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Spatial variations in ice and snow characteristics imply that radiative forcing in late
winter lakes is spatially heterogeneous. We present idealized, three-dimensional simula-
tions of buoyancy-driven flows, driven in this setting with heterogeneous solar radiation
intensity, comparing rectilinear and radial cases. In both cases, radiative forcing in fresh
water at temperatures below 4 ◦C initiates an unstable stratification near the surface, leading
to Rayleigh-Taylor instabilities. The variations in radiative forcing intensity generates
gravity current-like flow along the surface. The resulting flow interacts with developing
three-dimensional Rayleigh-Taylor instabilities. We provide an in-depth analysis of the
development and death of the gravity current-like flow in the two cases mentioned. We
find that while the interaction of this current with radiatively driven convection does
create instabilities along the leading edge and slow its propagation, it is mixing with the
convective and warm return flow that leads to the cessation of propagation and eventual
death of the current. Differences in geometry affect the depth of the shear layer between
the current and return flow, determining the timing of when propagation ends.

DOI: 10.1103/PhysRevFluids.9.063501

I. INTRODUCTION

Most lakes have ice cover during the winter season [1–5]. The ice cover in these lakes is
occasionally multiyear ice [2,3] but is most often single-year ice cover. This means that at some
point during the year the lake freezes over and at a later point near the end of the winter the ice-cover
breaks, leading to ice-free conditions [1,3,5–7]. These dates are known as the freezing and break-up
dates, respectively. In these lakes, due to Climate Change, freezing dates occur later and break-up
dates occur earlier than in the past, and this trend is expected to continue [1,4–6,8]. Neither the
break-up date nor the freezing dates are typically defined such that they require 0% or 100% ice
coverage, and as a result, spatial variability in ice coverage is common between the freezing and
break-up date [7,9–12]. In order to develop a more complete understanding of the distribution of
heat and convection under ice, spatial variability in optical properties in the ice or snow cover must
be considered.

Late in the winter after the snow layer on top of the ice melts, solar radiation becomes a key
driver of motion under ice [3,13–16]. Snow has a higher albedo than ice [3,10,17], and, as a result,
significant solar radiation is able to penetrate the ice into the water column after the snow melts
[15,17–19]. Temperatures under ice-covered lakes are below the temperature of maximum density
(TMD ≈ 4 ◦C), hence, solar radiation gradually destabilizes the water column, driving convection in
the vertical and the development of a convective mixed layer [13,15,18,20]. Convection driven by
solar radiation is called radiatively driven convection (RDC) or penetrative convection (PC) in lakes
with a stable background stratification. Studies on RDC or PC under ice typically assume that the
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optical properties of ice are uniform [15,18,21]. Studies that analyze the effect of spatial variability
in optical properties on convection and buoyancy driven flows are rare.

To the authors’ knowledge, at the time of writing, only one such study exists [22]. Reference [22]
is a process study that uses two-dimensional numerical simulations to show that sharp changes
in solar radiation intensity generate intrusions along the surface that flow from the region where
solar radiation is damped towards the region where RDC is ongoing. This study further examined
the variation of key parameters such as the percentage change in sunlight intensity, the initial
temperature of the system, and the light attenuation. Each parameter has a unique effect on the
intrusion and the development of RDC.

The intrusion discussed in Ref. [22] is a special case of a buoyancy-driven flow called a gravity
current. A gravity current is a type of flow where mass is transported in a direction perpendicular
to gravity [23] due to a difference in density in the same direction, either within a single fluid or
between different fluids, such as the classic example of oil and water. Gravity currents generated by
a lock exchange are initially two-dimensional with negligible variation in the transverse. However,
as the current develops, features along the head, at the contact boundary (in the case of no-slip
boundary conditions), and at the interface between the intruding and ambient fluid develop much
differently in two dimensions compared to three [23–27].

The simplest example of a gravity current is one generated by a lock exchange. A physical
boundary is set at the start of an experiment—numerical or laboratory—where the physical bound-
ary divides the ambient and intruding fluid. The boundary is removed at the onset of the experiment
[23]. Sometimes the ambient and intruding fluids are different fluids entirely, but often they are
the same fluid at different densities. In the lock-exchange literature, two configurations are most
commonly studied: (1) the planar or two-dimensional gravity current, and (2) the axisymmetric or
cylindrical gravity current [26–31]. These are convenient configurations primarily because they both
can simulated and analyzed analytically as if they are in two dimensions, a planar current in the xz
plane in Cartesian coordinates, and an axisymmetric current in the rz plane in polar coordinates. It is
then implicitly assumed that the current does not vary in the transverse: y for planar currents and the
azimuthal direction (often denoted as θ ) for axisymmetric currents. Reference [28] is an especially
important paper that provides analytical solutions for the evolution of a planar and axisymmetric
gravity current during the slumping phase (see more about these phases in Chapter 12 of Ref. [23]
and [31]). Further analytical progression in three dimensions is likely not possible; however, the
equations derived in Ref. [28] have been compared with experiments with good agreement [26,28].

Gravity current studies that include axisymmetric three-dimensional simulations, while less
common compared to the rectangular case, are available in the literature [26,27,31]. Reference [31]
compares two- and three-dimensional simulations of both planar and cylindrical/axisymmetric grav-
ity currents. The two-dimensional axisymmetric current is simulated by solving the two-dimensional
Navier-Stokes equations in cylindrical coordinates. Both high Reynolds number (Re = 8950) and
low Reynolds number (Re = 895) values were considered. The three-dimensional cylindrical and
planar currents remained largely two-dimensional for the lower Re cases for the full duration of
their evolution. It is reasonable to expect that three-dimensional extensions of the simulations in
Ref. [22] are at least initially two-dimensional but should become three-dimensional as the intrusion
interacts with the convective ambient and features at the boundary of the intrusion and the ambient
breakdown. Reference [26] looked at cylindrical gravity currents subjected to rotation, finding
significant azimuthal symmetry at all times in a comparative nonrotating case and up to one-tenth
of a revolution for slowly rotating cases. Reference [27] generates an axisymmetric gravity current
by placing a small opening in a large wall separating two fluids of different densities. Fluid is
exchanged symmetrically and then propagates outward radially from the opening, along the surface
for the lighter fluid and along the bottom for the heavier fluid. To date, there only exist two papers
that documents simulations of three-dimensional gravity currents in the cold-water regime [32,33],
although there have been several papers in two dimensions [18,22,34,35]. Reference [33] is from a
theoretical lens, and Ref. [32] is of a more geophysical lens with some theoretical analysis, similar
to Ref. [18].
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In this paper, we present three-dimensional simulations of intrusions generated by sharp changes
in solar radiation intensity. These simulations are three-dimensional extensions of Ref. [22]. How-
ever, due to the enhanced computational costs, a sweep of the parameter space is not possible.
Instead, we consider one simulation that has a rectangular region where the solar radiation is
“damped” or shadowed at the edge of the domain and another where the shadowed region is circular
at the corner of the domain. As in Ref. [22], intrusions are generated along the shadow boundary
away from the shadowed region, into the region with freely developing RDC. The goal of this paper
is to compare and contrast the geometry of the shadow and its effect on the intrusion, an analysis
that is not possible in two dimensions.

II. METHODS

A. Equations of motion and numerical model

We use the nonhydrostatic, pseudospectral model SPINS [36] to solve the incompressible Navier-
Stokes equations under the Boussinesq approximation to produce the direct numerical simulations
presented in this paper:

D�u
Dt

= − 1

ρ0

�∇p + ν∇2�u − g
ρ

ρ0
k̂, (1a)

�∇ · �u = 0, (1b)

DT

Dt
= κT ∇2T + Q0

λ
exp

(
− (Lz − z)

λ

)
F (x, y). (1c)

Equation (1a) is the momentum equation to determine the fluid velocity, �u. Equation (1b) is the
incompressibility condition. Equation (1c) is the temperature, T , evolution equation. p is the pres-
sure and ρ is the density perturbation from the background, ρ0. SPINS has been previously applied
to a wide variety of scenarios to produce accurate, high-resolution simulations in the cold-water
regime as well as other dynamical regimes [22,33–35,37]. The last term in the temperature equation
is the radiative forcing term that obeys the single-band, Beer-Lambert law [3]. The single-band
Beer-Lambert law has been used in similar simulations of RDC [18,21,22,32]. The horizontal
structure, F (x, y), is given below in Sec. II B.

The density, ρ, is determined from the temperature via an approximation to the UNESCO
equation of state [38], shifted so that the maximum temperature coincides with 4 ◦C. This shifted
equation of state has been previously applied to simulations of cold-water convection [22,34]. The
vorticity equation is also relevant to this analysis,

D�ω
Dt

= (�ω · ∇)�u + g

ρ0

(
−∂ρ

∂y
,
∂ρ

∂x
, 0

)
+ ν∇2 �ω, (2)

where this is obtained in the usual manner of taking the curl of the momentum equation (1a). The
second term, the baroclinic term, is especially relevant to the analysis of this paper as it directly
captures how horizontal density differences initialize rotation. The enstrophy, computed as 0.5| �ω|2,
is also used to discuss the degree of mixing in the interior of the intrusion.

B. System of interest

In Ref. [22] the shadow was placed in the center of the domain with unshadowed regions on
either side. This resulted in two intrusions that traveled in opposite directions along the surface
away from the shadowed region. In order to maximize spatial resolution, as well as the physical
extent of the domain for the development of RDC, in this paper the shadowed regions are placed at
the edge of the domain, and only a single intrusion will be produced along the surface.

There are three cases that we will consider in this paper, listed in Table I, each of which has
identical physical parameters to those used in Ref. [22]. The physical and system parameters are
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TABLE I. Table of cases. For the full list of parameters see Table II.
When referring to one of these cases in the text the case name in this table
will be used. The difference between the two cases with a quarter circle is
that the No Noise case has no noise seeded in its initial conditions.

Case name Shadow shape

Corner Quarter circle
Slat Rectangular
No Noise Quarter circle

given in Table II. The velocity boundary conditions are free-slip everywhere, and the temperature
boundary conditions are no-flux. The initial conditions are constant temperature, T0. The first case,
called the Corner case, is a system subjected to solar radiation with a circular shadowed region at the
corner of the rectangular domain. The intrusion propagates in the radial, r, outward direction with
symmetry in the azimuthal, θ , direction. The intrusion generated using this geometry is often called
an axisymmetric or cylindrical gravity current [26,28,30]. The second case, called the Slat case, is
where the shadow is rectangular and extends the entirety of the y domain. This is typically referred to
as two-dimensional spreading [28], or a current along a channel [30]. In the Slat case, the symmetry
is in the y dimension, rather than in the azimuthal direction as in the Corner case. As a result, the
intrusion will propagate in the x direction and less horizontal extent (y direction) is required. A
schematic for the side view and a to scale, top-down view for both cases is given in Fig. 1. The final
case is the No Noise case. Due to the high-order nature of the numerical method used in SPINS [36],
some kind of perturbation is required in the initial conditions for the development of instabilities
that grow from small perturbations in the flow. Noise is seeded in the velocity fields of the Corner
and Slat cases with a normal distribution of mean zero and standard deviation of 3 × 10−3 ms−1.

All three cases share the same length scales except for the smaller Ly in the Slat case and the
difference in geometry. Ly was shortened in the Slat case to reduce the computational cost but not so

TABLE II. Parameters used in this paper. The upper table gives the physical parameters that do not change
between configurations (see Fig. 1). The lower table gives the domain size and resolution parameters. A dash
indicates that the parameter is the same as in the Corner case.

Parameter Description Value

T0 Initial temperature 2.5 ◦C
λ Attenuation coefficient 0.4 m
ρ0 Reference density 1000 kg m−3

ν Kinematic viscosity 10−6 m2 s−1

κ Temperature diffusivity 1.43 × 10−7 m2 s−1

Q0 Kinematic radiative flux 7.17 × 10−5 ◦
C m s−1

Al Albedo 0.9
wd Shadow width 2 m

Parameter Description Corner No Noise Slat

Lx Lake width 10.24 m – –
Ly Lake length 10.24 m – 2.56 m
Lz Lake depth 2.56 m – –
Nx X grid points 2048 – –
Ny Y grid points 2048 – 512
Nz Vertical rid Points 512 – –
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FIG. 1. Schematic depicting the two main systems. The first row (a), (b) shows the schematic for the
circular shadow, and the second row (c), (d) illustrates the schematic for the rectangular shadow. In the first
column (a), (c), a three-dimensional view of each configuration is presented. The shadowed region is depicted
by the gray shape, and the incoming solar radiation is represented by the yellow arrows. The second column
(b), (d), gives a top-down view of both systems where the show and domain size are to scale. Parameter values
are listed in Table II.

much as to modify how the convective cells develop at late times ahead of the intrusion. Sufficient
space was required to allow the intrusion to develop without interacting with the far walls. The
important parameter in this case is wd/Lx, where wd is the width or radius of the shadowed region
(see Fig. 1 and Table II). The simulations here use a value of 1/4. Simulations with a value of 1/2
were attempted but found to be insufficient. The depth, Lz, chosen is comparable to many small lakes
with ice cover during the winter in Canada’s north [9,39,40]. Large ice floes comparable in size to
the shadowed region have been observed on ice-covered lakes [11]. The simulations presented in
this paper are meant to be a simplified system to analyze geometrical effects on this radiatively
driven intrusion, a three-dimensional extension of [22].

F (x, y) in the forcing term of the temperature equation (1c) is a smooth function that determines
the horizontal changes to the intensity of the solar radiation. The other parameters are defined in
Table II. For the Slat case,

F (x, y) =
[

1 − Al exp

(
− x8wd

w8wd
d

)]
, (3)

where Al is the albedo quantifying the loss in radiative forcing under the shadowed region and wd

is the width of the shadowed region, depicted in Fig. 1. Equation (3) is similar to the form used in
Ref. [22] but with the shadow at the edge of the domain instead of at its center. In the Corner case,

F (x, y) =
[

1 − Al exp

(
− (x2 + y2)4wd

w8wd
d

)]
,
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where the coefficient in the exponent is reduced from 8 to 4 due to a cancellation of a square root.
The intrusions generated in the Slat and Corner cases are distinct from classical gravity currents
due to the time-varying nature and the unstable stratification away from the shadowed region. For
the remainder of this paper, the y direction in the Slat case and the θ direction in the Corner case
will be discussed concurrently and will be referred to as the transverse direction in both cases for
simplicity, as it is labeled on Figs. 1(b) and 1(d).

C. Averaging notation

In this paper, several forms of averaging (Horizontal, vertical, azimuthal, and domain averaging)
will be used to present the results. For averages computed in the horizontal in Cartesian coordinates
we will use the notation

〈 f 〉i = 1

Li

∫ Li

0
f dxi, (4)

where f is an arbitrary scalar function, and i refers to the direction that the average is computed.
Multiple indices indicate that the average was computed over each dimension.

In the Corner case, the intrusion propagates in the outward radial direction; hence, averages
computed using cylindrical coordinates will be useful. Consider a cylindrical region of arbitrary
height and radius R. Set the origin at the center of this region with the z axis aligned with the
cylinder. An azimuthal average over this cylinder at height z is computed by taking the integral over
a cylindrical shell of thickness 	r at radius r. The average is computed as

〈 f 〉θ =
∫ π/2

0

∫ r+	r
r f [r cos(θ ), r sin(θ ), z]r dθ∫ π/2

0

∫ r+	r
r r dr dθ

. (5)

This azimuthal average is computed numerically by defining a shell thickness, 	r, and summing
the scalar quantity inside the shell at each z and dividing by the approximate area in the region. This
type of averaging scheme is only necessary because SPINS is discretized in Cartesian coordinates.
A simulation discretized in cylindrical coordinates could perform this averaging more simply.

Another quantity related to the average which will be used in the analysis presented in this paper
is the variance along the direction of propagation. We write the variance of the variable, f , as σ 2( f ).
The variance is computed for the Corner case as

σ 2( f ) = 〈〈 f 2〉θ 〉z − 〈〈 f 〉θ 〉2
z , (6)

and for the Slat case as

σ 2( f ) = 〈〈 f 2〉y〉z − 〈〈 f 〉y〉2
z . (7)

In both cases, σ 2 is a function of distance along the direction of propagation, r for the Corner case
and x for the Slat case.

D. Quantifying the intrusion height

A classical, lock-exchange gravity current typically has a density difference between the ambient
and intruding fluid that is fixed in time [23]. Reference [31] is an example of a measure of the height
of a gravity current. The height is estimated by integrating the nondimensional density over the
vertical direction. The density is scaled such that the intruding fluid has a density of one and the
ambient has a density of zero. By construction, a column of fluid entirely consisting of the intruding
fluid will have a height of Lz and a column of fluid consisting entirely of the ambient will have a
height of zero.

This definition is useful because it accounts for mixing along the interface between the gravity
current and the ambient. A problem with this approach for the simulations outlined in this paper
is that it does not account for the ambient gradually increasing in temperature and the interior of
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the intrusion gradually warming due to the external solar radiation forcing. As a result, this measure
quickly loses track of the intrusion even as fluid continues to be transported away from the shadowed
region. Instead, we use the following definition for the Corner case:

G(z, t ) = 1

LC (t ) − wd

∫ LC (t )

wd

〈ur〉θ dr, (8)

where G(z, t ) is simply 〈ur〉θ averaged in the r direction from the shadow boundary (r = wd ) to the
intrusion front r = LC (t ) (see Sec. II E). The height is then determined by setting

G(z, t ) = 0

and solving for z. For the Slat case,

G(z, t ) = 1

LS (t ) − wd

∫ LS (t )

wd

〈u〉y dx, (9)

where LS (t ) is the front position and the height of the intrusion is again determined by setting G(z, t )
to zero.

E. Intrusion front position

For both the Corner and Slat case, the front position was initially identified as the max-
imum of 〈T 〉θ (Corner) and 〈T 〉y (Slat) at z = Lz, the temperature field averaged in the
transverse direction. The maximum temperature for these fields is located at the front position
and extends down the parabolic leading edge. The boundary between the intrusion and the
convective ambient is so thin that the temperature at the front is entrained by the intrusion
and not well mixed, as well as continuously heated by solar radiation. Fluid farther ahead of
the intrusion is more easily mixed and slightly cooler and fluid behind the front is always
cooler.

After enough time had elapsed, the intrusion front position is no longer possible to identify
using 〈T 〉θ or 〈T 〉y. This can be seen in Fig. 4 or 5, in the left column of each figure. At later
times, we instead use the same averages but applied to the velocity of the fluid parallel to the
intrusion propagation direction. For the Corner case, this is the radial velocity, ur , and for the Slat
case this the x velocity, u. Unlike 〈T 〉θ or 〈T 〉y the maximum value of 〈ur〉θ or 〈u〉y is not located
near the intrusion front, to be discussed in Sec. III A. Instead, the front position was identified
as the edge of the region in 〈ur〉θ and 〈u〉y near the surface that is modified by the intrusion. In
Sec. III A, it is shown that this edge is qualitatively clear but still difficult to define rigorously. For
these later times, the front position was chosen as the position that best aligned visually with the
intrusion front in ur and u, with both the average but also in conjunction with horizontal slices in the
velocity field.

1. Froude number

The Froude number is considered an important dimensionless parameter in the analysis of gravity
currents. In the case of a classical gravity current with an intruding and ambient fluid, each with
uniform density, the Froude number is written as

Fr = U√
g′Lz

, (10)

where U is the front velocity of the gravity current and
√

g′Lz is a velocity scale set by the reduced
gravity, g′ = (ρ1 − ρ2)/ρ0, and the height of the current in the initial conditions. In deep water at
high Reynolds number, Uh/ν, the Froude number is thought to be equal to 21/2 [23,30,41]. The
Froude number has also been shown to depend on the fractional depth, h/Lz, of the gravity current
compared with the domain height for shallow domains [28,30].
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If we define g′ in the system presented in this paper in terms of the density just in front and just
behind the intrusion, we can see that g′ is no longer constant as the density difference under and
away from the shadowed region increases with time. The background temperature at early times is
approximated by

∂Tb

∂t
= Q0

λ
exp

(
− (Lz − z)

λ

)
[Alθ (x − wd ) + (1 − Al )], (11)

where θ (x) is the Heaviside function. Assuming a linear equation of state

ρ(T ) − ρ0 = αρ0(T − T0), (12)

where α ≈ 2.2 × 10−5 C◦−1, which is reasonable for small temperature differences even below TMD.
A further complication is the stratification induced by Eq. (11), which means that g′ is also a function
of depth.

Gravity currents in a stably stratified ambient have been studied in the literature [23,42,43], where
the Froude number is written in terms of the Buoyancy frequency,

N =
√

g

ρ0

∂ρ

∂z
. (13)

This is problematic for the cases presented here due to the unstable stratification induced by the
radiative flux in Eq. (1c), leading to an imaginary N . Further, it can be difficult to define a single
value to represent the density gradient to compute a single value for the Froude number.

III. RESULTS

In the previous work on this topic [22], a set of two-dimensional simulations were presented in
order to probe the parameter space of the intrusion. As we expand our interests to three-dimensional
simulations, while maintaining (1) the label of high-resolution direct numerical simulations, and (2)
the large vertical and horizontal length scales, a full analysis of the parameter space is less practical.
Hence, this paper consists of the analysis of the three cases: Corner, Slat. and No Noise, as listed
in Table I. The initial development of the intrusion in each of these cases is presented in Fig. 2
using the temperature field (color) and velocity field (arrows). We find that all three cases produce
an intrusion that propagates away from the shadow region. The advance of the intrusion in the Slat
case persists for longer and is generally deeper than the Corner case. Despite this, the intrusion in
both the Corner and Slat cases propagates at approximately the same constant speed after an initial
acceleration phase. The front ceases progression in the Corner case due to mixing with the turbulent
and warm return flow. The source of the height difference is geometrical, and unlike classical gravity
currents, the height of the intrusion increases with time [26,31]. Comparatively, the No Noise case
gradually speeds up throughout the experiment and never ceases outward flow. However, the depth
of the intrusion gradually decreases.

A. Summary of motion

In the precursor to the research presented in this paper [22] the development of RDC was
divided into two phases: (1) the solar radiation dominated phase and (2) the convection-dominated
phase. The distinction of these phases is characterized by the effect of convection on the mean
temperature profile away from the shadowed region and ahead of the intrusion. Reference [22]
shows that initially there are only negligible deviations from the background temperature field
determined by solar radiation alone during the solar radiation-dominated phase. In the convection-
dominated phase, there is significant deviation from the background temperature field. The transition
between these two phases starts first at the surface and gradually extends towards the bottom as
Rayleigh-Taylor instabilities exchange heat with the unheated fluid below. It is possible that the
timing of this transition coincides with some critical Rayleigh (Ra) or Grashof (Gr) number, as in
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FIG. 2. Initial development in intrusions for the (a), (d), (h) Corner case, (b), (e), (i) Slat case, and (c), (f),
(j) No Noise case at (a), (b), (c) t = 600 s, (d), (e), (f) t = 1000 s, and (g), (h), (i) t = 1400 s. Color denotes
the temperature field, and the arrows denote the velocity field. There are 3000 arrows, randomly distributed,
with sizes proportional to the velocity field and comparable between panels. All cases show only the top half
of the domain. The Corner and No Noises cases have been truncated by 25% in both x and y. The Slat case is
truncated in only x by 25%.

Rayleigh-Bénard convection. Gr in the cold-water regime for a linear equation of state [22,34] (valid
for O(0.01−0.1 ◦C) temperature variations, far from TMD) and a nonlinear equation of state [21,33]
have been reported. There are many other studies which examine Rayleigh-Bénard convection near
the temperature of maximum density [44–46]. To the authors’ knowledge, an examination of a
time-varying stratification and the transition to convection does not exist but is not the focus of the
present paper and could be the subject of future work.

In two dimensions, with the same parameters as this paper, the transition was observed at
t ≈ 1000 s. The transition in three dimensions was found to occur slightly later at t ≈ 1200 s. The
reason for the difference in timing of the transition is likely a combination of dynamical differences
between two and three dimensions, as well as filtering. Due to the problem of aliasing and spectral
blocking [47,48] that is inherent in spectral methods, a filter is required to remove energy at the
smallest scales. However, in three dimensions a filter removes a larger fraction of the wave number
space compared to two dimensions.

Figure 2 shows the development of an intrusion that propagates away from the shadowed region,
as early as the solar radiation-dominated phase [Figs. 2(a)–2(f)] and into the convection-dominated
phase [Figs. 2(g)–2(i)]. A schematic of the flow as viewed from the side is given in Fig. 3.
Underneath the intrusion, a return flow develops with two parts. Immediately below the intrusion is
the warm return flow that forms into a sideways Rayleigh-Taylor-like instability. In the Corner
and Slat cases, there are many features along the warm return flow, whereas, in the No Noise
case, the warm return flow is smooth. The return flow extends to the bottom, consisting of cool,
unheated ambient fluid with no discernible features. The return flow is generated by conservation
of volume as the fluid under the shadow flows away from the shadowed region. The warm return
flow initially propagates towards the shadowed region, but at a later time [Figs. 2(g)–2(i)] due to
the shear interface (Labeled on Fig. 3, parallel to the surface away from the shadowed region with
a vertical component at the shadow boundary) the head of the warm return flow curls towards the
surface, generating a large Kelvin-Helmholtz (KH) billow. KH billows are commonly observed in
the tail of a gravity current with sufficiently large Reynolds number [23,31,49]. The Richardson
number (Ri) determines the stability of a shear interface to the development of KH billows [50]. Ri
is defined as the ratio of the buoyancy force to the magnitude of the shear term. Ri can be written—
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FIG. 3. Flow schematic for the dynamics presented in this paper, viewed from the side or as an aver-
age in the transverse, focused on the intrusion. This stage of motion is representative of the temperature
field t ≈ 1200 s. Arrows indicate the mean direction of motion in this plane and are colored to enhance
contrast only.

under certain simplifying assumptions—as a ratio of the shear interface height to the lock height,
multiplied by 1/4.

1. Transverse averages of T and the outward velocity component

The development of the intrusion, from initial stages to collapse in the temperature field, can
be seen clearly in the left column of Fig. 4 for the Corner case and Fig. 5 for the Slat case. The
left column of both figures gives the temperature field averaged in the transverse direction. 〈T 〉θ ,
computed using Eq. (5) for the Corner case and 〈T 〉y using Eq. (4) for the Slat case. The right column
of Figs. 4 and 5 gives the velocity in the direction parallel to the direction of propagation, 〈u〉y for
the Slat case and 〈ur〉θ for the Corner case. These cases will be compared and contrasted side by
side. In doing so, the terms “outward” and “inward” will be used in both cases to refer to motion
away from and towards the wall at x = 0 m in the Slat case or the corner at r = 0 m (equivalently,
(x, y) = (0, 0) m).

The initial development for both cases is quite similar [Figs. 4(a) and 4(b) and Figs. 5(a) and
5(b)]. The intrusion is visible only in a small region near the shadow boundary (r or x = 2 m,
Fig. 3). The horizontal density gradient generates vorticity along the shadow boundary, rotating
the vertical temperature interface outward into the warm ambient [Figs. 4(a) and 5(a)]. This effect
appears in 〈u〉θ/y as a triangularly shaped region of outward flow towards the ambient. Flow velocity
is strongest at the surface and weakest near a depth of λ where the horizontal temperature and density
differences are smaller. In both cases, a region of weak flow towards the left is visible beneath the
triangular region. As we will see later, this is the end of the initial growth phase where the pace of
the intrusion increases (in the first 600 s of each simulation).

At the next stage, Figs. 4(c) and 4(d) and 5(c) and 5(d), the intrusion transforms into the shape
of a classical gravity current typical of a free-slip surface with a parabolic shaped front edge [51]
consistent with the flow schematic in Fig. 3. The intrusion at this stage is also consistent with
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FIG. 4. T and ur averaged in the azimuthal direction for the Corner case. Azimuthally averaged (a), (c), (e),
(g) T and (b), (d), (f), (h) ur at (a), (b) t = 600 s, (c), (d) t = 1200 s, (e), (f) t = 1800 s, and (g), (h) t = 2400 s.
The vertical solid line gives the shadow boundary, set by wd . The vertical dashed line in each panel gives the
approximate front position as a function of time, given in full in Fig. 7. The horizontal dot-dashed line in each
panel gives the depth of the slices in Figs. 6(a) and 6(b).

gravity currents with no-slip boundary conditions at very low Reynolds number (Re < 1) [30]. The
warm return flow underneath begins to resemble the typical mushroom shape of a Rayleigh-Taylor
instability. Both the size of the head and the thickness of the neck of the return flow are smaller in
the Slat case. This is possibly due to conservation of volume as the return flow propagates inward
and instead expands downwards.

In both cases, 〈ur〉θ and 〈u〉y exhibit a consistent outward flow along the surface, a slightly weaker
inward flow in the warm return flow, and a significantly weaker flow in the cool return flow towards
the bottom towards. The shear layer is mostly horizontal except at the head of the warm return flow
and at the intrusion front (Fig. 3). The downwards angle of the shear layer bisects the head of the
warm return flow from its neck. This is similar to the normal development of a Rayleigh-Taylor
instability, where the velocity of the neck is in the direction of propagation and the velocity of
the head is towards either side of the instability. At this stage of the motion, the velocity scale in
the interior of the intrusion and return flow greatly exceeds the convective velocity scales ahead
of the intrusion.

At the third stage, Figs. 4(e) and 4(f) and 5(e) and 5(f), the upper edge of the return flow has
become a KH billow and has curled up into a vortex, which we will refer to here as the return flow
vortex. Others will inevitably follow, but this vortex is crucial to the development and mixing of the
intrusion in the temperature field. In both cases, the return flow vortex travels in the same direction
as the intrusion as a faster rate. In the Corner case, the return flow vortex develops more rapidly and
catches up to the intrusion front position at t = 1800 s [Figs. 5(e) and 5(f)]. In the study of classical
gravity currents, especially those bounded by a wall in the direction behind the current, an effect
where the return flow catches up to the front of the current has been observed and well documented
[23]. However, the return flow vortex is clearly generated by a KH instability along the shear layer
between the warm return flow and the intrusion, and not an interaction with the return flow and a
wall behind the intrusion.
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FIG. 5. T and u averaged in the y direction for the Slat case. y averaged (a), (c), (e), (g) T and (b), (d),
(f), (h) u at (a), (b) t = 600 s, (c), (d) t = 1200 s, (e), (f) t = 1800 s, and (g), (h) t = 2400 s. The vertical solid
line gives the shadow boundary, set by wd . The vertical dashed line in each panel gives the approximate front
position as a function of time, given in full in Fig. 7. The horizontal dot-dashed line in each panel gives the
depth of the slices in Figs. 6(c) and 6(d).

There is a notable difference between the Slat and Corner cases regarding the development of
the return flow vortex. In the Corner case, the collapse of the intrusion in the temperature field is
evident compared to the Slat case, as shown in Figs. 4(e) and 5(e). By this stage, the return flow
vortex, which causes this collapse, has reached the front of the intrusion in the Corner case, while
in the Slat case, it is about 4 m behind and below the surface. The delay is likely due to the greater
depth of the intrusion in the Slat case, leading to a longer path for the warmed return flow. The depth
of the intrusion varies along the shear layer between the intrusion and the warmed return flow. Early
on there are fewer variations on the shear layer, but at later times (t > 1800 s) variations along the
shear layer become more apparent, especially in Fig. 4(f) for the Corner case and Fig. 5(f) for the
Slat case.

At the final stage, Figs. 4(g) and 4(h) and 5(g) and 5(h), the KH billows in both cases have
significantly disrupted the front edge of the intrusion. In the Corner case, at t = 2400 s, the front
position and the vortex are no longer visible in 〈T 〉θ [Fig. 4(g)]. In the Slat case with development
slightly behind the Corner case, at t = 2400 s, the vortex has nearly erased the front position in
〈T 〉y [Fig. 5(g)]. However, there are clear differences beyond the time lag between the two cases.
The return flow vortex in the corner case is restricted to the depth of the intrusion, whereas, in the
Slat case, the return flow vortex appears to extend below the intrusion, suggesting the possibility for
enhanced vertical motion in the Slat case that goes beyond the differences in intrusion depth.

There is a clear difference between the Slat and Corner case in terms of the development of
the return flow vortex. The difference in timing and proximity to the surface is controlled by
the geometry of the shadowed region. This is discussed further in Sec. III C. The collapse of the
intrusion in the temperature field is apparent in both cases but less severe in the Slat case. The later
time behavior of the intrusions is discussed in more detail in Sec. III D.
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FIG. 6. Slices in the temperature field for the (a), (b) Corner and (c), (d) Slat cases. (a), (c) t = 1200 s and
(b), (d) t = 2400 s. Dotted lines in the slices give the front position at the time of the slice. The solid line gives
the shadow boundary, set by wd . (e) Variance in T along the direction of propagation. The horizontal axis
represents r in the Corner case and x in the Slat case. Times and cases listed in the legend. Vertical dashed line
gives the shadow boundary, set by wd .

2. Horizontal T slices

The averages given in Figs. 4 and 5 demonstrate the general behavior and evolution of the
intrusion. However, they fail to capture the manner in which the intrusion develops in the transverse
direction. Figure 6 gives slices in the T field, respectively, for both the Corner and Slat cases, as
well as the variance in T at the same times, along the outward direction. The depths of the slices
are shown in Figs. 4 and 5 using the dot-dashed line. These depths were chosen to correspond to
the approximate mid depth of the intrusion at t = 1200 s, which is different between the two cases,
hence, the slightly different depths sampled for Fig. 6.

Both the Corner and Slat cases develop similarly in the initial stages of the motion [Figs. 6(a)
and 6(c)]. A relatively smooth intrusion front with features smaller than the size of convective
instabilities ahead of the intrusion is evident. The intrusion front is indicated by a sharp transition
between convective instabilities ahead of the intrusion and a smooth interior region. The convective
instabilities are the small patches of warm and cool fluid, and are randomly shaped, rough features,
oriented mostly in the vertical direction due to gravitation forces. Features along the intrusion front
edge are visible and are comparable in length scale to the features ahead of the intrusion.

The temperatures in the interior of the intrusion are significantly smaller than those in the region
ahead of the intrusion. The temperatures are smallest under the shadow, for radii less than 2 m in
the Corner case and for x less than 2 m in the Slat case. Between the edge of the shadow boundary
and the intrusion front, there exists a small gradient in temperature increasing in the direction of
propagation, in both the Corner and Slat cases. As the intrusion propagates away from the shadowed
boundary, the interior is gradually heated at rate of Q0/λ. The fluid closest to the intrusion front has
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been heated longer and as a result is warmer than fluid farther behind the intrusion front. A sharp
change in temperature of approximately 0.1 ◦C persists at the intrusion front. Based on the rate of
heating of Q0/λ, an increase in temperature of 0.1 ◦C is obtained at approximately 600 s. Figure 4(a)
and Fig. 5(a) both show that at t = 600 s, the intrusion front is only barely away from the shadow
boundary.

σ 2(T ) [Fig. 6(e)] along the direction of propagation at t = 1200 s is similar for both cases, with
a peak just before 2 m with nearly constant variance after to the end of the domain. Note that the
location of the peak does not coincide with the front position. It instead corresponds to the head of
the return flow. Further evidence of the intensity of this variance (which includes information from
both the transverse and vertical direction) in the azimuthal and y direction is that above and below
the return flow at t = 1200 s there are no (large) perturbations to the background temperature field.
This can be seen clearly in 〈T 〉θ and 〈T 〉y in Figs. 4(c) and 5(c). It is difficult to point to the intrusion
front position in the variance of T at t = 1200 s; however, there is a slight dip in the variance
of T between the intrusion front (x/r ≈ 3.4 m) and the leading edge of the warm return flow
(x/r ≈ 2 m). The dip indicates that in the body of the return flow, there is less transverse variance
in temperature compared to both the head of the return flow and the instabilities ahead of the
intrusion.

At the next time (t = 2400 s) shown in Figs. 6(d) and 6(b), there have been significant changes in
the T slices. The instabilities have grown into large convective cells with length scales O(0.1−1 m),
typical of Rayleigh-Bénard convection which has been previously discussed in the context of RDC
[52], lending visual credence to the analysis of the transition from the solar radiation-dominated
phase to the convection dominated phase as an increase past a critical Rayleigh number. The length
scales of these cells do not continue to grow appreciably after the CL—away from the shadow—
reaches the bottom of the domain. The maximum cell size is likely set by λ/Lz but a more in-depth
analysis is required to fully understand these cells and is not the focus of this paper. Features along
the intrusion front have grown, and the return flow has entered the intrusion interior. There are also
some differences that are identifiable between the Corner and Slat cases. The transition between
the interior and exterior of the intrusion is less abrupt in the T slices for both the Corner and Slat
cases. This is caused by the vortex generated by the interface between the return flow and the
intrusion, visible near the front of the intrusion in 〈T 〉y and 〈T 〉θ [see Figs. 4(e) and 4(g) and 5(e)
and 5(g)].

The Corner and Slat cases are essentially identical, save for the geometric differences of the
leading edge, at t = 1200 s [Figs. 6(a) and 6(c)]. At t = 2400 s [Figs. 6(b) and 6(d)], the RDC
ahead of the intrusion is also similar. However, there is a striking difference behind and at the
intrusion front at the depths chosen. In the Corner case, T is more uniform between the intrusion
front at the shadow boundary, whereas in the Slat case, there are warm, round features with sharper
edges. These features are new Rayleigh-Taylor instabilities forming due to the continued heating
away from the shadowed region and the lower penetration of the return flow vortex leaving a region
of mostly undisturbed fluid. Further, the temperature immediately behind the intrusion front is not
uniform. This is due to nonuniform penetration of the return flow vortex in the vertical direction in
the Slat case at the depth chosen. The sharpness at the intrusion front also is retained in the Slat case
but is lost in the Corner case. This is due to the difference in depths of the return flow vortex, as
well as the destruction of the intrusion front in the Corner case, or the lack thereof in the Slat case.
These slices are examined in more detail in Chapter 5 of Ref. [53].

σ 2(T ) has changed significantly from earlier times at t = 2400 s in Fig. 6(e). At this stage,
the variance gradually increases with increasing distance from the shadowed region, even past
the intrusion front. This effect is not visually apparent in the T slices or in any of the averaged
quantities discussed above shown in the section. We expect that the variance would be larger
ahead of the intrusion front than behind it. We also expect that that variance behind the intru-
sion should also increase with time as it interacts with the return flow. However, the gradual
increase in the variance of T past the intrusion front suggests that the presence of the intrusion
is affecting the convective cells nearest to the intrusion front [Fig. 6(e)]. We expected that σ 2(T )
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FIG. 7. Front position for all three cases listed in Table I. The method of determining the front position is
explained in detail in Sec. II E. Time resolution of curves is based on output frequency from each simulation,
noting that the Slat case is 4 times smaller than the No Noise and Corner cases in terms of storage.

would quickly approach a constant value as it did at earlier times. The increasing variance with
distance from the shadow implies that the convective cells closer to the intrusion front are affected
by the intrusion, even if it is not visually apparent, compared to those farther away. This is a
surprising result that is not obvious from looking at the fields themselves; hence, it is revisited
in Sec. III D.

B. Front position

The front edge of the intrusion is clearly visible at early times in both the Corner and Slat cases.
The location of the front edge is uniform in the No Noise case. The location of the front edge as a
function of time is compared in Fig. 7. The method for estimating the front position is outlined in
Sec. II E. All three cases exhibit an initial growth phase in the first 600 s, where the rate of change of
the front position with time increases (i.e., the front accelerates). The duration of the initial growth
phase is identical to the one observed in Ref. [22]. This shows that the initial growth is well captured
in two dimensions. In the Slat and Corner cases, the next phase is characterized by an approximately
linear slope. In the No Noise case, the slope of the front position in Fig. 7 continues to increase with
time. The No Noise case front position begins to diverge from Corner and Slat cases between near
t = 1500 and 1800 s, suggesting an approximate time when convection has notably affected the
propagation of the intrusion. Note that the divergence in front position occurs during the convection
dominated phase but well after the transition. As shown in Fig. 2, there is no RDC in the No
Noise case.

In the previous section, it was shown that there are very clear similarities and differences between
the Corner and Slat case. One such difference is the development rate and height of the KH billows
generated at the top edge of return flow (comparing Figs. 4 and 5). The resulting vortex catches
up with the intrusion front and effectively erases it from the T field in the Corner case. The vortex
in the Slat case develops similarly but at a lower height and more slowly. The manner in which it
interferes with the intrusion front is also lessened, discussed in the previous section. Despite these
differences, the location of the front edge of the intrusion is equal for both cases as a function of
time, as shown in Fig. 7. That is, however, until about t ≈ 2500 s, where the leading edge of the
intrusion stops progressing in the Corner case. The last time shown in Fig. 4(h) is the last time in
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which the front position increases in the Corner case. This is perhaps not surprising because the
mechanism for generating the intrusion is a temperature gradient across the shadow boundary. At
later times the temperature gradient is smeared by the effects of the vortex crashing into the intrusion
front. In Sec. III D, how the intrusion stops propagating in the Corner case but continues in the Slat
case is discussed in more detail.

1. Estimating a Froude number

As shown in Sec. II E 1, there does not exist a specific estimate of the Froude number for cases
with time- and depth-varying density. Nonetheless, the Froude number is considered an important
parameter in the analysis of gravity currents. We suggest an alternative approach to estimating a
Froude number following the classical example where the available potential energy is converted
entirely into kinetic energy for the current. Writing the temperature field using Eq. (11) and using
the linear equation of state, Eq. (12), we equate the kinetic energy to the available potential energy

1

2
wd LyLzρ0u2

b = g
∫

V
[ρ(z, t ) − ρ f ar (z, t )]z dV, (14)

where ρ f ar (z, t ) is an approximation to the background potential energy, obtained by assuming that
the domain is sufficiently wide such that the background potential energy is determined only by the
unshadowed region. Equation (14) is written for the Slat case only but can be easily converted for
use in the Corner case without a change to the result.

Substituting in the parameters in Table II and solving for ub, we recover a Buoyancy velocity
which is O(10−3 ms−1) in the first 600 s, after which the intrusion interior and the region ahead
of the intrusion are heated at the same rate and the density difference is approximately constant.
This is the same order of magnitude as the current speed in both the Corner and Slat cases (Fig. 7
has a slope of approximately 2 × 10−3 ms−1 in both cases), resulting in a Froude number which
is O(0.1−1). A more in-depth study of gravity currents with time- and depth-varying density in
both the intruding and ambient is necessary to determine if this is the appropriate estimation of the
Froude number.

C. Intrusion depth analysis

Figures 4 and 5 establish that there is a clear difference in intrusion depth between these two
cases. As discussed in Sec. II E, we define the depth of the intrusion as the average depth of the
shear layer (Fig. 3) along the length of the intrusion starting at the shadow boundary and ending
at the intrusion front position. Figure 8 gives the intrusion depth for all three cases considered in
this paper. The first 1000 s are not shown as the intrusion depth by this definition does not produce
useful results prior to this time.

The depth of gravity currents typically decreases with time [23,31]. Figure 8 clearly shows
that the intrusion depth decreases only for the No Noise case. The turbulent mixing in the am-
bient and return flow in both the Corner and Slat cases increases the depth of the intrusion. An
increase in gravity current depth due to a turbulent ambient has previously been observed and
measured [23,54].

The No Noise case here acts as a point of comparison. The intrusion depth remains constant
until shortly after t = 1500 s, where it begins to decrease. This time is close to the transition time
between the solar radiation-dominated phase and the convection-dominated phase, but there is no
such transition in the No Noise case. However, around this time the return flow vortex approaches
the intrusion front in the No Noise case (not shown), which is shortly after at t = 1800 s.

The initial offset between the depth of the Slat case and the depths of the Corner and No Noise
cases is explained by the geometric differences of the shadowed region. This can be shown by
considering a pair of constant volume gravity currents—one with a cylindrical lock and the other
with a flat lock, analogous to the Corner and Slat cases, respectively—and assuming that both
propagate in equal area rectangles, similar to the assumptions made in Ref. [28]. If L(t ) is the
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FIG. 8. Intrusion depth defined as the transition between outward and inward motion in the ur field (Corner
and No Noise case) or u (Slat case).

front position and D(t ) is the depth, then

D ∝ wd

L

in the Slat case and

D ∝
(wd

L

)2

in the Corner and No Noise cases. The shape of the depth in the No Noise case after t = 1500 s
is reasonably consistent with a L−2 relationship and suggests that the depth of the No Noise case
approximately behaves like a constant volume gravity current. A more complete discussion of the
constant volume gravity current is found in the Ph.D. thesis of the first author [53].

The depth ratio between the Corner and Slat cases is wd/L, if L is assumed to be unchanged
between each case. Figure 7 shows that this is a reasonable assumption. At t = 1000 s, the depth
ratio is ≈3/4 in Fig. 8 and is acceptably close to wd/L = 2/3 at the same time, using L = 3 m
at t = 1000 s for both cases. After t = 1000 s, the depth of both the Corner and Slat cases begins
to increase. In the Corner case, there is a brief flattening of the intrusion depth between t = 1600
and 1800 s, possibly due to the interaction between the return the vortex and the intrusion front.
Evidently, the effect of the turbulent return flow is to increase the intrusion depth overtime, with a
second increase in the rate of change shortly after the point in time where the outward flow of the
intrusion ceases.

The slope of the intrusion depth versus time in the Slat case is nearly constant, with a small
change near t = 1800 s. As shown by Figs. 5 and 6(b) and 6(d), the return flow vortex leaves a gap
of mostly undisturbed fluid near the surface in the interior of the intrusion. If the return flow vortex
is indeed responsible for the change and slope in the Corner case, it is unsurprising that we observe
less of a change in the intrusion depth in the Slat case, which is able to propagate farther than the
Corner case.

D. Late-time intrusion behavior

In the early stages of the simulations firmly in the solar radiation-dominated phase the driving
mechanism that generates the intrusion is the density differences at the shadow boundary. These
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FIG. 9. Baroclinic vorticity generation, averaged in the θ (Corner case, solid lines) or y (Slat case, dashed
lines) direction and the top half of the z dimension. Times are indicated by a color. The front position is
indicated by a square (Slat case) or circle (Corner case) along each curve.

density differences over a small region create a sharp increase in the baroclinic vorticity term in
the vorticity equation. Figure 9 shows quite clearly that after the point in time that the intrusion
in the Corner case stops spreading (t > 2400 s) there is no longer a sharp change in the baroclinic
term at the intrusion front. Meanwhile, in the Slat case the sharp increase at the intrusion front
is still present, and as a result the intrusion is able to continually propagate outward. It is not the
convection ahead of the intrusion that arrests the motion and continued outward flow, but instead it
is the destruction of the intrusion in the temperature field by the return flow vortex that flattens the
horizontal density gradients at the intrusion front along the direction of propagation.

Figure 9 shows that as a result of the return flow vortex, the density gradients in the interior of
the intrusion increase, approaching the gradients in the RDC ahead of the intrusion. Even at earlier
times, prior to the convection dominated phase, the magnitude of the baroclinic vorticity generation
ahead of the intrusion front is comparable to the magnitude at the intrusion front, again implicating
the sharp increase at the intrusion front as the source of the continued motion.

It is the efficiency of the intrusion at introducing turbulent and warm fluid into the interior of
the intrusion that arrests the continued outward flow of the intrusion. Geometric differences alone
between the two cases explain how the Slat case continues to propagate outwards well after the
Corner case stops propagating. It should be noted that the existence of an unmixed layer [Figs. 10(f),
10(h), and 10(j)] mostly unperturbed by the turbulent return flow vortex in the Slat case is likely
parameter dependent, even if we expect that the Slat case will always result in a deeper intrusion
due to conservation of volume (Sec. III C). If the initial vertical and horizontal length scales of the
fluid underneath the shadowed region (namely, λ and wd ) were chosen to produce a smaller volume
under the shadow, it is likely that a return flow would have the capacity to destroy the intrusion in the
same way as in the Corner case and arrest the continued propagation of the intrusion front. In such
a scenario, the equivalent Corner case would mix with the return flow vortex and cease propagating
more rapidly as well.

The evolution of the enstrophy, averaged in the transverse direction, is given in Fig. 10. The
enstrophy, especially on small scales, is highly linked to dissipative effects. At each time in Fig. 10
(row by row), the stark difference is in the interior of the intrusion. In the corner case, non-negligible
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FIG. 10. Enstrophy averaged in the azimuthal or y direction for the Corner and Slat cases. (a), (b) t =
1800 s, (c), (d) t = 2200 s, (e), (f) t = 2600 s, (g), (h) t = 3000 s, and (i), (j) t = 3400 s. The first column
(a), (c), (e), (g), (i) corresponds to the Corner case and the second column (b), (d), (f), (h), (j) corresponds to
the Slat case.

values of the enstrophy are distributed throughout the domain. Unsurprisingly, the magnitude of the
enstrophy behind the intrusion front is generally smaller than ahead of the intrusion front, with
a positive gradient in the outward direction, reaching a maximum near r = 6 m at the intrusion
front edge. The maximum value of the enstrophy is visible as a large mass behind the intrusion
front (remnants of the return flow vortex) at t = 1800, 2200, and 2600 s in Figs. 9(a), 9(c), and
9(e). After the intrusion front ceases to continue propagating outwards, the enstrophy increases at
the intrusion front [Figs. 10(h) and 10(j)]. The interaction between the intrusion that is no longer
flowing outwards, and the convective cells ahead of the intrusion generate a region of high enstrophy
and enhanced mixing.

In the Slat case, a large pocket of low or negligible enstrophy is maintained near the intrusion
front for all times shown but modified by the return flow at later times. As we previously discussed in
Sec. III A, the return flow is not able to destroy the intrusion front in the temperature field in the Slat
case as early as in the Corner case. As the return flow vortex continues to increase in size with time,
the pocket of low enstrophy is pulled downwards along the intrusion front at t = 3000 and 3400 s
in Figs. 9(h) and 9(j). As the intrusion front continues to propagate, no enstrophy enhancement is
visible near the leading edge.

In both cases there is a significant amount of rotation on large scales behind the intrusion front.
As we have just discussed, in the corner case this results in a pile up in enstrophy at the intrusion
front [Figs. 10(e), 10(g), and 10(i)]. In the Slat case, the intrusion continues to propagate outwards,
and the return flow vortex grows in both horizontal and vertical directions, gradually absorbing
the irrotational fluid in the body of the intrusion. Vertical domain scale rotation is easily identified
in 〈w〉θ [Corner; Figs. 11(a) and 11(c)] and 〈w〉y [Slat; Figs. 11(e) and 11(g)], at t = 2800 s in
Figs. 11(a) and 11(b) and t = 3400 s in Figs. 11(e) and 11(g), respectively. The rotation appears in
the mean w field as a column of downward motion near the intrusion front, immediately adjacent
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FIG. 11. w (left column) and u or ur (right column) averaged in the azimuthal or y direction for the Corner
and Slat cases. (a), (b) t = 2800 s for the Corner case. (c), (d) t = 3400 s for the Corner case, (e), (f) t = 2800 s
for the Slat case, and (g), (h) t = 3400 s for the Slat case. Vertical dashed line indicates the front position of
the intrusion, and the horizontal dashed line corresponds to the depth of slices in Fig. 12.

and a rapid transition to a neighboring column of upward motion, farther behind the intrusion front
[towards the left in Figs. 11(a), 11(c), 11(e), and 11(g)].

There are two important features in this rotation that should be noted. First, this is an average,
and as shown by Figs. 12(c) and 12(d) there is significant variations in w in the interior of the
intrusion, close to the intrusion front. Second, in the corner case the column of downward flow is
centered on the intrusion front, but in the Slat case this column is centered just behind the intrusion
front. The relative position of the intrusion front and the convective downwelling cell indicates clear
interactions between the intrusion and the convective cells ahead of the intrusion front. The layer of
outward flow along the surface in 〈u〉θ [Figs. 11(b) and 11(d)] is directly connected to the return flow
by the downwelling cell, through the convective region ahead of the intrusion front. Conversely, in
the Slat case the intrusion and return flow interact behind the intrusion front.

There are many ways in which this interaction is apparent in the data. One way is the development
of a vertical column of upward motion (again on average) in 〈w〉θ , clearly ahead of the intrusion
front, in Figs. 11(a) and 11(c). A similar effect is also clear at the later time of t = 3400 s in the Slat
case in Fig. 11(g). Connected columns of upwards or downwards flow is not seen farther ahead of
the intrusion front in either case.

The fields shown in Fig. 11 are averages in the transverse direction. At the depths indicated by
the horizontal dashed lines in Fig. 11, slices of the w and ur fields (u for the Slat case) are given
in Fig. 12. These slices paint a particular picture of the motion immediately ahead of the intrusion
front, especially in the corner case [Figs. 12(a) and 12(c)]. Ahead of the intrusion, large convective
cells develop. Upward motion is a collection of large clumps bounded by these regions of downward
motion, in a honeycomb pattern. As these convective cells approach the surface, the solid boundary
forces the upward flow to move outwards.
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FIG. 12. u or ur (a), (b) and w (c), (d) slices for the Corner (a), (c) and Slat (b), (d) cases at t = 3000 s.
Slices are taken at the depth shown by the horizontal dashed line in Figs. 4 and 5.

The ur slice [Fig. 12(a)] shows that these clumps are bisected in the azimuthal direction at the
approximate midpoint in the radial direction. Arrows are drawn on the ur slice and copied to the
same location in the w slice [Fig. 12(b)] to show the correlation of flow towards the intrusion front.
These convective cells are behaving like a fountain of water reaching its peak. Note that this inward
flow due to the upwelling convective cells is not equally strong along the arc of the intrusion front.
Inward flow ahead of the intrusion front is notably weaker for angles (as measured from the x axis)
less than 45°.

Convective cells without arrows have notably weaker (or nonexistent) inward flow than those
that do. This emphasizes the variability along the intrusion front due to convection ahead of the
intrusion. Convection ahead of the intrusion front in the Slat case is of similar strength in both the
upward and downward direction [Fig. 12(d)]. However, flow in the negative x direction due to these
upward convective cells is nonexistent [Fig. 12(b)]. As it was just noted, this does happen in the
corner case but only in small areas. Hence, the lack of significant inward flow in the Slat case could
be a result of random variations and as a result a wider domain is necessary to fully analyze the
inward flow generated up upwelling convective cells close to the surface.

IV. DISCUSSON AND CONCLUSIONS

In this paper, three simulations are presented that examine the effect of heterogeneous solar
radiation intensity extended into three dimensions. One simulation has a rectangular shadow (Slat
case), another has a quarter circle shadow (Corner case), and the last one also has a quarter circle
shadow, but the initial conditions do not have noise added (No Noise case) as a controlled point
of comparison. Figures 2 and 3 show the motion in the initial stages (t = 600 to 1400 s), mostly
confined to the solar radiation dominated phase. In this phase, an intrusion flows away from the
shadowed region in all three cases, as in two dimensions, with a parabolic leading edge. A return
flow develops in the reverse direction and can be divided into two parts. A warm return flow
immediately beneath the intrusion and a cool return flow towards the bottom. In all three cases, the
head of the warm return flow forms into a shape similar to a Rayleigh-Taylor instability, bisected
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by the thin shear layer between the intrusion and warm return flow. Radiatively driven convection
ahead of the intrusion is not sufficiently strong to significantly affect the propagation of the intrusion.
Figure 2 shows that the velocity scale in the interior of the intrusion greatly exceed the velocity
scales in the return flow and in the radiatively driven convection ahead of the intrusion. The front
position at this stage for all three cases is identical (Fig. 7).

There are two important structural differences prior to t = 1400 s. The first is between the No
Noise and noisy cases (Corner and Slat) where there are features ahead of the intrusion and in the
body of the warm return flow in the noisy cases and none in the No Noise case (by construction). The
average taken in the transverse direction for each noisy case reveals the Rayleigh-Taylor-like shape
at the head of the warm return flow [Figs. 4(c) and 5(c)]. The variations in the warm return flow
in the transverse direction increase the height of the body of the warm return flow [Figs. 2(g)–2(i),
4(c), and 5(c)]. The intrusion front, despite the features in the convection ahead of the intrusion, is
comparatively smooth prior to t = 1400 s, likely due to the difference in velocity scales between the
intrusion and the convection ahead of the intrusion.

The second difference is in the intrusion height, defined as the depth of the shear interface
between the intrusion and the warm return flow. Prior to t = 1400 s, the Slat case is noticeably
deeper than both the Corner and No Noise cases. This difference can be entirely attributed to
volume conservation. Assuming a fixed volume intrusion, in the Corner case the depth is inversely
proportional to the square of the intrusion length, whereas in the Slat case, it is inversely proportional
to the length.

As the intrusion continues to propagate, convection ahead of the intrusion begins to affect how the
intrusion develops. The intrusion front position of the No Noise case begins to diverge from the Cor-
ner and Slat cases (Fig. 7 past t = 1500 s and the depth of the shear layer gradually increases (Fig. 8).
Radiatively driven convection ahead of the intrusion front decreases temperatures compared to pure
solar radiation. This reduction in temperature ahead of the intrusion front reduces the magnitude of
the baroclinic term in the direction of propagation, and hence, stops the intrusion front speed from
continuing to increase. The depth of the shear layer gradually increases as a result of the convection
at the intrusion front, contrary to classical gravity current set-ups where the gravity current depth
gradually decreases [23,31]. It has been shown that turbulence ahead of a gravity current causes its
depth to increase [23] and a similar effect is observed here and shown clearly by comparing ur and
u at later times (right column of Fig. 11) to ur and u earlier (right column of Fig. 4 or 5).

The comparison between the Corner and Slat cases highlighted that the differences in geometry
lead to differences in intrusion height. The main consequence of this difference is the manner in
which the return flow vortex interacts with the intrusion and the surface. In both cases, the return
flow vortex is generated along the shear layer and eventually catches up to the intrusion front
position. In the Corner case, the return flow vortex reaches the surface and erases the intrusion
from the temperature field [Figs. 4(g) and 6(b)], although a positive gradient in the radial direction
remains. However, in the Slat case, the return flow vortex does not reach the surface, nor does it
completely eliminate the intrusion from the temperature field [Figs. 5(g) and 6(d)]. Instead, the
intrusion in the Slat case continues to propagate (Fig. 7), allowing a thin and low enstrophy region
to propagate farther into the ambient [Figs. 10(f), 10(h), and 10(j)]. It is then possible to speculate
that the effect of increasing the intrusion depth, regardless of geometry, results in an intrusion that
is able to propagate farther. As shown by Fig. 7, as a result of the return flow vortex reaching the
surface, the intrusion almost suddenly stops propagating. This suggests that there exists a critical
lifetime of an intrusion of this type, rather than a gradual slowdown that one might expect of a
classical gravity current [23,31,55].

The broader research community has not, to date, considered horizontal variations in optical
properties in the interior of ice-covered lakes and their effect on the distribution of heat and the
generation of currents, other than Ref. [22]. Previous work has considered variations near the shore
or in shallow regions [14,32,56]. From the work presented in this paper, one can see that variations
in optical properties in the interior of a quiescent lake leads to the generation of robust horizontal
currents, or intrusions. These intrusions distribute cool fluid away from the shadowed region, and
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warm fluid under the shadow. This could potentially lead to faster melt rates in areas with shorter
optical thicknesses (less radiation) and slower melt rates in areas with longer optical thicknesses
(more radiation), which is contrary to what is expected. Further, these intrusions also provide a
mechanism for distributing nutrients and other suspended materials laterally. The capacity for the
distribution of heat under the shadowed region depends on geometry. The shallower Corner case
injects heat and turbulent fluid much closer to the surface compared with the Slat case and, hence,
would have a larger impact on melt rates. Radiatively driven convection is mostly a vertical process
(see the convective cells formed ahead of the intrusion front as well as [20,22,52,57,58]) prior to
interacting with solid boundaries, with limited horizontal scale. By considering variations in optical
properties—caused by ice thickness, clarity, and snow cover—we have presented a mechanism for
horizontal transport in small, ice-covered lakes.

Further research should consider a more realistic top boundary. The model SPINS we used for
the simulations presented in this paper is capable of imposing both no-slip velocity and T = 0 ◦C
conditions at the surface, a common approach to modeling ice in direct numerical simulations
[18,32,58]. It would also be possible to introduce some degree of roughness to the surface. Including
melt water or changing ice-depth is not currently possible in SPINS but should also be considered
for a full description of dynamics at the ice-water interface. The effect of such an upper boundary
introduces a boundary layer and would lead to the growth of the lobe and cleft instability [23,33],
modifying the shape of the intrusion front near the boundary and possibly how it interacts with the
convective cells.

This paper also contributes to the gravity current literature, albeit less directly. The analysis of
gravity currents with time-varying density differences did not exist in the literature (to the authors’
knowledge) prior to Ref. [22]. Horizontal variations in solar radiation intensity with a quiescent
background state—typically of ice-covered lakes in the morning and immediately after snow melts
at the surface—represent a geophysically relevant example of a gravity current with time-varying
density differences driving motion. Another example could occur in ice-covered water bodies with
high salinity, like the oceans. Melting ice freshens the water beneath it, and vice versa for freezing.
If this occurs at the edge of a glacier or ice floe, density differences could drive a surface gravity
current similar to the one studied in this paper.
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