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We apply a probabilistic clustering method, latent Dirichlet allocation (LDA), to char-
acterize the large-scale dynamics of Rayleigh-Bénard convection. The method, introduced
by Frihat et al. [J. Fluid Mech. 920, A27 (2021)], is applied to a collection of snapshots in
the vertical midplanes of a cubic cell for Rayleigh numbers in the range [106, 108]. For the
convective heat flux, temperature, and kinetic energy, the decomposition identifies latent
factors, called motifs, which consist of connex regions of fluid. Each snapshot is modeled
with a sparse combination of motifs, the coefficients of which are called the weights. The
spatial extent of the motifs varies across the cell and with the Rayleigh number. We show
that the method is able to provide a compact representation of the heat flux and displays
good generative properties. At all Rayleigh numbers the dominant heat flux motifs consist
of elongated structures located mostly within the vertical boundary layers, at a quarter of
the cavity height. Their weights depend on the orientation of the large-scale circulation.
A simple model relating the conditionally averaged weight of the motifs to the relative
strength of the corner rolls and of the large-scale circulation is found to predict well the
average large-scale circulation reorientation rate. Application of LDA to the temperature
fluctuations shows that temperature motifs are well correlated with heat flux motifs in space
as well as in time, and to some lesser extent with kinetic energy motifs. The abrupt decrease
of the reorientation rate observed at 108 is associated with a strong concentration of plumes
impinging onto the corners of the cell, which decrease the temperature difference within
the corner structures. It is also associated with a reinforcement of the longitudinal wind
through formation and entrainment of new plumes.

DOI: 10.1103/PhysRevFluids.9.063502

I. INTRODUCTION

Rayleigh-Bénard convection, in which a fluid is heated from below and cooled from above,
represents an idealized configuration to study thermal convection phenomena. These characterize
a variety of applications ranging from industrial processes such as heat exchangers to geophysical
flows in the atmosphere or the ocean. A central question is to determine how the heat transfer
depends on nondimensional parameters such as the Prandtl number Pr = ν/κ , where ν is the
kinematic viscosity and κ the thermal diffusivity, and the Rayleigh number

Ra = gβ�T H3

νκ
, (1)

where g is the gravity, β is the thermal expansion coefficient, �T the temperature difference, and
H the cell dimension. The Grossmann-Lohse [1] theory constitutes a unified approach to address
this question. It is based on a local description of the physics: the contributions from the bulk
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averaged thermal and kinetic dissipation rate are split into two subsets, one corresponding to the
boundary layers and one corresponding to the bulk. This theory was further refined by Grossmann
and Lohse [2], where the thermal dissipation rate was split into a contribution from the plumes
and a contribution from the turbulent background. Through the action of buoyancy, the thermal
boundary layers generate plumes which create a large-scale circulation, as evidenced by Xi et al.
[3], also called “wind” [4]. The distribution of temperature fluctuations depends on plume clustering
effects [5], but it is also affected by interactions with turbulent fluctuations in the bulk, resulting in
fragmentation [6].

Shang et al. [7] showed that plume-dominated regions were located near the sidewalls and
the conducting surfaces and that thermal plumes carry most of the convective heat flux, which
contributes to the production of both kinetic and thermal fluctuations. The morphology of plumes
and its effect on the heat transfer have been given careful attention. The plumes have a sheetlike
structure near the boundary layer and progressively become mushroomlike as they move into the
bulk region [8]. Shishkina and Wagner [9] found that very high values of the local heat flux were
observed in regions where the sheetlike plumes merged, constituting “stems” for the mushroomlike
plumes developing in the bulk. The relative contributions of the plumes and turbulent background
vary with the Rayleigh number: Emran and Schumacher [10] have shown that the fraction of
plume-dominated regions decreases with the Rayleigh number, while that of background-dominated
regions increases.

The identification of local coherent structures such as plumes is therefore an essential step for
the understanding of thermal convection flows. Several definitions have been used: some of the first
criteria were based on the skewness of the temperature derivative [11] or the temperature difference
[12]. Ching et al. [13] have proposed to use simultaneous measurements of the temperature and the
velocity to define the velocity of the plumes using conditional averaging. Following Huang et al.
[14], van der Poel et al. [15] identified plumes from both a temperature anomaly and an excess of
convective heat flux. Zhou et al. [16] relied on cliff-ramp-like structures in the temperature signals
to determine the spatial characteristics of plumes. Emran and Schumacher [10] and Vishnu et al.
[17] separated the plume from the background regions based on a threshold on the convective heat
flux. Shevkar et al. [18] have recently proposed a dynamic criterion based on the two-dimensional
(2D) velocity divergence to separate plumes from boundary layers.

As pointed out by Chillà and Schumacher [19], this multiplicity of criteria illustrates the difficulty
of identifying coherent structures in a consistent and objective manner, which is a long-running
question in various types of turbulent flows. To this end, proper orthogonal decomposition (POD)
[20] has proven a useful tool to analyze large-scale fluctuations in Rayleigh-Bénard convection. It
has been used in particular to study reorientations of the large-scale circulation [21–25]. Through
spectral decomposition of the autocorrelation tensor, POD provides a basis of spatial modes, also
called empirical modes, since they originate from the data. The modes are energetically optimal to
reconstruct the fluctuations. The POD modes typically have a global support, which is well suited
to capture the large-scale organization of the flow. However, this can make physical interpretation
difficult as there is no straightforward connection between a mode and a local coherent structure as
a local structure is represented with a superposition of many POD modes, a situation also observed
in Fourier analysis. Soucasse et al. [26] have used POD to study the dynamics of the large-scale
circulation for Rayleigh numbers in the range [106, 108]. They found that although the reorientation
rate varied with the Rayleigh number, the dominant structures remained similar across that range,
albeit with some variations in their energy. A new dissipation-based POD, proposed by Olesen et al.
[27] and applied to Rayleigh-Bénard convection [28], highlighted the importance of boundary layers
for the dynamics, which points to the need for local descriptions.

As an alternative, Frihat et al. [29] have recently adapted a probabilistic method that can extract
localized latent factors in turbulent flow measurements. This method, latent Dirichlet allocation or
LDA [30,31], was originally developed in the context of natural language processing, where it aims
to extract topics from a collection of documents. In this framework, documents are represented by
a nonordered set of words taken from a fixed vocabulary. A word count matrix can be built for the
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collection, where each column corresponds to a document, each line corresponds to a vocabulary
word, and the matrix entry represents the number of times the word appears in the document. LDA
provides a probabilistic decomposition of the word count matrix, based on latent factors called
topics. Topics are defined by two distributions: the distribution of topics within each document (each
document is associated with a mixture of topics; the coefficients of the mixture sum up to one) and
the distribution of vocabulary words with each topic (each topic is represented by a combination of
words, the coefficients of which also sum up to one).

The method has been adapted for turbulent flows as follows: we consider a collection of snapshots
of a scalar field discretized into cells. The equivalent of a document is therefore a snapshot, and the
cells (or snapshot pixels) constitute the vocabulary. The digitized values of the scalar field over
the cells in a snapshot are gathered into a vector which is formally analogous to a column of the
word count matrix. The “topics” produced by the decomposition, called motifs, correspond to fixed
(in the Eulerian sense), spatially coherent regions of the flow. The method was found to be well
suited for the representation of intermittent data [29,32]. It was succesfully applied to the analysis
of the turbulent Reynolds stress in wall turbulence [29]. Moreoever, the method provides a local
description that is insensitive to the existence of global symmetries. It proved a useful tool to identify
synoptic objects in weather data [32].

In this paper, we apply this method to the analysis of fluctuations in a cubic Rayleigh-Bénard cell
in the range of Rayleigh number [106, 108]. The goal is to track the local signature of the large-scale
dynamics of the flow, and to determine whether changes can be identified as the Rayleigh number
increases. To this end, the technique is applied to 2D snapshots extracted from three-dimensional
numerical simulations of Raleigh-Bénard convection in a cubic cell in the range of Rayleigh number
[106, 108]. The numerical configuration and the data set are described in Sec. II. We first present
the method for the convective heat flux, using a comparison with POD to highlight the similarities
and differences of the approach. POD and LDA are respectively presented in Secs. III and IV. We
examine in Sec. V how LDA compares with POD and the extent to which it is able to capture the
general features of the heat flux. The characteristics of heat flux motifs and their connection with the
reorientations of the large-scale circulation are discussed in Sec. VI. The analysis is then extended
to temperature fluctuations and to the kinetic energy in Sec. VII in order to provide further insight
into the physics. A conclusion is given in Sec. VIII.

II. NUMERICAL SETTING

A. Setup

The numerical setup and associated data sets are the same as used in Refs. [25,26]. The
configuration studied is a cubic Rayleigh-Bénard cell filled with air, with isothermal horizontal
walls and adiabatic sidewalls. The air is assumed to be transparent and thermal radiation effects are
disregarded. Direct numerical simulations have been performed at various values of the Rayleigh
number. The Prandtl number is set to 0.707. All physical quantities are made dimensionless using
the cell size H , the reference time H2/(κ

√
Ra), and the reduced temperature θ = (T − T0)/�T ,

T0 being the mean temperature between hot and cold walls. Spatial coordinates are denoted x, y, z
(z being the vertical direction) and the origin is placed at a bottom corner of the cube.

Navier-Stokes equations under Boussinesq approximation are solved using a Chebyshev col-
location method [33,34]. Computations are made parallel using domain decomposition along the
vertical direction. Time integration is performed through a second-order semi-implicit scheme. The
velocity divergence-free condition is enforced using a projection method. Numerical parameters are
given in Table I for the four considered Rayleigh numbers Ra = {106; 3×106; 107; 108}. We have
checked that the number of collocation points is sufficient to accurately discretize the boundary
layers according to the criterion proposed by Shishkina et al. [35]. Details on the validation of the
numerical method and of the discretization can be found in Ref. [36]. A total of 1000 snapshots
have been extracted from the simulations for each Rayleigh number at a sampling period of 10 (at
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TABLE I. Characteristics of the data sets at various Rayleigh numbers: spatial resolution Nx , Ny, Nz in
each direction of space, number of snapshot, NS , snapshot sampling period �t , and thermal boundary layer
thickness δBL .

Ra (Nx, Ny, Nz ) NS �t δBL

1×106 (81,81,81) 1000 10 0.056
3×106 (81,81,81) 1000 10 0.042
1×107 (81,81,81) 1000 10 0.0297
1×108 (161,161,161) 1000 5 0.0167

Ra = {106; 3×106; 107}) or 5 (at Ra = 108), in dimensionless time units. It is worth noting that
the time separation between the snapshots is sufficient to describe the evolution of the large-scale
circulation but is not suited for a fine description of the plume emission or of the reorientation
process. For each Rayleigh number, a data set satisfying the statistical symmetries of the flow was
then constructed from these 1000 snapshots, as will be described in the next section.

B. Construction of the data set

At each Rayleigh number, the data set consisted of a collection of NS = 1000 snapshots q(x, tm),
m = 1, . . . , NS . Results will be presented first for the convective heat flux q = � = wθ , then for
the temperature fluctuations q = θ ′ = θ − 〈θ〉 (〈θ〉 being the time-averaged temperature) and for
the kinetic energy q = k = 1

2 (u2 + v2 + w2), u, v, and w being the velocity components. We note
that due to the velocity reference scale, the nondimensional heat flux varies like NuRa−1/2. As in
Ref. [25], the data set was first enriched by making use of the statistical symmetries of the flow
[37]. In the cubic Rayleigh-Bénard cell, four quasistable states are available for the flow for this
Rayleigh number range: the large-scale circulation settles in one of the two diagonal planes of
the cube with clockwise or counterclockwise motion. The evolution of the large-scale circulation
can be tracked through that of the x and y components of the angular momentum of the cell,
L = ∫

(x − x0)×udx, with respect to the cell center x0. As Fig. 1 shows at Ra = 107, the angular
momentum along each horizontal direction oscillates near a quasisteady position for long periods
of time—several hundreds of convective timescales—before experiencing a rapid switch [O(10)
convective timescales] to the opposite value, which corresponds to a reorientation. On each plane we
can define an indicator function I , which takes the value sgn(L)1, where L is the angular momentum
component normal to the plane.

Reorientations from one state to another occur during the time sequence but each state is not
necessarily equally visited. In order to counteract this bias, we have built enlarged snapshot sets,
obtained by the action of the symmetry group of the problem on the original snapshot sets. The

FIG. 1. Evolution of the horizontal components of the angular momentum at Ra = 107. The vertical black
lines correspond to reorientations of the large-scale circulation.
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symmetries are based on four independent symmetries Sx, Sy, Sz, and Sd with respect to the planes
x = 0.5, y = 0.5, z = 0.5, and x = y. This generates a group of 16 symmetries for the cube, which
should lead to a 16-fold number of snapshots. However, since we will exclusively consider the
vertical midplanes x = 0.5 and y = 0.5, which are invariant planes for respectively Sx and Sy, the
increase is reduced. The data set aggregates 1000 snapshots on each of the planes x = 0.5 and
y = 0.5, each of which undergoes a vertical flip, a horizontal flip, and a combination of the two,
yielding a total of NS = 8000 snapshots.

The LDA technique requires transforming the data into a non-negative integer field. The signal
defined on a grid of ÑC cells was digitized using a rescaling factor s. If the field was not of constant
sign (temperature, heat flux), positive and negative values were split onto two distinct grids, leading
to a field defined on NC = 2ÑC cells. For the heat flux, this gives

q(x j ) = q(x j, tm) = Max[Int[s w(x j, tm)θ (x j, tm), 0], (2)

q(x j+ÑC
) = q(x j+ÑC

, tm) = −Max[−Int[s w(x j, tm)θ (x j, tm), 0], (3)

where s > 0, m ∈ [1, NS], and j ∈ [1, ÑC] and x j represents the jth cell location on the midplanes
x = 0.5 or y = 0.5. We note that throughout the paper, the total field will directly be represented
on the physical grid of size ÑC from the renormalized difference [q(x j, tm) − q(x j+ÑC

, tm)]/s. It
is worth noting that the temperature variance (always positive) could be used to lighten the LDA
analysis on the temperature field. Yet, we chose to work on the signed temperature fluctuation in
order to discriminate between leaving and impinging thermal patterns near the horizontal walls as
it is often done in plume detection [12,15].

III. POD ANALYSIS

A. Method

Proper orthogonal decomposition (POD) [38] makes it possible to write a collection of NS spatial
fields q(x j, tm) defined on NC grid points, as a superposition of spatial modes ϕn(x), the amplitude
of which varies in time:

q(x j, tm) =
NS∑

n=1

√
λnan(tm)ϕn(x j ), (4)

with m ∈ [1, NS] and j ∈ [1, NC]. The spatial modes ϕn(x) are orthonormal:

NC∑
j=1

ϕn(x j )ϕm(x j ) = δnm. (5)

The amplitudes an(tm) are normalized eigenvectors of the eigenvalue problem

Cmpan(tp) = λnan(tm), (6)

where C is the temporal autocorrelation matrix

Cmp = 1

NS

NC∑
j=1

q(x j, tm)q(x j, tp). (7)

The eigenvalues λn, such that λ1 > λ2 > λ3 > · · · , represent the respective contribution of the
modes to the total variance. If we consider the p most energetic modes, the reconstruction based on
p modes minimizes the L2-norm error between the set of snapshots and the projection of the set of
snapshots onto a basis of size p.
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FIG. 2. POD dominant modes and amplitudes in the vertical midplane at Ra = 107. Left: POD modes ϕn.
Right: POD amplitudes an associated with plane x = 0.5 (in blue) and plane y = 0.5 (in red). The vertical
black lines correspond to changes in the component of the angular momentum. The darker line corresponds to
a moving average over 200 convective units.

B. Application to the convective heat flux

POD is applied to the digitized heat flux signal q = � defined in Eqs. (2) and (3). The first
three POD modes and POD coefficients are shown in Fig. 2 for Ra = 107, where black vertical
and horizontal lines indicate the thickness of the boundary layers. We checked that the first mode
corresponds to the mean flow. The mode is most important in a region close to the wall, with a
maximum within the vertical boundary layer at a height of z ≈ 0.1. The second mode corresponds
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to a dissymmetry between the vertical sides and is most important at mid-height in the region outside
the boundary layers. The third mode is antisymmetric in both the vertical and horizontal directions.
It is maximum at the edge of the vertical boundary layers, at a vertical distance of about 0.25 from
the horizontal surfaces. The pattern it is associated with corresponds to a more intense flux along a
diagonal (bottom of one side and top of the opposite side) and a less intense flux along the opposite
diagonal. As evidenced by application of a moving average performed over 200 convective time
units (about four times the recirculation time Tc, as was determined in Ref. [25]), the evolution of
the amplitude at large timescales matches that of the horizontal angular momentum components Lx

and Ly (compare with Fig. 1), unlike the two dominant modes. This mode therefore appears to be
the signature of the large-scale circulation, where the flux is more intense in the lower corner of the
cell as hot plumes rise on one side and in the upper corner of the opposite side of the cell as cold
plumes go down.

IV. LATENT DIRICHLET ALLOCATION

A. Principles

We briefly review the principles of latent Dirichlet allocation and refer the reader to Ref. [29]
for more details. LDA is an inference approach to identify latent factors in a collection of observed
data, which relies on Dirichlet distributions as priors.

We first recall the definition of a Dirichlet distribution ϑ , which is a multivariate probability
distribution over the space of multinomial distributions. It is parametrized by a vector of positive-
valued parameters α = (α1, α2, . . . , αN ) as

p(ϑ1, . . . , ϑN ; α1, . . . , αN ) = 1

B(α)

N∏
n=1

ϑαn−1
n , (8)

where B is a normalizing factor, which can be expressed in terms of the gamma function :

B(α) =
∏N

n=1 (αn)


(∑N

n=1 αn
) . (9)

The components {αn, n = 1, . . . , N} of α control the sparsity of the distribution: values of αn

larger than unity correspond to evenly dense distributions, while values lower than unity correspond
to sparse distributions.

As mentioned above, the data to which LDA is applied consist of a collection of non-negative
integer fields that are defined in Eqs. (2) and (3). For each snapshot m, the integer value qm(x j )
measured at cell j is interpreted as an integer count of the cell j. The key is to interpret this integer
count as the number of times cell j appears in the composition of snapshot m. The idea is to construct
a model for the probability p(qm, x j ) of observing the cell x j in the snapshot qm, which is directly
proportional to q(x j ). The model is based on the hypothesis that each snapshot of the collection
{qm, m = 1, . . . , NS} consists of a mixture of NT latent factors {zn, n = 1, . . . , NT } called motifs,
NT being a user-defined parameter analogous to a number of clusters. The probability p(qm, x j )
therefore is written

p(qm, x j ) = p(qm)
∑

n

p(zn|qm)p(x j |zn), (10)

where p(qm) is the probability of observing the snapshot qm in the collection, p(zn|qm) is the
conditional probability of observing motif zn given the presence of snapshot qm, and p(x j |zn) is
the conditional probability of observing cell x j given the latent factor zn.
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A formal analogy with POD and Eq. (4) can be seen by using the Bayes rule and rewriting
p(qm, x j ) as

p(qm, x j ) =
∑

n

p(zn)p(qm|zn)p(x j |zn), (11)

where p(zn) is the equivalent of the rms contribution
√

λn, p(x j |zn) is the equivalent of the POD
spatial mode ϕn(x j ), and p(qm|zn) is the equivalent of the temporal amplitude an(tm).

We emphasize that, unlike POD, all quantities in the LDA model are probabilities and therefore
non-negative.

Latent Dirichlet allocation is therefore based on the following representation:
(1) Each motif zn is associated with a multinomial distribution ψn over the grid cells so that the

probability to observe the jth grid cell located at x j given the motif n is p(x j |zn) = ψn(x j ). The
distribution ψn is modeled with a Dirichlet prior parametrized with an NC-dimensional vector η.
Low values of ηl mean that the motif is distributed over a small number of cells.

(2) Each snapshot qm is associated with a distribution bn over the motifs such that the probability
that motif n is present in snapshot m will be denoted p(qm|zn) = bn(tm). This distribution is modeled
with an NT -dimensional Dirichlet distribution of parameter α. The magnitude of α characterizes the
sparsity of the distribution. Low values of αn mean that relatively few motifs are observed in each
snapshot.

B. Implementation

The snapshot-motif distribution bn and the motif-cell distribution ψn are determined from the
observed snapshots q(x) and constitute NT -and NC-dimensional categorical distributions. Finding
the distributions bn and ψn that are most compatible with the observations constitutes an inference
problem. The problem can be solved either with a Markov chain Monte Carlo (MCMC) algorithm
such as Gibbs sampling [30], or by a variational approach [31], which aims to minimize the
Kullback-Leibler divergence between the true posterior and its variational approximation. In both
cases, the computational complexity of the problem is of the order of NC×NS×NT .

The solution a priori depends on the number of motifs, NT , as well as on the values of the
Dirichlet parameters α and η. Special attention was therefore given to establish the robustness of
the results reported here. Noninformative default values were used for the Dirichlet parameters; i.e.,
the prior distributions were taken with symmetric parameters equal to ∀n, αn = 1/NT and ∀ j, η j =
1/NT . Practical implementation was performed in PYTHON using Gensim [39]. No significant change
was observed in the results when the value of the quantization s was high enough (however, it had
to be kept reasonably low in order to limit the computational time). Although multiple tests were
carried out for varying values of s ∈ [40, 600], all results reported in this paper were obtained with
s = 600 for the heat flux. Values of s = 40 and s = 50 were respectively used for the temperature
fluctuations and for the kinetic energy. Analyses were also performed for varying numbers of motifs,
NT , ranging from 50 to 400.

C. LDA as a generative process

The standard generative process performed by LDA with NT motifs is the following.
(i) For each motif n, an NC-dimensional cell-motif distribution ψn is drawn from the Dirichlet

distribution of parameter η.
(ii) To generate snapshot m:

(a) An NT -dimensional snapshot-motif distribution bn is drawn according to a Dirichlet
distribution parameterized by α.

(b) A total integer count qT (tm) is drawn. This number corresponds to the total number of cell
integer counts associated with snapshot m, i.e.,

∑
j q(x j, tm). qT (tm) is typically sampled from a

Poisson distribution that matches the statistics of the original database.
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FIG. 3. Schematics of the LDA generative model illustrated here for a field defined on 12 cells and
generated with 3 motifs (corresponding to purple, green, and red). A snapshot m is represented as a set of
integer values defined on an array of cells (see also text). Top: Probabilistic construction of a snapshot. Let us
consider a stack of qT tokens of unit value. Each token is assigned to a cell as follows: a motif n is selected
by sampling the snapshot-motif distribution b(tm ) corresponding to this snapshot. In the example shown, the
probabilities for the purple, green, and red motifs are respectively 40%, 30%, and 30%. Once the motif n is
chosen, a cell j is selected by sampling the motif-cell distribution ψn. At the end of the process, the number of
tokens at cell j yields the value of the field q(x j, tm ). Bottom: Matrix-based reconstruction. Each snapshot m is
obtained by summing the contributions of all distributions ψn(x j ) weighted by the corresponding probabilities
bn(tm ), and rescaling the sum with a factor qT (tm ).

(c) For each i = 1, . . . , qT (tm):
(1) A motif n is selected from bn(tm) (since it represents the probability that motif n is present

in the snapshot m).
(2) Once this motif n is chosen, a cell j is selected from ψn(x j ) (since it represents the

probability that cell j is present in motif n).
The snapshot m then represents the set of qT cells j that have been drawn and can be reorganized

as a list of NC cells with integer counts q(x j, tm). Figure 3 (top) illustrates the LDA generative
process on a 4×3 grid for three topics.

In fluid mechanics applications [29,32], sampling from the motif-cell distribution [step (c)]
can be replaced with a faster step, where the contribution of each motif n to snapshot m is
directly obtained from the motif-cell distribution ψn and the distribution bn(tm) and expressed
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as qT (tm)bn(tm)ψn(x j ). The reconstructed field is then the sum of the motif contributions. This
matrixlike form of the reconstruction is summarized in the bottom part of Fig. 3.

D. Interpretation and evaluation criteria

By construction, the decomposition identifies fixed regions of space over which the intensity of
the scalar field is likely to be important at the same time. The connection between temperature motifs
and plumes should be examined with caution since plumes are Lagrangian structures traveling and
possibly changing in shape and orientation through the shell. LDA motifs only aim to detect the
Eulerian signature of structures.

Each motif n can be characterized in space through the motif-cell distribution ψn (which
integrates to 1 over the cells) and which will sometimes be referred to as the motif in the absence
of ambiguity. Each distribution has a maximum value ψmax

n and a maximum location xmax
n such that

ψn(xmax
n ) = ψmax. One can also define a characteristic area �n using

�n =
∫

�

1{ψn�ψmax
n /e}d�, (12)

where � represents the plane of analysis and the factor 1/e ∼ 0.606 is an arbitrary factor chosen
by analogy with a Gaussian distribution. If ψn were a Gaussian of standard deviation σ , this value
would delimit an area of size 2πσ 2. Other choices could be made such as the full width at half
maximum corresponding to a factor of 1/2. Moderate changes in the choice of the factor did not
affect the trends reported below. Characteristic dimensions li for the motif n in the direction i can
also be defined using ln

i = [
∫

ψn(xn,i − xmax
n,i )2dxi]1/2. Each motif can also be characterized in time

through the snapshot-motif distribution bn, which will be called the motif weight throughout the
paper. The motifs can be ordered by their time-averaged weight, also called prevalence, defined as
〈bn〉 = 1

NS

∑NS
m=1 bn(tm), where 〈·〉 represents a time average.

LDA decompositions were carried out independently for the heat flux � = wθ , temperature
fluctuations θ ′, and the total kinetic energy k = 1

2 (u2 + v2 + w2). To differentiate between these
quantities, the motif topics and weights are denoted respectively as ψ�

n , ψθ
n , and ψk

n and b�
n , bθ

n, and
bk

n. A useful tool for comparing the motifs associated with two different quantities is to compute the
correlation coefficient matrix between the corresponding motif weights (for instance, if we compare
the heat flux and the temperature motifs, each (n, n′) entry of the matrix will correspond to the
correlation coefficient between b�

n and bθ
n′ ).

As noted above, a reconstruction of the field can be obtained by using the inferred motif-cell
distribution and snapshot-motif distribution to provide what we will call the LDA-reconstructed
field, defined as

qR(x j, tm) =
NT∑

n=1

qT (tm)bq
n(tm)ψq

n (x j ). (13)

This equation can be compared to Eq. (11) for a probabilistic interpretation and to Eq. (4) for
an analogy with POD. To evaluate the relevance of the decomposition, one can compute for each
snapshot m the instantaneous spatial correlation coefficient Cm between a given field q and its
reconstruction qR defined as

Cm(q, qR) =
∫

(q̃(x, tm)q̃R(x, tm)dx( ∫
q̃2(x, tm)dx

∫
q̃2

R(x, tm)dx
)1/2 , (14)

where q̃ represents the fluctuation q̃(x, tm) = q(x, tm) − 1/|�| ∫
�

q(x, tm)dx. A global measure of
the reconstruction is then given by 〈C〉 = 1

NS

∑NS
m=1 Cm, the average value of C over all snapshots.
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FIG. 4. Left: Instantaneous correlation coefficient between the projected and the true field as a function of
the integral convective heat flux for NT = 100 and Ra = 107. Right: Average correlation coefficient 〈C(�,�R)〉
as a function of the Rayleigh number and of the number of topics considered for both midplanes.

V. EVALUATION OF LDA FOR RECONSTRUCTION AND GENERATION OF THE HEAT FLUX

A. Reconstruction

We first evaluate to which extent the LDA decomposition provides an adequate reconstruction of
the heat flux �. Figure 4 (left) shows how the instantaneous value of the correlation coefficient
Cm(�,�R) depends on the discrete integral of the field qT (tm) = ∑

j �(x j, tm). The Rayleigh
number considered is Ra = 107 and the number of topics is NT = 100, but the same trend was
observed for all other Rayleigh numbers as well as all other values of NT . Lower values of the
correlation were associated with lower values of the total integrated heat flux, which illustrates that
the LDA representation is suited to capture extreme events.

Figure 4 (right) presents the mean correlation coefficient 〈Cm(�,�R)〉 for different numbers
of motifs and different Rayleigh numbers on the vertical planes. Unsurprisingly, the correlation
increases with the number of topics. It also decreases with the Rayleigh number, which is consistent
with an increase in the complexity of the flow. However, the minimum value for the lower number of
topics and the highest Rayleigh number was 0.8, which shows the relevance of the decomposition.

Figure 5 compares an original snapshot at Ra = 107 (based on the digitized signal) with different
reconstructions: (i) the LDA reconstruction based on NT = 100 motifs, (ii) the reconstruction
limited to the 20 most prevalent topics (for this particular snapshot), and (iii) the POD-based
reconstruction based on the first 20 modes. By construction, POD provides the best approximation
of the field for a given number of modes. Since the distribution of the heat flux is intermittent in
space and time, only a limited number of motifs is necessary to reconstruct the flow. We note that
little difference was observed between the full LDA reconstruction and the reconstruction limited

FIG. 5. Example of an instantaneous snapshot and its reconstructions at Ra = 107. From left to right:
original field, LDA-reconstructed field using NT = 100 motifs, LDA-reconstructed field using the 20 (instanta-
neously) most prevalent motifs, and POD-reconstructed field using the 20 (on average) most energetic modes.
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to the 20 most prevalent motifs, which highlights the intermittent nature of the field. The relative
error between the original and the reconstructed field is 29% for the full LDA reconstruction, 34%
when the 20 most prevalent modes are retained in the reconstruction. In contrast, limiting the POD
to 20 global modes slightly lowers the quality of the reconstruction, with a global error of 38%.
It should be noted that the 20 dominant POD modes correspond to an average over all snapshots,
while the 20 most prevalent LDA modes are selected for that specific snapshot. On average, the
reconstructed field based on keeping the 20 most prevalent motifs differed by less than 10% from the
full 100-mode reconstruction and the average correlation coefficient C = 〈Cm(�,�R)〉 decreased
from 0.89 to 0.83. This shows that LDA can provide a compact representation of the local heat flux
that compares reasonably well with POD.

B. Generation

The ability to generate statistically relevant synthetic fields is of interest for a number of
applications, such as accelerating computations or developing multiphysics models. As a generative
model, LDA makes it possible to produce such a set of fields, the statistics of which can be compared
with those of the original fields used to extract the motifs, as well as with those of the corresponding
LDA-reconstructed fields. It would also be useful to compare the generated LDA data set with one
generated using POD. To this end, we generated two sets of 4000 new fields using both LDA and
POD, following the procedure described in Sec. IV C and illustrated in Fig. 3. The same number
NT = 100 of POD modes and LDA motifs was used to generate the data sets. The plane in which
the data are generated is assumed to be the y = 0.5 plane. The different fields to be compared are
therefore the following:

(1) The original (digitized) field � is defined in Sec. II B with Eqs. (2) and (3).
(2) The LDA-reconstructed (LDA-R) field is defined in Eq. (13).
(3) The LDA-generated (LDA-G) field, as described in Sec. IV C, is constructed by sampling

weights b̃n(tm) from snapshot-motif distributions and then reconstructing

�LDA-G(x j, tm) = �T (tm)
NT∑

n=1

b̃�
n (tm)ψ�

n (x j ), (15)

where �T represents the L1 spatial norm of the heat flux. For the snapshots of the original database,
�T (tm) = ∑

j |�(x j, tm)|. For the synthetic fields, �T is modeled as a random variable obtained by
sampling a Poisson distribution with the same mean and variance as the original database.

(4) The POD-generated (POD-G) field is constructed by independently sampling NT POD mode
amplitudes ãn from the POD amplitudes of the original database:

�POD-G(x j, tm) =
NT∑

n=1

√
λnãn(tm)ϕn(x j ). (16)

The time-averaged fields corresponding to the different databases are compared in Fig. 6. A good
agreement is observed for all data sets, with global errors of 4%, 8%, and 3% for respectively the
LDA-reconstructed, the LDA-generated, and the POD-generated data sets. Although it provides the
lowest error (as could be expected), the POD-generated data set overestimates negative values in the
core of the cell.

For a given location (y0, z0), we defined spatial autocorrelation functions in the horizontal and
vertical directions as

Ry(y, y0, z0) = 〈�(y, z0, t )�(y0, z0, t )〉
〈�(y0, z0, t )2〉 , (17)

Rz(z, y0, z0) = 〈�(y0, z, t )�(y0, z0, t )〉
〈�(y0, z0, t )2〉 . (18)

The autocorrelation functions are displayed in Fig. 7 for the selected locations indicated in
Fig. 6, which correspond to regions of high heat flux. We can see that, in all cases, the flux
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FIG. 6. Time-averaged value of the convective heat flux for different databases at Ra = 107. From left
to right: original fields, LDA-reconstructed (LDA-R) fields using NT = 100 motifs, LDA-generated (LDA-G)
fields using NT = 100 motifs, and POD-generated (POD-G) fields using 100 modes.

remains correlated over much longer vertical extents than in the horizontal direction. Both the
LDA-reconstructed and the POD-generated autocorrelations approximate the original data well;
again, by construction, POD-based fields are optimal to reconstruct second-order statistics. The
LDA-generated autocorrelation is not as close to the original one, but still manages to capture the
characteristic spatial scale over which the fields are correlated.

One-point probability density functions (PDFs) of the flux � are represented in Fig. 8 for the
same selected locations (again, indicated in Fig. 6). POD-generated fields tend to overpredict lower
values and underpredict higher values, which means that they do not capture well the intermittent
features of the heat flux. The LDA-generated fields display a better agreement with the original
fields and are in particular able to reproduce the exponential tails of the distributions.

VI. HEAT FLUX MOTIFS

A. Spatial organization

We now describe the spatial organization of the motifs through the motif-cell distribution ψn. The
general trends reported below held for all values of NT considered, which ranged from 50 to 400. For
all Rayleigh numbers, most LDA motifs were found to be associated with a positive flux (i.e., they

FIG. 7. Autocorrelation of the convective heat flux at selected locations (see Fig. 6).

063502-13



B. PODVIN, L. SOUCASSE, AND F. YVON

FIG. 8. Probability density function of the convective heat flux at the selected locations indicated in Fig. 6.

were associated with the first Ñ cells in the decomposition). A few negative (countergradient) motifs
were also identified, but their average weight was generally very small (at most 10% of that of the
dominant motif). We therefore chose to focus only on the motifs making a positive contribution
to the heat flux. Figure 9 (left) displays these motifs for three different Rayleigh numbers for
NT = 100. The case Ra = 3×106 was omitted as it did not show significant differences with the
case Ra = 106. The motif-cell distribution is materialized by a black line corresponding to the
isoprobability contour of 0.606ψmax

n , which can be compared with the average value of the heat
flux at this location. For all Rayleigh numbers, the motifs are clustered in the regions of high heat
flux, close to the vertical walls. Within the vertical boundary layers, motifs are elongated in shape.
Outside the vertical boundary layers, the motifs are more isotropic and tend to increase in shape as
one moves away from the walls. Outside the horizontal boundary layers, the motif-cell distributions
are elongated in the direction of the wind, with a horizontal orientation in the center of the cell,
and a gradual vertical shift closer to the walls. Large motifs are found in the bulk at Ra = 106 and
Ra = 107 (it was also the case at Ra = 3×106). In contrast, fewer, smaller motifs are found in the
bulk at Ra = 108 in the central region x/y ∈ [0.2, 0.8], signaling a loss of spatial coherence in the
bulk at this Rayleigh number.

In general, the motif size seems to decrease with the Rayleigh number. This is confirmed by
Fig. 10, which represents the average motif area as a function of their distance from the vertical
walls. In order to avoid the influence of the horizontal plates, we only considered the motifs located
at a vertical distance larger than 0.07 from the horizontal walls (i.e., outside the horizontal boundary
layer). The size of the symbols shown in the picture is proportional to the fraction of motifs over
which the average was performed. Results were relatively robust with respect to the number of
topics, NT , although some dependence on NT is observed in the center of the cell. Within the

FIG. 9. Spatial distribution of the positive heat flux motifs ψ�
n in the vertical midplane for NT = 100.

The motifs are materialized by a black line corresponding to a probability contour of 0.606ψmax
n . The vertical

lines correspond to the boundary layer thickness. The time-averaged convective heat flux is represented in the
background.
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FIG. 10. Distribution of motif areas [see definition in Eq. (12)] in the vertical midplane with the distance
from the lateral walls at varying Rayleigh numbers. The size of the symbols shown in the picture is proportional
to the fraction of motifs over which the average was performed. The black solid lines indicate the boundary
layer thickness. The dashed lines have slope 2.

boundary layer, the motif area grows roughly quadratically (a power-law fit yielded exponents in
the range 1.6–2 at all Rayleigh numbers), which means that the characteristic motif size of the
motif essentially grows like the wall distance. We note that a similar scaling was found for turbulent
eddies in pressure-gradient-driven turbulence such as channel flow [29]. Farther away from the
vertical wall, after a short plateau at the edge of the boundary layer, a slower increase in the motif
size was observed with a rate that increased with the Rayleigh number, so that the motif area was
about the same (on the order of 0.02) for all Rayleigh numbers in the center of the cell. This suggests
the presence of a double scaling for the motifs: one based on the boundary layer thickness, and one
based on the cell size. The decrease in size with the Rayleigh number appears consistent with a de-
pendence on the boundary layer thickness but also with an increase of the fragmentation by the bulk
turbulent fluctuations, in agreement with the literature [6,15]. The difference observed at the highest
Rayleigh number also signals that the flow is still evolving and has not reached an asymptotic state.

B. Dominant motifs

1. Spatial description

Owing to the symmetry of the database (see Sec. II B), the motifs in the vertical plane (x, z)
[(y, z)] should approximate the symmetry Sx : x → 1 − x (Sy : y → 1 − y), and Sz : z → 1 − z
(complete symmetry cannot be expected owing to the stochastic nature of the decomposition).

To help interpret the heat flux motifs, we compare them with LDA motifs corresponding to
temperature fluctuations. The eight most prevalent heat motifs are represented in Fig. 11 (green
lines). The prevalence of each motif is indicated at the top of each plot. Most motifs have similar
sizes and are located close to the sidewalls at about a similar height, except for motifs 4 and 6, which
have a smaller extent and are located closer to the horizontal wall. The same value of NT = 100 was
used for both heat flux and temperature.

For a heat flux motif n with weight b�
n , we identified the temperature motif j that maximized

the correlation coefficient between the heat flux and the temperature motif weights C(b�
n , bθ

n′ ). The
maximal value of this coefficient, denoted c, is represented on each plot and is generally very high
(about 0.7), especially in view of the intermittent nature of the weights. The best correlated heat
flux and temperature motifs are close to each other in space, with a larger spread for temperature
motifs. In all cases, flux motifs in the lower (higher) portion of the sidewalls correspond to positive
(negative) fluctuations. Dominant heat flux motifs can be therefore interpreted as the wall imprint of
hot plumes rising in the boundary layer (cold plumes descending in the boundary layer). The same
observations were made at all other Rayleigh numbers.

Four of these dominant motifs at Ra = 107 are represented in Fig. 12 (left) for NT = 100. As
noted above, they consist of elongated structures lying mostly in the boundary layer, and located at
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FIG. 11. Dominant heat flux motifs ψ�
n (green lines) ordered by prevalence and associated temperature

motifs ψθ
n (blue for negative and red for positive fluctuations) at Ra = 107. Contour levels go from 0.2ψmax

n

to 0.9ψmax
n with increments of 0.1ψmax

n . c is the maximum correlation coefficient between the heat flux and
temperature motif weights.

a vertical distance of about 0.25 from the horizontal walls. Although the positions and sizes of the
four identified motifs may slightly vary from one to the other, their features are generally similar
and a characteristic motif can be obtained from taking the average over all four motifs. Figure 12
(right) represents this characteristic motif for the various Rayleigh numbers. We can see that the
dominant motifs are always located mostly within the boundary layer, with a maximum at a height
of about 0.25. Their characteristic width ly was found to decrease as Ra−0.23±0.04, which matches
the scaling of the boundary layer thickness.

2. Temporal dynamics

The evolution of the snapshot-motif distribution, or motif weight, is represented in Fig. 13 for
Ra = 107. We can see that the behavior of the motif weight depends on the sign of the global

FIG. 12. Left: Dominant heat flux motifs ψ�
n at Rayleigh number Ra = 107 for NT = 100. The contour

lines correspond to 0.1ψmax and 0.3ψmax. The motif labels correspond to those of Fig. 13. Right: Characteristic
dominant motif at different Rayleigh numbers, NT = 100. Isocontours of ψ1 at [0.2, 0.3, . . . , 0.9]ψmax

1 . The
black lines correspond to the boundary layer thickness.
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FIG. 13. Evolution of the snapshot-motif distributions b�
n for the four dominant heat flux motifs (see

Fig. 12 for labels) at Ra = 107 and for NT = 100. Left: plane x = 0.5. Right: plane y = 0.5. The thick line
corresponds to a moving average over 200 convective units (four recirculation times Tc). The horizontal dashed
lines correspond to the values b− = 0.017 and b+ = 0.035. The vertical lines correspond to the changes in
angular momentum.

momentum represented in Fig. 1. When a moving average of Tf = 200 time units, corresponding to
four recirculation times Tc, was applied, two quasistationary states b+ and b− could be identified in
each plane (they are materialized by the dashed horizontal black lines indicated in Fig. 13). The two
states appear to correspond to the sign of the angular momentum component, i.e., the orientation
of the large-scale circulation I . Streamlines of the flow conditionally averaged on the higher weight
value of b�

1 are represented in Fig. 14 (left). They indicate that for the higher characteristic value of
the weight, b+, the motif is associated with the large-scale circulation while it is associated with the
corner vortex on the opposite side for the lower weight value, b−, as summarized in Fig. 14 (right).

This indicates that information about the large-scale reorientation can be extracted from local
measurements. Two states, I+ and I−, respectively corresponding to the large-scale circulation and

FIG. 14. Left: Streamlines of the flow conditionally averaged on the high weight value of b�
1 . Right:

Schematics of the cell organization in the vertical midplane: the large-scale circulation (in red) corresponds
to the I+ state while the corner structure (in black) corresponds to the I− state.
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FIG. 15. Distribution of the dominant motif weight b�
1 for different Rayleigh numbers and NT = 100.

corner vortex can be defined from the weight of the dominant motif b�
1 using

I+ = {
m

∣∣〈b�
1 (tm)

〉
Tf

>
〈
b�

1

〉}
and I− = {

m
∣∣〈b�

1 (tm)
〉
Tf

<
〈
b�

1

〉}
, (19)

where 〈·〉Tf represents the moving average over Tf . The average weights conditioned on I+ and I−
are respectively b+ and b−.

Figure 15 displays the histogram of the weight of the dominant motif b�
1 (motifs 2–4 displayed

similar features). At all Rayleigh numbers, the total distribution is characterized by two distinct
lobes, which correspond to the absence and the presence of the motif in the snapshot. The relative
importance of the lobes therefore provides an indirect measure of the motif intermittency, which can
be related to plume emission. The ratio of motif presence to motif absence was about 0.5–0.6 in the
range of Rayleigh numbers considered and no significant variation was observed with the Rayleigh
number.

However, further insights can be obtained by examining the respective contributions of the I+ and
I− states to the distribution of b�

1 , which are also represented in Fig. 15. For all Rayleigh numbers,
I+ states contribute more to the higher-value lobe than I− states, while I− contributes more to the
lower-value lobe. This shows that the rate of buoyancy production is less intense in the corner rolls
than in the large-scale circulation, or equivalently that plumes are emitted at a lower frequency in
the corner rolls than in the large-scale circulation. Moreover, the relative contributions of the I+ and
the I− states vary nonmonotonically with the Rayleigh number. In the higher-value lobe, the relative
contribution of I− appears to increase relatively to I+ with more high values of I− at Ra = 3×106,
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FIG. 16. Probability p(T+ > T−) (see text) and comparison with ratio of reorientation to recirculation
timescale at different Rayleigh numbers. The rescaling factor is β = 5.6.

while I− represents more low values at Ra = 108. In the lower-value lobe, the contribution of I+ is
least at Ra = 3×106 and largest at Ra = 108. These observations suggest that both the intensity of
the large-scale circulation and that of the corner roll appear to change with the Rayleigh number, in
agreement with the findings of Vishnu et al. [40].

3. A model for the reorientation timescale

A simple model can be made to link these observations with the dynamics of reorientations. The
conditionally averaged weight of the dominant motif in the region close to the wall, b±, represents
the rate of buoyancy production, which can be linked to the emission rate of plumes and can be
modeled as a Poisson point process. This means that the time separating two plume ejections, T±,
follows an exponential distribution with mean 1/b±, where + and − respectively characterize the
large-scale circulation (I+) and the corner vortex (I−) states. b± therefore represents the parameter of
the exponential distribution. A reorientation can be associated with the event where the corner vortex
becomes stronger than the large-scale circulation state; i.e., the time separating two emissions in the
corner vortex state becomes smaller than that separating two emissions in the large-scale circulation
state. This event can occur independently in either one of the two horizontal directions x or y.

One can show that the probability p that this event occurs at any given time is given by

p = p(T− > T+) = b−
b+ + b−

. (20)

Owing to the memoryless nature of the exponential distribution, this holds for the time separating an
arbitrary number of emissions, in particular over a characteristic time Ts sufficiently long to reverse
the circulation in that direction. Ts should be on the order of the recirculation time Tc so that we have
Ts = βTc with β = O(1). If fc is the recirculation frequency, one would then expect the frequency
between reorientations, fr , to depend on p and fc following

fr = 2pβ−1 fc, (21)

where the factor 2 comes from the fact that a reorientation can occur in each direction. Figure 16
(right) compares for different Rayleigh numbers the probability p with the ratio of the frequency
between reorientations and the recirculation frequency estimated in Ref. [26]. We see that a very
good agreement is obtained between the variations of the average reorientation rate and the measure
of the relative intensity of the large-scale circulation and corner vortices. We note that the largest
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TABLE II. Average correlation coefficient between the original and the reconstructed field for the temper-
ature, kinetic energy, and heat flux.

〈C(q, qR )〉 NT Ra = 106 Ra = 3×106 Ra = 107 Ra = 108

〈C(θ, θR )〉 100 0.90 0.86 0.84 0.66
〈C(θ, θR )〉 400 0.94 0.92 0.90 0.78
〈C(k, kR )〉 100 0.91 0.88 0.85 0.78
〈C(k, kR )〉 400 0.94 0.92 0.89 0.82
〈C(�,�R )〉 100 0.96 0.93 0.89 0.84
〈C(�,�R )〉 400 0.98 0.96 0.95 0.89

discrepancy is observed for the highest Rayleigh number, for which the reorientation rate is very low
and therefore cannot be determined with good precision from the direct numerical simulations. The
value of β used in the figure was determined empirically and was found to be 5.6, which makes Ts

close to the filtering timescale Tf = 4Tc. This suggests that an estimate for the reorientation rate can
be obtained by comparing directly the average weight of the motif associated with the large-scale
circulation with that of its counterpart in the corner structure. This could be of particular interest in
cases where the observation time is smaller than the expected reorientation time, a situation that is
often encountered in (but not limited to) numerical simulations at higher Rayleigh numbers, as the
simulation cost increases and the reorientation frequency decreases.

VII. TEMPERATURE AND VELOCITY MOTIFS

In this section we try to understand the physics associated with the lower reorientation rate
observed as the Rayleigh number increases. For this we turn to temperature and velocity fluctu-
ations, to which we independently applied LDA. Although these are not intermittent quantities, and
therefore might not be considered a priori appropriate for LDA application, Table II shows that the
temperature and kinetic energy fields are relatively well reconstructed.

A. Temperature fluctuations

Figure 17 shows the temperature motifs at three different Rayleigh numbers, along with the
variance of the fluctuations, for NT = 100. As mentioned above, some symmetry is expected but
not perfectly enforced, due to the statistical character of the method. As for heat flux motifs there is
a clear difference between the boundary layers and the bulk, as well as a strong decrease of motifs in
the central part of the cell at Ra = 108. We can see that temperature fluctuations are also important
close to the horizontal walls. The bottom row of Fig. 17 shows a close-up of the lower part of the
cell. The maximum of the motif spatial distribution is located at the edge of the boundary layer. The
height of the motifs scales with the boundary layer height in the center of the cell, with negative
motifs shorter and wider than positive ones in the bottom layer. Analogous observations can be
made for the top wall, by swapping the role of cold and hot fluctuations.

Figure 18 represents the first four dominant motifs for the temperature at Ra = 106 (similar
observations can be made at Ra = 3×106). Although the most likely heat flux motifs corresponded
to hot plumes near the bottom wall and cold plumes near the top wall, this is not the case for the
temperature motifs. For the two lower Rayleigh numbers, temperature motifs are as likely to be
found near the bottom wall as near the top wall. However, at Ra = 107, Fig. 19 shows that the most
likely temperature motifs correspond to hot fluctuations along the bottom sidewalls and cold near
the top sidewall, corresponding to late-stage plumes arriving at the opposite wall.

Figure 20 shows the evolution of the temperature motif weights bθ
n on both planes along with their

filtered representation 〈bθ
n〉Tf . As observed for the heat flux (Fig. 13), the importance of the weights

063502-20



ANALYSIS OF RAYLEIGH-BÉNARD CONVECTION …

FIG. 17. Top: Distribution of temperature motifs ψθ
n in the cell midplane at different Rayleigh numbers;

The motifs are materialized by a black line corresponding to a probability contour of 0.606ψmax
n . Contours of

the time-averaged variance are represented in the background. Bottom: Magnification of the bottom part of the
cell.

depends on the orientation of the large-scale circulation I . Similar evolutions were observed at the
lower Rayleigh numbers (not shown).

Strong differences can be observed when comparing Figs. 19 and 21. At Ra = 108, the most
likely temperature motifs are no longer located within the vertical boundary layers, but extend from
the corner of the cell along the horizontal walls. The first eight dominant structures consist of two
types of corner motifs: large, predominantly horizontal ones, and small, vertical ones located within
the boundary layers. Motifs near the top (bottom) wall are hot (cold) and therefore correspond to
late-stage plumes. This is confirmed by the evolution of the motif weights shown in Fig. 22 for the
plane x = 0.5. These motifs correspond to hot fluid being brought from the bottom layer by the
large-scale circulation next to the top wall and into the corner structure, thus decreasing buoyancy
effects there. These observations are consistent with the reduction in intensity of the corner roll and
the significant decrease in the reorientation rate observed at this Rayleigh number. We note that
although the small vertical temperature motifs are similar to heat flux motifs 4 and 6 identified in
Fig. 11 at Ra = 107, they represent fluctuations of the opposite sign, and they are well correlated
(or anticorrelated) with the orientation I of the large-scale circulation. This confirms the dominance
of the impinging plumes in the corners of the cell.

B. Kinetic energy

More details about the structure of the large-scale circulation can be obtained by examining
kinetic energy motifs. Figure 23 shows the spatial distribution of the velocity motifs for the different

FIG. 18. First four dominant temperature motifs ψθ
n at Ra = 106.
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FIG. 19. First four dominant temperature motifs ψθ
n at Ra = 107.

Rayleigh numbers and NT = 100. The spatial distribution of the time-averaged kinetic energy is also
represented on the same plot. The size of the core (low-velocity region) appears to increase with the
Rayleigh number. The size of the motifs did not appear to change significantly with the Rayleigh
number, except for horizontal corner structures that seem to scale with the boundary layer thickness.
The kinetic energy motifs have elongated shapes along the walls, with a significantly higher extent
along the horizontal walls, which shows the importance of entrainment in the horizontal boundary
layers, in particular in the middle of the cell. It is lowest at Ra = 3×106 and highest at Ra = 108,
which varies like the time between reorientations, Tr . The question is whether this reinforcement of
the large-scale circulation can be associated with characteristic temperature fluctuations.

In Figs. 24–26 the 16 most prevalent kinetic energy motifs are represented at Rayleigh numbers
106, 107, and 108 (the case Ra = 3×106, not shown, was found generally similar to 106 and 107).
The motifs were organized according to the location of their maximum: within the horizontal or
vertical boundary layers, which we will refer to as respectively HBL or VBL motifs, at the corners
of the horizontal and the vertical boundary layer (CBL motifs), and outside the boundary layers in
the horizontal or vertical entrainment zones, which were termed HEZ or VEZ motifs. The different
locations are shown in the top right illustration of Fig. 24. For each category the motifs are ordered
according to their prevalence, indicated at the top of each plot. Generally speaking, the prevalence
of the motifs increased with the Rayleigh number, which is consistent with a strengthening of the
large-scale circulation.

For each kinetic energy motif n (represented with green lines), we determined the temperature
motif j (represented with blue or red lines, depending on its sign) for which the correlation coeffi-
cient C(bk

n, bθ
n′ ) is maximal. The maximal value c and the temperature motif are represented on each

FIG. 20. First four dominant temperature motif weights bθ
n at Ra = 107. Left: Plane x = 0.5H . Right: Plane

y = 0.5H . The thick line corresponds to a moving average over 200 convective units (four recirculation times
Tc). The vertical lines correspond to the changes in angular momentum.
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FIG. 21. First eight dominant temperature motifs ψθ
n at Ra = 108.

FIG. 22. First eight temperature motif weights bθ
n at Ra = 108 in the plane x = 0.5.

FIG. 23. Spatial distribution of kinetic energy motifs in the cell midplane at different Rayleigh numbers.
The motifs are materialized by a black line corresponding to a probability contour of 0.606ψmax

n . Contours of
the time-averaged kinetic energy are represented in the background.
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FIG. 24. Dominant kinetic energy motifs ψ k
n at Ra = 106 (green lines) ordered by prevalence and location

as indicated at top right. Temperature motifs ψθ
n with the highest correlation coefficient c are shown in blue

(red) for negative (positive) fluctuations. Motif contour levels range from 0.2ψmax
n to 0.9ψmax

n with increments
of 0.1ψmax

n . cI is the correlation coefficient between the heat flux motif weight and the LSC indicator I . Values
of cI larger than 0.3 (lower than −0.3) are represented in red (blue).
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FIG. 25. Comparison between kinetic energy and temperature motifs at Ra = 107. See legend of Fig. 24.
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FIG. 26. Comparison between kinetic energy and temperature motifs at Ra = 108. See legend of Fig. 24.

plot, except in two cases corresponding to HBL motifs, for which the associated temperature motif
had a very low prevalence and was considered to be irrelevant. In almost all cases, the kinetic energy
and temperature motifs are located close to each other in space. Although the correlation coefficients
are typically lower than those between the flux and temperature motifs represented in Fig. 11, several
are high enough to associate kinetic energy patterns with specific temperature fluctuations. We also
represented on each plot the correlation coefficient cI , defined as cI = C(〈bk

n〉Tf , I ), where 〈bk
n〉Tf

is the low-pass-filtered kinetic energy motif weight (using Tf ) and I is the large-scale circulation
indicator defined in Eq. (19) (see also Fig. 24 top right). High positive (negative) values of cI are
indicated in red (blue) for each motif, and show that the motif can be associated with a specific
orientation of the large-scale circulation.

a. Horizontal boundary layers and corners. In all cases, the most frequent motifs consist of
centered motifs close to the edge of the HBLs. Evidence of weak correlation (0.3) for some motifs
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suggested possible association with impinging plumes; however, generally low values of |cI | suggest
that the weights of the motifs do not depend on the orientation of the large-scale circulation. In
contrast, high values of c and |cI | were found for corner (CBL) motifs, that were best correlated with
impinging plumes. Corner motifs have a relatively high prevalence, which shows that impinging
plumes make a significant contribution to the horizontal wind at the edge of the boundary layer.
The correlation coefficient cI increased in absolute value with the Rayleigh number, and was larger
than 0.9 at Ra = 108. In contrast, the maximum correlation coefficient c tended to decrease (but
remained significant) at Ra = 108.

b. Vertical entrainment zone. The next prevalent category of motifs at Ra = 106 and Ra = 107

consisted of motifs in the vertical entrainment zone (VEZ motifs). They were generally weakly cor-
related with temperature motifs of a slightly larger size (c ≈ 0.2–0.3) and were still less correlated
with the orientation of the large-scale circulation (cI close to zero), which is consistent with their
mid-height location. Two of the motifs at Ra = 107 (third and fourth motifs) were located closer
to a horizontal wall and showed a stronger correlation with I . They were found to be correlated
with “upstream” temperature fluctuations originating from the opposite wall (arriving plumes). At
Ra = 108, only one VEZ motif, with a lower prevalence (compared with the other motifs), was
identified. It also corresponded to an arriving plume and was strongly correlated with the orientation
of the large-scale circulation.

c. Vertical boundary layers. High values of |cI | were also observed for motifs within the VBLs,
as well as significant values of c. The corresponding temperature motifs were also located within
the vertical boundary layers and consisted of hot (cold) temperature fluctuations close to the bottom
(top plate), suggesting that they correspond to plumes in the early formation stage (leaving plumes).

d. Horizontal entrainment zone. At Ra = 106 and Ra = 107, the last category of motifs consisted
of motifs in the horizontal entrainment zone (HEZ). At the lowest Rayleigh number Ra = 106,
two of the HEZ motifs (second and fourth motifs in the last row in Fig. 24) have a predominantly
vertical shape and are associated with large temperature motifs originating from the opposite (here,
top) wall. They are therefore likely to represent coalescing plumes drifting towards the center of the
cell as they reach the opposite wall. In contrast, all other HEZ motifs at all Rayleigh numbers have
a horizontal shape and are associated with smaller temperature motifs originating from the closest
wall. They are very well correlated with the orientation of the large-scale circulation. Significant
changes were observed at Ra = 108, with a much larger number of HEZ motifs and a noticeable
increase in their prevalence—the prevalence of the dominant HEZ motif is twice as large at Ra =
108 than at Ra = 107.

To sum up, a significant difference is observed between 107 and 108. At the highest Rayleigh
number, the large-scale circulation is largely reinforced in the horizontal direction due to the
formation of new plumes, while stronger impinging plumes remain confined to the corner boundary
layers.

VIII. CONCLUSION

We have applied an analysis technique, latent Dirichlet allocation, to characterize the spatiotem-
poral organization of fluctuations in Rayleigh-Bénard convection. The method is based on the
inference of probabilistic latent factors, spatially localized motifs, from a collection of instantaneous
fields. It provides a local yet compact description of the flow in terms of quantitative indicators such
as the (spatial) size and the (temporal) weight of the motifs. The technique was applied to the vertical
midplane of a Rayleigh-Bénard cubic cell in a range of Rayleigh numbers in [106, 108]. The method
was found to be robust with respect to the user-defined parameters. When applied to the heat flux, it
was found to provide good reconstructions of the snapshots and was able to generate new data sets
that reproduced key statistics of the original one.

For all Rayleigh numbers, dominant heat flux motifs consisted of elongated vertical structures
located mostly within the vertical boundary layer, at a height of a quarter of the cell. The width
of these motifs scaled with the boundary layer thickness. These motifs were found to be very
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well correlated with temperature motifs corresponding to plumes in their early formation stage
(leaving plumes). The motif weights were found to depend on the large-scale organization of the
flow: two states could be identified, one corresponding to the large-scale circulation and one to a
corner roll structure. The two states were characterized by different average weights which varied
nonmonotonically with the Rayleigh number. A simple model was able to relate the weights of the
dominant heat flux motif associated with the two states with the average reorientation rate of the
large-scale circulation in the cell. This suggests that the model could be used as a predictor of this
rate in cases where few or even no reorientations are observed.

Additional insight about the flow physics was obtained by examining dominant motifs for the
temperature and the kinetic energy. While dominant heat flux motifs seemed to be associated with
early-stage (leaving) plumes, dominant temperature motifs were associated with later-stage (arriv-
ing) plumes. In contrast with the lower Rayleigh numbers, dominant temperature motifs at Ra = 108

were no longer within the vertical boundary layers, but consisted of plumes impinging onto the
corners of the horizontal boundary layers, which led to a reduction of temperature gradients within
the corner structure and a decrease in its potential energy. This is consistent with the significant drop
in the large-scale reorientation rate observed at this Rayleigh number. LDA analysis of the kinetic
energy showed that corner impinging plumes contributed to the kinetic energy of both the corner
structure and the large-scale circulation. The reduction of the reorientation rate at Ra = 108 was
also associated with a reinforcement of the horizontal wind in the central part of the cell due to the
formation and entrainment of new plumes. Changes in the dynamics of the large-scale circulation
could thus be directly connected with local modifications of its structure. The LDA model therefore
appears as a promising statistical tool that can help track subtle transitions in the spatiotemporal
organization of turbulent flows. An interesting direction of investigation, suggested by one of the
anonymous reviewers, would be to explore the connection between the LDA representation and
structure function analysis, which could provide insight into local energy transfer mechanisms at
different scales.
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