

ρa
− sin ψ

ρa 0 cos ψ 0 sin ψ

ρa

0 0 0 1 0
1
a2 1 0 0 1

a2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

At this point, we apply the Chu norm [61,62] as a normalization via such that a unit amplitude
in f (ψ ) corresponds to wave with a unit energy density. The normalization is applied via N =
LH

C LCδi j , where di j retains only the diagonal terms corresponding to the column-to-column inner
products of LC . The Cholesky factor LC can be written as

LC = WinZQS, (13)

where Z is the change of variables matrix accounting for the adjustment from φ̂ variables to ẑ
variables suitable for the application of the Chu norm:

Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
1

Raρ̄
0 0 0 −p̄

Raρ̄2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Here Ra is the gas constant for air, and ẑ = Zφ̂ = [ρ, u, v,w, T ]T . The matrix Win applies the Chu
energy weighting and is given as

W 2
in = �Vi, j,k

Vin

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2

γ ρ̄
0 0 0 0

0 ρ̄ 0 0 0

0 0 ρ̄ 0 0

0 0 0 ρ̄ 0

0 0 0 0 ρ̄Cv

T̄

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where �Vi, j,k is the cell volume quadrature. We also choose the normalization by the total volume of
the input region, such that the norm yields the input energy density instead of the input total energy.
We prefer this choice, as it gives the I/O gains a more intuitive physical meaning.
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The rotation matrix P is necessary to rotate the velocity components from a Cartesian to
a cylindrical coordinate system. Remember that the free-stream waves have been defined in a
Cartesian frame (x-y-z). However, the physics and governing equations have been expressed in a
cylindrical (x-r-θ ) frame. Therefore, we have to apply a rotation to the y and z components of the
velocity such that they become r and θ components. This is accomplished through application of
the rotation matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 cos θ sin θ 0

0 0 − sin θ cos θ 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

With this final matrix definition, we now have a mapping in Eq. (10) from input amplitudes to
three-dimensional free-stream waves, each with unit energy density. The construction of the output
matrix C is straightforward, and we take it to be a subset of the identity matrix in a spatial region
of interest. The output norm is chosen to mirror the choice of input norm and is also normalized by
the total output volume, e.g., replace Vin with Vout in Eq. (15). The final definition of the gain more
explicitly becomes

G2 = 〈ŷ, ŷ〉2

〈 f̂ , f̂ 〉2
= ŷHWout ŷ

f̂ (ψ )H f̂ (ψ )
, (17)

where the normalization included in the construction of B ensures that a unit two-norm of the
input corresponds to a unit energy density of waves in the free stream. This is a helpful choice
of norm for transition-related problems and has a clear interpretation. G > 1 implies an increase in
energy density from the input region to the output region, and thus there are disturbance-amplifying
physics. Conversely, G < 1 implies that the energy density decreases from input to output and the
disturbances are spatially damped between input and output location.

3. Hierarchical I/O analysis

Theoretically, at this point in the formulation, we could proceed with the analysis via Eq. (9).
Practically, the three-dimensional problem is computationally expensive. In particular, the inversion
of the resolvent operator R = (−iωI − DA) is costly. Even for the two-dimensional case, the mem-
ory and computational costs of directly factoring the resolvent are high. Furthermore, the resolvent
is highly non-normal and poorly conditioned such that iterative methods are slow to converge, even
with modern preconditioners. Not only is the three-dimensional matrix much larger, but it is more
dense, increasing the computational expense yet further. We choose to focus solution efforts on
solving the linear problem with the explicitly constructed matrix via hierarchical direct methods,
for three reasons. First, if they can be constructed, hierarchical methods are computationally more
efficient than iterative methods, especially for transition-related problems in which there is not large
separation in the leading resolvent gains. For these problems, several power iterations are required
to converge the leading singular triplets, and so it is important to minimize the cost of applying the
resolvent operator to a vector. Second, direct matrix methods allow much lower dissipation than
time-stepping schemes, which allow higher frequency components to be resolved with less grid
points per wavelength. Third, direct methods are not inherently constrained by the CFL condition,
which is increasingly important for high-speed, high-Reynolds-number flows, which require small
grid cells to resolve very thin boundary layers.

In many cases we can examine some of the three-dimensional effects if we parameterize the
governing equations using a spanwise/azimuthal wavenumber such that disturbances have the form
q̂(x, r, θ ) = q̃(x, r)eimθ . Then, if we wish, we can do a separate I/O analysis at each wavenumber to
get a sense for how the receptivity is sensitive to different levels of obliquity in the flow disturbances.
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FIG. 2. Illustration of the main steps in the hierarchical approach to three-dimensional I/O analysis.

First, we can discretize the azimuthal coordinate θ and take the discrete Fourier transform (DFT) of
the free-stream forcing with respect to θ ,

ỹ(x, r, mk ) = C(−iωI − DÃ)−1F{(−iω)B f̂ }k . (18)

Here the modified Jacobian Ã has been parameterized by the azimuthal wavenumber, and F is
the unitary discrete Fourier transform. If we take the variable ζn = −iωBn f̂ as slices through the
three-dimensional forcing field at the discrete azimuthal angle θn then we can express the DFT as

F{·}k = 1√
N

N−1∑
n=0

ζne− 2π i
N kn. (19)

With Eq. (18), we have the option to perform a separate I/O analysis at each discrete wavenumber.
However, one drawback of this parametrization is that the I/O analysis at each wavenumber yields
different input/output bases for the free stream and response. We have lost the azimuthal coherence
of the free-stream environment in decoupling the global optimization. If we want to reconstruct
azimuthally coherent I/O bases, we would need to compute all of the I/O analyses simultaneously
so we could invert the Fourier transform and take the full three-dimensional norm. While the
Fourier-decoupled problem is cheaper than the full three-dimensional problem, it still requires
access to many computational resources simultaneously.

Instead we use a reduced-order model based reconstruction to obtain azimuthally coherent I/O
directions much more efficiently. The method consists of four steps, with an optional fifth step if we
want to examine the full state. These steps are illustrated graphically in Fig. 2.

Step 1, depicted in Fig. 2(a), is to compute the I/O analysis of Eq. (18) at each discrete wavenum-
ber. This can be done sequentially or in parallel as computational resources are available; each of
these are independent computations. The result of each of these computations is a decomposition in
terms of the singular values and singular vectors such that

ỹ(x, r, mk ) = Uk
kV
H

k f̂ (ψ ). (20)
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Step 2, depicted in Fig. 2(b), is to build a reduced order model from this decomposition. Because
we order the singular values such that σ1 > σ2 > σ3 · · · , the rate at which the gains in 
 decay
provides a natural way to truncate the SVD and retain only a few I/O pairs (columns of Uk , Vk) at
each wavenumber. If the gains decay sufficiently fast with respect to some error measure, then only
a few singular values and singular vectors are needed to accurately reconstruct the physics. We can
define the truncated SVD as

ỹ(x, r, mk ) ≈ Ǔk
̌kV̌
H

k f̂ (ψ ) = Ȟk f̂ (ψ ). (21)

In Step 3, we can reconstruct the full three-dimensional I/O analysis by vertically concatenating
the V̌k blocks, creating block-diagonal matrices using the Ǔk and 
̌k blocks and applying the inverse
Fourier transform. The reconstruction, depicted in Fig. 2(c), can be expressed as

ŷ(x, r, θ ) = F−1Ǔ 
̌V̌ H , (22)

where

Ǔ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ǔ1 0 · · ·
0 Ǔ2 0 · · ·
... 0 . . . 0 · · ·

... 0 ǓN−1 0

... 0 ǓN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 
̌=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


̌1 0 · · ·
0 
̌2 0 · · ·
... 0 . . . 0 · · ·

... 0 
̌N−1 0

... 0 
̌N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and V̌ H=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

V̌ H
1

V̌ H
2

...

V̌ H
N−1

V̌ H
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)

Here the inverse DFT is again the unitary case where

F{·}−1
k = 1√

N

N−1∑
k=0

ỹ(x, r, mk )e
2π i
N kn. (24)

Step 4, depicted in Fig. 2(d) is to perform the optimization again, this time using the reconstructed
three-dimensional transfer function from the previous step. This final I/O analysis of Eq. (22)
is the heart of the hierarchical I/O (H-IO) method. It allows us to efficiently and quickly three-
dimensionalize the I/O analysis via a Fourier decomposition and reconstruction with respect to
the azimuthal direction. The computational cost of the final step largely depends on the input and
output dimension of the transfer function, but it is not difficult to restrict the input/output such that
reoptimization step is in fact the cheapest of the four steps. This final decomposition is denoted

Hr (x, r, θ ) = Ur
rV
H

r , (25)

where the basis of input directions (columns of Vr) correspond to physically realizable free-stream
forcing amplitudes and the output directions (columns of Ur) correspond to the three-dimensional
postshock response of the boundary layer.

Finally, the optional Step 5 is to use the input basis from the final I/O analysis to compute the full
state for analysis. This step is optional because in some cases we are interested only in examining the
output, which is immediately available after step four. However, it is useful to reconstruct the global
state to examine receptivity mechanisms and understand how the flow amplifies the input forcing.
The direct response q̂(x, y, θ ) can be computed from a modification of Eq. (9) by neglecting the
left multiplication by the output matrix. The direct response at each wavenumber to the dth input
direction is found by computing

q̃d (x, r, mk ) = (−iωI − DA)−1(−iω)B(Vr )d , (26)
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where the subscript d denotes the dth column of the matrix Vr . Once the response is computed at
each wavenumber, we do one final Fourier inversion to find the three-dimensional state:

q̂d (x, r, θ ) = F−1q̃d (x, r, m). (27)

The full computational cost of the H-IO method is largely determined by the size of the
2D/axisymmetric resolvent inversion at each wavenumber. The initial I/O step requires N in-
dependent (and thus parallel) resolvent inversions, while Steps 2–4 require minimal cost with
respect to Step 1. If Step 5 is performed, another N independent resolvent inversions are required.
The computational advantage of this method is that it leverages the Fourier decomposition such
that it keeps each resolvent computation in the regime where fast direct algorithms work well,
while providing a means by which to return to the full three-dimensional global linear physics to
understand the nature of complex receptivity processes.

4. Receptivity coefficients and N factors

It is useful to employ a receptivity coefficient to quantitatively connect the free stream to the
boundary layer. If the forced boundary layer instability is modal in nature, then it is possible to fit the
response of the boundary layer to the predicted growth from a linear stability analysis such that the
amplitude A = A0eN , where N is the spatially integrated growth rate, and A0 is the fitting parameter
(initial amplitude). This is related to the classic eN method for transition prediction [64]. In the
case where the forcing is acoustic, the initial amplitude can be defined in terms of pressure, and the
receptivity coefficient is simply the pressure at the neutral point normalized by the acoustic forcing
pressure amplitude [43]. It is also possible to correlate receptivity in terms of the nose bluntness
radius itself [65], but in this paper we choose to focus on understanding receptivity mechanisms in
detail for one particular representative bluntness radius, and so we do not employ the more general
correlation. We do, however, generalize the pressure amplitude method to account for different types
of forcing waves by using the Chu energy amplitude as the starting place for defining the receptivity
coefficient. The generalized amplitude receptivity coefficient is defined as

Ca = A0

A f s
, (28)

where A0 is the Chu amplitude (the square root of the Chu energy) in the boundary layer at the
upstream neutral point of the modal instability, and A f s is the peak Chu amplitude in the forcing
wave outside of the shock. In cases where we force with one type of wave at a time, this provides a
simple connection between the forcing wave amplitude and the initial modal amplitude.

It is worth emphasizing here that for flows with tip bluntness, the modal grow starts downstream
of the blunt tip, and so modal-based transition prediction lacks sufficient treatment of the receptivity
mechanisms. Initial amplitudes obtained empirically also neglect a physical treatment of nonmodal
growth via entropy layer instability and shock-perturbation interaction. For these reasons, the eN

method is not predictive from a first principles perspective. I/O analysis, however, enables us to
define a receptivity related N-factor from the flow responses to the optimal input forcing in order to
connect the worst-case spatial growth of flow disturbances to first-principles mechanisms. Instead of
an N-factor which is relative to an arbitrary initial amplitude, we directly obtain the initial amplitude
from the peak of the forcing wave outside the shock. This N-factor can be considered the true upper
bound N-factor with respect to the optimal inputs as constrained in the input-output formulation. In
other words, this absolute N-factor represents the integration of downstream instability with free-
stream receptivity. We define this receptivity N-factor as

Nr = log

(
AC (ξ )

A f s

)
, (29)

where ξ is the streamwise coordinate direction.
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FIG. 3. H-IO gain vs wavenumber for several sharp and blunt cone analyses. For each case shown, the gain
at m = 50 is less than 10% of the maximum gain.

D. Numerical methods

We solve the governing equations using a parallel, structured, in-house solver that employs the
SKBC-equipped finite volume method [12]. We approximate the inviscid fluxes using a third-order
MUSCL scheme [66] with quadratic reconstruction. The viscous fluxes are computed using a
second-order least-squares reconstruction. Once the solution is obtained on an initial mesh, the
mesh is iteratively refined to fit to the stationary shock surface and elliptically smoothed such that
the mesh is orthogonal at both the wall and the shock surface. Once the mesh is tailored to the
shock, we apply a shock-fitting routine based on the preshock and postshock mean state such that
the shock surface is no longer discretized, but can be defined by a single streamwise grid line. Once
the shock fitting is complete, we numerically extract the global linear dynamics via complex step
differentiation to retain full double precision in the Jacobian.

We also use a custom parallel solver to build and implement the free-stream receptivity matrices
as well as perform the I/O analysis step. The resolvent factorization at each wavenumber is accom-
plished via the parallel sparse direct solver MUMPS [51,52]. The singular value decomposition is
computed using the sparse eigenvalue package ARPACK [67].

The flow domain was discretized using 1920 points in the streamwise direction and 300 points
in the wall-normal direction. In the mean flow computation, the grid points were clustered near
the wall such that the boundary layer was well resolved (y+ < 1). Additionally, the streamwise
discretization ensured that slow acoustic waves up to f = 100 kHz were discretized with no less
than 10 grid points per wavelength. For use in the H-IO analysis, the Fourier transform was
computed by discretizing the θ direction with 128 points, which is sufficient to resolve flow features
with wavenumber components up to m = 64. While it may require this many (or more) Fourier
coefficients to rebuild high-frequency planar waves in the free stream with good accuracy, above
a certain threshold, high wavenumber physics are not amplified in the downstream flow. Figure 3
shows the I/O gain vs wavenumber for three cases considered in this paper. For each of these com-
putations, the three-dimensional results were reconstructed using wavenumbers from m = −48–49,
because for |m| > 50 the I/O gain was found to be less than 10% of the highest gain in the least
conservative case. The chosen spatial discretization, five state variables and Fourier coefficients,
leads to a problem with 288 million degrees of freedom, which to the authors’ knowledge, is the
largest input-output analysis successfully performed.

The performance of the H-IO approach for this problem is summarized alongside recently
published three-dimensional computations in Table I. We measure and report CPU time by TwNpNω,
where Tw is the wall time, Np is the number of CPUs used, and Nω is the number of frequencies
computed. The memory usage is reported as the total amount of memory required for the sublevel
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TABLE I. Computational complexity compared to published high-degree-of-freedom computations.

Case Nω DOF CPU time (hr) RAM (GB)

Supersonic flat plate (M = 4.5) [63] 1 0.65 M 4.4 1.3 × 101

Flow over parabolic body (incompressible) [49] 96 4.5 M 3.0 × 101 1.6 × 101

Round turbulent jet (M = 0.4) [50] 21 39 M 1.8 × 104 7.4 × 102

Hypersonic conical flow (M = 5.8) 10 288 M 1.3 × 104 7.3 × 103

resolvent inversions. The computational study used to report the timings computed 25 leading I/O
directions (on the sublevels) for the sharp cone flow and was run in parallel on 48 AMD EPYC
7451 processors, each with a clock speed of 2.3 GHz. We compare our H-IO results to resolvent
analyses of a supersonic flat plate [63], incompressible flow over a parabolic body [49], and a round
turbulent jet flow [50]. Because each of the computational studies to which we compare is performed
potentially on different processors and computer architectures, it is difficult to obtain a one-to-one
comparison. Each of these studies to which we compare, however, was performed within the last
four years, and so we assume that our comparisons accurately reflect algorithmic performance.
Details of the underlying computations can be found in the provided references. As is shown in
Table I, the scale of the present computation has a similar computational cost in terms of CPU time
than next largest DOF case, the round turbulent jet, while containing over seven times the total
number of degrees of freedom. The H-IO analysis does, however, exceed the memory requirements
of the round turbulent jet computation by an order of magnitude. This amount is manageable in our
case, because each of the sublevel computations requires only 1/Nm times the total memory at a time,
which is not excessive for modern high performance computers, where Nm is the number of Fourier
coefficients in the azimuthal discretization. The hierarchical approach allows the computation to
efficiently utilize the available memory on the sublevel in order to decrease the total amount of CPU
time required in the direct and adjoint resolvent inversions.

E. Error analysis of the hierarchical input-output approach

One of the main ideas enabling hierarchical input-output (H-IO) analysis is the use of a low-rank
compression of a flow decomposition such that the recomposition into full three-dimensional space
is more computationally affordable. It is important to consider the effect of this compression on
the amount of error present in the reconstructed three-dimensional flow features. Two sources of
error are present in the Fourier H-IO analysis. First, the truncation of the Fourier decomposition
could leave higher wavenumber components of the forcing waves and response unresolved or under-
resolved. Second, the truncation of the transfer function at each wavenumber could propagate error
to the reconstruction.

We can begin to address the first type of error by examining the gain from the wavenumber
specific I/O analyses in the first step of the H-IO process. The gain from I/O analyses across
wavenumber are shown in Fig. 3 for several full-scale test cases and frequencies. After around
50 coefficients, the gain associated with each successive wavenumber contributes less than 10% of
the gain at the maximum amplified wavenumber. This gives a sense that there is a wavenumber
threshold past which the flow physics do not amplify the inputs.

To quantify the effect of truncating the Fourier decomposition, we examine the relative error in
the H-IO analysis as we include an increasing number of coefficients. As an example, consider two
H-IO analyses for the sharp cone at f = 10 kHz and f = 70 kHz. We compute the H-IO analysis
for each of these flows using three different truncation points in the Fourier decomposition and
compare the relative error of final I/O directions and gains to the maximum truncation case. In
order for the approximation to be acceptable, the relative error should diminish as we include more
Fourier coefficients such that the results are not expected to change if more coefficients were to be
added. The relative error between any input amplitude distribution amt and the amplitude distribution
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FIG. 4. Gain and input error quantification for H-IO analyses of the sharp cone at (a)–(c) 10 kHz and (d)–(f)
70 kHz. Error is quantified by varying the number of included Fourier coefficients and then showing (a), (d) the
leading gains, (b), (c) the input distributions, and (c), (f) log-scale relative input error with respect to mt = 50.
Also shown are D1 outputs for sharp cone H-IO analyses at 10 kHz and for (g) mt = 30, (h) mt = 40, and (i)
mt = 50. As more wavenumbers are included, the output physics converge to a single physical mechanism.

resulting from the truncation with mt = 50 is

ea =
∣∣am50

∣∣ − ∣∣amt

∣∣∣∣am50

∣∣ . (30)

Figures 4(a) and 4(d) show the gains for sharp cone H-IO analyses at 10 kHz and 70 kHz as a
function of mt . As the number of Fourier coefficients are increased, the gains become increasingly
similar. It is worth noting that the error in the gain reduces more quickly for the larger gains. Both
frequencies show the D1 gain error reduces more quickly than the other directions as mt is increased.
This is another indicator that the dominant physical mechanisms are sufficiently resolved with
mt = 50.

Figure 4(b) shows the effect of varying the Fourier truncation on the D1 input distributions for
mt = 10–50 at a frequency of 10 kHz. A significant difference in the input distribution at mt = 10
is visible in the input distribution, while the differences between the optimal input distributions for
mt > 20 become much smaller. The relative error with respect to mt = 50 is shown in Fig. 4(c). The
error in the D1 input distribution is largest using mt = 10 but reduces as the number of included
wavenumbers increase. For the case where mt = 40, the maximum relative error is around 10−1.
Note also that the error is smallest, around 10−3 where the peak of the input distribution occurs,
indicating that the dominant receptivity mechanisms are well-resolved using mt = 50.

A comparison at high frequency shows a similar trend. The D1 input distributions for the H-IO
analysis of the sharp cone at 70 kHz are shown in Fig. 4(e) and are virtually indistinguishable from
one another. The relative error is again shown in Fig. 4(f), which shows a much lower error for all
values of mt . This indicates that the physical mechanisms captured by the H-IO analysis at 70 kHz
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are more axisymmetric in nature and therefore require fewer wavenumbers to resolve, indicating
that mt = 50 is more than sufficient.

The effect of varying the Fourier truncation on the leading output directions can also be quan-
tified. Figures 4(g)–4(i) show the absolute value of the density fluctuations in the output region as
functions of the wall-normal and azimuthal coordinate directions. As mt is increased, the output
direction shapes converge onto a single shape function, although the amplitudes slightly reduce as
energy is distributed to the higher wavenumber components. The largest shape changes are visible
for the low-frequency oblique structures due to the higher number of Fourier coefficients needed to
resolve them. All of this suggests that mt = 50 is sufficient for these cases to capture the dominant
physics with an H-IO analysis.

We now address the second error source: low-rank approximation of the wavenumber-specific
transfer functions. Again, this quantification is performed in terms of a relative error measure. The
relative error of the input distribution can be defined as the relative difference between an arbitrary
input distribution and the input distribution in the most accurate test case performed. As the number
of I/O directions included in the transfer function truncation is increased, if the error becomes
vanishingly small, then we have high confidence that the error in the approximation is low. The
input error is defined by

ea =
∣∣aD25

∣∣ − |atest|∣∣aD25

∣∣ , (31)

where atest is the input amplitude distribution and amax is the same amplitude distribution for the
most accurate test case computed. This provides a relative way to evaluate how many directions are
necessary in the transfer function reconstruction. The relative error in the gain is similarly defined
as

eσ =
∣∣σD25 − σtest

∣∣∣∣σD25

∣∣ . (32)

The relative error in the output is assessed by computing the two-norm of output density fields for
various truncation thresholds. This error is given by

eout =
∣∣∣∣
∣∣∣∣ρD25 − ρtest

ρD25

∣∣∣∣
∣∣∣∣
2

. (33)

For a test case, we consider an H-IO analysis of the sharp cone boundary layer at f = 60 kHz.
The relative D1 input error quantification is shown in Fig. 5(a). There is no discernible difference
in the selected optimal input distributions, even when only the leading I/O direction is retained
in the model reduction step of the H-IO analysis. Figure 5(d) shows the log of the relative error
for truncation values from Dt = 1–10, relative to the max case where Dt = 25. Retaining a single
I/O direction is sufficient to bring the relative error below a 10% threshold, whereas including ten
directions in the rank reduction is sufficient for a relative error on the order of 10−7. The error of the
leading input distribution when using Dt = 25 is expected to be even lower.

The relative gain error quantification is shown in Figs. 5(b) and 5(e). The only case for which
there is visible error in the first 100 H-IO directions is the case where only a single direction is
retained in the low-rank step, whereas the gains from the other analyses are identical. Even in the
case where a single direction is retained, the error in the leading H-IO direction is the lowest and is
on the order of 10%. Again, a log plot of the error reveals that the error in the gain is sufficiently
low when Dt = 10.

The relative D1 output error is shown in Figs. 5(c) and 5(f) in terms of the density fluctuation in
the output region as a function of the wall-normal coordinate η and the azimuthal coordinate θ . No
discernible difference is visible between the output signatures of density. For the cases where the
relative error was computed, it is given in the upper right corner of the figure. The error in each of
the cases is very low.
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FIG. 5. Low-rank truncation error are quantified for sharp cone H-IO analysis at 60 kHz in terms of (a), (d)
the input error, (b), (e) the gain error, and (c), (f) the output error. For several truncation numbers, (a) shows
good agreement between the D1 forcing distributions as a function of ψ , and (d) shows log-scale relative input
error with respect to Dt = 25. For several truncation numbers, (b) shows good agreement between the first 100
gains for Dt > 1, and (e) shows log-scale relative gain error with respect to Dt = 25. Output is shown for two
truncation numbers: (c) Dt = 1 and (f) Dt = 10. Relative density norm error between (c), (f) and Dt = 25 are
shown in (c) and (f).

To ensure that this particular test case was not abnormal, the D1 error gain as a function of
frequency for the sharp cone is shown in Fig. 6, verifying that this trend is consistent across
frequencies. The relative error for the Dt = 10 case is on the order of 10−6. All of this suggests that
using Dt = 25 is more than sufficient to ensure that the error associated with the model truncation
is negligible.

Having performed a comprehensive characterization of the possible error sources—truncation of
the Fourier series and the low-rank approximation—we conclude that the error associated with the
hierarchical input-output analysis approach is very low.

III. RESULTS

In this section we present hierarchical input-output (H-IO) analyses of three M = 5.8 flows over
sharp and blunt cones. H-IO analyses were performed at frequencies from 10 kHz to 90 kHz. The
optimal gains as functions of frequency are shown in Fig. 7 for the sharp cone and 3.6 mm and

FIG. 6. D1 gain error quantification for H-IO analysis of the sharp cone across several frequencies and
truncation values. Error is relative to case with Dt = 25.

063901-17



DAVID A. COOK AND JOSEPH W. NICHOLS

FIG. 7. D1 gain as a function of frequency from hierarchical input-output analysis of M = 5.8 flows over
sharp and blunt cones.

7.2 mm blunt-tipped cones. The gains from the sharp cone analysis contain a low-frequency peak
at 10 kHz and a high-frequency peak at 70 kHz. The gains for the blunt cones are lower than
those from the sharp cone analysis and decrease monotonically with frequency above 10 kHz. Both
of the strong peaks present in the sharp cone gains are absent from the blunt cone gains. Of the
three cones, the H-IO analysis of the 7.2 mm blunt cone has the lowest gain at 10 kHz, but then
the trend reverses, and the gains from the 7.2 mm cone analyses exceed those of the 3.6 mm
cone analysis at frequencies above 20 kHz. The largest difference in the blunt cone gains occurs
at 40 kHz. The gray rectangles in Fig. 7 highlight several cases selected for more detailed analysis.
The gains at 10 kHz and 70 kHz demonstrate an overall stabilizing effect from the addition of
nose-tip bluntness. The gains at 40 kHz cases show a stabilizing effect with the initial blunting
of the sharp cone, but show a destabilizing effect when the bluntness is increased from 3.6 mm
to 7.2 mm. Cases are selected from these frequencies in order to understand both the mechanisms
and the receptivity underlying these observations. The results are organized into five subsections.
First, in Sec. III A we present the mean flow solutions for three 1 m long, 7◦ half-angle cones, one
with a nominally sharp (RN = 0.2 mm) tip, one with a 3.6 mm tip, and one with a 7.2 mm tip.
Next, in Sec. III B we examine the modal boundary layer mechanisms predicted by linear stability
theory. We then proceed in Sec. III C to perform a verification of H-IO analysis using the sharp
cone boundary layer at 70 kHz, where the well-known Mack mode is present and then examine
the stabilizing effect of adding nose-tip bluntness. In Sec. III D we present results at 10 kHz in
order to examine the stabilizing effect of nose-tip bluntness. Section III E discusses the H-IO at
40 kHz, at which the gain reversal trend was observed. Finally, Sec. III F examines the receptivity
and instability trends across several frequencies and suboptimal directions and summarizes the
results.

A. Mean flow

The mean flow is a Mach 5.8 flow over a 1 m long, 7◦ half-angle cone. For verification we
consider a nearly sharp cone (RN = 0.2 mm), and then consider two cones with spherically blunted
tips with nose radii RN = 3.6 mm and RN = 7.2 mm. The flow conditions are given in Table II, as
well as the isothermal wall temperature. These flow conditions were initially chosen to correspond

TABLE II. Mean flow conditions.

Reu M ρ∞ T∞ Twall

2.4 × 106 m−1 5.8 0.01 [kg m−3] 56.0 [K] 300.0 [K]
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FIG. 8. Mean boundary layer profiles of (a) velocity, (b) temperature, and (c) density at several streamwise
positions as a function of wall-normal coordinate η for both flows. Shown in (d) are mean boundary layer
thicknesses based on edge enthalpy δh.

to the experiments of Rufer [21]. Subsequent modal analysis of these flows was also performed
by Robarge [22]. However, in order to strike a compromise between computational tractability
while still providing physical insights, the Reynolds number has been reduced by a factor of three.
This still provides a flow which supports significant modal instability, while keeping the overall
degrees of freedom in a tractable range for methodological development. In contrast to a sharp
cone, a blunt tip generates a curved bow shock which creates a high entropy layer near the tip.
This entropy layer persists above the boundary layer downstream of the tip before it is slowly
absorbed, or swallowed, due to radial expansion of the flow and the growth of the boundary layer.
The swallowing length—theoretically correlated with free-stream parameters and nose-tip bluntness
first by Rotta [26] and more recently by Zhou et al. [68]—is defined as the streamwise location at
which the total mass flow through the entropy layer region is equal to that of the boundary layer. The
swallowing lengths for the sharp, 3.6 mm, and 7.2 mm cones are XSW = 0.014 m, XSW = 0.67 m,
and XSW = 1.69 m, respectively. We consider the RN = 0.2 mm cone to be sharp because the
entropy-swallowing distance is vanishing with respect to the streamwise extent of the flow. The
boundary layer over the RN = 3.6 mm cone swallows the entropy layer at a position around two-
thirds of the streamwise extent of the computational domain, whereas the computational domain
for the RN = 7.2 mm cone does not contain the swallowing point. This provides an informative
comparison of the relative effect of entropy layer swallowing on the stability of the boundary
layer.

Mean boundary layer profiles of velocity, temperature, and density along with the mean boundary
layer thicknesses are shown in Fig. 8. At the earliest streamwise station (x = 0.1 m) shown in
Figs. 8(a)–8(c), the entropy layer is quite pronounced, resulting in shallower shear stresses and
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gradients. The temperature profiles at this station also show the high temperature and lower density
maintained by the entropy layer upstream of its swallowing point. By x = 0.5 m, the RN = 3.6 mm
cone almost fully matches the sharp cone boundary layer, though marginally thicker. The mean
velocity at the end of the flow domain is nearly the same for the sharp and 3.6 mm blunt cone,
but the 7.2 mm blunt cone maintains a slightly thicker boundary layer at the end of the domain.
The boundary layer thickness can be measured precisely by a total enthalpy criterion where the
boundary layer edge δh is defined as the wall-normal location where h(δh) = 0.995ht . Here h is the
enthalpy and ht = CpT̄ + 0.5(ū2 + v̄2 + w̄2) is the total enthalpy, defined by the specific heat Cp,
mean temperature T̄ , and mean velocities ū, v̄, and w̄. The boundary layer thicknesses for each of
the flows as a function of streamwise distance is shown in Fig. 8(d). Whereas the boundary layer
over 3.6 mm cone is nearly the same height as that of the sharp cone by the end of the domain, the
7.2 mm tip causes an overall thickening of the boundary layer which persists to the end of the flow
domain.

B. Modal mechanisms

Linear stability theory (LST) analyses were performed for all three boundary layers for fre-
quencies f = 0–100 kHz and for azimuthal wavenumbers m = 0–40. The least stable N-factors
were computed by integrating the growth rate of unstable boundary layer modes in the streamwise
direction, starting from the upstream neutral point in each case. Contours of N-factor amplification at
x = 1.0 m are shown in Figs. 9(a), 9(d), and 9(g) as functions of frequency and azimuthal wavenum-
ber. The sharp cone boundary layer stability, shown in Fig. 9(a), supports an unstable modal lobe
with a peak at 75 kHz, which is predominantly axisymmetric. This lobe is the well-known Mack
second-mode instability [1,20,39,69]. The less amplified lobe is oblique and is most unstable at
10 kHz and m = 17. This lobe is the oblique Mack first-mode instability. The first mode is unstable
at frequencies from 5 kHz to 35 kHz and wavenumbers from 10 to 40, reaching a maximum N-factor
around N = 2. The second mode is unstable from 60 kHz to 85 kHz and wavenumber from 0 to 30,
reaching a maximum N-factor around N = 3.5. As the nose radius is increased to 3.6 mm, both the
first-mode and second-mode lobes, shown in Fig. 9(d), are slightly stabilized. The most amplified
frequencies and wavenumbers are approximately the same as those of the sharp cone boundary
layer, but the addition of bluntness reduces the frequency bandwidth and wavenumber range of both
instabilities. The first mode is unstable in a frequency range from 5 kHz to 20 kHz up to m = 30.
The effect of nose bluntness on the second mode is similar, supporting instabilities from 60 kHz to
80 kHz up to m = 30. Like the sharp cone, the 3.6 mm blunt cone contains modal amplification up
to N = 3.5 for the second mode and N = 2 for the first mode at x = 1.0 m. The increase in nose-tip
bluntness from 3.6 mm to 7.2 mm has a much more drastic effect on the boundary layer stability,
as visible in Fig. 9(g). The most amplified frequency of the second mode at the end of the cone is
closer to 60 kHz and results in a much smaller N-factor around N = 2. The first-mode instability is
almost completely absent in the 7.2 mm cone boundary layer. Note that a maximum N-factor of 3.5
is somewhat modest. The maximum N-factor is very dependent on the Reynolds number, and we
chose the Reynolds number as a compromise between simulating significant modal effects while at
the same time keeping the grid resolution manageable as we developed alternative methods.

Contours of N-factor as a function of streamwise distance are shown in Figs. 9(b) and 9(c)
for the sharp cone, Figs. 9(e) and 9(f) for the 3.6 mm blunt cone, and Figs. 9(h) and 9(i) for the
7.2 mm blunt cone. The streamwise amplification of the second mode for the sharp cone [Fig. 9(b)]
demonstrates that the instabilities upstream are tuned to higher frequencies. This occurs because the
thinner boundary layer upstream supports the exponential amplification of trapped acoustic waves at
higher frequencies. An increase in obliquity [going from Fig. 9(b), where m = 0, to Fig. 9(c), where
m = 17] stabilizes the second mode and destabilizes the first mode. Similarly, N-factor contours
are shown in Figs. 9(e) and 9(f) for the 3.6 mm blunt cone. The neutral point for both the first and
second modes shift downstream with the addition of nose bluntness, and the frequency tuning effect
remains very similar, but the most unstable frequencies are lower for this blunt cone. The contours
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FIG. 9. LST N-factors contours for (a–c) the sharp cone, (d–f) the RN = 3.6 mm blunt cone, and (g–i)
the RN = 7.2 mm blunt cone. N-factors are shown at x = 1.0 m as functions of frequency f and azimuthal
wavenumber m in (a), (d), and (g). N-factors are shown as a functions of x and f at m = 0 in (b), (e), and (h),
and m = 17 in (c), (f), and (i). Panels (a) and (d) both contain a peak at low frequency and high wavenumber
corresponding to oblique Mack first-mode instability, and a second peak at high frequency but low wavenumber
corresponding to Mack second-mode instability. Comparing (a)–(c), (d)–(f), and (g)–(i), bluntness reduces the
N-factors associated with both modes of instability and thus should delay the onset of laminar to turbulent
transition.

for the 7.2 mm tipped cone are shown in Figs. 9(h) and 9(i). The neutral point is significantly pushed
downstream and the N-factors are much smaller than either of the other two. This is consistent with
the well-documented prediction of the transition delay phenomenon [19]. Modal analysis predicts
that an increase in nose bluntness has a monotonically stabilizing effect on the boundary layer.

C. Hierarchical input-output analyses at 70 kHz

We verify our approach by computing the global linear response in three dimensions to each
type of free-stream wave (slow acoustic, fast acoustic, entropic, and vortical) at zero incidence
angle (ψ = 0). We also compute the global linear response in three dimensions to the slow acoustic
wave at ψ = 0, ψ = 10◦, and ψ = 20◦. Instead of performing H-IO, we start by forcing a single
free-stream wave at a time. In doing so, we still solve the resolvent system in much the same way as
is done in the optional fifth step of H-IO. Note that this is different from performing a time-domain
simulation; the resolvent system is not subject to the CFL condition and its accompanying numerical
dissipation requirements. Single wave forcing is useful as a first study in order to create a clear
comparison to existing numerical studies. Figure 10(a) shows pressure contours of the global three-
dimensional response to a free-stream slow acoustic wave at 70 kHz and ψ = 0. The outermost
surface shows contours of pressure in the free stream, where the slow acoustic wave is visible.
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FIG. 10. Global linear response of the sharp cone to (a) a free-stream slow acoustic wave at f = 70 kHz
and ψ = 0, and (b) the leading input direction (D1) at f = 70 kHz. Pressure contours on the outermost surface
are shown in the free stream. Pressure contours on the inner surfaces show the boundary layer response.

The inner slices along θ = 0 and θ = 90◦ show the amplification of postshock disturbances in the
boundary layer near the end of the cone.

Comparisons between wall-normal profiles through the instability at the end of the domain (x =
1.0 m, θ = 0) and the Mack second mode eigenfunctions from the LST at f = 70 kHz are shown in
Fig. 11(a), verifying that the instability is the axisymmetric Mack second mode. The agreement of
the velocity, pressure, and temperature profiles between the LST and the globally forced response
is nearly perfect.

Previous studies of the receptivity of sharp cone boundary layers to zero incidence waves have
concluded that the Mack second mode is most receptive to slow acoustic waves [42,43]. Vortical
waves also activate the mode, although less efficiently. Figure 11(b) shows the streamwise growth

FIG. 11. (a) Wall-normal profiles of fluctuating (i) velocity, (ii) pressure, and (iii) temperature at x = 1.0 m
and θ = 0 for the sharp cone boundary layer. The profiles from the forced response (solid lines) are compared
to LST eigenfunctions (dash-dotted lines) corresponding to axisymmetric Mack second mode instability. Wall-
parallel profiles along the sharp cone of Chu energy amplitude in response to (b) five different types of free-
stream waves at ψ = 0 angle of incidence, (c) slow acoustic waves at three different incidence angles, and
(d) H-IO D1 forcing. In panels (b)–(d), the wall profiles are plotted with fitted A0eN functions corresponding to
LST N-factors.
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of the Chu energy amplitude at the wall in response to free-stream forcing of each of the five
wave types. The slow acoustic wave (a−) produces the strongest response, followed by the vortical
waves (auv and aw), and lastly the fast acoustic (a+) and entropic (as) waves. The two different
types of vortical waves produce identical responses, but the azimuthal locations of the maximum
growth are 90◦ out of phase with each other due to the orthogonality of the vortical wave vectors to
each other. The fast acoustic wave produces an initial amplification of a fast boundary layer mode
upstream of x = 0.3 m, but is not able to activate the Mack mode downstream at this frequency.
These results agree well with previous receptivity studies which show that slow acoustic waves
produce the strongest response, because of their resonance with the Mack mode [41]. This study
also showed that the fast acoustic wave initially excites an upstream boundary layer mode, which
is then damped prior to a delayed onset of the Mack second mode. At this Reynolds number,
we have insufficient streamwise extent of the domain to capture this effect. The vortical/entropic
wave successfully activate the modal growth, but produce lower amplitudes than the slow acoustic
wave. The receptivity of the slow acoustic wave is the highest with Ca = 5.54, which is over six
times higher than that of the vortical waves and 30 times higher than for entropy waves. This is
similar to results for acoustic forcing over sharp cones in which the receptivity to slow waves is
higher for flows with adiabatic wall conditions. Although the mean flow was computed using an
isothermal wall, it is very near the adiabatic wall temperature for the mean flow conditions, and so
the receptivity coefficients do agree well with what has been previously observed [43].

The effect of incidence angle on boundary layer receptivity has also been studied, which showed
higher receptivity on the leeward side of the wave incidence than on the windward side [42,43,70].
Figure 11(c) shows the wall energy amplitude in response to a forced slow acoustic wave at three
incidence angles, showing higher amplification on the leeward side (with respect to the wave
incidence) than on the windward side for waves with nonzero incidence, which agrees with previous
studies. The highest receptivity occurs at ψ = 10◦ with a receptivity coefficient of Ca = 6.75. This
confirms that the local receptivity on one side of the cone is higher for waves at nonzero incidence
angles. Furthermore, it identifies ψ = 10◦ as the optimal angle for slow acoustic receptivity.

With some understanding of the receptivity mechanisms, we now demonstrate the ability of the
H-IO analysis to accurately predict the global receptivity to free-stream waves. The gains from
an H-IO analysis at f = 70 kHz are shown in Fig. 12(a). We term the leading I/O direction (the
direction with the highest gain) D1, the second direction D2, and so on. The gain associated with D1

is around 760. The magnitude of the gains trail off very rapidly, and by D100, the gain drops below
1, indicating that directions past this threshold do not produce amplified physical responses in the
output region. The amplitude distribution and its physical realization in the free stream for D1 are
shown in Figs. 12(b) and 12(c). Two distributions are visible, the first and largest of which contains
slow acoustic waves with a peak amplitude occurring at ψ = 10◦. The second smaller peak occurs
around ψ = 45◦ and is of the first type of vortical waves, which corresponds to fluctuations in u and
v velocity.

This agrees very well with the predictions from computing the response to direct forcing. The
boundary layer is receptive first to slow acoustic waves, followed by vortical waves. Fast acoustic
and entropy waves are not selected for D1, but occur in suboptimal forcing directions. Furthermore,
the optimal angle for slow acoustic waves in the free stream is a distribution of waves from
ψ = 0–45◦ with a peak at ψ = 10◦, which is exactly the worst case angle observed in the single
wave forcing results. This verifies that I/O analysis is capturing relevant and understood receptivity
mechanisms: this boundary layer is most receptive to slow acoustic waves at angle of incidence
ψ = 10◦.

The direct response corresponding the D1 is shown in Fig. 10(b). The outermost surface shows
contours of free-stream pressure corresponding the physical realization of the D1 input distribution.
The slices downstream show the activation and growth of the Mack second mode instability. Profiles
of Chu energy along the cone surface as a function of streamwise distance are shown in Fig. 11(d),
along with a fitted N-factor from the LST. Profiles are taken along the top and bottom of the cone
at θ = 0 and θ = 180◦. The response to the optimal forcing is larger along the top of the cone
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FIG. 12. H-IO results at 70 kHz for (a)–(c) the sharp cone, (d)–(f) the 3.6 mm blunt cone, and (g)–(i) the
7.2 mm blunt cone. Shown are (a), (d), (e) gains vs I/O direction, (b), (e), (h) D1 input directions, and (c), (f),
(i) physical realizations of the optimal forcing in the free stream.

(the leeward side), reaching a maximum amplitude triple that of the profile along the bottom (the
windward side). Receptivity coefficients for the D1 forcing are Ca = 4.96 on the leeward side and
C1 = 1.65 on the windward side. These coefficients are similar, but smaller than those from the
single wave forcing case. This is due to the localized nature of the D1 forcing packet in the free
stream. While the peak forcing amplitude of the D1 free-stream wave packet produces a lower peak
neutral point amplitude than the single slow acoustic wave, it is a much more efficient means by
which to generate a similar downstream response. The overall receptivity process predicted by the
H-IO follows the known trends for sharp cone boundary layers [42,43]. First, slow acoustic waves
impinge on the shock and transmit through it, amplifying as they do so. Because the attached shock
is in the close vicinity of the boundary layer, the slow acoustic mode is directly activated upstream
and persists in the boundary layer until it reaches the upstream neutral point and becomes the Mack
second-mode instability.

We now consider H-IO analyses at the same frequency but for the two cones with blunted tips.
The first 100 gains from an H-IO analysis of the RN = 3.6 mm blunt cone at 70 kHz are shown in
Fig. 12(d). Overall, the gains are much lower than those for the sharp cone by more than a factor
of ten, indicating far less energy amplification between the free stream and boundary layer. The
maximum gain reaches only around 30 and trails off below to less than one by D60. Similarly, the
first 100 gains for the RN = 7.2 mm blunt cone are shown in 12(g). The leading gain is slightly
higher than the other blunt cone, but only marginally so. Overall, the addition of nose bluntness
reduces the global gain. The D1 input distributions are shown in Figs. 12(e) and 12(h) for each
blunt cone, along with their physical realizations in the free stream in Figs. 12(f) and 12(i). Each
of the leading direction wave distributions comprises two peaks. For the 3.6 mm blunt cone, the
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FIG. 13. Global response of (a) the RN = 3.6 mm blunt cone and (b) the RN = 7.2 mm blunt cone to the D1

forcing direction at 70 kHz. Contours on the outermost surface are in the free stream, while density isosurfaces
show the downstream response. Reference contours of local shock obliqueness (solid lines) and incidence
angles (dashed lines) are included.

first wave type is a u-v-vorticity distribution with a peak around ψ = 20◦. A smaller distribution of
entropy waves is also present at the same incidence angle but with a much smaller amplitude. The
7.2 mm blunt cone contains the same two wave types in the same relative proportions. The vortical
distribution, however, is much more broadband, including incidence angles of up to ψ = 60◦. The
physical realizations for both blunt cones are very similar to each other, including a thin band of
waves down each side of the bow shock, which wraps around and impinges on the shock directly
above the origin of the entropy layer. In contrast to the sharp cone boundary at 70 kHz, the blunt
cone boundary layer is most receptive to vortical waves and entropic waves, instead of slow acoustic
waves. The global responses of the blunt cones to the D1 forcing directions are shown in Fig. 13.
Contours of y-velocity fluctuations are shown in the free stream to show the spatial realization of
the u-v-vorticity wave. The wave selected is clustered around the top of the shock near the cone tip,
but also extends in the streamwise direction down either side of the shock in two thin bands. The
cutaway portion of the shock shows the growth of temperature fluctuations downstream. Azimuthal
lines on the exterior of the shock location show contours of the mean shock obliqueness angle
(θobl ) with respect to the free-stream mean flow direction. The dashed lines show contours of wave
incidence angle (θi) with respect to the shock obliqueness angle, computed from measuring the
angle between peak free-stream wave vector [e.g., given by peak ψ from Figs. 12(e) and 12(h)]
and the local shock obliqueness angle. This allows us to map the peak spatial location of the D1

forcing onto predictions from shock theory. Acoustic generation from incident vorticity waves is
shown in Fig. 14 as predicted by shock-disturbance theory [53]. Incident vorticity waves impinge
on the shock with shock-relative incidence angle θi and produce acoustic waves in three distinct
regions. These regions correspond to whether the produced acoustic wave is fast, slow, or damped
(with respect to the shock normal direction) [71]. The arrows on Fig. 14 show where on this plot the
peak D1 forcing occurs. The direction of the arrows indicates moving from upstream to downstream
along the shock, following the position of the peak D1 forcing. The base of the arrow corresponds
to the farthest upstream portion of the forcing wave, and the arrowhead follows the thin band of the
forcing downstream. The peak of the forcing coincides with the production of a damped wave and
a weakly generated fast acoustic wave. However, this incidence configuration is also the incidence
for which transmitted vorticity is the highest [71], so the optimal forcing selects the vortical wave
for which the maximum amount of vorticity is transmitted along with weak production of a fast
acoustic wave. Near the tip of the cone, contours spatially amplifying normal velocity, temperature,
and pressure fluctuations are shown in Fig. 15 for both cones, along with a dashed line denoting
the edge of the boundary layer. Contours are shown on a rotated grid such that the coordinate
system is streamwise (ξ ) and wall-normal (η) instead of x and y. Also shown are two streamlines
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FIG. 14. Theoretical acoustic generation from vortical waves impinging on oblique shock waves as a
function of obliqueness angle (θobl ) and incidence angle (θi).

placed at the top and bottom edge of the injected velocity packet, downstream of the normal shock.
In Fig. 15(a) the structure of the injected vorticity over the 3.6 mm cone is tilted upstream at an
angle near the incidence angle of the preshock forcing wave. Because entropy and vorticity convect
with the mean flow, the structure of the instability follows the inviscid entropy layer streamlines.
Because the entropy layer is rotational, the injected disturbances rotate as they convent downstream,
and the energy amplifies algebraically. This mechanism is related to the Orr mechanism, but it
is inviscid, not viscous [32,33]. As the streamlines move downstream, they also converge, even
when the radial expansion of the flow is taken into account. This convergence corresponds to a
flow deceleration, which further amplifies the rotating structures, compressing them into the top
of the boundary layer. This process also amplifies the temperature fluctuations in a thin layer just
outside the edge of the boundary layer, visible in Fig. 15(c). As noted earlier, the injection point of
the vorticity wave theoretically produces a damped acoustic wave postshock, and this is precisely
what is observed in Fig. 15(e). Strong pressure fluctuations are visible where the preshock waves
impinge, but the frequency is high enough and the distance between the wall and the shock is large
enough that these acoustic waves are lensed away from the boundary layer on the underside of the

FIG. 15. Contours of spatially amplifying (a), (b) velocity, (c), (d) temperature, and (e), (f) pressure for the
(a), (c), (e) RN = 3.6 mm blunt cone and (b), (d), (f) RN = 7.2 mm blunt cone at 70 kHz. The solid streamlines
are extracted at the boundaries of the injected velocity packet, and the dashed lines show the boundary layer
edge.
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FIG. 16. Streamwise energy amplification envelope of the entropy layer instability taken along several
entropy layer streamlines for (a) the RN = 3.6 mm blunt cone and (b) the RN = 7.2 mm blunt cone at
70 kHz. Also shown are streamline heights above the wall (δstr) and the boundary layer edge height (δbl )
as a visualization of where the entropy layer interacts with the boundary layer.

shock. There are also some pressure fluctuations visible inside the boundary layer, starting near
x = 0.2 m. This is not related to the acoustic wave trapped beneath the shock, but arises directly
from the entropy layer instability itself. Streamwise development of the entropy layer instabilities
along with the wall energy signature is shown in Fig. 16 for both blunt cones. Because the entropy
layer instability is due to the entropy and vorticity wave type, the amplification envelope can be
easily captured by extracting several streamlines and plotting the Chu energy amplitudes along
these streamlines. Together, these streamlines form an envelope of maximum amplification across
the streamwise extent of the flow. Depending on the size of the entropy layer and the Reynolds
number, some of the streamlines are swallowed by the entropy layer. Also shown in Fig. 16 are the
height of the streamlines above the wall (δstr) and the boundary layer height (δbl ). For the 3.6 mm
blunt cone, the entropy layer growth experiences a strong initial rise before it more gently plateaus.
This initial rise is due to the combined effects of the rotation of the flow and the deceleration of
the flow. Around x = 0.5 m, some of the streamlines begin to be swallowed by the boundary layer,
causing the rapid decay of energy as each streamline intersects the boundary layer edge.

One feature visible in Fig. 16(a) is the slow growth of wall energy in response to the entropy layer
instability. Note that the shock curvature and distance from the wall prevent the direct injection of
acoustic energy into the boundary layer, as shown in Fig. 15(e); the downstream pressure is only
present in the near shock region immediately downstream of the tip, and is not directly stimulating
a boundary layer mode upstream. It is curious, then, that the wall energy is growing significantly
upstream of the neutral point where both the F and S discrete modes are stable, and where they
are not directly destabilized by the shock. Slices through the boundary layer and entropy layer
profiles at x = 0.5 m shown in Fig. 17 shed some light on the underlying physical mechanisms.
Within the boundary layer, the profiles agree very well with the discrete F mode from the LST,
while outside of the boundary layer, the profiles deviate due to the strong entropy layer signature.
The amplification of energy at the wall seems to be due to F mode destabilization by the entropy
layer itself. In Fig. 16(a) a significant effect occurs at x = 0.7 m, leading to a large dip and
subsequent growth of the wall energy. This particular flow contains the overlapping of several key
phenomena at a single point. First, the upstream neutral point at this frequency is around 0.6 m,
while the theoretical entropy swallowing point is around 0.67 m. At this streamwise position, the
swallowing of the entropy layer plays a key role in the stimulation of the Mack second mode.
The swallowing process is visible at the end of the flow domain and is shown in Fig. 18(a) for
the 3.6 mm blunt cone via contours of fluctuating temperature. As the entropy layer undergoes
the swallowing process, the disturbances penetrate into the boundary layer edge and decelerate
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FIG. 17. Profiles of absolute value of fluctuating velocity from the direct response to the D1 forcing for
the (a) RN = 3.6 mm blunt cone at and (b) the RN = 7.2 mm blunt cone. Profiles are shown along with the F
modes from the LST at the same streamwise positions at m = 0.

quickly, stimulating and activating the beginning of the Mack second mode. This particular effect
has been known to occur in some cases. The entropy layer can stimulate fast acoustic growth, which
damps and then directly enters the boundary layer, activating the Mack mode farther downstream
[72]. The RN = 7.2 mm cone shares an initial upstream receptivity process with the RN = 3.6 mm
cone. The free-stream optimal wave packet is positioned in the same spatial region with the same
dominant effect—maximization of transmitted vorticity through the shock. The comparison with
shock theory in Fig. 14 shows the peak of the spatial distribution to align very similarly to the
previous blunt case. The initial phase of the downstream receptivity process also closely mirrors
the previous case. Contours of spatially amplifying normal velocity, temperature, and pressure
fluctuations for the RN = 7.2 mm blunt cone are shown in Figs. 15(b), 15(d), and 15(f). Upstream
tilted fluctuating velocity structures tilt and compress as they decelerate downstream, causing
amplification in the velocity and temperature signatures in the entropy layer. The pressure contours
also show a pressure-capturing effect. As observed earlier, the generated acoustic wave is lensed
away from the boundary layer and does not immediately inject energy into the boundary layer. The
spatial growth of the entropy layer envelope streamlines is shown in Fig. 16(b) for the RN = 7.2 mm
cone. It shares several key features with the 3.6 mm blunt cone. First, the entropy layer grows via the
rotation and deceleration mechanism. Furthermore, the deceleration of the entropy layer destabilizes
the discrete F mode and causes significant growth in the wall energy amplitude. The growth of the

FIG. 18. Contours of fluctuating temperature near the end of the domain for the (a) RN = 3.6 mm blunt
cone and (b) RN = 7.2 mm blunt cone. The entropy layer in (a) undergoes swallowing, whereas no swallowing
occurs in (b).
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FIG. 19. H-IO results at 10 kHz for (a)–(c) the sharp cone and (d)–(f) the 3.6 mm blunt cone. Shown are
(a), (d) gains vs I/O direction, (b), (e) D1 input directions, and (c), (f) physical realizations of the optimal
forcing in the free stream.

F mode, confirmed by its presence in the boundary layer in Fig. 17, is stronger upstream for two
reasons. First, the merging of the F mode with the continuous spectra occurs further upstream. The
second reason for the stronger boundary layer response is that the larger nose bluntness causes
a more aggressive deceleration, so the amount of acoustic energy generated by the entropy layer
instability is higher. There are also several key differences between the two blunt cones. First, the
RN = 3.6 mm cone entropy layer shows a strong amplification upstream of x = 0.2 m, which then
slows before reaching a maximum amplitude around ten times that of the initial injected energy.
The growth of the high frequency entropy layer instability for the RN = 7.2 mm cone is initially
slower, but reaches a slightly higher maximum amplitude around the same streamwise position.
Another key difference between to two boundary layers is the absence of any modal activation in
the 7.2 mm cone boundary layer. This is due not only to the fact that the S mode is significantly
more damped, but also to the fact that the entropy layer is not swallowed at the end of the domain.
This is apparent in Fig. 18(b), in which the entropy layer instability is clearly above the entropy
layer with no boundary layer instabilities visible. The overall receptivity process for blunt cones
at high frequency activates a combined nonmodal and modal interaction downstream. The optimal
receptivity begins when vorticity waves at shallow incidence angles around ψ = 20◦ impinge on
the shock. Then they transmit and amplify, injecting vorticity downstream. This injected vorticity
has an upstream tilted spatial structure, which amplifies via a combined rotation and deceleration
mechanism, as the inviscid rotational streamlines converge downstream above the boundary layer.
The deceleration produces fast acoustics, which destabilize a discrete F mode, upstream of its
merging with the vortical and entropic continuous branch. In the absence of entropy swallowing,
as in the 7.2 mm blunt cone, the entropy layer instability simply convects downstream, above the
boundary layer, slowly fading due to continued rotation and its interaction with the boundary layer.
When entropy swallowing is present, as in the 3.6 mm blunt cone, the disturbances can enter the
boundary layer and activate the modal growth if any unstable boundary layer modes exist.

D. Hierarchical input-output analyses at 10 kHz

The first 100 gains from an H-IO analysis of the sharp cone boundary layer are shown in
Fig. 19(a). The largest gain is around 800, with a sharp trail-off leading to a gain below 100 after D5.
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FIG. 20. Schematic showing the dependence of fluctuating velocity on incidence angle for different types
of vortical waves. Velocities un and ut comprise the first type of vortical wave, while up comprises the second
type of vortical wave.

By D100, the gain is below unity, indicating that 100 directions are sufficient to capture amplifying
flow features between the free stream and the boundary layer. Modal analysis predicts stronger
amplification from the Mack second mode than from the Mack first mode (see Fig. 9). The leading
gain from the H-IO, however, is actually slightly higher than that of the sharp cone at high frequency,
which would not be expected from the modal analysis alone. The leading input direction wave
distribution is shown in Fig. 19(b), containing a very dominant peak at ψ = 88◦ of the w-vorticity
wave type. None of the other wave distributions are present in large magnitudes in the D1 input
distribution. These highly oblique waves create a very thin wave packet, clustered near the x-z plane
and across the sharp shock tip, as shown in Fig. 19(c). Because the input distributions only select
for wave angles in the x-y plane, the w-vorticity fluctuations are unique in that the resultant velocity
fluctuation amplitude is constant with respect to ψ . Unlike its effect on u-v-vorticity waves, the
effect of ψ on w-vorticity is only to determine the spatial structure and placement of the free-stream
wave packet, but does not not influence a relative amplitude of the w-velocity fluctuation. The
effect of ψ on both types of vorticity waves is illustrated in Fig. 20, where the shock depicted is
aligned with the z-y plane. The velocity components are denoted with respect to the shock coordinate
system for generality, where un is fluctuating velocity normal to the shock, and ut and up are the
two fluctuating velocity components tangent to the shock. The un and ut components of velocity
comprise the first type of vortical wave. At θi = 0, the velocity fluctuations are parallel to the shock.
As θi is increased to 90◦, the velocity fluctuations rotate such that the velocity fluctuation is in the
normal direction only. Notice that the up velocity fluctuation, which corresponds to the second type
of vortical wave, the w-vortical wave, is independent of θi. Thus, we must map w-vorticity onto the
shock theory by thinking of it in terms of the fluctuating velocities instead of a vortical wave with a
dependence on ψ .

Because the cone is sharp, the oblique shock angle is a constant function of the Mach number and
the cone half angle; the oblique shock angle is around 12.5◦. We can map the physical realization of
the D1 forcing by taking the angle between the fluctuating velocity component and the oblique shock
angle. From the x-z plane moving upward in the y direction, the peak of the forcing wave packet
occurs at θ = ±75◦–90◦ and corresponds to a incidence angle of θi = 62.5◦–77.5◦ in the shock
theory formulation. A comparison with the theoretical curve shown in Fig. 14 places this wave
near the critical incidence angle for acoustic generation. This range of angles also extends into the
damped wave regime, where there is a maximum point in the theoretical vorticity generation. Thus,
the selection of the w-vorticity at this location maximizes both transmitted vorticity and acoustic
waves at an angle very oblique to the free-stream mean flow direction.
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FIG. 21. Isosurfaces of (a), (c) pressure and (b), (d) w velocity generated by incident D1 vortical waves in
the near-tip region of the (a), (b) sharp cone and (c), (d) 3.6 mm blunt cone at 10 kHz.

Figures 21(a) and 21(b) show isosurfaces of perturbation pressure and velocity in the near-tip
region of the flow over the sharp cone. The free-stream wave packet impinges on the shock and
generates strong pressure waves in the sharp tip region postshock. These waves enter the boundary
layer in the vicinity of the sharp tip. The vorticity wave also transmits through the shock and
amplifies into highly oblique structures in the near-tip region, visualized by the velocity isosurfaces.
These lobes of injected velocity extend from the shock to the wall but are also visible on the top
of the cone in the boundary layer. The maximum amplification of the wall pressure occurs in very
localized azimuthal positions. Figure 22(a) shows the absolute value of wall pressure as a function
of the azimuth for several streamwise positions. The peak amplitude occurs around θ = 60◦. A
slice through the boundary layer instability at θ = 60◦ and x = 1.0 m confirms that the growing
instability is the Mack first mode. Wall-normal profiles of fluctuating velocity are shown in
Fig. 22(c), and the agreement between the profiles and the Mack first-mode shapes is excellent.
Profiles of fluctuating wall pressure and absolute value of the Chu energy amplitude are shown in
Figs. 23(a) and 23(c), respectively. Each of the profiles show a best fit with corresponding amplifi-
cation curves from an LST at several oblique wavenumbers at a frequency of 10 kHz. Because the
dominant instability is modal in nature, the wall energy profiles may be used to estimate the initial
amplitude using a best fit. In turn, this may be used to compute the receptivity coefficients. The
receptivity coefficient for the sharp cone at 10 kHz is Ca = 346, which is two orders of magnitude
higher than the Mack second-mode receptivity for the sharp cone at 70 kHz. This is largely due
to the strong spatial transient growth, which occurs upstream of the predicted neutral point of the
first mode. We now turn to an I/O analysis of the 3.6 mm blunt cone at the same low frequency.
The gains from the H-IO analysis of the blunt cone at 10 kHz is shown in Fig. 19(d) alongside the
gain from the sharp cone at 10 kHz. The largest gain is around 320 with a decay that approaches
one as the number of directions approaches 100. Approximately 20 directions capture 90% of the
amplified physical mechanisms in the flow. The second leading direction has a gain less than half
that of the first. This gain is around three times smaller than the sharp cone at 10 kHz. The input
forcing distribution for D1 is shown in Fig. 19(e), along with its physical realization in Fig. 19(f).
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FIG. 22. Absolute value of fluctuating wall pressure as a function of the azimuth for several streamwise
positions as a result of D1 forcing of the (a) sharp cone and (b) 3.6 mm blunt cone at 10 kHz. The disturbances
enter the boundary layer upstream and amplify along the θ = 60◦ azimuth. Profiles at x = 1.0 m and θ = 60◦

of the absolute value of fluctuating velocity for (c) the sharp cone and (d) the RN = 3.6 mm cone. Profiles are
shown along with the Mack first mode at the same streamwise position at m = 18.

The leading input distribution contains purely a w-vortical wave with a very strong, narrow peak
around ψ = 88◦ in the same manner as the sharp cone. The strong peak at a high angle causes a thin
band of highly angled waves clustered near the x-z plane and the cone tip. The contours in Fig. 21(c)
show strong streamwise growth of pressure disturbances in the boundary layer. Figure 21(d) also
shows the strong transmission of vorticity through the shock from the incident wave in a similar
manner as before. The streamwise growth of the pressure disturbance at the wall is plotted for
several azimuthal locations in Fig. 23(b), showing the exponential amplification of pressure along
the wall. Additionally, the streamwise growth of the Chu energy amplitude at the wall is shown
in Fig. 23(d). Amplification reaches its maximum at an azimuthal position of around θ ≈ 60◦,
which can be seen by plotting the pressure amplitude at the wall as a function of the azimuth
for several streamwise positions. These profiles are shown in Fig. 22(b). There is an injection of
pressure into the boundary layer upstream at shallower angles, which then amplifies and spreads
along the θ = 60◦ azimuth, in the same manner as the sharp cone. Extracting a slice through
the disturbance at x = 1.0 m and θ = 64◦ and comparing to the corresponding eigenfunctions from
the LST clearly indicates that the amplifying mechanism is the oblique first-mode instability, as
in the sharp cone boundary layer. This comparison is made in Fig. 22(d) for the 3.6 mm cone.
Because the mechanism is modal, we can use the receptivity coefficients to quantify the connection
between the free-stream forcing and upstream neutral point. The receptivity coefficient for the D1

forcing is 285, which is slightly less than that of the sharp cone. In a similar manner to the sharp
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FIG. 23. Spatial amplification of (a), (b) pressure and (c), (d) Chu energy amplitude at the wall at several
azimuthal positions. Profiles are shown for (a), (c) the sharp cone and (b), (d) the 3.6 mm blunt cone along
with the best fit with the LST N-factor at appropriate wavenumbers. Significant amplification occurs upstream
of the first-mode neutral point.

cone, we can use the contours of mean shock obliqueness and relative incidence to map the peak
forcing wave packet onto the theoretical interaction between a vorticity wave with the shock. In this
case, however, the bow shock has a variable obliqueness angle with respect to the free stream, so
we take the local obliqueness angle as our reference for the vorticity wave incidence angle. The
long dashed line in Fig. 14 shows a line through the peak forcing packet, where the direction of
the arrow indicates moving from upstream to downstream. At the very tip of the shock, the mean
shock angle is nearly normal and the incidence angle of vorticity is nearly zero. Farther downstream
along the shock, the band cuts through the fast acoustic transmission lobe and terminates in the
transmission of a damped wave. The shock also transmits much of this vorticity. Thus, the shock
takes this thin band of vortical waves, transmits and amplifies it, as well as generating fast acoustic
waves and a strong damped wave in the near tip region. All of these are nonmodal effects, which
occur upstream of the neutral point of the Mack first mode. In summary, at 10 kHz, the sharp and
3.6 mm blunt cones are most receptive to w-vorticity in a thin, highly oblique band along the shock
in a manner similar to the sharp cone. This band efficiently transmits oblique vorticity and creates
an oblique acoustic wave which nonmodally amplifies upstream and stimulates the Mack first-mode
instability. The first mode then grows according to the modal theory, and is slightly stabilized with
the addition of small nose-tip bluntness. The receptivity coefficients for the sharp and blunt cases
are 346 and 285, respectively. The modal growth of the 3.6 mm blunt cone boundary layer is also
weaker that that of the sharp cone. These two factors are the reason for the reduction in gain from
the sharp to the blunt case. The blunt cone boundary layer is less receptive and experiences less
first-mode growth. While low-frequency receptivity of the sharp cone and the 3.6 mm blunt cone
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FIG. 24. H-IO results at 40 kHz for (a)–(c) the 3.6 mm blunt cone and (d)–(f) the 3.6 mm blunt cone.
Shown are (a), (d) gains vs I/O direction, (b), (e) D1 input directions, and (c), (f) physical realizations of the
optimal forcing in the free stream.

are similar, increasing the bluntness even further leads to a completely different mechanism, as we
will see in the next section.

E. Hierarchical input-output analyses at 40 kHz

We now examine the H-IO analysis of both blunt cones at 40 kHz, based on the observed trend
in Fig. 7. At this frequency, increasing the nose bluntness slightly leads to a decrease in gain, while
increasing the nose bluntness further leads to an increase in gain. We consider the two blunt cones
together in this section, since they share a physical mechanism and receptivity process.

The gains from the first 100 H-IO directions are shown in Fig. 24(a) for the RN = 3.6 mm
cone. The D1 gain is around 50, with a trail off that approaches unity as the number of directions
approaches 100. This is approximately one-third as high as the sharp cone at the same frequency.
The gains from an H-IO analysis of the RN = 7.2 mm cone is shown in Fig. 24(d), and the
largest gain is twice that of the RN = 3.6 mm cone. The trail-off behavior of the gains from the
RN = 7.2 mm cone analysis is similar to that of the RN = 3.6 mm cone analysis, with the gain
approaching unity as the number of directions approaches 100.

The D1 input distribution for the 3.6 mm blunt cone is shown in Fig. 24(b), next to its physical
realization in the free stream in Fig. 24(c). The dominant wave distribution is of the u-v-vorticity
type in a range of incidence angles up to ψ = 50◦ with a peak just below ψ = 20◦. A smaller
distribution of entropy waves is also present with the same peak angle. The other wave types are
not present in significant amounts in the D1 distribution. The physical realization of this forcing
distribution is a band of waves extending down either side of the shock with a peak y-location
around 0.25 m. This band of fluctuating vorticity also impinges on the top of the shock in the
strongly curved region just above the entropy layer.

The D1 input distribution for the 7.2 mm blunt cone is shown in Fig. 24(e). The input distribution
contains the same wave types as the previous case—u-v-vorticity waves first, with a secondary
entropy wave distribution. While there is still a peak around ψ = 20◦, the D1 distribution for the
7.2 mm cone is more broadband and includes waves up to an incidence of ψ = 70◦. The free-stream
physical realization of the forcing distribution is shown in Fig. 24(f), which contains a band of waves
in nearly the same position as the 3.6 mm blunt cone.
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FIG. 25. Global response of (a) the 3.6 mm blunt cone and (b) the 7.2 mm blunt cone to D1 forcing
directions at 40 kHz. Contours on the outermost surface are in the free stream, while temperature isosurfaces
show the downstream response.

The forcing wave-packet in three dimensions is shown in Fig. 25(a) for the 3.6 mm cone, along
with the response of the entropy layer downstream. The contours of fluctuating y-velocity on the
outermost surface are in the preshock region, and the response of the entropy layer is visualized
by downstream isosurfaces of fluctuating temperature. The free-stream waves impinge on the top
of the shock above the entropy layer, injecting vorticity and entropy into the downstream flow. The
entropy layer only weakly amplifies disturbances injected at this frequency. Figure 25(b) shows
similar contours for the 7.2 mm cone. Whereas the free-stream forcing appears very similar to the
previous cone, the entropy layer supports much stronger growth of the entropy layer instability, and
the temperature isosurfaces show strong streamwise amplification. The contour levels between the
two plots in Fig. 25 are identical for a direct visual comparison between the two cases.

The streamwise growth of the Chu energy amplitude extracted from several entropy layer
streamlines is shown in Fig. 26(a) for the 3.6 mm cone. Energy profiles along these streamlines show
the maximum amplification envelope of the entropy layer instability. The height of the streamlines
above the wall is shown via dashed lines corresponding to the axis labels on the right side of
the figure. These streamlines originate in the curved portion of the shock. The thick dashed line
below the streamlines shows the edge of the boundary layer. Upstream, the boundary layer is

FIG. 26. Streamwise growth of the Chu energy amplitude in the entropy layer for blunt cones with (a) RN =
3.6 mm and (b) RN = 7.2 mm. Also shown are streamline heights above the wall (δstr) and the boundary layer
edge height (δbl ) as a visualization of where the entropy layer is interacting with the boundary layer.
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FIG. 27. Contours of spatially amplifying (a), (b) velocity, (c), (d) temperature, and (e), (f) pressure for the
(a), (c), (e) RN = 3.6 mm blunt cone and (b), (d), (f) RN = 7.2 mm blunt cone at 40 kHz. The solid streamlines
are extracted at the boundaries of the injected velocity packet, and the dashed lines show the boundary layer
edge.

very thin, but as it grows, it begins to swallow some of the entropy layer streamlines, causing a
rapid decay in the energy along those streamlines. The same quantities for the 7.2 mm cone are
shown alongside the previous case in Fig. 26(b). The entropy layer instability grows much more
quickly, reaching a peak around x = 0.6 m. The Chu energy amplitude of this peak is 15 times
larger than the peak amplitude of the free-stream forcing packet outside of the shock. Remember
that at 70 kHz, the entropy layer instability destabilized an F mode upstream of its synchronization
with the continuous branch. This effect is notably absent here. This is primarily because, at this
low frequency, there is not a discrete F mode which the entropy layer can destabilize. Instead of
boundary layer activation, the presence of a more large-scale beating pattern is visible. Much longer
wavelength oscillations are visible in the wall pressure profiles, and the entire streamwise extent of
the domain contains several wavelengths of this oscillation pattern. This oscillation pattern is the
result of the injection of acoustic disturbances into the boundary layer from the free-stream wave
packet impinging on the shock. Two-dimensional contours of velocity and temperature are shown
in Figs. 27(a) and 27(c) for the 3.6 mm cone. The domain is shown in rotated ξ -η coordinates for
visualization purposes. Also shown are the two streamlines which bound the injected wave packet.
The forcing distribution injects vorticity and entropy into the entropy layer above the entropy layer,
which is most clearly visible in terms of y-velocity fluctuations in Fig. 27(a). The region of the
entropy layer bounded by the edge streamlines produces the highest amplification as injected energy
is compressed and amplified downstream. The contours of pressure in Fig. 27(e) show that, while
the dominant acoustics injected into the downstream flow are damped, the frequency is low enough
and the wavelength is long enough that the damped wave reaches the boundary layer and activates
an acoustic disturbance. This acoustic disturbance is initially reinforced by internal reflection from
the underside of the shock, then travels downstream in the boundary layer. The beating phenomenon
is due to the difference in the fast and slow acoustic wavelengths as the pressure signature moves
through the boundary layer downstream.

The two-dimensional slices through the fluctuating velocity and temperature fields for the 7.2 mm
cone in Figs. 27(b) and 27(d) tell a story similar to that of the 3.6 mm cone. The disturbances are
injected above the entropy layer generation region and then amplify inside the entropy layer region,
closely following the bounds of the streamlines. In this case, even though the shock to wall distance
is greater, due to the increased shock standoff distance, the acoustic waves still reach the boundary
layer, which leads to a similar beating effect.
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FIG. 28. D1 and D2 forcing directions at frequencies from 10–90 kHz from H-IO analysis of the (a) sharp,
(b) 3.6 mm blunt, and (c) 7.2 mm blunt cones. Dot-dashed lines are the D2 forcing directions and solid lines
are the D1 forcing direction. Arrows denote increasing frequency.

It appears that the nature of the entropy layer mechanism is twofold [12]. First, the flow of the
entropy layer is inviscid but rotational, which leads to a vorticity and entropy tilting effect, which in
turn amplifies upstream tilted structures as they convect with the mean flow downstream. Second,
the convergence of the streamlines in the supersonic entropy layer region leads to flow deceleration,
further amplifying the disturbances through streamwise compression. The presence of the blunt tip
is the dominant effect creating the shock curvature and the rotational effect, whereas the angle of the
cone frustum is thought to contribute to the compression and deceleration part of the mechanism.

The overall receptivity process for these two blunt cones begins with free-stream vorticity waves
with a peak around ψ = 20◦, which is optimal for the maximum transmission of vorticity through
the shock. This injected vorticity is amplified above the boundary layer by rotation and deceleration
of the mean velocity. The entropy layer for the 7.2 mm cone leads to a roughly twofold increase
in maximum entropy layer instability amplitude. In contrast to the high-frequency cases, where the
entropy layer instability interacts with a discrete boundary layer mode, this discrete mode is not
destabilized at this low frequency. Instead, a weakly decaying acoustic beating pattern is observed
in the boundary layer.

F. Effects of nose bluntness and frequency

In order to summarize the overall receptivity of sharp and blunt cones to realizable free-stream
disturbances, we show the leading D1 input distributions for H-IO analyses performed across fre-
quencies from 0 kHz to 100 kHz, in 10 kHz increments. Not every distribution from the leading two
directions is shown. Instead, the most dominant coherent mechanisms are highlighted by showing
their corresponding D1 and D2 inputs. The D1 and D2 forcing distributions for all frequencies
considered are shown in Fig. 28 for each flow. This affords a more comprehensive understanding of
the receptivity of sharp and blunt cones and the instabilities present in the flow.
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For the sharp cone, the dominant receptivity mechanisms have two primary distributions cor-
responding to each of the dominant physical mechanisms. At frequencies below 40 kHz, the first
mode is most receptive to w-vorticity waves with very high incidence angles. These waves create
highly oblique acoustics and vorticity behind the shock, which enter the boundary layer and activate
the Mack first-mode instability. The optimal forcing distribution corresponding to the Mack first
mode can be seen in Fig. 28(a). Figure 28 includes the D2 forcing distributions, in order to
demonstrate that the H-IO is capturing coherent mechanisms across frequencies. As the frequency
changes, the D1 distribution may jump between one or more physical mechanisms, so including
higher directions shows what happens to those physical mechanisms. For frequencies above 50 kHz,
the Mack second mode is the dominant instability mechanism and is most receptive to slow acoustic
waves at shallow incidence angles with a peak around ψ = 10◦. The u-v-vorticity waves are
present, though they are a less significant part of the receptivity process. The addition of nose-tip
bluntness fundamentally alters the dominant receptivity processes. The 10 kHz first mode in the
3.6 mm blunt cone boundary layer shares a receptivity mechanism with the first mode for sharp
cones—highly oblique incident w-vorticity waves. This distribution is shown in Fig. 28(b). Above
20 kHz, the Mack second mode is absent from the leading H-IO directions. Instead, the entropy layer
instability is the dominant mechanism. This mechanism is most receptive to vorticity and entropy
waves at shallow incidence angles with a peak just below ψ = 20◦, which is the optimal angle
for transmitting vorticity through the shock into the entropy layer. The entropy layer receptivity is
more broadband in a range from f = 30–80 kHz, as shown by the distributions of entropy and
vorticity waves present in Fig. 28(b). These entropy waves amplify in the entropy layer via a
rotation and deceleration mechanism. For higher frequencies at which the boundary layer supports
a damped F mode, the entropy layer can interact with the F mode and destabilize it upstream of its
synchronization with the continuous spectra. For frequencies at which no F mode is supported in the
boundary layer, the entropy layer simply grows and convects on top of the boundary layer, upstream
of the entropy swallowing point. The increase in nose-tip bluntness from 3.6 mm to 7.2 mm at low
frequency fully stabilizes both the Mack first and second modes. At 10 kHz, there is a combined
acoustic wave shock interaction and entropy layer instability. At frequencies above 10 kHz, the
entropy layer is the dominant mechanism and is most receptive to free-stream vorticity waves at
incidence angles from 0 to 80◦. For lower to midrange frequencies, the absence of boundary layer
modes that can be destabilized by the entropy layer means that the largest growth occurs outside
the boundary layer and has very little signature at the wall. Receptivity N-factors, defined in Sec. II,
are shown in Fig. 29 for each of the H-IO cases presented in this section. At 10 kHz, shown in
Fig. 29(a), the Mack first mode is the theoretically dominant mechanism, reaching N-factors as high
as Nr = 8 for the sharp cone. The 3.6 mm cone is less receptive, but still shows a strong first-mode
response. The most blunt cone does not contain any first mode and is instead a very low amplitude
multimodal mechanism. The large N-factors associated with the first mode are a direct result of
the high receptivity coefficients and efficient forcing discovered by this H-IO analysis. Whether
or not this effect could be observed in an experiment would depend on the presence of highly
oblique vorticity fluctuations in the free-stream environment. What the N-factor shows is that it is
possible that the first-mode instability could play a very dominant role, even when the free-stream
disturbances are restricted to realizable planar waves.

At 40 kHz, the N-factor associated with the entropy layer instability is greater than three for the
7.2 mm cone, a notable increase from that reached by the 3.6 mm cone. At 70 kHz, the sharp cone
boundary layer is dominated by the second mode, reaching Nr = 4.5 at the end of the domain. The
Mack second mode is quickly stabilized by the addition of nose-tip bluntness, while the upstream
growth of the entropy layer instability is quickly destabilized. At higher frequencies, both cones
reach the same slightly lower N-factors around Nr = 2. This suggests that there may be some
frequency tuning of the entropy layer instability as well. Larger bluntness cones are more receptive
to lower frequency entropy layer instabilities. Both the stabilization of the modal growth and the
destabilization of the entropy layer are consistent with experiments and observations, although for
the cases considered, the N-factors achieved by the entropy layer instability are not large enough that
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FIG. 29. Receptivity N-factors computed from the H-IO responses to the D1 input directions for each cone
at (a) 10 kHz, (b) 40 kHz, and (c) 70 kHz. The initial amplitude is determined by the peak of the free-stream
forcing wave packet. Arrows indicate increasing nose-tip bluntness.

transition to turbulence would be expected. This may be due to the low Reynolds number, relative to
experiments in which transition reversal was observed. The possibility of future research into these
effects is addressed in the following section.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we developed and advanced several techniques for the global linear analysis of flows
over hypersonic sharp and blunt cones at M = 5.8. First, we constructed a framework with input-
output analysis for studying receptivity to three-dimensional planar waves. This was accomplished
by modifying the classical I/O framework to treat the free stream as a forced boundary condition
to the preshock state. This in combination with an input matrix that maps amplitude distributions
to the free-stream state allowed us to pose the receptivity question in terms of input forcing which
satisfies the free-stream dispersion relation for acoustic, vortical, and entropic waves. Second, we
developed hierarchical input-output (H-IO) analysis through the azimuthal Fourier decoupling of the
global dynamics. Once the flow is parameterized with respect to the azimuthal wavenumber, H-IO
analysis uses rank-compressed reduced-order models at each of the wavenumbers before recoupling
the terms and performing the final optimization problem in three dimensions. The combination of
these two techniques provides a powerful tool for understanding the receptivity of hypersonic flows
to realistic free-stream environments.

We verified our approach by applying it to M = 5.8 flow over a sharp cone and comparing
our result to the global linear response of the flow to single free-stream waves at various incidence
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angles. H-IO not only predicted that the sharp cone boundary layer is most receptive to slow acoustic
waves, but also successfully predicted the optimal incidence angle to which the Mack second mode
is most receptive: ψ = 10◦.

H-IO analysis was then applied to the same flow over one-meter-long geometries, this time
including a sharp cone and two blunt cones with 3.6 mm and 7.2 mm tip radii. At frequencies
below 40 kHz, the sharp cone boundary layer was found to be most receptive to w-vorticity waves
with very high incidence angles. These free-stream vorticity waves create highly oblique acoustics
and vorticity behind the shock, which enter the boundary layer and activate the first-mode instability.
For frequencies above 50 kHz, the second mode is the dominant instability mechanism and is most
receptive to slow acoustic waves at shallow incidence angles with a peak around ψ = 10◦. The
u-v-vorticity waves are present in the receptivity distributions, though they are a less significant part
of the receptivity process for the second mode. At low frequency, the 3.6 mm blunt cone boundary
layer shares a receptivity mechanism with the first mode for sharp cones: highly oblique incident
w-vorticity waves. While there is still some receptivity to slow acoustic waves present around
20 kHz, the entropy layer instability is most receptive to vorticity and entropy waves at shallow
incidence angles with a peak just below ψ = 20◦, which is the optimal angle for transmitting
vorticity through the shock into the entropy layer. The entropy layer receptivity is more broadband
in a range from f = 40–80 kHz. These entropy waves amplify in the entropy layer via a rotation and
deceleration mechanism. For higher frequencies, at which the boundary layer supports a damped F
mode, the entropy layer can interact with and destabilize the F mode upstream of its synchronization
with the continuous spectra. If no F mode is supported in the boundary layer, the entropy layer
simply amplifies and convects on top of the boundary layer, upstream of the entropy swallowing
point. The increase in nose-tip bluntness from 3.6 mm to 7.2 mm at low frequency leads to a
nearly full stabilization of the first-mode instability. At 10 kHz, there is a combined acoustic-shock
interaction and entropy layer instability. At frequencies above 10 kHz, the entropy layer is the
dominant mechanism and is most receptive to free-stream vorticity waves at incidence angles from
0 to 80◦. For lower to midrange frequencies, the absence of boundary layer modes that can be
destabilized by the entropy layer means that the largest growth occurs outside the boundary layer and
has very little signature at the wall. Increasing nose-tip bluntness also destabilizes the entropy layer
instability, leading to an increase in N-factor with increasing bluntness. This destabilization with
increasing bluntness is not predicted by modal stability analysis, but is captured by the receptivity
based H-IO analysis.

A natural and important extension of this work would be to consider higher Reynolds numbers.
The Reynolds numbers considered in this study were chosen so that both the sharp and blunt cone
boundary layers supported first- and second-mode instabilities generating significant growth by the
end of the domain, while simultaneously allowing all of the underlying waves to be well resolved.
While this was sufficient to reveal different receptivity physics associated with different types of
instability, and the effects of nose-tip bluntness on those physics, these Reynolds numbers are not
high enough such that we would expect a transition reversal to occur. Efforts are currently underway
to apply H-IO analysis to higher-Reynolds-number flows, and in particular to a subset of Stetson’s
cones for which transition reversal was observed. This would provide valuable insight into whether
there are three-dimensional, globally linear mechanisms by which transition reversal could occur
and the free-stream environmental factors to which those mechanisms may be receptive, but this
remains beyond the scope of the current paper.

Furthermore, recent experiments over ogive cylinders utilizing high-speed Schlieren show the
presence of a low-frequency mechanism in addition to Mack second mode instability [44] as well as
a wisp structure outside of the boundary layer. Applying H-IO in this context would be an excellent
case study for examining the observed mechanisms and how they are receptive to the wind tunnel
environment in which the tests were done.

Additionally, we foresee an extension of the methodology to more complex flows without
axisymmetry, such as blunt cones at angle of attack or blunt cones with swept fins [73]. While this
paper considered the decoupling of the global Jacobian via an azimuthal Fourier decomposition,
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this is not the only way to decompose a flow into sections such the an H-IO analysis could be
used to rank compress and reconstruct the global response. Geometric domain decomposition is
one way in which we could obtain subsections for which H-IO might provide a way to overcome
the complexities and cost associated with the three-dimensional problem.
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APPENDIX: DERIVATION OF THE SHOCK-KINEMATIC BOUNDARY
CONDITION IN THREE DIMENSIONS

To model shock/perturbation interaction in a Cartesian frame, consider a stationary shock
aligned normal to the x axis, subject to small perturbations, as depicted in Fig. 1. The base flow
passes through the shock from left to right, although there may be an oblique component with
respect to the y and z directions. The jump conditions across the shock are governed by the
Rankine-Hugoniot equations:

ρ1u1 = ρ2u2, (A1)

p1 + ρ1u2
1 = p2 + ρ2u2

2, (A2)

v1 = v2, (A3)

w1 = w2, (A4)

h1 + 1
2 u2

1 = h2 + 1
2 u2

2. (A5)

In response to small unsteady perturbations, the instantaneous position of the shock will shift a
small distance upstream or downstream. Let X (y, z, t ) 
 1 represent the instantaneous x position
of the shock relative to its mean position. This function defines a local coordinate system along the
shock,

n̂ = (1,−Xy, Xz ), t̂1 = (Xy, 1, 0), t̂2 = (−Xz, 0, 1), (A6)

where n̂, t̂1, and t̂2 define the normal and two tangential directions, respectively. In this coordinate
system,

un = u − Xyv + Xzw, (A7)

ut = Xyu + v, (A8)

up = −Xzu + w, (A9)

us = Xt , (A10)

where us is the instantaneous shock velocity. In this equation, subscripts denote partial differentia-
tion with respect to the subscript variable. This allows the reformulation of the Rankine-Hugoniot
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equations in the moving frame of the shock, such that

ρ1
(
un1 − us

) = ρ2
(
un2 − us

)
, (A11)

p1 + ρ1
(
un1 − us

)2 = p2 + ρ2
(
un2 − us

)2
, (A12)

ut1 = ut2 , (A13)

up1 = up2 , (A14)

h1 + 1
2

(
un1 − us

)2 = h2 + 1
2

(
un2 − us

)2
. (A15)

For an ideal gas, hi = γ

γ−1
pi

ρi
, and we can replace the enthalpy equation by the shock adiabat,

ρ2

ρ1
= p2(γ + 1) + p1(γ − 1)

p1(γ + 1) + p2(γ − 1)
. (A16)

Linearization of the Rankine-Hugoniot equations in the reference frame of the moving shock
yields

[ρ̄u′ + ūρ ′] − [ρ̄](Xt + v̄Xy + w̄Xz ) = 0, (A17)

[p′ + 2ρ̄ūu′ + ū2ρ ′] = 0, (A18)

[v′] + [ū]Xy = 0, (A19)

[w′] − [ū]Xz = 0, (A20)

and

(−ρ̄2(γ + 1) + ρ̄1(γ − 1))p′
1 (A21)

+ ( p̄2(γ + 1) + p̄1(γ − 1))ρ ′
1 (A22)

= (−ρ̄1(γ + 1) + ρ̄2(γ − 1))p′
2 (A23)

+ ( p̄1(γ + 1) + p̄2(γ − 1))ρ ′
2. (A24)

The square brackets in Eqs. (A17)–(A20) denote a jump condition [q] = q1 − q2 across the shock.
In deriving the momentum equation, we have used [ρ̄ū] = 0 to eliminate the terms dependent on
shock motion.

The linearized Rankine-Hugoniot equations for a perturbed shock can be written compactly in
the following form [74]:

A2Z2 = A1Z1 + ξXt + ζXy + βXz, (A25)

where

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ρ̄1 0 0 ū1

1 2ρ̄1ū1 0 0 ū2
1

0 0 1 0 0

0 0 0 1 0

(−ρ̄2(γ+1)+ρ̄1(γ−1)) 0 0 0 ( p̄2(γ+1)+p̄1(γ−1)),

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

063901-42



THREE-DIMENSIONAL RECEPTIVITY OF HYPERSONIC …

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ρ̄2 0 0 ū2

1 2ρ̄2ū2 0 0 ū2
2

0 0 1 0 0

0 0 0 1 0

(−ρ̄1(γ+1)+ρ̄2(γ−1)) 0 0 0 ( p̄1(γ+1)+p̄2(γ−1)),

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ̄2 − ρ̄1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ζ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(ρ̄2 − ρ̄1)v̄

0

ū1 − ū2

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, β =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(ρ̄1 − ρ̄2)w̄

0

0

ū2 − ū1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and Zi = [p′
i, u′

i, v
′
i,w

′
i, ρ

′
i ]

T is the perturbation state vector on either side of the shock. In the
frequency domain, Eq. (A25) constrains the perturbations upstream and downstream of the shock
together with the unsteady displacement of the shock. While this is sufficient to perform frequency
response analysis (see, e.g., [53,74]), Eq. (A25) also may be applied in the time domain as a
boundary condition for simulations which require accurate transmission of linear perturbations
through shocks. Because our overall approach relies upon extracting Jacobians numerically from
time-dependent simulations, we choose to develop the time-domain version of this shock-kinematic
boundary condition. To meet this goal, it is helpful to think in terms of characteristics in the direction
normal to the shock rather the primitive perturbation variables. The perturbation state vector is
related to the characteristics normal to the shock by

Zi = Qi�i, (A26)

where

Qi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1

− 1
ρ̄i c̄i

0 0 0 1
ρ̄i c̄i

0 0 1 0 0

0 0 0 1 0
1
c̄2

i
1 0 0 1

c̄2
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

φ−
i

φs
i

φv
i

φw
i

φ+
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A27)

Here φ−
i and φ+

i are the amplitudes of the slow and fast acoustic waves, respectively, and φs
i , φv

i ,
and φw

i are the amplitudes of the entropy and vorticity waves. Upstream of the shock, all five waves
are traveling downstream and so are impinging on the shock. Downstream of the shock, the flow
normal to the shock is subsonic, and so the slow acoustic wave travels toward the shock, while
the other four waves travel downstream, away from the shock. In total, there are four outgoing
characteristics and six incoming characteristics with respect to the shock. In the time domain, we
solve for the four postshock outgoing characteristics φs

2, φ
v
2 , φw

2 , φ+
2 and the time rate of change Xt

of the shock position in terms of the six incoming characteristics φ−
1 , φs

1, φ
v
1 , φw

1 , φ+
1 , φ−

2 and the
local shock inclinations Xy and Xz. Explicitly splitting �2 = �+

2 + �−
2 , we rewrite Eq. (A25) in

terms of characteristics as

A2Q2�
+
2 − ξXt = A1Q1�

+
1 − A2Q2�

−
2 + ζXy + βXz. (A28)
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Because

�+
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

φs
2

φv
2

φw
2

φ+
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ξXt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(ρ̄2 − ρ̄1)Xt

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A29)

we define a matrix A3 where the first column of A2Q2 is replaced by ξ and then solve the linear
problem

A3� = A1Q1�
+
1 − A2Q2�

−
2 + ζXy + βXz,

for �, where

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Xt

φs
2

φv
2

φw
2

φ+
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A30)
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