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Numerous studies on natural and man made systems including rotating convection
report the phenomena of supercritical and subcritical transitions from one state to an-
other with the variation of relevant control parameters. However, the complexity of the
rotating convection system even under the idealized Rayleigh-Bénard geometry hindered
the simplest possible description of these transitions to convection. Here we present a
one-dimensional description of the stationary subcritical and supercritical transitions to
rotating Rayleigh-Bénard convection both for rigid and free-slip boundary conditions.
The analysis of the one-dimensional models and performance of three-dimensional direct
numerical simulations of the system show qualitatively similar results in a wide region of
the parameter space. A brief discussion on time dependent convection of overstable origin
is also presented.
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I. INTRODUCTION

The phenomenon of transition from one state to the other in a system with the variation of
control parameters is ubiquitous [1–3], and is characterized by an order parameter. Examples
include transition from conduction to convection [4,5], vapor to liquid [6] and laminar to turbulent
[7] in fluids, graphite to diamond [8], ferromagnetic to paramagnetic [9] etc. Depending on the
nature of the system, the order parameter may exhibit continuous or discontinuous transitions at a
critical value of the parameter. These transitions are connected with the supercritical and subcritical
bifurcations of the system, respectively, and are named accordingly.

The current deals with the problem of thermal convection in the presence of rotation. The
phenomenon of thermal convection is observed in wide variety of natural as well as man made
systems including geophysical [1], astrophysical [3], oceanic [10], liquid metals [11–13], liquid
crystal [14,15] etc., and it is one of the key factors governing the dynamics there. The richness of
dynamics in such systems in the accessible parameter ranges attracted the attention of researchers
for a long time, and kept the field an active area of research [16–23]. To unfold the complexity of
thermal convection, researchers often rely on the plane layer Rayleigh-Bénard convection (RBC)
model for the investigation of convective phenomena like instabilities [16,24–27], patterns [28–30],
chaos [31–33], heat transfer [7,12,34,35], turbulence [5,36] etc. For a fixed investigation domain,
RBC is completely described by two parameters, namely, the Rayleigh number (Ra, measures the
vigor of the buoyancy force) and the Prandtl number (Pr, ratio of the thermal and viscous diffusion
time scales).
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The study of RBC for more than a century [4,7,16,37] has not only improved the understanding of
thermal convection but also contributed significantly in developing subjects like hydrodynamic and
hydromagnetic instabilities [4], pattern formation [29,30], and nonlinear dynamics [38]. However,
for geophysical [39], oceanic [10] and astrophysical [40,41] systems where convection occurs in
the presence of rotation, rotating Rayleigh-Bénard convection (RRBC) provide a better model. The
presence of rotation introduces centrifugal as well as Coriolis forces into the system along with
the buoyancy force and makes the problem more complex compared to its nonrotating counterpart
[4,37,42].

In this paper, we consider RRBC of low Prandtl number fluids, the description of which needs
one more dimensionless parameter, namely, the Taylor number (Ta, measures the strength of the
rotation about a vertical axis) along with Ra and Pr. Chandrasekhar [4] developed the linear
theory based on normal mode analysis to determine the critical Rayleigh number (Rac) and wave
number (kc) for the onset of RRBC both in the presence of free-slip and no-slip velocity boundary
conditions. Linear theory results show that the rotational constraint inhibits convection by pushing
the critical Rayleigh number for the onset of stationary as well as oscillatory convection toward
higher Ra which is also experimentally supported [43,44]. It is interesting to note here that in
the presence of free slip boundaries, for higher Ta and Pr < 0.677, the time dependent overstable
solutions are observed at the onset because they can reduce the stabilizing effect of rotation [4,45].
Thus, in this case, the oscillatory convection occurs at a much lower critical Rayleigh number
compared to the one required for stationary convection and hence, convective motion of overstable
origin is preferred there. Beyond the onset of convection, RRBC has been extensively investigated
theoretically [45–48], numerically [49–53] and experimentally [42,54–57]. These studies revealed
several interesting properties of rotating convection related to instabilities, bifurcations, pattern
dynamics, and turbulence.

However, here we focus on the primary instability and the related flow patterns near the onset of
convection. Of particular interest is the subcritical convection leading to a finite amplitude solution
at the onset. The existence of such subcritical convection was first theoretically shown in RRBC with
free slip boundary conditions using perturbation methods [45] and low dimensional modeling [58].
On the other hand, the first experimental observation of subcritical rotating convection was reported
by Rossby [42]. Subsequently, Clever and Busse [59] numerically examined subcritical convection
in low Prandtl number fluids in the presence of rigid boundaries. The theoretical analysis of Clune
and Knobloch [47] based on weakly nonlinear theory, followed by the simultaneous experimental
and numerical study of Bajaj et al. [56] also provided great insight into the phenomenon of
subcritical convection and associated finite amplitude solution at the onset of RRBC.

Recently, in extensive three-dimensional direct numerical simulations with rigid boundaries,
Mandal et al. [22] identified the region of the parameter space for the observation of finite amplitude
solution at the onset of convection. Along with the direct numerical simulations, a low dimensional
model (22-dimensional) is also used to analyze the finite amplitude solutions at the onset, and the
origin of it is connected to the subcritical pitchfork bifurcation of the basic conduction state. The
investigation also revealed that the subcriticality is promoted with increasing Ta while it is inhibited
with increasing Pr in the stationary convection regime. However, a simplified description of the
phenomenon is still missing, due to the inherent complexity of the RRBC system.

Here we revisit the problem of subcritical rotating convection in low Prandtl number fluids
with the objective of providing the simplest possible description of the phenomena. The study is
performed using the RRBC model with both rigid and free-slip boundary conditions by varying
the Prandtl number in the range 0 < Pr � 0.6. For rigid boundaries, the Taylor number is varied in
the range 0 < Ta � 5 × 104 and for free-slip boundaries, it is varied in the range 0 < Ta � 104.
Two one-dimensional models, one each for rigid and free-slip boundary conditions are derived
using Galerkin projection and adiabatic elimination process for that purpose, which nicely captures
the phenomena of subcritical convection and related transitions. We also perform direct numerical
simulations (DNS) of the system in said parameter regime. The model and DNS results show a
qualitative match. Additionally, we also investigate the onset of overstable convection in this paper.
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II. PROBLEM FORMULATION

A. Physical system and governing equations

Standard plane layer Rayleigh-Bénard convection systems consisting of a thin horizontal layer
of Newtonian fluid of thickness d , kinematic viscosity ν, thermal diffusivity κ and coefficient of
volume expansion α confined between two perfectly thermally conducting horizontal plates are
considered for the study. The convective motion is driven by the buoyancy force generated due to
the thermal gradient between the upper and lower plates, maintained at constant temperatures Tu

and Tl , respectively, with �T = Tl − Tu > 0. The system is rotated about the vertical axis with an
angular velocity � (=�êz, êz being the vertically upward unit vector). As �T crosses a critical value
for fixed other parameters, the convective motion of the fluid in the presence of rotation is described
by the following set of dimensionless Boussinesq-Oberbeck [60,61] equations with respect to a
frame of reference corotating with the system:

Du
Dt

= −∇π + ∇2u + Raθ êz +
√

Ta(u × êz ), (1a)

Dθ

Dt
= 1

Pr
[uz + ∇2θ ], (1b)

∇ · u = 0, (1c)

where D
Dt ≡ ∂

∂t + (u · ∇) represents the material derivative, and u(x, y, z, t ) = (ux, uy, uz ),
θ (x, y, z, t ), and π (x, y, z, t ) are the convective velocity, temperature, and pressure fields, respec-
tively. Note that the convective pressure field π (x, y, z, t ) includes the contribution of the centrifugal
acceleration. The scales d , d2/ν, and �T ν/κ for length, time, and temperature, respectively, are
used to make Eqs. (1a)–(1c) dimensionless. The Rayleigh and Prandtl numbers are defined by
Ra = αg�T d3/(νκ ) and Pr = ν/κ , where g is the acceleration due to gravity. Another parameter
called the reduced Rayleigh number (r) is used subsequently and it is defined by r = Ra/Rac, where
Rac is the critical Rayleigh number for the onset of convection.

B. Boundary conditions

In this paper, we have used both rigid and free-slip velocity boundary conditions. The horizontal
plates are assumed to be thermally conducting. For rigid and free-slip boundaries, the origin of the
coordinate axes is taken at the mid plane and the bottom plate, respectively. The positive z axis is
taken antiparallel to the gravity.

Therefore, for rigid and thermally conducting boundaries we have

ux = uy = uz = θ = 0 at z = ± 1
2 , (2)

while free-slip conducting boundaries imply

uz = ∂ux

∂z
= ∂uy

∂z
= θ = 0 at z = 0, 1. (3)

Thus, Eqs. (1a)–(1c) together with the relevant boundary conditions provide the mathematical
model of the rotating hydrodynamic system.

III. LINEAR THEORY

To determine the onset of convection, the linear stability analysis of the conduction state of the
system is performed both with rigid and free-slip boundary conditions. First, the convective fields
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are expanded in terms of the normal modes as⎡
⎣u

θ

π

⎤
⎦ =

⎡
⎣U(z)


(z)
�(z)

⎤
⎦ei(kxx+kyy)+σ t + c.c., (4)

where c.c., U(z) = (Ux(z), Uy(z), Uz(z)), kx, and ky stand for the complex conjugate, z dependent
factor of the velocity vector, and the components of the wave vector in the x and y directions,
respectively. The temporal growth rate of perturbations is represented by σ = σr + iσi. Substituting
the above normal modes in the governing equations (1a)–(1c) and retaining the linear terms, the
following set of equations are obtained:

(D2 − k2 − σ )U(z) +
√

Ta(U(z) × ê3) = ikx�(z)ê1 + iky�(z)ê2 + (D�(z) − Ra
(z))ê3, (5a)

(D2 − k2 − σPr)
(z) + Uz(z) = 0, (5b)

ikxUx(z) + ikyUy(z) + DUz(z) = 0, (5c)

where D ≡ d
dz and k =

√
k2

x + k2
y is the horizontal wave number. These equations along with the

considered boundary conditions are then discretized using a staggered-grid Chebyshev spectral
collocation method [62] along the vertical direction as outlined in [22] which leads to a generalized
eigenvalue problem given by

AX = σBX, (6)

where, A and B are square matrices each of dimension 5N + 4, N is the order of the Chebyshev
polynomial, and σ is the eigenvalue. Note that the matrices A and B are functions of the parameters
of the system and the spatial grid points given by

φl = cos

[
π l

N

]
(l = 0, 1, . . . , N ), φm+ 1

2
= cos

[(
m + 1

2

)
π

N

]
(m = 0, 1, . . . , N − 1). (7)

The vector X is defined by

X = ({Ux(φl )}N
l=0, {Uy(φl )}N

l=0, {Uz(φl )}N
l=0, {
(φl )}N

l=0,
{
�(φm+ 1

2
)
}N−1

m=0

)T
.

Afterward, we proceed to solve the generalized eigenvalue problem utilizing the QZ algorithm
[63]. The trivial conduction state becomes unstable when the real part of one of the eigenvalues
becomes positive from negative with the variation of a relevant parameter. One obtains the case of
stationary cellular convection, where the so called “principle of the exchange of stabilities” [4] is
valid when a real eigenvalue of the problem becomes positive. On the other hand, the case of over-
stability is obtained when the real parts of a pair of complex conjugate eigenvalues become positive.
Figure 1 shows the typical eigenspectrum of the generalized eigenvalue problem for rigid boundary
conditions for two specific sets of parameter values. We then solve the generalized eigenvalue
problem in the entire region of the parameter space considered in this paper to determine the critical
Rayleigh number Rac and the critical wave number kc for the onset of convection. The critical wave
numbers determined from the linear theory are subsequently used for low dimensional modeling
and performing direct numerical simulations to define the computational domain. Figures 2(a) and
(b) show the regions of stationary and overstable convection regimes on the Pr − Ta plane for rigid
and free-slip boundary conditions, respectively, determined from the linear theory.

IV. NONLINEAR ANALYSIS

Linear theory only determines the marginally stable state of the system, but it can not determine
the flow patterns at the onset which is purely a nonlinear phenomenon. Thus, to investigate the flow
patterns at the onset of convection we perform nonlinear analysis of the system. For the nonlinear
analysis, we employ a low dimensional modeling technique and simultaneously perform direct
numerical simulations of the system both for rigid and free-slip boundary conditions. The results
are discussed below.
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FIG. 1. Full eigenspectrum of the generalized eigenvalue problem (6) with Pr = 0.1 in the presence of rigid
boundary conditions just above the onset of convection for (a) stationary cellular convection and (b) overstable
oscillatory convection.

A. Stationary cellular convection

The primary objective of the paper is to investigate the onset of rotating stationary cellular con-
vection and the related finite amplitude solution, where the principle of the exchange of stabilities
is valid. Subsequently, detailed results obtained for rigid and free-slip boundary conditions with
k = kc are presented.

FIG. 2. Stationary and overstable flow regimes at the onset of convection on the Pr − Ta plane for rigid
(a) and free-slip (b) boundary conditions.
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1. Results for rigid boundary conditions

Here we consider rigid velocity boundary conditions for the analysis of finite amplitude two-
dimensional rolls solution of subcritical origin at the onset of convection. First, we perform low
dimensional modeling of the system followed by the direct numerical simulations. A minimal mode
low dimensional model is constructed by considering the following truncated expansions

uz(x, y, z, t ) = W101(t )cos(kcx)C1(λ1z), (8)

ωz(x, y, z, t ) = Z201(t )cos(2kcx)cos(πz) + Z102(t )cos(kcx)sin(2πz), (9)

θ (x, y, z, t ) = T101(t )cos(kcx)cos(πz) + T002(t )sin(2πz), (10)

of vertical velocity uz, vertical vorticity ωz, and temperature θ, respectively, in terms of the
Chandrasekhar function [4] C1(λ1z) = cosh λ1z

cosh λ1/2 − cos λ1z
cos λ1/2 with λ1 = 4.73, sin and cos functions

compatible with the boundary conditions. The experimental [42] and numerical [22,59] observation
of two-dimensional rolls solutions at the onset of rotating convection, leads to the natural choice
of the perturbations W101(t )cos(kcx)C1(λ1z) in uz, ωz = 0 and T101(t )cos(kcx)cos(πz) with respect
to which the system is marginally stable at the critical Rayleigh number. Next, for the saturation
of the marginally stable mode of convection in the simplest possible way, we consider modes
T002(t )sin(2πz) in the temperature, and Z201(t )cos(2kcx)cos(πz) and Z102(t )cos(kcx)sin(2πz) in
vertical vorticity.

Now projecting the governing hydrodynamics equations on these five modes, the following set
of coupled nonlinear ordinary differential equations is obtained:

ξ̇ = (a11ξ + a12ζ + a13φ)/a14, (11)

ζ̇ = a21ζ + a22ξ + a23ηξ, (12)

η̇ = −a31η + a32ζ ξ, (13)

φ̇ = (a41φ + a42ξ + a43ψξ )/Pr, (14)

ψ̇ = (−a51ψ + a52ξφ)/Pr, (15)

where ξ = W101, ζ = Z102, η = Z201, φ = T101 and ψ = T002, a11 = −(19.74k4
c + 9880.87 +

485.70k2
c ), a12 = 48.75

√
Ta, a13 = 13.76Rak2

c , a14 = 19.74(k2
c + 12.30), a21 = −(39.47 +

k2
c ), a22 = −4.93

√
Ta, a23 = 2.09, a31 = 9.86 + 4k2

c , a32 = −8.36, a41 = −(0.99k2
c +

9.86), a42 = 1.39, a43 = −5.09Pr, a51 = 39.47, and a52 = 2.54Pr.
For the validation of the above model, we first determine the onset of stationary convection from

the model (11)–(15) and compare with the linear theory results. The comparisons are shown in
Table I. From the table, it is clear that there is a satisfactory match between the linear theory and
the model results for the onset of convection. Next we move ahead to reduce the model further to
achieve the simplest possible description of the system for the onset of convection in the stationary
regime using adiabatic elimination process [64].

To investigate the dynamics of the dynamical system (11) - (15) beyond the onset of convection,
we first focus on the stationary convection regime and for that, we need to determine the fixed
points of it in the parameter regime of our interest. Thus, we obtain a set of 5 algebraic equations
in ξ, ζ , η, φ and ψ by equating the right hand sides of the equations (11)–(15). Next, from those 5
equations we eliminate the variables ζ , η, φ and ψ , and obtain the following equation in ξ :

c1ξ + c3ξ
3 + c5ξ

5 = 0, (16)

where c5 = a23a11a32a43a52, c3 = a11(a21a31a43a52 + a23a32a41a51) − (a12a31a22a43a52 +
a13a42a51a23a32), and c1 = a51a31[a11a41a21 − (a12a22a41 + a13a42a21)].
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TABLE I. Critical Rayleigh numbers (Rac) for different Ta, computed from the linear theory (LT), 1D
model, and DNS for Pr = 0.1 with rigid boundary conditions.

kc Rac Rac Rac Error(%) Error(%)
Ta (LT) (LT) (Model) (DNS) (LT vs Model) (LT vs DNS)

1 × 10 3.119 1720 1734 1715 0.81 0.29
1 × 102 3.159 1764 1779 1760 0.85 0.23
5 × 102 3.317 1948 1976 1940 1.43 0.41
1 × 103 3.482 2159 2205 2150 2.13 0.42
5 × 103 4.263 3476 3706 3380 6.61 2.76

Now using Eq. (16) we construct the following potential function [38,65] for ξ :

V (ξ ) = −
∫

(c1ξ + c3ξ
3 + c5ξ

5)dξ . (17)

Note that, although the potential function V (ξ ) defined in Eq. (17) contains the variable ξ only,
the contributions of the other variables are embedded there in the coefficients. Subsequently, it can
be seen that V (ξ ) nicely captures the phenomenon of transition to subcritical convection. Now using
the potential function V (ξ ) we obtain the following one-dimensional dynamical system

ξ̇ = −dV (ξ )

dξ
= c1ξ + c3ξ

3 + c5ξ
5, (18)

which is subsequently used to investigate the onset of subcritical and supercritical rotating con-
vection. Interestingly, the one-dimensional dynamical system (18) captures the dynamics of the
five model [(11)–(15)] in the stationary convection regime very closely. The onset of stationary
convection determined from the 1D model is the same as the ones presented in Table I. We now
perform a detailed bifurcation analysis of the model (18) using an open source software XPPAUT
[66] to understand the transition to convection for different values of the parameters.

Figure 3 shows the bifurcation diagrams constructed from the 1D model for fixed Pr = 0.1
and various values of Ta. In the bifurcation diagrams, for each value of Ta, the variation of r is
shown along the horizontal axis and that of the stable (solid lines) and unstable (dashed lines) fixed
points along the vertical axis. The bifurcation diagrams show the transition to convection through
supercritical and subcritical pitchfork bifurcations for slow and high rotation rates, respectively.
Note that the subcritical transition to convection is characterized by the appearance of a saddle-node
(SN) bifurcation at higher Ta, resulting in a discontinuity in the solutions followed by finite
amplitude flow patterns at the onset. It is also observed that as the rotation rate is increased, the
saddle-node (SN) bifurcation point moves toward lower r, and the distance between the pitchfork
bifurcation (PB) and SN points increases. For more details, we look at the variation of the location
of the SN bifurcation point with Ta for Pr = 0.025 and 0.1 and the results are presented in Fig. 4.
From the above discussion, it is apparent that for a fixed value of Pr, increasing rotation leads to
an increase in subcriticality. The time series of ξ and the fluid pattern associated with the stable
stationary solutions of supercritical origin is shown in Fig. 5. The flow patterns at the onset of
subcritical convection are also similar but the associated mean velocity is higher.

To illustrate the transitions from supercritical to the subcritical onset of convection with the
variation of rotation rate (Ta) in more detail, we consider two values of Ta, namely, 10 and
500 where, respectively, supercritical and subcritical transition to convection is observed in direct
numerical simulations [22,59] with Pr = 0.1. For Ta = 10, we first draw the graphs of the potential
function V (ξ ) by varying the reduced Rayleigh number r around r = 1, the critical Rayleigh number
for the onset of convection. The graphs are shown in Fig. 6(a).

From Fig. 6(a), only single well potentials are observed for 0 < r � 1. The shape of the graphs
suggests that ξ = 0 is the only fixed point of the system and it is stable, which physically indicates
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FIG. 3. Bifurcation diagrams prepared from the 1D model for fixed Pr = 0.1 and four different Ta.
Pitchfork and saddle-node bifurcation points are marked with PB and SN, respectively. Supercritical pitch-
fork bifurcation is seen for Ta = 50, while, subcritical pitchfork bifurcations are observed for other three
Ta (200, 1000, and 5000).

the stability of the conduction state of the system. On the other hand, for r > 1, the shape of the
graphs changes and double well potentials are observed. Now, there are three different fixed points
(extrema) of the system, namely, the trivial ξ = 0 and two other nonzero fixed points (say ±ξ ∗)
which are marked with black squares in Fig. 6(a). The shape of the graphs indicates that the trivial
fixed point is unstable (maxima) and the nonzero fixed points are stable (minima). Note that the
stable nonzero fixed points physically represent the stationary two-dimensional roll patterns. Such
a scenario is typically observed around a supercritical pitchfork bifurcation [38]. The bifurcation
diagram of the one-dimensional model (18) for the same set of parameter values is shown in Fig. 6(b)
and confirms the supercritical nature of the transition to convection.

FIG. 4. Variation of the saddle node bifurcation point with Ta for two different Pr.
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FIG. 5. Time series (a) and corresponding flow pattern (b) at the onset of convection for Ta = 50 and
Pr = 0.1.

Next, for Pr = 0.1 and Ta = 500, we also draw the graphs of V (ξ ) by varying r around the critical
value r = 1 [Fig. 7(a)]. The fixed points of the system can be identified from the location of the local
maxima or minima points of the graph marked by filled black circles, and red and black squares,
respectively. The local maxima and minima, respectively, represent unstable and stable fixed points
of the system. In this case, only the trivial fixed point (ξ = 0) exists and is stable [the filled black
circle in Fig. 7(a)] for 0 < r < 0.9616. Interestingly, five different fixed points (three stable and
two unstable) exist in the range 0.9616 < r < 1. The stable fixed points (filled black circles and
squares) are separated by the unstable fixed points (red squares). As a result, the phenomenon of
hysteresis is observed in this range of r. Further, increase of r beyond r = 1, two unstable nonzero
fixed points ceased to exist and only three fixed points exist. The trivial fixed point becomes unstable
and finite amplitude stable nonzero fixed points continue to exist. Thus, at the onset of convection,
finite amplitude two-dimensional steady flow patterns are observed just at the onset of convection
(r > 1). This is a signature of subcritical pitchfork bifurcation with hysteresis [38] and related
transition to finite amplitude convection is subcritical in nature for the considered set of parameter
values. Finally, we use the one-dimensional model once again to construct a bifurcation diagram for
the parameter values Pr = 0.1 and Ta = 500. The bifurcation diagram is shown in Fig. 7(b). The
bifurcation clearly shows the scenario of subcritical pitchfork bifurcation with hysteresis around the
critical point r = 1.

FIG. 6. Supercritical transition to convection for Pr = 0.1 and Ta = 10. (a) Graphs of V (ξ ) for different
values of r around the critical point r = 1. The extremum points are shown with black squares. (b) Bifurcation
diagram of the 1D model (18) showing supercritical pitchfork bifurcation.
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FIG. 7. Subcritical transition to convection for Pr = 0.1 and Ta = 500. (a) Graphs of V (ξ ) for different
values of r around the critical point r = 1. The filled black circle, and red and black squares show the locations
of the extremum points. (b) Bifurcation diagram of the 1D model (18) showing subcritical pitchfork bifurcation.

Therefore, from the foregoing analysis of the one-dimensional model and the potential function
V (ξ ), it is seen that the change of shape of the graphs of the the potential function with the
variation of the parameter r determines the nature of transition to convection. The potential function,
although, is a highly simplified description of the system under consideration, yet, it is able to
capture the transition phenomena quite satisfactorily. It is interesting to note here that the mode
Z201 considered in the vertical vorticity is very important in capturing the subcritical behavior in the
system. We did not get subcritical convection excluding this particular mode, even by considering
a large number of modes in the low dimensional modeling. The contour plots of the Z201 mode on
the x − z plane shown in Fig. 8(a) clearly depicts the rotating tendency of the fluid on that plane
for Ta = 120 and Pr = 0.1. To understand the role of the Z201 mode in inducing subcriticality in

FIG. 8. (a) Contour plots of the vorticity mode Z201 showing the rotating tendency of the flow field on the
x − z plane as obtained from the 1D model (18) for Ta = 120 and Pr = 0.1. (b) Kinetic energy (KE) and the
value of Z201 as a function of the Taylor number Ta for Pr = 0.1 at the onset of convection (r = 1.001) obtained
from the five mode model (11)–(15). Vertical scales for the graphs of the KE and Z201 are shown along the left
and right vertical axes, respectively.
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FIG. 9. Two parameter diagram constructed from the 1D model (18) and DNS for rigid boundary condi-
tions demarcating supercritical and subcritical flow regimes on the Pr − Ta plane. The thick solid and dashed
black curves are obtained from the model and DNS, respectively.

the system, we compute the value of the Z201 mode and the kinetic energy (KE) from the five mode
model (11)–(15) using the formula KE = 1

2 〈u2
x + u2

y + u2
z 〉, where 〈·〉 denotes the space average over

the domain 2π
kc

× 2π
kc

× 1.
The variation of Z201 and KE at the onset of convection (r = 1.001) with Ta are shown in

Fig. 8(b) for Pr = 0.1. We note here that for Pr = 0.1, subcriticality is observed in the model when
Ta � 100. Now from Fig. 8(b) it is clearly seen that the growth rate of the graph of Z201 greatly
enhanced for Ta � 100. Simultaneously, the kinetic energy of the system also grows at a very fast
rate with Ta at the onset of convection showing a clear correlation between the growth rate of Z201

and the kinetic energy. Now, very high kinetic energy at the onset of convection for Ta � 100,
leads to the phenomenon of sustenance of convection in the subcritical regime (r < 1) during the
backward continuation of the finite amplitude solution obtained at the onset. Thus, the mode Z201

plays a crucial role in inducing subcriticality in the system.
We now use the 1D model to demarcate the supercritical and subcritical onset of convection on

the Pr − Ta plane and results are shown in Fig. 9. It is clearly observed that increasing the rotation
rate (Ta) promotes subcriticality, while increasing the Prandtl number (Pr) inhibits it by promoting
supercriticality.

Now, to check the validity of the model results we perform three-dimensional direct numerical
simulations of the system using the open source spectral element code NEK5000 [67] in a rectan-
gular box of size 2π

kc
× 2π

kc
× 1 with grid resolution 56 × 56 × 56. Time advancement is done by a

suitable second order backward difference scheme with Courant-Friedrichs-Lewy (CFL) condition
in the code. We use random initial conditions with time step δt = 1 × 10−4 for all the simulations.
At the outset, we use the critical wave number kc computed from the linear theory to restrict the
computational domain to 2π

kc
× 2π

kc
× 1 and determine the critical Rayleigh number for the onset

of convection. The results for Pr = 0.1 are presented in Table I which show a satisfactory match
among the linear theory, model, and DNS.

In DNS, the subcritical and supercritical transitions to rotating convection are determined by
computing the Nusselt number Nu, defined by

Nu = 1 + Pr2〈uzθ〉, (19)
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FIG. 10. Variation of the Nusselt number Nu with r for Pr = 0.1. The solid cyan line and black stars,
respectively, correspond to the forward and backward continuation data for (a) Ta = 10 and (b) Ta = 500.

which measures the ratio of the average convective to conductive heat transfers across the layers. The
symbol 〈·〉 represents the spatial average over the computational domain. Supercritical or subcritical
convection occurs at the onset if the value of Nu follows the same or different paths during the
forward and backward continuation of the reduced Rayleigh number across the critical point r = 1.

Figure 10 shows the variations of the Nusselt numbers for Ta = 10 and 500. From Fig. 10(a), it
is observed that for forward as well as backward continuation of r, the Nusselt number follows
the same path and Nu does not show any jump at the critical point r = 1 indicating supercritical
nature of the transition. On the other hand, Fig. 10(b) shows a discontinuity in Nu, and forward
and backward data following different paths forming the so called “hysteresis loop” indicating the
subcritical transition to convection. For a detailed understanding of the parameter space, we now
determine the curve separating the supercritical and subcritical onset of the convection flow regime
which is shown using the thick dashed black curve in Fig. 9. Thus, the model and the DNS results
show qualitatively similar behavior. Subsequently, we investigate the phenomenon of subcritical
convection in RRBC in the presence of free-slip boundary conditions.

2. Results for free-slip boundary conditions

It is interesting to note that subcritical convection was first reported in the RRBC model in
the presence of free-slip boundary conditions [45,58] before the experimental observation of the
phenomenon by Rossby [42]. Both weakly nonlinear theory [45] and low dimensional modeling
[58] were used for the investigation. Following the low dimensional modeling approach presented
in [58], we expand the convective vertical velocity, vorticity, and temperature fields as follows:

vz = W101(t ) cos kcx sin πz, (20)

ωz = Z101(t ) cos kcx cos πz + Z200 cos 2kcx, (21)

θ = T101(t ) cos kcx sin πz + T002(t ) sin 2πz, (22)

in terms of the boundary condition compatible basis functions. We then project the hydrodynamic
equations (1a)–(1c) on these modes to obtain a five-dimensional coupled ordinary differential
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TABLE II. Critical Rayleigh numbers (Rac) for different Ta computed from linear theory (LT), 1D model,
and DNS for Pr = 0.1 with free-slip boundary conditions.

kc Rac Rac Rac Error(%) Error(%)
Ta (LT) (LT) (Model) (DNS) (LT vs Model) (LT vs DNS)

1 2.226 659.5 659.5 660 0 0.07
10 2.269 677.1 677.1 675 0 0.31
50 2.434 748.3 748.3 720 0 3.78
100 2.594 826.2 826.2 775 0 6.19
500 3.277 1274.6 1274.5 1090 0.01 14.48

equation for the Fourier amplitudes W101, Z101, Z200, T101, and T002 which is given by

ξ̇ = −(a2ξ − cφ + bγ )/a, (23)

γ̇ = −aγ + bξ − π/2χξ, (24)

χ̇ = −4k2χ + πξγ , (25)

φ̇ = −(aφ − ξ − πPrξψ )/Pr, (26)

ψ̇ = −π/2(8πψ + Prξφ)/Pr, (27)

where ξ = W101, γ = Z101, χ = Z200, φ = T101, ψ = T002, a = π2 + k2
c , b = π

√
Ta, c = Rak2

c .
As done with rigid boundary conditions, here also we compare the critical Rayleigh number

for the onset of convection determined from the linear theory (LT) and the above model. The
comparison results are presented in Table II which shows a very good match.We then further reduce
the set of five ordinary differential equations to a single one by adopting a similar procedure as
described in the previous subsection. Thus, we obtain the following one-dimensional model

ξ̇ = d1ξ + d3ξ
3 + d5ξ

5, (28)

for the investigation of subcritical bifurcation, where, ξ = W101, d1 = 64a4(a − π2) + 64ab2(a −
π2) − 64ac(a − π2), d5 = π2Pr2a2, d3 = 8a3Pr2(a − π2) + 8a3π2 + 8b2Pr2(a − π2) − 8cπ2.

Interestingly, even after the drastic simplification, the critical Rayleigh number for the onset of
convection determined from the above 1D model is the same as the ones determined from the five
mode model. We have also checked that the one-dimensional model (28) provides qualitatively the
same bifurcation structure as the one given by the five mode model (23)–(27) in the stationary
cellular convection regime. Therefore, we use the model (28) for the investigation of subcritical
convection and the effect of the parameters on it. Figure 11 shows the regions of subcritical
and supercritical onset of convection regimes on the Pr − Ta plane obtained from the 1D model
separated by the thick solid black curve. The region on the left of the solid curve is for subcritical
convection, while the region on the right side of the curve is for supercritical convection.

For the validation, next, we perform direct numerical simulations of the system in the presence
of free-slip boundary conditions using an open source pseudospectral code Tarang [68]. The
simulations are performed in a domain of dimensions 2π/kc × 2π/kc × 1 with 323 spatial grids
(kc is the critical wave number determined from the linear theory). In the code, the independent
convective fields are expanded using the Fourier basis functions as

(uz, θ ) =
∑
l,m,n

(Wlmn(t ), Tlmn(t ))ei(lkxx+mkyy) sin (nπz), (29)

(ux, uy) =
∑
l,m,n

(Ulmn(t ),Vlmn(t ))ei(lkxx+mkyy) cos (nπz), (30)

063503-13



MANDAL, SARKAR, AND PAL

FIG. 11. Two parameter diagram computed from the 1D model and DNS for free-slip boundary conditions
demarcating supercritical and subcritical flow regimes on the Pr − Ta plane. The thick solid and dashed black
curves are obtained from the model and DNS, respectively.

where Ulmn, Vlmn, Wlmn, and Tlmn are the Fourier modes amplitudes with l , m, and n being the
non-negative integers. kx and ky are the horizontal wave numbers along x and y directions, respec-
tively, such that k2

c = k2
x + k2

y . Time advancement is done using the fourth order Runge-Kutta (RK4)
scheme with CFL condition considering maximum time step �t = 0.001.

Using the above procedure, we perform extensive DNS of the system and determine the boundary
delimiting the regions of supercritical and subcritical onset of convection on the Pr − Ta plane.
Note that the subcritical and supercritical onset of convection are determined by computing the
Nusselt number with the forward and backward variation of the Rayleigh number around the critical
Rayleigh number for the onset of convection as was done for the rigid boundary conditions. The
boundary is shown with a dashed black line in Fig. 11. The difference between the boundaries
delimiting the subcritical and supercritical regions obtained from the model and DNS is more here
compared to the rigid boundary case. The reason may be attributed to the drastic simplification of
the system in terms of only five modes, while the DNS is performed on a grid of size 56 × 56 × 56.
Nonetheless, the flow patterns observed at the supercritical and subcritical regimes are similar both
in model and DNS. It is clearly understood from the model that like rigid boundary conditions, the
finite amplitude solutions observed at the onset of convection are of subcritical origin. Much like
the rigid boundary conditions, the rotation rate in this case also appears to promote the subcritical
convection, while the Prandtl number inhibits it. Thus, the change of boundary conditions does not
bring qualitative change on the onset of convection.

B. Overstability

The five mode models (11)–(15) and (23)–(27) not only help to provide the simplest possible
descriptions of the stationary supercritical and subcritical onset of rotating convection in terms of
one-dimensional models (18) and (28), but also captures the phenomenon of overstable convection
leading to small amplitude time dependent periodic solution near the onset of convection. In this
section, we utilize the five mode models to investigate the onset of overstable convection. First,
we use the critical wave number for the onset of overstable convection (ko) obtained from linear
theory both for rigid and free-slip boundary conditions and determine the critical Rayleigh number
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TABLE III. Critical Rayleigh numbers (Rao) and wave number (ko) at the onset of overstability computed
from the linear theory (LT), 1D model, and DNS for rigid and free-slip boundary conditions.

ko Rao Rao Rac Error(%) Error(%)
Pr Ta (LT) (LT) (Model) (DNS) (LT vs Model) (LT vs DNS)

0.1 2 × 104 3.513 6418 5803 6360 9.59 0.90
(Rigid) 3 × 104 3.662 6978 6142 7000 11.98 0.31

5 × 104 3.901 7938 6735 7955 15.15 0.21

0.025 1 × 104 2.983 4365 4252 4370 3.14 0.11
(Rigid) 2 × 104 2.996 4507 4286 4518 4.90 0.24

5 × 104 3.036 4812 4396 4860 8.64 0.99

0.1 1 × 103 2.261 1482 1484 1485 0.13 0.20
(Free-slip) 5 × 103 2.401 1614 1615 1615 0.06 0.06

1 × 104 2.543 1760 1762 1765 0.11 0.28

0.025 1 × 103 2.224 1350 1351 1352 0.07 0.14
(Free-slip) 5 × 103 2.237 1360 1361 1362 0.07 0.14

1 × 104 2.250 1372 1373 1375 0.07 0.21

for the onset of overstable convection (Rao) in the five-dimensional models and DNS. The list of
values of Rao obtained from linear theory, five mode models, and DNS are presented in Table III
and compared for two Prandtl numbers. It is interesting to note here that in the entire overstable
regime determined from the linear theory (see Fig. 2), the five mode models as well as DNS exhibit
periodic solution of overstable origin at the onset of convection.

Inspired by the above observation, we move ahead and construct bifurcation diagrams using
both the five mode models for two different Prandtl numbers (Pr = 0.025, 0.1). We choose Ta =
2 × 104 for rigid boundary conditions, while for free-slip boundary conditions we take Ta = 103.
The parameters are chosen in such a way that the oscillatory mode of convection of overstable
origin is observed at the onset. The bifurcation diagrams presented in Figs. 12(a) and 12(b) clearly
show the birth of a small amplitude oscillatory solution through supercritical Hopf bifurcation. The
temporal evolution of the flow patterns corresponding to oscillatory solutions for rigid boundary
conditions is shown in Fig. 12(c). The flow patterns corresponding to the oscillatory solutions of
overstable origin for free-slip boundary conditions are also similar. We have checked that the flow
patterns obtained from the DNS, both for rigid and free-slip boundary conditions, are also similar.
Thus, the five-dimensional models qualitatively capture the overstable convection in the considered
parameter regime.

V. CONCLUSIONS

In summary, we have investigated the transition to convection in rotating Rayleigh-Bénard con-
vection with rigid and free-slip boundary conditions by performing low dimensional modeling and
direct numerical simulations in the Prandtl number range 0 < Pr � 0.6. The Taylor number is varied
in the ranges 0 < Ta � 5 × 104 and 0 < Ta � 104 for rigid and free-slip boundary conditions,
respectively.

Extensive three-dimensional direct numerical simulations performed with both rigid and free-slip
boundary conditions in the considered parameter regime reveal stationary as well as oscillatory
flow patterns at the onset of convection which can be of subcritical and supercritical origin. The
supercritical flow regime is characterized by the appearance of small amplitude two-dimensional
rolls solutions at the onset. On the other hand, finite amplitude stationary two-dimensional flow
patterns are manifested at the onset of subcritical convection. For the time dependent flow regime
of overstable origin, small amplitude oscillatory solutions are observed at the onset.
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FIG. 12. Bifurcation diagrams constructed from the 5D models for two Pr values by plotting the extremum
values of the variable ξ corresponding to different solutions with the variation of r. Stable and unstable
solutions are represented by solid and dashed lines, respectively. The cyan filled diamond at r = 1 indicates
the supercritical Hopf bifurcation (HB) point. The solid black curve represents the conduction state, while the
red and blue curves correspond to the stable limit cycles. In (a) and (b) rigid and free-slip boundary conditions
are considered, respectively. The inset in (a) displays the time evolution of ξ corresponding to the limit cycle
solutions for Pr = 0.025. (c) Isotherms computed at the mid plane corresponding to the marked points in the
inset of (a).

For the simplified mathematical description of the above observations, we perform low dimen-
sional modeling of the system. To our surprise, this led to the simplest possible description of the
stationary supercritical and subcritical rotating convection in terms of a one-dimensional model
both for rigid and free-slip boundary conditions. The bifurcation analysis of the one-dimensional
models shows that the supercritical and subcritical flow regimes are associated with the pitchfork
bifurcations of a similar type. The models are then used to identify different stationary flow
regimes on the Pr − Ta plane and compared with the ones obtained from the DNS. Both the 1D
models for rigid and free-slip boundary conditions show a qualitative match with the DNS results,
despite drastic simplification. Interestingly, a better match is observed with the DNS results for
the model with rigid boundary conditions. Here we note that, despite the qualitative match, the
simple models get the locations of the subcritical bifurcation points fairly significantly off from
that of the DNS. This deviation is solely due to the severe truncation in the expansions of the
independent fields considered for low dimensional modeling. For a better match with the results of
DNS which are performed with 32 × 32 × 32 and 56 × 56 × 56 grid resolutions for free-slip and
rigid boundary conditions, respectively, one needs to consider more modes in the low dimensional
modeling. However, our focus in this work has been to capture the transitions qualitatively using
the simplest possible equations. The simultaneous analysis of the low dimensional models and DNS
data show that irrespective of the boundary conditions, the finite amplitude solution associated with
the subcritical pitchfork bifurcation, is dominantly observed for low Prandtl number fluids in the
considered range of the Taylor number in this paper. The Taylor number is observed to encourage
subcritical behavior as it is increased, whereas, the increasing Prandtl number suppresses it. This
observation is consistent with the results of the previous numerical simulations [22,59].
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Further, we also derive two five-dimensional models to study the overstable onset of convection
in the presence of rigid and free-slip boundaries. The models nicely explain the origin of small
amplitude time dependent flow patterns in the region of overstable convection determined from
the linear theory. The results presented in the paper show that despite the very high complexity of
the RRBC system, the effective dynamics of the system close to the onset can be captured by a
very simple set of ordinary differential equations. We expect that similar analysis will be helpful
to gain insight into the dynamics of different complex systems including thermal convection in the
simultaneous presence of rotation and external magnetic field.

ACKNOWLEDGMENTS

S.M. and S.S. acknowledge the support from CSIR India (File No. 09/973(0024)/2019-EMR-I)
and UGC India (Award No. 191620126754), respectively. P.P. acknowledges financial support from
SERB (GOI), Grant No. CRG/2021/002484. The authors thankfully acknowledge the suggestions
of Manojit Ghosh in constructing the low dimensional models.

[1] G. A. Glatzmaier, R. S. Coe, L. Hongre, and P. H. Roberts, The role of the earth’s mantle in controlling
the frequency of geomagnetic reversals, Nature (London) 401, 885 (1999).

[2] E. Knobloch, N. O. Weiss, and L. N. Da Costa, Oscillatory and steady convection in a magnetic field, J.
Fluid Mech. 113, 153 (1981).

[3] P. A. Davidson, Magnetohydrodynamics in materials processing, Annu. Rev. Fluid Mech. 31, 273 (1999).
[4] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Cambridge University Press, Cambridge,

1961).
[5] M. K. Verma, Physics of Buoyant Flows: From Instabilities to Turbulence (World Scientific, Singapore,

2018).
[6] J. B. Elliott, L. G. Moretto, L. Phair, G. J. Wozniak, L. Beaulieu, H. Breuer, R. G. Korteling, K.

Kwiatkowski, T. Lefort, L. Pienkowski, Liquid to vapor phase transition in excited nuclei, Phys. Rev.
Lett. 88, 042701 (2002).

[7] G. Ahlers, S. Grossmann, and D. Lohse, Heat transfer and large scale dynamics in turbulent Rayleigh-
Bénard convection, Rev. Mod. Phys. 81, 503 (2009).

[8] H. Xie, F. Yin, T. Yu, J.-T. Wang, and C. Liang, Mechanism for direct graphite-to-diamond phase
transition, Sci. Rep. 4, 5930 (2014).

[9] S. Eich, M. Plötzing, M. Rollinger, S. Emmerich, R. Adam, C. Chen, H. C. Kapteyn, M. M. Murnane,
L. Plucinski, D. Steil, Band structure evolution during the ultrafast ferromagnetic-paramagnetic phase
transition in cobalt, Sci. Adv. 3, e1602094 (2017).

[10] J. Marshall and F. Schott, Open-ocean convection: Observations, theory, and models, Rev. Geophys. 37,
1 (1999).

[11] I. R. Kirillov, C. B. Reed, L. Barleon, and K. Miyazaki, Present understanding of mhd and heat transfer
phenomena for liquid metal blankets, Fusion Eng. Des. 27, 553 (1995).

[12] J. M. Aurnou and P. L. Olson, Experiments on Rayleigh–Bénard convection, magnetoconvection and
rotating magnetoconvection in liquid gallium, J. Fluid Mech. 430, 283 (2001).

[13] E. J. Kaplan, N. Schaeffer, J. Vidal, and P. Cardin, Subcritical thermal convection of liquid metals in a
rapidly rotating sphere, Phys. Rev. Lett. 119, 094501 (2017).

[14] D. T. J. Hurle, Hydrodynamics, convection and crystal growth, J. Cryst. Growth 13-14, 39 (1972).
[15] B. I. Halperin, T. C. Lubensky, and S. K. Ma, First-order phase transitions in superconductors and smectic-

a liquid crystals, Phys. Rev. Lett. 32, 292 (1974).
[16] E. Bodenschatz, W. Pesch, and G. Ahlers, Recent developments in Rayleigh-Bénard convection, Annu.

Rev. Fluid Mech. 32, 709 (2000).

063503-17

https://doi.org/10.1038/44776
https://doi.org/10.1017/S0022112081003443
https://doi.org/10.1146/annurev.fluid.31.1.273
https://doi.org/10.1103/PhysRevLett.88.042701
https://doi.org/10.1103/RevModPhys.81.503
https://doi.org/10.1038/srep05930
https://doi.org/10.1126/sciadv.1602094
https://doi.org/10.1029/98RG02739
https://doi.org/10.1016/0920-3796(95)90171-X
https://doi.org/10.1017/S0022112000002950
https://doi.org/10.1103/PhysRevLett.119.094501
https://doi.org/10.1016/0022-0248(72)90059-0
https://doi.org/10.1103/PhysRevLett.32.292
https://doi.org/10.1146/annurev.fluid.32.1.709


MANDAL, SARKAR, AND PAL

[17] M. Net, F. Garcia, and J. Sánchez, On the onset of low-Prandtl-number convection in rotating spherical
shells: non-slip boundary conditions, J. Fluid Mech. 601, 317 (2008).

[18] M. K. Verma, A. Kumar, and A. Pandey, Phenomenology of buoyancy-driven turbulence: Recent results,
New J. Phys. 19, 025012 (2017).

[19] Y. Nandukumar, S. Chakraborty, M. K. Verma, and R. Lakkaraju, On heat transport and energy partition
in thermal convection with mixed boundary conditions, Phys. Fluids 31, 066601 (2019).

[20] R. G. Cooper, P. J. Bushby, and C. Guervilly, Subcritical dynamos in rapidly rotating planar convection,
Phys. Rev. Fluids 5, 113702 (2020).

[21] M. Ghosh, P. Ghosh, Y. Nandukumar, and P. Pal, Transitions near the onset of low Prandtl-number rotating
convection in presence of horizontal magnetic field, Phys. Fluids 32, 024110 (2020).

[22] S. Mandal, M. Ghosh, P. Maity, A. Banerjee, and P. Pal, Supercritical and subcritical rotating convection
in a horizontally periodic box with no-slip walls at the top and bottom, Phys. Fluids 34, 104117
(2022).

[23] S. Mandal, S. Sarkar, and P. Pal, Effect of horizontal magnetic field on Küppers–Lortz instability, Phys.
Fluids 35, 074118 (2023).

[24] F. H. Busse and J. A. Whitehead, Instabilities of convection rolls in a high Prandtl number fluid, J. Fluid
Mech. 47, 305 (1971).

[25] R. M. Clever and F. H. Busse, Convection at very low Prandtl numbers, Phys. Fluids A 2, 334 (1990).
[26] H. K. Pharasi and K. Kumar, Oscillatory instability and fluid patterns in low-Prandtl-number Rayleigh-

Bénard convection with uniform rotation, Phys. Fluids 25, 104105 (2013).
[27] S. Dan, P. Pal, and K. Kumar, Low-Prandtl-number Rayleigh-Bénard convection with stress-free bound-

aries, Eur. Phys. J. B 87, 278 (2014).
[28] M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65, 851

(1993).
[29] R. Hoyle and R. B. Hoyle, Pattern Formation: An Introduction to Methods (Cambridge University Press,

2006).
[30] P. Pal, K. Kumar, P. Maity, and S. K. Dana, Pattern dynamics near inverse homoclinic bifurcation in fluids,

Phys. Rev. E 87, 023001 (2013).
[31] E. Knobloch, D. R. Moore, J. Toomre, and N. O. Weiss, Transitions to chaos in two-dimensional double-

diffusive convection, J. Fluid Mech. 166, 409 (1986).
[32] S. Paul, P. Wahi, and M. K. Verma, Bifurcations and chaos in large-Prandtl number Rayleigh–Bénard

convection, Int. J. Non Linear Mech. 46, 772 (2011).
[33] Y. Nandukumar and P. Pal, Oscillatory instability and routes to chaos in Rayleigh-Bénard convection:

Effect of external magnetic field, Europhys. Lett. 112, 24003 (2015).
[34] C. Rumford, Of the propagation of heat in fluids, Complete Works (American Academy of Arts and

Sciences, Boston, 1870) , Vol. 1, p. 239.
[35] O. Thual, Zero-Prandtl-number convection, J. Fluid Mech. 240, 229 (1992).
[36] P. Manneville, Instabilities, Chaos and Turbulence, Vol. 1 (World Scientific, 2010).
[37] R. E. Ecke and O. Shishkina, Turbulent rotating Rayleigh-Bénard convection, Annu. Rev. Fluid Mech.

55, 603 (2023).
[38] S. H. Strogatz, Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And

Engineering (Westview Press, 2001).
[39] M. Evonuk and G. A. Glatzmaier, The effects of rotation rate on deep convection in giant planets with

small solid cores, Planet. Space Sci. 55, 407 (2007).
[40] N. J. Wickett, S. Mirarab, N. Nguyen, T. Warnow, E. Carpenter, N. Matasci, S. Ayyampalayam, M. S.

Barker, J. G. Burleigh, M. A. Gitzendanner, Phylotranscriptomic analysis of the origin and early diversi-
fication of land plants, Proc. Natl. Acad. Sci. USA 111, E4859 (2014).

[41] M. S. Miesch, The coupling of solar convection and rotation (invited review), in Helioseismic Diagnostics
of Solar Convection and Activity (Springer, 2000), pages 59–89.

[42] H. T. Rossby, A study of Bénard convection with and without rotation, J. Fluid Mech. 36, 309 (1969).
[43] Y. Nakagawa, An experiment on the inhibition of thermal convection by a magnetic field, Nature (London)

175, 417 (1955).

063503-18

https://doi.org/10.1017/S002211200800061X
https://doi.org/10.1088/1367-2630/aa5d63
https://doi.org/10.1063/1.5095242
https://doi.org/10.1103/PhysRevFluids.5.113702
https://doi.org/10.1063/1.5144409
https://doi.org/10.1063/5.0108223
https://doi.org/10.1063/5.0156352
https://doi.org/10.1017/S0022112071001071
https://doi.org/10.1063/1.857783
https://doi.org/10.1063/1.4825281
https://doi.org/10.1140/epjb/e2014-50468-6
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/PhysRevE.87.023001
https://doi.org/10.1017/S0022112086000216
https://doi.org/10.1016/j.ijnonlinmec.2011.02.010
https://doi.org/10.1209/0295-5075/112/24003
https://doi.org/10.1017/S0022112092000089
https://doi.org/10.1146/annurev-fluid-120720-020446
https://doi.org/10.1016/j.pss.2006.07.008
https://doi.org/10.1073/pnas.1323926111
https://doi.org/10.1017/S0022112069001674
https://doi.org/10.1038/175417b0


ONE-DIMENSIONAL MODELS FOR SUPERCRITICAL AND …

[44] D. Fultz and Y. Nakagawa, Experiments on over-stable thermal convection in mercury, Proc. R. Soc.
London, Ser. A 231, 211 (1955).

[45] G. Veronis, Cellular convection with finite amplitude in a rotating fluid, J. Fluid Mech. 5, 401 (1959).
[46] I. A. Eltayeb, Hydromagnetic convection in a rapidly rotating fluid layer, Proc. R. Soc. London A 326,

229 (1972).
[47] T. Clune and E. Knobloch, Pattern selection in rotating convection with experimental boundary conditions,

Phys. Rev. E 47, 2536 (1993).
[48] K. Julien and E. Knobloch, Fully nonlinear three-dimensional convection in a rapidly rotating layer, Phys.

Fluids 11, 1469 (1999).
[49] K. Julien, S. Legg, J. McWilliams, and J. Werne, Rapidly rotating turbulent Rayleigh-Bénard convection,

J. Fluid Mech. 322, 243 (1996).
[50] R. P. J. Kunnen, H. J. H. Clercx, and B. J. Geurts, Heat flux intensification by vortical flow localization in

rotating convection, Phys. Rev. E 74, 056306 (2006).
[51] I. Grooms, K. Julien, J. B. Weiss, and E. Knobloch, Model of convective taylor columns in rotating

Rayleigh-Bénard convection, Phys. Rev. Lett. 104, 224501 (2010).
[52] P. Maity, K. Kumar, and P. Pal, Homoclinic bifurcations in low-Prandtl-number Rayleigh-Bénard convec-

tion with uniform rotation, Europhys. Lett. 103, 64003 (2013).
[53] P. Maity and K. Kumar, Zero-Prandtl-number convection with slow rotation, Phys. Fluids 26, 104103

(2014).
[54] S. Sakai, The horizontal scale of rotating convection in the geostrophic regime, J. Fluid Mech. 333, 85

(1997).
[55] P. Vorobieff and R. E. Ecke, Turbulent rotating convection: An experimental study, J. Fluid Mech. 458,

191 (2002).
[56] K. M. Bajaj, G. Ahlers, and W. Pesch, Rayleigh-Bénard convection with rotation at small Prandtl numbers,

Phys. Rev. E 65, 056309 (2002).
[57] G. M. Vasil, K. Julien, and N. A. Featherstone, Rotation suppresses giant-scale solar convection, Proc.

Natl. Acad. Sci. USA 118, 1 (2021).
[58] G. Veronis, Motions at subcritical values of the Rayleigh number in a rotating fluid, J. Fluid Mech. 24,

545 (1966).
[59] R. M. Clever and F. H. Busse, Nonlinear properties of convection rolls in a horizontal layer rotating about

a vertical axis, J. Fluid Mech. 94, 609 (1979).
[60] A. Oberbeck, Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge

von Temperaturdifferenzen, Ann. Phys. Chem. 243, 271 (1879).
[61] J. Boussinesq, Théorie Analytique de la Chaleur, Vol. 2 (Gauthier-Villars, 1903).
[62] M. R. Khorrami, M. R. Malik, and R. L. Ash, Application of spectral collocation techniques to the stability

of swirling flows, J. Comput. Phys. 81, 206 (1989).
[63] L. Kaufman, Some thoughts on the QZ algorithm for solving the generalized eigenvalue problem, ACM

Trans. Math. Software 3, 65 (1977).
[64] P. Glendinning, J. Abshagen, and T. Mullin, Imperfect homoclinic bifurcations, Phys. Rev. E 64, 036208

(2001).
[65] M. K. Verma and R. K. Yadav, Supercriticality to subcriticality in dynamo transitions, Phys. Plasmas 20,

1 (2013).
[66] B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for

Researchers and Students (SIAM, 2002).
[67] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier, nek5000 web page, 2008.
[68] M. K. Verma, A. Chatterjee, K. S. Reddy, R. K. Yadav, S. Paul, M. Chandra, and R. Samtaney,

Benchmarking and scaling studies of pseudospectral code tarang for turbulence simulations, Pramana
81, 617 (2013).

063503-19

https://doi.org/10.1098/rspa.1955.0167
https://doi.org/10.1017/S0022112059000283
https://doi.org/10.1098/rspa.1972.0007
https://doi.org/10.1103/PhysRevE.47.2536
https://doi.org/10.1063/1.870010
https://doi.org/10.1017/S0022112096002789
https://doi.org/10.1103/PhysRevE.74.056306
https://doi.org/10.1103/PhysRevLett.104.224501
https://doi.org/10.1209/0295-5075/103/64003
https://doi.org/10.1063/1.4898431
https://doi.org/10.1017/S0022112096004168
https://doi.org/10.1017/S0022112002007814
https://doi.org/10.1103/PhysRevE.65.056309
https://doi.org/10.1073/pnas.2022518118
https://doi.org/10.1017/S0022112066000818
https://doi.org/10.1017/S002211207900121X
https://doi.org/10.1002/andp.18792430606
https://doi.org/10.1016/0021-9991(89)90071-5
https://doi.org/10.1145/355719.355725
https://doi.org/10.1103/PhysRevE.64.036208
https://doi.org/10.1063/1.4813261
https://doi.org/10.1007/s12043-013-0594-4

