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From weakly to strongly nonlinear viscous drop shape oscillations:
An analytical and numerical study
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Nonlinear axisymmetric shape oscillations of a Newtonian drop in a vacuum are in-
vestigated using two different theoretical methods, for fundamental interest and for the
significance of the oscillations in transport processes across the drop surface. The extended
discontinuous Galerkin method is contrasted to the weakly nonlinear theory. While the for-
mer allows large drop surface deformation amplitudes to be analyzed with high precision
and drop volume errors below 0.11% even at the largest deformations, the latter provides
analytical insight into the origin of quasiperiodic time behavior of the oscillations and
reveals the oscillation modes coupled in the nonlinear motion. Results from both methods
for moderate initial deformation amplitudes at modes of initial drop deformation m = 2,
3, and 4 are in excellent agreement, showing the time asymmetry of the oscillation and the
decrease of the oscillation frequency with increasing deformation amplitude. The Fourier
power spectra for the first oscillation period exhibit decreased dominant frequencies as
compared to the linear results as well as the mode coupling as nonlinear effects. The
numerical method is used to compute the oscillatory and damping behavior of viscous
drops, as well as the interconversion of kinetic and surface energies during the oscillations
at strong initial deformations.

DOI: 10.1103/PhysRevFluids.9.063601

I. INTRODUCTION

Shape oscillations of individual drops have been investigated in science for more than a century.
The shape oscillations influence transport processes due to the increase of the drop surface area
caused by the deformations, and due to fluid motion induced by the oscillations in both the drop
and the host medium. Furthermore, linear drop shape oscillations are established as a means for
measuring capillary and rheological properties of the drop liquid. A detailed review of the literature
on the subject, starting from Rayleigh’s work [1], can be found in our earlier papers [2,3]. We do
not wish to repeat this here.

Research on nonlinear drop shape oscillations with large amplitudes using computational meth-
ods started from the work of Foote [4] and Alonso [5]. The latter author carried her simulations to a
point where the deformations may lead to fission of the drop. Experiments on large-amplitude drop
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shape oscillations are attributed to Marston and Apfel [6,7]. Neutrally buoyant, immiscible drops
were acoustically excited to quadrupole shape oscillations, carrying the deformations to a degree
that the drops split into two or more fragments. The authors proposed this technique as a candidate
for emulsification.

Thereafter, Trinh and Wang carried out experiments on large-amplitude drop shape oscillations
with a similar technique [8]. The drops were neutrally buoyant in an immiscible host liquid and
positioned by a standing pressure wave produced by ultrasound. Modulation of the ultrasound
excited the shape oscillations. In the analysis of the acoustically excited drop shape oscillations,
the influence of the immiscible host liquid was taken into account. Interest was focused on the
damping factor of the oscillations.

In his paper [9], Basaran presented numerical simulations of nonlinear shape oscillations of
viscous drops. His results showed the influence from mode coupling on the oscillations, revealing a
quasiperiodic oscillation dynamic. Experiments on the breakup of oscillating, electrically charged
drops were conducted by Basaran et al. [10]. The focus of the study was on the effects of the
electric field on the stability of the drops. The oscillation frequency of conducting inviscid drops
was reported to decrease quadratically with increasing electric field strength. Electrically induced
breakup occurs with tiny jets formed on the drop surface, which break up into small droplets, as
applied in electrospraying.

The special cases of drops, which are initially deformed due to pinch-off from a tube end, and
of other initially nonspherical drops falling in air were investigated in Refs. [11–14]. Reference
[11] studies the pinch-off and the falling motion of an individual water drop in air, revealing both
the translational motion and the shape oscillations of the drop. The interaction between the shape
oscillations and the translational motion of the drop induces complex dynamics. Nonlinear effects
on the shape oscillations due to the initial drop shape and velocity field in the drop are found.
In Refs. [12–14], nonspherical oscillating drops falling in air are studied both experimentally and
numerically. The drop surface shapes evolve in time, starting from initial values of their axis length
ratios. Oscillation frequencies differ from the Rayleigh value by no more than 8%. An influence on
the shape oscillations from the orientation of the drop symmetry axes relative to the falling direction
is seen.

The scientific importance of oscillating drops extends to their use for measuring physical prop-
erties of the drop liquid. Material properties measured are the dynamic viscosity [15,16], the liquid
surface tension against the ambient gas [17], and the interfacial tension between immiscible liquids
[18]. For drops from complex fluids, rheological properties of the drop surface were measured in
Refs. [19–21], also for large drop deformations. A growing-drop technique was used by Zhang et al.
for measuring the dynamic surface tension of the drop liquid in contact with an ambient gas [22].
However, shape oscillations of the pendant drop prevent the measurements in the first 20 ms after
formation of the interface. The breakup of surfactant-laden drops was studied in Ref. [23]. The
authors deduced the surfactant content from shape oscillations of satellite droplets. Nonlinear drop
shape oscillations, with a particular view on the damping rate, are of key importance for all these
measurements, and detailed understanding is crucial for the application. A comprehensive review of
measuring techniques based on oscillating drops and bubbles is attributed to Kovalchuk et al. [24].

The present paper studies the oscillation and damping behaviors of individual drops at large
deformation amplitudes, a subject that is not sufficiently studied theoretically in the literature. The
work is structured as follows: In the next section, the problem of viscous drop shape oscillations is
stated by the governing equations with their initial and boundary conditions. Section III introduces
the weakly nonlinear analysis, together with the emerging balance equations, up to the second
order of approximation. For the sake of readability of the text, for the third-order approximation
and the solutions of the various approximation orders, the reader is referred to our earlier paper
[3]. Section IV gives an introduction to the extended discontinuous Galerkin method used for the
present problem within a two-phase formulation. Section V presents results on the oscillating drop,
comparing the numerical simulations to results from the weakly nonlinear theory and analyzing
large-amplitude oscillations. The paper ends with the conclusions in Sec. VI.

063601-2



FROM WEAKLY TO STRONGLY NONLINEAR VISCOUS …

FIG. 1. Domain definitions for the investigation of deformed viscous droplets. Left: Computational domain
� for a two-phase setting with the interface I separating the droplet A from the ambient phase B. The
boundary is a disjoint decomposition into wall ∂�wall and free slip regions ∂�freeslip (grey areas). Right: Droplet
representation in spherical coordinates (r, θ, φ). Spherical droplet at rest with radius a and deformed droplet
with local droplet radius rs = rs(θ, φ),

II. PROBLEM STATEMENT

Shape oscillations of an axisymmetric viscous liquid drop are studied analytically, using the
weakly nonlinear theory (WNLT) [2,3], and numerically, using the extended discontinuous Galerkin
(XDG) method. The liquid is incompressible and Newtonian, and body forces are not accounted for.
The equations of motion, together with the boundary and initial conditions, are nondimensionalized
with the undeformed drop radius a, the capillary timescale (ρa3/σ )1/2, and the capillary pressure
σ/a for length, time, and pressure, respectively. The resulting dimensionless transient incompress-
ible Navier-Stokes equations read

∇ · u = 0 in � \ I, (1a)

∂u
∂t

+ ∇ · (u ⊗ u) = ∇ · [−pI + Oh(∇u + (∇u)�)] in � \ I, (1b)

where the Ohnesorge number Oh = μ/(σaρ)1/2 (with the liquid dynamic viscosity μ, surface
tension σ , and density ρ) measures the capillary against the viscous timescale. For the numerical
simulation with XDG, we consider the two-phase setting within a sharp-interface formulation and
restrict the domain to a quarter of the droplet (see Fig. 1, left). We define the computational domain
� ⊂ R3 as the disjoint partitioning of the time-dependent fluid bulk phases A(t ) (droplet phase) and
B(t ) (ambient phase) and the moving interface I(t ) by

� = A(t ) ∪̇ I(t ) ∪̇ B(t ). (2)

The drop surface I(t ) is defined as the position with the radial distance rs(θ, t ) = 1 + η(θ, t ) from
the origin of the coordinate system (see Fig. 1, right). The distance η is the deformation against the
spherical shape with normalized radius 1.
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A. Boundary conditions

Within the two-phase setting for the XDG method, the boundary conditions at the computational
domain boundary ∂� = ∂�wall ∪̇ ∂�freeslip, describing a disjoint decomposition into wall, ∂�wall,
and free slip regions, ∂�freeslip (grey areas in Fig. 1, left), read

u = 0 on ∂�wall, (3a)

u · n∂� = 0 and τ∂� · (∇u + (∇u)�) · n∂� = 0 on ∂�freeslip, (3b)

where n∂� and τ∂� describe the normal and tangential vectors on the boundary ∂�. Note that there is
only negligible influence of boundary condition (3a) on the results shown below. Indeed, exemplary
calculations were also performed with a free-flow boundary condition instead of wall boundary
condition and no significant difference in the results could be observed.

At the material interface I, located within the computational domain �, the corresponding jump
conditions for the Navier-Stokes equations (1) are given by

[[u]] = 0 on I, (4a)

[[−pnI + Oh(∇u + (∇u)�) · nI]] = κnI on I, (4b)

where the jump operator [[·]] is defined as [[ f ]] := (lim
ξ↘0

f (x − ξnI) − lim
ξ↘0

f (x + ξnI)) for x ∈ I. In

the momentum jump condition (4b) on the right-hand side, κ = (∇ · nI) denotes the dimensionless
mean curvature of the interface I. The outward interface normal nI pointing from A to B is
computed from the level-set function ϕ(θ, t ) = r − rs(θ, t ) via

nI = ∇ϕ

|∇ϕ| . (5)

With the WNLT, the following single-phase boundary conditions at the interface I are used:
the kinematic boundary condition, stating that the material rate of deformation of the drop surface
equals the radial velocity component at the place of the deformed surface, i.e.,

ur = Dη

Dt
= ∂η

∂t
+ uθ

r

∂η

∂θ
at r = rs, (6)

the dynamic boundary condition, stating that the shear stress at the drop surface is zero and reads

(nI · (∇u + (∇u)�)) × nI = 0 at r = rs, (7)

and the dynamic boundary condition, stating that the normal stress at the drop surface, which is
composed of the static pressure, the viscous normal stress, and the capillary stress, is zero, i.e.,

−p + Oh(nI · (∇u + (∇u)�)) · nI + (∇ · nI) = 0 at r = rs. (8)

B. Initial conditions

In order to close the initial-boundary-value problem for the XDG method, we set an initial
condition for the velocity field by

u(x, 0) = u0(x) with ∇ · u0 = 0 for x ∈ � \ I(0), (9)

where the initial interface position I(0) is given. The material interface evolves according to the
bulk velocity u(x, t ) at x ∈ I(t ).

With the WNLT, a first initial condition describes the initial shape of the drop surface r0 by a
Legendre polynomial Pm(cos θ ) of degree m with the deformation parameter η0, in a general form
written as

r0(θ ) = rs(θ, 0) = A(θ ) + η0Pm(cos θ ). (10)
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For the undeformed state, i.e., when η0 = 0, we have A(θ ) = 1. The second initial condition states
that the drop surface initially does not move in the radial direction; i.e., it reads

∂rs(θ, t )

∂t

∣∣∣∣
t=0

= 0. (11)

The initial conditions relating to the velocity field in the drop are different for the XDG method
and the WNLT, since the solutions of the WNLT determine the velocity field at all times, including
t = 0, while the XDG method leaves the freedom to set an initial velocity field.

III. THE WEAKLY NONLINEAR THEORY

For the weakly nonlinear analysis of the problem, the governing equations (1) are formulated
in spherical coordinates in a nondimensional form, as introduced in Sec. II. The equations are
solved subject to boundary conditions (6)–(8), and with the initial conditions (10) and (11) in their
nondimensional forms [3].

For developing the solutions, the field variables are expanded in power series with respect to the
small deformation parameter η0. As an example,

ur (r, θ, t ) = ur1(r, θ, t )η0 + ur2(r, θ, t )η2
0 + ur3(r, θ, t )η3

0 + · · · , (12)

p(r, θ, t ) = 2 + p1(r, θ, t )η0 + p2(r, θ, t )η2
0 + p3(r, θ, t )η3

0 + · · · , (13)

η(θ, t ) = η1(θ, t )η0 + η2(θ, t )η2
0 + η3(θ, t )η3

0 + · · · . (14)

For convergence of these series expansions, the deformation parameter η0 must be small as com-
pared to unity. An important difference between the linear and the weakly nonlinear analyses is
that the boundary conditions are satisfied on the deformed drop surface, not on the undeformed
spherical surface. For doing this, but still allowing for the functions in the boundary conditions to
be evaluated on the undeformed drop surface, their values on the deformed surface are represented
by Taylor expansions, such as, for example for ur and p,

ur |r=1+η = ur |r=1 + ∂ur

∂r

∣∣∣∣
r=1

η + · · · , (15)

p|r=1+η = p|r=1 + ∂ p

∂r

∣∣∣∣
r=1

η + · · · . (16)

The initial deformed drop shape, which is governed by a Legendre polynomial of degree m and the
amplitude η0, reads

rs(θ, 0) = 1 + η(θ, 0) = 1 + η0Pm(cos θ ) − η2
0

1

2m + 1
− η3

0

6

∫ 1

−1
Pm(cos θ )3d (cos θ ) ∓ · · · . (17)

Substituting these approaches into the nondimensionalized equations of motion (1) and into
boundary conditions (6)–(8), and representing the flow properties and their derivatives as given in
Eqs. (12)–(16), we obtain sets of first-, second-, and third-order equations of motion and boundary
conditions, consisting of all the terms with the deformation parameter η0 to the first, second, and
third powers, respectively. The same applies to the initial conditions. For details of this method refer
to Ref. [3]. To ensure readability and to understand the final results we present certain details.

A. First-order equations

The first-order equations consist of all terms in the equations of motion with the parameter η0 to
the first power. The first-order continuity and momentum equations in vector form read

∇ · u1 = 0 , (18)

063601-5



MARTIN SMUDA et al.

∂u1

∂t
− ∇ · (−p1I + Oh(∇u1 + (∇u1)�)) = 0 . (19)

The first-order boundary conditions are satisfied at r = 1, and we obtain

ur1 = ∂η1

∂t
, kinematic, (20)

r
∂

∂r

(uθ1

r

)
+ 1

r

∂ur1

∂θ
= 0, zero shear stress, (21)

−p1 + 2Oh
∂ur1

∂r
−

(
2η1 + ∂η1

∂θ
cot θ + ∂2η1

∂θ2

)
= 0, zero normal stress. (22)

Furthermore, the initial conditions of first order are

η1(θ, 0) = Pm(cos θ ) and
∂η1

∂t
(θ, 0) = 0 . (23)

The first initial condition determines the initial shape of the deformed drop by a Legendre polyno-
mial Pm(cos θ ) of order m, and the second condition states that the drop surface initially does not
move in the radial direction.

B. Second-order equations

The second-order equations with their boundary and initial conditions are obtained as all the
terms from the equations of motion with the parameter η0 to the second power. The second-order
continuity and momentum equations in vector form read

∇ · u2 = 0 , (24)

∂u2

∂t
− ∇ · (−p2I + Oh(∇u2 + (∇u2)�)) = −∇ · (u1 ⊗ u1). (25)

The second-order kinematic boundary condition along with the boundary conditions defining zero
shear and normal stresses, to be satisfied at r = 1, are

ur2 − ∂η2

∂t
= uθ1

r

∂η1

∂θ
− η1

∂ur1

∂r
, (26)

r
∂

∂r

(uθ2

r

)
+ 1

r

∂ur2

∂θ
= −η1

∂

∂r

(
r

∂

∂r

(uθ1

r

)
+ 1

r

∂ur1

∂θ

)

− 2

(
r

∂

∂r

(ur1

r

)
− 1

r

∂uθ1

∂θ

)
1

r

∂η1

∂θ
, (27)

− p2 + 2Oh
∂ur2

∂r
−

(
2η2 + ∂η2

∂θ
cot θ + ∂2η2

∂θ2

)

= η1
∂ p1

∂r
−

(
2η2

1 + 2η1
∂η1

∂θ
cot θ + 2η1

∂2η1

∂θ2

)

− 2Oh

[
η1

∂2ur1

∂r2
− 1

r

∂η1

∂θ

(
r

∂

∂r

(uθ1
r

)
+ 1

r

∂ur1

∂θ

)]
, (28)

respectively. In addition, the second-order initial conditions are

η2(θ, 0) = − 1

2m + 1
,

∂η2

∂t
(θ, 0) = 0. (29)

The first initial condition ensures volume conservation, and the second condition states that, initially,
the drop surface does not move in the radial direction.
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In order maintain readability of the paper, we refer the reader to the details of the solutions
of the above derived equations given in Ref. [3] and its supplementary materials, where the
solutions are extended to the third order of approximation. Solving the sets of first-, second-, and
third-order equations, together with their boundary and initial conditions, reveals as nonlinear effects
a frequency change and an excess time the drop spends in an elongated state, both as functions of the
initial deformation amplitude. The third order of approximation of the analysis ensures that these
effects are represented to a satisfactory degree of accuracy.

IV. THE EXTENDED DISCONTINUOUS GALERKIN METHOD

This section presents the method used for the direct numerical simulations with the XDG method
[25], also referred to as the unfitted discontinuous Galerkin (DG) [26] or cut-cell DG method. All the
XDG simulations are performed with the XNSE-Solver within the open-source solver framework
Bounded Support Spectral Solver (BoSSS) [27] developed at the Chair of Fluid Dynamics of the
TU Darmstadt in Germany. The implemented method is based on the work in Ref. [28].

The starting point of the XDG discretization is a standard DG polynomial basis � =
(� j,n) j=1,...,J, n=0,...,Nk , where J and Nk denote the number of cells and the number of polynomials
up to degree k, respectively. The individual functions � j,n(x) are defined as polynomials within the
computational cell Kj and zero outside. In the XDG approach, the approximation space is adapted
in every time step to be conformal with the fluid interface I(t ). The interface is represented by a
level-set function ϕ(x, t ), such that

I(t ) = {x ∈ � : ϕ(x, t ) = 0}, A(t ) = {x ∈ � : ϕ(x, t ) < 0}, B(t ) = {x ∈ � : ϕ(x, t ) > 0}.
(30)

The adaption of the approximation space is obtained by multiplying the basis functions � j,n(x) with
the Heaviside function of ϕ; i.e., some field quantity g(x, t ) is approximated as a weighted sum by

g(x, t ) =
∑

j,n

gAj,n(t )H (−ϕ(x, t ))� j,n(x) + gBj,n(t )H (+ϕ(x, t ))� j,n(x). (31)

In each cut cell (a cell intersected by the interface I) this yields separate degrees of freedom
gAj,n(t ) and gBj,n(t ) for the liquid domain A and ambient domain B, respectively. Since the XDG
basis functions H (±ϕ(x, t ))� j,n(x) are conformal with the interface, the XDG method allows sharp
and subcell accurate representation of kinks in the velocity fields as well as discontinuities in the
pressure.

For the spatial discretization, the function spaces of the ansatz and test functions for the compo-
nents of the velocity fields u ∈ R3 are discretized by XDG spaces of order k and the pressure field
p ∈ R of order k′ = k − 1.

The discretization in time is done with the moving interface approach following the work of
Ref. [29], where a BDF3 scheme is used. The complete spatial and temporal discretization and
further details are given in Ref. [28].

An essential prerequisite of the XDG method is a high-order accurate numerical integration
of cut-cell integrals, such as integrals over cut-cell volumes and surfaces and integrals along the
interface I. In this work we use the quadrature method proposed in Ref. [30].

The level-set field ϕ is represented by a standard DG approach, i.e., ϕ(x, t ) =∑
j,n ϕ j,n(t )� j,n(x). In the context of the XDG method for transient two-phase flow problems, two

level-set fields are introduced,

ϕevo ∈ Pk (Kh) and ϕ ∈ Pk+1(Kh) ∩ C0(�), (32)

where Pk (Kh) denotes the standard broken polynomial space of total degree k on the numerical mesh
Kh = {K1, . . . , KJ}. The first one is used for handling the level-set evolution and the second one is
used for the discretization, since the XDG method requires at least that ϕ(x, t ) ∈ C0(�). Therefore,
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it is given as the L2 projection of ϕevo on the set of cut cells constrained by continuity conditions at
the inner cell boundaries [28]. The polynomial degree is chosen to be k + 1.

For the level-set (interface) evolution given by

∂ϕevo

∂t
+ uext · ∇ϕevo = 0, on �, (33)

a suitable velocity field uext needs to be constructed from the bulk velocity u at the interface I.
Different from the original work [28], the construction of the extension-velocity field uext is done
via the solution of an auxiliary Stokes system of equations. Since uext is divergence-free, we can
discretize scalar transport Eq. (33) in its conservative form and employ a standard upwind DG
scheme. For further details we refer to Ref. [31].

In order to preserve the signed-distance property of the level-set field ϕevo, one may perform
a reinitialization of ϕevo after a predefined number of time steps. In this case, the ellip-
tic reinitialization problem in Ref. [32] is solved monolithically on the whole computational
domain.

In this work, an explicit coupling between the interface evolution and the Navier-Stokes equa-
tions is employed. In this case, the interface is updated only once at the beginning. Note that, in this
case, the surface tension force is also treated explicitly, and for the numerical computation of the
surface tension force the Laplace-Beltrami formulation is used. The nonlinearity is solved via Picard
iterations (convergence criterion set to 10−9) and the preconditioned linear systems are solved using
the direct solver MUMPS [33,34]. Further details on the solver structure and solution process are
found in Ref. [25].

The presented method allows the use of local adaptive mesh refinement (AMR) during the
simulation. At each so-called refinement level, a cell is divided into eight equal-sized subcells. The
indication of the current refinement level of each cell is predefined; i.e., a fixed refinement level of
either 1 or 2 is set for all cut cells and all cells in the narrow band (cells which share one face, edge,
or vertex with cut cells). If the cut cells change due to interface motion, the refinement is adjusted
accordingly.

V. RESULTS AND DISCUSSION

In this section we present results from our studies on nonlinear shape oscillations of viscous
drops, using the WNLT and XDG methods. Results consist of the oscillation frequency as a function
of the deformation parameter and the drop aspect ratio as well as energy-based parameters as
functions of time.

The WNLT describes the flow field variables and the drop surface by series expansions truncated
after the third order. The third approximation order is needed, since the nonlinear effects are not
properly represented by the second order [3]. Due to the truncation, conservation of the drop volume
during the oscillatory motion is not guaranteed [2,3,35]. The relative deviation of the deformed
drop volume from the correct nondimensional value Vs = 4π/3 is calculated analytically. The
nondimensional drop volume V (t ) is given as

V (t ) = 2π

3

∫ 1

−1
r3

s (θ, t )d cos θ ≈ 2π

3

∫ 1

−1

[
1 + η1(θ, t )η0 + η2(θ, t )η2

0 + η3(θ, t )η3
0

]3
d cos θ.

(34)

The relative volume deviation from the correct value R(η0, t ) is defined as follows:

R(η0, t ) =:
V (t ) − Vs

Vs
= 1

2

∫ 1

−1

[
r3

s (θ, t ) − 1
]
d cos θ. (35)

Figure 2 presents R(η0, t ) as a function of the deformation parameter for the modes of initial
deformation m = 2, 3, and 4 at the time instance t = tmax of the largest volume deviation. The drop
Ohnesorge number is Oh = 0.1. The values of R are all positive and increase with the deformation
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0.005
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FIG. 2. Maximum relative drop volume deviation of the WNLT from the exact value for initial modes of
deformation m = 2, 3, and 4 at Oh = 0.1 as a function of the deformation parameter η0.

parameter η0. For deformation parameters η0 � 0.4, the maximum volume deviation for all the
modes considered is 1.5%. For the comparison between the WNLT and XDG methods, we therefore
consider initial deformations up to η0 = 0.4 only, thus keeping the relative volume deviation low.
The relative volume deviation of all the presented XDG simulations is below 0.11%, where the
largest deviation is found for m = 4 and η0 = 0.7.

The numerical setting for the XDG method is as follows: the computational domain is set
to � = [0, 3R0]2 × [−3R0, 3R0], which covers one-quarter of the simulated droplet, where the z
axis is the symmetry axis. For all simulations, a base mesh of 7 × 7 × 14 cells is taken, with
additional adaptive mesh refinement of level 1 at the interface. The polynomial degrees for the
velocity fields are set to k = 3 and k − 1 for the pressure field. In order to represent the dy-
namically inert ambient medium B assumed for the WNLT, we set the inertia and viscous terms
to a ratio of 1/1000 compared to the droplet phase. This setting corresponds to an oscillating
drop in a gaseous ambient medium with negligible momentum exchange, as seen with drops in
streams produced by jet breakup or following gaseous flows with small relative velocity [36,37].
This approach was already taken in Ref. [38] for the direct numerical simulation of transient
capillary rise, where the influence of the gaseous phase needs to be negligible. The time-step
sizes δt are chosen such that the corresponding capillary time-step restriction is met given in
dimensionless form by δt < δtσ = (( hmin

k+1 )3/(2π ))1/2, where hmin denotes the smallest diameter of all
cells.

In Fig. 3 the initial droplet shapes for all presented modes m = {2, 3, 4} are depicted for their
largest deformation parameter η0, i.e., η0 = 0.7 for m = 2, η0 = 0.5 for m = 3, and η0 = 0.7 for
m = 4. The brighter colored sections correspond to the domain simulated by the XDG method.
On the right-hand side the whole computational domain is shown. One can see the background
mesh with 7 × 7 × 14 cells and the adaptive refinement by one additional level around the droplet.
Note that the droplet shapes correspond to the continuous level-set field ϕ [cf. Eq. (32)] and are
approximated by a polynomial degree of 4.

For characterizing the deformation of the droplet, we choose the aspect ratio L/W , where
L = rs(0, t ) + rs(π, t ) denotes the centerline length of the droplet and W = 2rs( π

2 , t ) the width
in the equatorial plane θ = π/2. This aspect ratio is studied as a function of time for various modes
and degrees of initial deformation of the drop surface. For the results of the XDG method, we
evaluate the aspect ratio via the summation of the droplet surface modes in terms of the Legendre
polynomials Pl (cos θ ) [cf. Eq. (10)], obtained by mode decomposition for each time step ti. This is
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FIG. 3. Initial drop shapes and computational domain with adaptive mesh refinement for the XDG simula-
tions. Left, top: m = 2 with η0 = 0.7. Left, bottom: m = 3 with η0 = 0.5. Right: whole computational domain
for m = 4 with η0 = 0.7.

done by minimizing ∮
I(ti )

(∑
l

Pl (cos θ )al (ti ) − |x|
)2

dS → min, (36)

which is equivalent to requiring that∮
I(ti )

(∑
l

Pl (cos θ )al (ti ) − |x|
)

Pn(cos θ ) dS
!= 0 ∀n, (37)

where we assume that the droplet is axisymmetric. This leads to the following linear system of
equations: ∑

l

(∮
I(ti )

Pl (cos θ )Pn(cos θ ) dS

)
al (ti ) =

∮
I(ti )

|x|Pn(cos θ ) dS ∀n, (38)

where al are the sought-after coefficients to the corresponding mode l . Thus, we evaluate rs(θ, ti ) =∑
l al (ti )Pl (cos θ ). Regarding the WNLT, the decomposition is based on the orthogonality of the

Legendre polynomials with

al (t ) =
(

l + 1

2

) ∫ 1

−1
η(x, t )Pl (x) dx, with x = cos θ. (39)

In the following section, results from the two methods are compared for small to moderate
deformation parameters η0 � 0.4 (Sec. V A). Second, the drop shape oscillations are investigated
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TABLE I. Simulation cases for the comparison between the XDG and the WNLT methods. For the initial
velocity field, the term “stagnant” corresponds to zero velocity in both phases and “third order” corresponds to
the internal droplet velocity field given by the WNLT. The values of A(θ ) result from Eqs. (10) and (17).

Case Oh m η0 A(θ ) δt tend Initial velocity field

1.1 0.1 2 0.1 0.997981 5 × 10−3 7 stagnant / third order
1.2 0.1 2 0.2 0.991848 5 × 10−3 7 stagnant / third order
1.3 0.1 2 0.4 0.966781 5 × 10−3 7 stagnant / third order
2.1 0.1 3 0.15 0.996786 − 0.000315584 cos θ 5 × 10−3 7 stagnant / third order
2.2 0.1 3 0.4 0.977143 − 0.00598442 cos θ 5 × 10−3 7 stagnant
3.1 0.1 4 0.1 0.998883 5 × 10−3 7 stagnant / third order
3.2 0.1 4 0.4 0.981839 5 × 10−3 7 stagnant
4 0.56 4 0.05 0.999721 5 × 10−3 4 stagnant / third order

for larger deformation parameters up to 0.7, using the XDG method (Sec. V B). The presented
results are available [39].

A. Comparison of the results from the XDG method and the WNLT

In Table I all simulation cases for the comparisons in this section are listed. Note that, for the
comparison study, the two methods use the same parameter A(�) given in Eq. (10) for describing
the initial drop shape. Another issue regards the initial velocity field. The WNLT predicts an
internal velocity field when the drop is deformed to its initial shape. For the XDG method there
are two options for the initial velocity field: set the velocity field up to the third-order contributions
(“third order”), i.e., including first-, second-, and third-order solutions, given by the WNLT, or set
a “stagnant” state with zero velocity throughout. The WNLT predicts the initial velocity field in the
drop as a part of the solution, which is zero throughout in the inviscid case only. A discussion on
the influence of the velocity field is given in Sec. V A 2.

1. Oscillation frequency and time spent in prolate shape (case 1)

One nonlinear effect known in oscillations is the dependency of the oscillation frequency on the
oscillation amplitude. This effect occurs in drop shape oscillations also [2,3,8,40]. The frequency
decreases with increasing oscillation amplitude. The results from the two simulation methods
studied here, together with data from two pieces of literature, are shown in Fig. 4 (left) for a drop
of Oh = 0.1 with mode of initial deformation m = 2. The resulting oscillation frequencies αres,i are
extracted from the traces of the drop north pole position rs(0, t ) (see Appendix) and determined from
the first oscillation period, between the first two maximum prolate shapes. The relative frequency
change is calculated against the first-order oscillations frequency α2,i. The predictions from the
present study are well in line with the data from the literature. The WNLT predicts a slightly
stronger frequency decrease than all the other methods for initial aspect ratios L/W beyond 1.5,
corresponding to η0 � 0.3. The XDG results are in line with the numerical simulations of Ref. [9],
while the finite-element-based simulations of Ref. [40] predict the weakest frequency decrease for
a given initial deformation. Those authors used the commercial software package FlDAP, solving
the Navier-Stokes equations with the Galerkin technique and advecting the free boundary with the
spine method. The trend of the decrease of the oscillation frequency with increasing initial drop
deformation, however, is predicted by all the methods.

The second well-known nonlinear effect describes the excess time of the drop spent in the prolate
shape during one period. Again, the times are extracted from the drop north pole position during the
first period. The results are compared to the same pieces of literature as before and depicted in Fig. 4
(right). The agreement between all the studies is very good throughout the whole range of initial
aspect ratios. All methods show an increasing trend. The WNLT predicts slightly longer times,
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FIG. 4. Nonlinear effects for Oh = 0.1 and mode of initial deformation m = 2 for initial aspect ratios up to
L/W = 1.8. Left: Frequency decrease as a function of the initial drop aspect ratio L/W . Right: Time percentage
spent in prolate form as a function of the initial drop aspect ratio L/W .

whereas Ref. [9] predicts the shortest ones. The XDG results are well in line with the simulations
of Ref. [41].

2. Drop aspect ratio over time (cases 1–3)

The XDG method offers the two above-mentioned options for the velocity field inside the droplet
at the start of the oscillatory motion: the field inside the droplet may be initialized with zero velocity,
i.e., in a stagnant state, or with the third-order velocity field given by the WNLT. The different
resulting L/W as functions of time are shown, together with the results from the WNLT, in Fig. 5
for a drop with Oh = 0.1 at moderate deformations with η0 = 0.1 and 0.2. The three different traces
perfectly collapse, showing that the two methods of analysis agree very well for these moderate
initial drop deformations. Zrnić et al. have shown that, in these oscillations, which are damped due
to the drop viscosity, the oscillation frequency and the damping factor vary in time by no more than
0.7% and 3.7%, respectively [3].

Raising the initial deformation amplitude by setting η0 = 0.4 yields the shape oscillations in
Fig. 6. The results show that, with the increased initial deformation of the drop, the initial velocity
field in the drop starts to make a significant difference. For a viscous drop liquid, the WNLT predicts
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FIG. 5. Aspect ratio L/W over time for Oh = 0.1 and m = 2. Left: η0 = 0.1 (case 1.1). Right: η0 = 0.2
(case 1.2).

063601-12



FROM WEAKLY TO STRONGLY NONLINEAR VISCOUS …

0 1 2 3 4
0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7
0.6

0.8

1

1.2

1.4

1.6

1.8

FIG. 6. Aspect ratio L/W over time for Oh = 0.1, m = 2, and η0 = 0.4 (case 1.3).

an initial motion in the drop, since the initial conditions ensure a stagnant drop surface only in terms
of its radial rate of displacement. However, the third-order initial velocity field leads to an overshoot
at the beginning of the XDG simulation (see Fig. 6, left). A very small overshoot is also visible
for η0 = 0.2 (cf. Fig. 5, right). The reason for that might be the truncated power-series expansion
of the velocity field up to third order [cf. Eq. (12)], which is sufficient to describe the motion of
the droplet shape also described up to third order. Considering it as the initial velocity field for
the three-dimensional XDG simulations, though, the third-order velocity field seems underresolved.
This effect is confirmed by the data in Fig. 7, displaying for Oh = 0.1 and m = 2 the velocity
magnitudes in the drops from the WNLT in the initial state, and the deviations of the XDG velocities
therefrom, for the deformation parameters η0 = 0.2 and 0.4. The deviations are seen to be one order
of magnitude larger for the larger deformation parameter, with the large values in the polar regions
of the drop. This effect indicates a limitation in the use of the WNLT velocity data at deformation
parameters as large as 0.4. The larger the deformation parameter η0, the larger the radial velocity
components at the north and south poles of the droplet, driving the strong deformation at the start of
the oscillation. Thus, in the remainder of this section, we restrict the comparison for the third-order
initial velocity field to the cases with the smallest η0. Figure 7 also shows two initial velocity fields
in drops deformed according to m = 2 by magnitude and as vector fields. The fields exhibit two
toroidal structures with zones around the drop poles separated from them. These zones are more
pronounced at stronger initial deformation. Considering the stagnant initial velocity field, the XDG
simulation is in very good agreement with the WNLT. The largest deviations occur shortly after the
start of the motion (around t = 0.4) and the local extrema of the trace. This may be explained by
the differences between the initial states of the drop bulk. Again, we compare to Refs. [9,41], and
further to Ref. [37], which used experimental data and numerical calculations for the investigations.
The results are shown on the right of Fig. 6. All results agree very well throughout the time
range, where the WNLT predicts on all extrema slightly higher (respectively lower) values than the
others.

In addition to the evolution of the aspect ratio over time, we present a shape comparison between
XDG (stagnant initial velocity field) and WNLT in Fig. 8. Just as for the aspect ratio, the depicted
drop shapes for the XDG approach are evaluated via the summation of the droplet surface modes
[cf. Eq. (38)]. In Fig. 8 (left), an excellent agreement for the initial maximum deformation is
shown. In Fig. 8 the first minimum and maximum after the initial maximum are depicted. Note
that for each method the corresponding instance in time is presented, i.e., t = 1.26 (XDG) and
t = 1.25476 (WNLT) for the minimum and t = 2.405 (XDG) and t = 2.42237 (WNLT) for the
second maximum. As described for the aspect ratio evolution above, the XDG method predicts
slightly higher (lower) values for the minima (maxima) compared to the WNLT. Considering the
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FIG. 7. Initial velocity magnitude from the WNLT (top) and deviation of the initial XDG velocities
therefrom (bottom), for η0 = 0.2 (left) and η0 = 0.4 (right). Mode of initial deformation m = 2, Oh = 0.1.

instances of time, the minima for the XDG method occur shortly after the WNLT and vice versa for
the maxima. Overall, the agreement for the droplet shapes between both methods is very good.

Next we study the evolution of the drop aspect ratio for the mode of initial deformation m = 3.
The data are shown in Fig. 9 for a drop with Oh = 0.1 with the two values of the deformation
parameter η0 = 0.15 and 0.4. The results from the three analyses agree very well, showing the
influence from a higher-order mode, to which m = 3 couples in the motion briefly after start. The
result is a quasiperiodicity of the motion. This mode is strongly damped, leaving a periodic motion,
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FIG. 8. Droplet shape comparison for Oh = 0.1, m = 2, and η0 = 0.4 (case 1.3) at time instances corre-
sponding to the first three extreme values of the aspect ratio evolution (cf. Fig. 6, left). Left: Initial maximum
deformation at t = 0. Right: Minimum deformation at t = 1.26 for the XDG approach and at t = 1.25476 for
WNLT. Bottom: Maximum deformation at t = 2.405 for the XDG approach and at t = 2.42237 for WNLT.
XDG computations have initially stagnant drop.
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FIG. 9. Aspect ratio L/W over time for Oh = 0.1 and m = 3. Left: η0 = 0.15 (case 2.1). Right: η0 = 0.4
(case 2.2).
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FIG. 10. Aspect ratio L/W over time for Oh = 0.1 and m = 4. Left: η0 = 0.1 (case 3.1). Right: η0 = 0.4
(case 3.2).

approximately from around t = 2 on. The details of the quasiperiodic motion of the drop surface
agree very well between the different methods of analysis, even for the stronger deformation at
η0 = 0.4. Note that for the XDG simulation with the third-order initial velocity field in Fig. 9 (left),
the agreement with the WNLT is much better than with the stagnant velocity field.

Studying a drop with the initial mode of deformation m = 4 for two different values of the
deformation parameter yields the results in Fig. 10. The findings are similar to those at mode m = 3,
in that the data from the different methods of analysis agree very well. At the higher value η0 = 0.4,
however, the initial velocity field in the drop predicted by the WNLT in the early periods of the
motion makes a stronger difference against the XDG results than with m = 3. The quasiperiodicity
of the motion remains present for a longer period of time than with mode m = 3, indicating the
coupling to less strongly damped (lower-order) modes for m = 4. The agreement between the
WNLT and the XDG results in terms of the traces in time is remarkably good.

For the drop shape oscillations studied, we are interested in the oscillation frequencies involved in
the motions. For quantifying this, we compute the Fourier power spectra of the frequency involved
in the data traces in time. The finite time spectra of a function of time g(t ) are given as

ĝ(α) =
∫ t2

t1

g(t )e−iαt dt and ĝd (α) = 1

N

N∑
n=1

g(tn)e−iαtn (40)

in an analytical form, for use with the analytical solutions from the WNLT, and in a discrete form,
using the numerical data from the XDG method, respectively. In the discrete form, N is the number
of time instants between the times t1 and t2. The Fourier transform becomes more important for
finding the frequencies, the more the quasiperiodicity influences the time series in motions with
large deformations. The frequencies are then not easily found from a “manual” inspection of the
traces. Figures 11–13 show the normalized Fourier power spectra of the frequency for the motions
of the drop north pole corresponding to the data on the left in Figs. 6, 9, and 10, respectively.
The corresponding plots for the drop north pole position as a function of time are found in the
Appendix A 1. The spectra exhibit zero values at zero frequency, because the underlying data
represent the deviations of the north-pole position from its time average. The spectra are shown
as obtained from an analysis of the first oscillation period only, and from analyzing the period of
time 0 � t � 7 in order to see the evolution of the frequency spectra with ongoing time during the
oscillations.

For all the oscillating drops studied, the analytical and computational methods yield nearly
identical power spectra of the oscillation frequency, as represented in the diagrams by the dashed and
solid lines, respectively. The spectra of the first oscillations exhibit peaks at frequencies deviating

063601-16



FROM WEAKLY TO STRONGLY NONLINEAR VISCOUS …

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

2.
39

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

2.
59

FIG. 11. Squared real parts of the Fourier power spectra of the oscillation frequency for the drop north pole
motion corresponding to the left-hand side of Fig. 6 from XDG and WNLT, normalized with the respective
maximum values (SFPS), for Oh = 0.1, m = 2, and η0 = 0.4: left, results for the first oscillation; right, results
for the interval 0 � t � 7.

from the solutions of the characteristic equation of the drop, i.e., from the linear oscillation fre-
quency. The deviations of the peak frequencies for the first oscillation period from the corresponding
solution of the characteristic equation of the drop are −13%, −8.6%, and −10% for m = 2 at
η0 = 0.4, for m = 3 at η0 = 0.15, and for m = 4 at η0 = 0.1, respectively. For a given initial degree
of deformation, the frequency deviation, indicating nonlinear oscillatory behavior, increases with
the mode of initial deformation. It is particularly large for the present case in the fundamental
mode, since the initial deformation with η0 = 0.4 is large enough to cause this. For the longer time
intervals covered by the Fourier transform, the differences are smaller in absolute value throughout
(−5.8%, −2.3%, and −2.6%, respectively), since the damping of the oscillation, which reduces
the deformation amplitudes in time, brings the drops closer to the linear behavior. The spectra are
narrower around the dominant frequency for the longer integration time than for the first oscillation
alone. The spectra furthermore exhibit secondary peaks at frequencies higher or lower than the
dominant one. For the data from the first oscillation period at m = 2, secondary peaks at higher
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FIG. 12. Squared real parts of the Fourier power spectra of the oscillation frequency for the drop north
pole motion corresponding to the left-hand side of Fig. 9 from XDG and WNLT, normalized with the respective
maximum values (SFPS), for Oh = 0.1, m = 3, and η0 = 0.15: left, results for the first oscillation; right, results
for the interval 0 � t � 7.
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FIG. 13. Squared real parts of the Fourier power spectra of the oscillation frequency for the drop north pole
motion corresponding to the left-hand side of Fig. 10 from XDG and WNLT, normalized with the respective
maximum values (SFPS), for Oh = 0.1, m = 4, and η0 = 0.1: left, results for the first oscillation; right, for the
interval 0 � t � 7.

frequency appear at α = 4.58 and at α = 7.05. The latter deviates from the frequency for m = 4,
with which m = 2 couples, by no more than −0.3%. In contrast, the former is close to the difference
between the peak frequency and the secondary peak at α = 7.05, which characterizes this as a beat
frequency. For m = 3, secondary peaks with very low power densities appear at α = 9.34 and at
α = 11.8. The latter deviates from the frequency for m = 5 by no more than 10%, while the former
is close to the difference between the peak frequency and the frequency for m = 2, with which
m = 3 couples at third order. For m = 4, there exists one secondary peak with very low power
density at α = 14.2, which deviates from the corresponding solution of the characteristic equation
of the drop by no more than 2.8%. Even higher frequencies are even less represented in the power
spectrum.

The spectra evaluated for the time interval 0 � t � 7 exhibit secondary peaks below the domi-
nant peak frequency. These frequencies may be interpreted as beat frequencies throughout, which
develop with ongoing time and are therefore not visible in the first oscillation period. The frequency
of 0.6 appears in all the three spectra, and values around 1.56 and 2.4 are found in the spectra for
m = 3 and m = 4. The oscillations from the first period interact with those developing later in time.

3. Oscillatory motion starting from a supercritical state (case 4)

As a final item, we study the motion of a drop with the relatively large Ohnesorge number Oh =
0.56, which is initially deformed at mode m = 4. For this drop, the characteristic equation predicts
a zero oscillation frequency; i.e., the drop is in this sense supercritical. The linear theory therefore
predicts aperiodic behavior, i.e., that the drop returns from its deformed initial state to the spherical
state without oscillating. The WNLT, however, predicts the damped periodic oscillations of this
drop, in agreement with the XDG analysis accounting for the initial velocity field from the WNLT.
The data are shown in Fig. 14. In contrast to this, the XDG approach starting from a stagnant drop
predicts aperiodic behavior.

The reasons for this behavior are found by decomposing the drop shape into the contributing
modes as functions of time, as shown in Fig. 15. The diagrams show the coefficients al in the modal
expansion of the drop shape as functions of time, exhibiting significant contributions from modes
l = 2 and l = 4. This shows that the WNLT analysis starts from a state of motion inside the drop
where mode coupling has excited mode l = 2. For this mode, the drop at this Ohnesorge number
exhibits damped periodic oscillations. The high Ohnesorge number leads to strong dampening of the
oscillation. The oscillation therefore dies out rapidly, as seen in Fig. 14. The modes l = 0 and l = 6
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FIG. 14. Aspect ratio L/W over time for Oh = 0.56, m = 4, and η0 = 0.05. The linear theory predicts an
aperiodic motion.

contribute by coefficients with values one to two orders of magnitude smaller than a2 and a4. The
initially stagnant drop, in contrast, exhibits very small values of a2 at all times, since, when starting
from rest, mode coupling does not have the time to produce strong shape deformations against the
effect of dampening. This is the reason for the seemingly aperiodic drop behavior predicted by the
XDG method when starting from the drop at rest.
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FIG. 15. Mode decomposition of the drop surface as a function of time for Oh = 0.56, m = 4, and η0 =
0.05, represented by the coefficients of the series expansion of the drop surface shape.
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TABLE II. Additional simulation cases of large-amplitude oscillations up to η0 = 0.7 using the XDG
method. The Ohnesorge number Oh = 0.1, and the initial velocity field is stagnant. Time step δt = 5 × 10−3;
simulations to time tend = 4.

Case m η0 A(�)

1.4 2 0.3 0.981486
1.5 2 0.5 0.947538
1.6 2 0.6 0.923706
1.7 2 0.7 0.895131

2.3 3 0.3 0.987143 − 0.00252468 cos θ

2.4 3 0.5 0.964301

3.3 4 0.2 0.995508
3.4 4 0.3 0.989838
3.5 4 0.5 0.971459
3.6 4 0.6 0.958674
3.7 4 0.7 0.943440

B. Large-amplitude study by the XDG method

The XDG method allows drop shape oscillations to be studied up to large amplitudes of
deformation. This method is therefore used to investigate strongly nonlinear axisymmetric drop
shape oscillations at large deformation, corresponding to values of the deformation parameter η0 up
to 0.7. Table II lists the additional simulation cases for the large-amplitude study in this section. All
simulations are initialized with a stagnant velocity field.

1. Oscillation frequency and time spent in prolate shape (case 1)

In Sec. V A 1 we compared the two presented methods, WNLT and XDG, up to a deformation
parameter of η0 = 0.4, i.e., an initial aspect ratio of L/W < 1.8 (cf. Fig. 4). In this section we
extend this figure, showing the nonlinear effects up to L/W < 3 and comparing against Refs. [9,41].
Looking at the frequency change [Fig. 16(a)], we observe an excellent agreement with the results
of Ref. [9], where both describe a slightly curved trace starting from L/W = 1.5. Reference [41]
predicts a more linear and weaker frequency decrease for larger initial deformations. In Fig. 16(b)
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FIG. 16. Nonlinear effects for Oh = 0.1 and mode of initial deformation m = 2 for initial aspect ratios up
to L/W = 3. (a) Frequency decrease as a function of the initial drop aspect ratio L/W . (b) Time percentage
spent in prolate form as a function of the initial drop aspect ratio L/W .
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FIG. 17. Aspect ratio L/W over time t for drops with Oh = 0.1 in the different modes of initial deformation
(a) m = 2, (b) m = 3, and (c) m = 4, with deformation parameters up to η0 = 0.7. The red dash-dotted lines
indicate WNLT results.

we present the extended plot for the time percentage spent in prolate form. Here, all the results
coincide very well throughout the whole range of aspect ratios L/W .

2. Aspect ratio over time (cases 1–3)

In Fig. 17 we present the drop aspect ratio as a function of time for the three modes m = {2, 3, 4}
of initial deformation studied in this paper. The traces for m = 2 and η0 = {0.1, 0.2, 0.4} were
shown in Figs. 5 and 6 already, for m = 3 and η0 = {0.15, 0.4} in Fig. 9, and for m = 4 and
η0 = {0.1, 0.4} in Fig. 10. The red dash-dotted lines indicate WNLT results for the deformation
parameters given in the legends. Note that, for m = 3 and η0 = 0.5, a level-set reinitialization is
performed every 50th time step (cf. Sec. IV).

The traces of the drop aspect ratio in time show that the quasiperiodicity of the oscillations arising
with increasing deformation is more pronounced for the higher modes of initial deformation. This
result is confirmed by the WNLT data. The reason is that higher modes couple to lower modes with
smaller oscillation frequency, which influence the traces in time more visibly and survive longer in
time due to the smaller damping factor. This is clearly seen in Fig. 17(c) for m = 4. From η0 = 0.4
on, the trend of deformation of the drop after the start of the motion even changes its sign, leading
to a further elongation of the drop rather than a contraction. The long living mode m = 2 then leads
to a trace of the aspect ratio in time, which is markedly different from the ones for η0 � 0.3, taking
to times beyond t = 1.5 to return to a harmonic oscillation.

The Fourier transforms of the motions of the drop north pole, corresponding to the evolutions
of the aspect ratio in time and found in Appendix A 2, again reveal the frequency power density
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FIG. 18. Squared real parts of the Fourier power spectra (FPS) of the oscillation frequency for the drop
north pole motion corresponding to Fig. 17(a) for Oh = 0.1, m = 2, and varying η0: results on the left for the
first oscillation and on the right for the interval 0 � t � 4.

in the data. The spectra shown in Figs. 18–20 for the modes of initial drop deformation m = 2
through m = 4 were again obtained for the first oscillation (left-hand diagrams) and for a longer
time interval (right-hand diagrams), which is 0 � t � 4 in the present figures. The spectra are not
normalized, in order to show the higher power densities for the stronger deformations. The peak
frequencies decrease with increasing initial deformation, as expected from the known nonlinear
behavior of the drops at lower deformation. The data from the first oscillation period show that, for
m = 2, the peak frequency decreases from α = 2.67 to α = 1.95, i.e., by −27%, as η0 increases
from 0.1 to 0.7. For m = 3, the corresponding frequency decrease is −23% between η0 = 0.15
and 0.5, and for m = 4 it is −37% between η0 = 0.1 and 0.7. This strong influence of the large
deformations on the oscillation frequency was expected. Secondary peaks appear for mode coupling
and as beats between the different oscillation mode frequencies, as with the smaller deformations
discussed above.
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FIG. 19. Squared real parts of the Fourier power spectra (FPS) of the oscillation frequency for the drop
north pole motion corresponding to Fig. 17(b) for Oh = 0.1, m = 3, and varying η0: results on the left for the
first oscillation and on the right for the interval 0 � t � 4.
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FIG. 20. Squared real parts of the Fourier power spectra (FPS) of the oscillation frequency for the drop
north pole motion corresponding to Fig. 17(c) for Oh = 0.1, m = 4, and varying η0: results on the left for the
first oscillation and on the right for the interval 0 � t � 4.

3. Energies over time (cases 1–3)

In this section, the resulting velocity fields and the position of the interface obtained by the XDG
simulations are used to quantify the kinetic energy,

Ekin = 1

2

∫
A

u · u dV, (41)

the deviation of the surface energy from the spherical state,

�Esurf =
∫
I

1dA − 4π, (42)

and the corresponding deviation of the total energy,

�Etot = Ekin + �Esurf, (43)

of the drop. Note that the presented quantities above are calculated for the whole drop from the XDG
simulations, which are performed on the quarter domain. The kinetic energy was derived from the
WNLT results as

Ekin,WNLT = 1

2

∫
A

[
(u1 · u1)η2

0 + 2(u1 · u2)η3
0

]
dV. (44)

In Fig. 21, the bulk kinetic energy of the oscillating drop with Oh = 0.1 is depicted as a function
of time for the three different modes of initial deformation studied. The red dash-dotted curve in
Fig. 21(a) shows the results from the WNLT at η0 = 0.1, which collapse on the related XDG data.
The energy evolution starts from zero, since the drop is initiated in a stagnant, deformed state. The
kinetic energy exhibits the expected behavior, but with a less visible quasiperiodicity at the higher
deformation amplitudes than seen in the drop aspect ratio traces. This holds particularly for m = 4.
The reason is the influence from the squared velocity, which affects the time behavior, showing a
doubling of the frequency against the traces for the aspect ratio.

Figure 22 depicts the surface energy traces for the four different modes of initial deformation
corresponding to the deformation of the drop against the spherical state. The evolutions start from
the initial surface energy, corresponding to the state of deformation and the deformation mode. The
red dash-dotted curve in Fig. 22(a) shows the results from the WNLT at η0 = 0.1, which collapse
on the related XDG data. At a given value of the deformation parameter η0, the higher modes
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FIG. 21. Kinetic bulk energy Ekin = 1
2

∫
A

u · u dV over time t for the different modes of initial deformation
(a) m = 2, (b) m = 3, and (c) m = 4, with deformation parameters up to η0 = 0.7 and Ohnesorge number
Oh = 0.1. The red dash-dotted line indicates WNLT results.

of deformation involve higher surface energies. The corresponding damping factor also increases
with the mode of deformation, leading to a steeper decay of the energy in time for the higher than
for the lower modes. At the stronger deformations for the modes m � 3, furthermore, the kinetic
and surface energies do not reach the values of zero at the first minima. For m = 3 this is visible
from η0 = 0.3 on, and for m = 4 from η0 = 0.4. This means that the drop surface energy is not
totally converted into kinetic energy when the latter reaches its first maximum, and vice versa at
the first minimum of the surface energy. This finding was reported in Ref. [2] for inviscid drops at
higher-order deformation modes and strong deformations also.

In the present context, the sum of the two above-discussed forms of mechanical energy of the
drop is denoted as the total energy. The total energy has the tendency to decrease in time, which
is due to dissipation of the mechanical energy into heat. The effect on the drop liquid from the
dissipation is not accounted for in the present study. The decay of the total energy is, therefore, not
to be seen as a conflict with energy conservation. The data from the XDG simulations in Fig. 23
show that the rate of total energy decay is highest at times of largest velocities. The strong motion
inside the drop goes along with high shear rates in the drop, which govern the rate of dissipation.
Consequently, the high kinetic energies at mode m = 4 lead to a rapid decay of the total energy,
as seen in Fig. 23(c). The red dash-dotted curve in Fig. 23(a) shows the results from the WNLT at
η0 = 0.1, which collapse on the related XDG data. For a given deformation parameter, the large
damping factors at the higher-order modes of deformation can, therefore, be attributed to the higher
energies associated to the initial state of deformation of the drop. The increase of damping factor
with the mode number is seen in the linear theory also.
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FIG. 22. Surface energy deviation from the spherical state �Esurf = ∫
I

1dA − 4π over time t for the
different modes of initial deformation (a) m = 2, (b) m = 3, and (c) m = 4, with deformation parameters up to
η0 = 0.7 and Ohnesorge number Oh = 0.1. The red dash-dotted line indicates WNLT results.

VI. CONCLUSIONS

Axisymmetric shape oscillations of a Newtonian liquid drop in a dynamically inert ambient
medium were studied. The oscillations were investigated using the analytical weakly nonlinear the-
ory (WNLT) approach, and numerically with the extended discontinuous Galerkin (XDG) method.
Oscillations start from a drop shape which is deformed against the spherical equilibrium state, with
the deformation given by a Legendre polynomial of degree m. The number m counts the lobes of the
drop shape in the direction of the polar angle of the spherical coordinate system. The deformation
amplitude is determined by the value of a deformation parameter and varied between moderate
and strong deformations. For the mode of initial deformation m = 2 and 4, the largest deformation
parameter studied corresponds to a drop aspect ratio of 2.9.

Properties of the oscillating drops studied are the north pole position, the aspect ratio, as well as
the kinetic, the surface, and the total energy contents of the drop as functions of time. The mode of
initial deformation of the drop, the deformation amplitude, and the drop Ohnesorge number, as well
as the initial velocity field inside the drop, are varied. The WNLT is a theoretical approach revealing
the nonlinear properties of the oscillations. Since it is based on truncated series expansions of the
field variables and the drop shape, however, it can be applied to moderate surface deformations only.
Within this limit, the theory yields results in excellent agreement with the numerical simulations
using the XDG method. This applies to both cases of the initially stagnant drop bulk and the velocity
field as predicted by the WNLT. Oscillations starting from modes of initial deformation m = 2, 3,
and 4, with deformation parameters η0 up to 0.4, exhibit a damped oscillatory behavior of the drop
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FIG. 23. Total energy deviation from the spherical state �Etot = Ekin + �Esurf over time t for the different
modes of initial deformation (a) m = 2, (b) m = 3, and (c) m = 4, with deformation parameters up to η0 = 0.7
and Ohnesorge number Oh = 0.1. The red dash-dotted line indicates WNLT results.

aspect ratio predicted equal by both methods and for both initially stagnant or moving drop bulk. The
nonlinear behavior induces mode coupling, so that, in the evolution of the motion, modes different
from the initial mode of deformation may be excited. For this reason, a drop with an Ohnesorge
number of 0.56, which is predicted as supercritical by the linear theory when deformed according to
m = 4, turns out to oscillate. The explanation comes from the excitation of mode m = 2, for which
Oh = 0.56 is subcritical.

The Fourier power spectra of the presented data traces in time are studied and both the WNLT
and the XDG method show nearly identical power spectra. Comparing the peak frequencies from
the first oscillation period against the corresponding solution of the characteristic equation shows a
decreased peak frequency for the first oscillation. This decrease is larger for higher modes of initial
deformation and larger with increasing initial deformation parameter. Secondary peaks appear for
mode coupling and as beats between the different oscillation mode frequencies.

The XDG simulations allow the energy content of the drop to be evaluated in a consistent manner,
which is not possible with the WNLT. The analysis of the total (mechanical) energy content of
the drop, composed from the kinetic and the surface energies, shows the expected dampening
influence, with stronger dampening factors for the higher-order modes of deformation and the
higher deformation amplitudes. At higher-order deformation modes m � 3 and moderate to large
deformation amplitudes, the conversion of surface into kinetic energy and vice versa in time is not
complete. The drop never reaches the spherical state until the dampening has strongly reduced the
deformation amplitude.

The BoSSS source code is available under the Apache License at Ref. [42].

063601-26



FROM WEAKLY TO STRONGLY NONLINEAR VISCOUS …

ACKNOWLEDGMENTS

Funding of this joint project of the two partner groups at TU Darmstadt and TU Graz by the
German Research Foundation DFG (Project No. OB 96/42-1), together with the Austrian Science
Fund FWF (Project No. I3326-N32), in the DACH framework is gratefully acknowledged. In
addition, the group at TU Darmstadt gratefully acknowledges the German Federal Ministry of
Education and Research (BMBF) and the state government of Hesse for supporting this work as
a part of the NHR funding. This work is partially supported by the joint DFG (the German funder)
and FWF (the Austrian funder) Collaborative Research Centre CREATOR (CRC-TRR361/F90) at
TU Darmstadt, TU Graz, and JKU Linz.

APPENDIX: DROPLET NORTH POLE POSITION OVER TIME

1. Comparison of the results from the XDG method and WNLT

In Fig. 24 we present the drop north pole position rs(0, t ) as a function of time t for the three
following cases with Oh = 0.1: m = 2 with η0 = 0.4, m = 3 with η0 = 0.15, and m = 4 with
η0 = 0.1. The evaluation of rs(0, t ) for the XDG method is done by the summation of the droplet
surface modes obtained by mode decomposition in terms of the spherical harmonics [see Eq. (38)].
The presented data traces in time are used for computing the Fourier power spectrum shown in
Figs. 11–13 in Sec. V A 2.
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FIG. 24. Droplet north pole position rs(0, t ) over time t for drops with Oh = 0.1—comparison of the
WNLT predictions with the XDG results: (a) m = 2 with η0 = 0.4, (b) m = 3 with η0 = 0.15, and (c) m = 4
with η0 = 0.1.
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FIG. 25. Droplet north pole position rs(0, t ) over time t for drops with Oh = 0.1 and different degrees of
initial deformation in the modes of initial deformation (a) m = 2, (b) m = 3, and (c) m = 4. The deformation
parameters up to η0 = 0.7 are covered.

2. Large-amplitude study by the XDG method

In Fig. 25 we present the drop north pole position rs(0, t ) as a function of time t for the
three modes m = {2, 3, 4} of initial deformation studied in this paper. The evaluation of rs(0, t )
for the XDG method is done by the summation of the droplet surface modes obtained by mode
decomposition in terms of the spherical harmonics [see Eq. (38)]. The presented data traces in time
are used for computing the Fourier power spectrum shown in Figs. 18–20 in Sec. V B 2.
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