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Many important practical applications involving porous media, cosmetics, biological
systems, and food processing involve the transport of non-Newtonian fluids, which possess
nonlinear material properties. Elastoviscoplastic fluids are indeed a complex example,
simultaneously involving viscous, elastic, and plastic properties. In this study, we conduct
numerical simulations of elastoviscoplastic fluids using a hybrid lattice Boltzmann solver
in order to investigate the impact of plasticity, characterized by the Bingham number, on
inertialess viscoelastic instabilities at high Weissenberg numbers. Results obtained using
the four-roll mill and cellular-forcing scheme benchmark cases, which produce a strong
elongational flow regime, reveal the emergence of three distinct flow states over time,
namely a gradual shift from a laminar steady state to periodic orbits and ultimately evolving
into aperiodic flow fluctuations during the late stages. The transition and behavior between
these different flow states are found to strongly depend on the interplay between elasticity
and plasticity. We demonstrate that the general effect of the Bingham number is to increase
the unyielded regions in the fluid, which although appears initially contained in the vortical
regions, naturally emerges in the vicinity of the polymer birefringent strands over time.
The eventual effect is to laminarize and suppress the flow fluctuations of the viscoelastic
instability in the late stages. Ultimately, this work demonstrates the impact of plasticity
on the already complex inertialess viscoelastic instabilities that develop in the presence of
strong elongational flow regimes, wherein the results provide an avenue for controlling the
instability mechanism.

DOI: 10.1103/PhysRevFluids.9.063301

I. INTRODUCTION

Fluids characterized by nonlinear material properties, so-called non-Newtonian fluids, are ubiq-
uitous in everyday life. They exhibit complex structural and deformation effects, making their
behavior more intricate compared to their Newtonian counterparts. These additional nonlinear
effects often include a shear-dependent viscosity, yield stress, and stress relaxation. Some of these
effects are readily encountered in viscoelastic fluids, which involve mixing polymer additives
with a solvent, giving rise to interesting time-dependent flow dynamics not experienced in purely
Newtonian flows [1–4]. It is well known that the addition of these polymer molecules generate an
anisotropic elastic stress contribution that transitions the flow to a chaotic regime, coined elastic
turbulence (ET) [1,2]. This complex phenomenon is commonly characterized by enhanced mixing
[2–5], increased flow resistance [2–4,6,7], as well as strong flow fluctuations, characterized by a
broadband spectrum [1–4,8]. Remarkably, the nonlinearity of this viscoelastic instability is sourced
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from purely elastic effects, characterized by high Weissenberg numbers (Wi = λγ̇ � 1), whereby
polymers are advected faster than their characteristic relaxation time λ in the presence of high shear
rates γ̇ . This, in turn, allows for a transition into instability even with vanishingly small Reynolds
numbers (Re � 1) [1–4]. This unique feature clearly allows the ability to provide enhanced mixing
and fluid displacement capabilities in otherwise challenging conditions, thus allowing for viscoelas-
tic instabilities to receive tremendous attention from various fields involving porous media [7,9–17]
and microfluidic applications [18–21].

In addition to an elastic response, several other non-Newtonian features are often present in
viscoelastic fluids and can coexist simultaneously. One such example involves the combination of
viscous, elastic, and plastic properties, the so-called elastoviscoplastic (EVP) fluids. Specifically,
these types of fluids transition between solidity and fluidity depending on the magnitude of the
applied stress. Below a critical threshold termed the “yield stress,” which is defined through the
Bingham number (Bi), these materials demonstrate solidlike behavior, while exceeding this thresh-
old causes them to flow like a liquid [22–24]. Such complex flow behavior is readily encountered
in everyday fluids, such as toothpaste, cosmetics, and mud [23], as well as various practical flow
applications involving mining [25,26], sewage treatment [27], and paper fabrication [28], to name
a few.

Notably, EVP fluids experience elasticity in both their solid as well as liquid states, thus providing
an avenue to transition into strong elastic flow behavior. However, despite the numerous studies
performed to analyze these elastic effects in viscoelastic flows [3,4,29], much less attention has been
given to EVP fluids. This can be partly attributed to the numerical complexity associated with si-
multaneously modeling the nonlinear material properties of EVP fluids. Unlike the well-established
and continual advancements in the numerical viscoelastic research community [30], only recently
have numerical studies emerged for EVP fluids [31–37]. This is largely attributed to the seminal
work by Saramito et al. [24] who proposed a constitutive model (hereinafter, referred to as the
Saramito model) for EVP fluid flows based on fundamental thermodynamic principles. Specifically,
the Saramito model reproduces a viscoelastic solid, predicting only recoverable Kelvin–Voigt
viscoelastic deformation for stresses lower than the yield stress, whereas the model describes a
viscoelastic Oldroyd-B fluid for stresses higher than the yield stress. The combined properties of
elasticity and plasticity have allowed the model to accurately capture experimental observations
of EVP fluids. Specifically, studies by Cheddadi et al. [38] and Fraggedakis, Dimakopoulos, and
Tsamopoulos [33] involved simulating the creeping flow behavior (Re � 1) of EVP fluids around
a circular obstacle under low elasticity [Wi ∼ O(0.1 − 1)] using the Saramito model and were able
to predict the experimentally observed fore–aft asymmetry and also the negative wake region after
the obstacle [39,40]. Further studies have involved applying the Saramito model to investigate the
flow of EVP fluids through porous media [35,36,41,42]. In their work, De Vita et al. [35] found that
for a symmetrical porous constriction array, the yielded areas coincided with the shear-dominant
regions of the flow, whereas the EVP fluid remained unyielded in locations of mixed flow (i.e.,
elongation and shear). The role of elasticity was subsequently investigated by Chapmarian et al. [42]
for the same pore geometry by comparing viscoplastic and EVP fluids. The authors demonstrate that
even low elastic effects [Wi ∼ O(10−2)] are capable of increasing the dynamic unyielded surfaces
when compared to the viscoplastic solution. This physical discrepancy is attributed to the elastic
nature of the unyielded regions in the EVP fluid, which can indeed possess a nonzero strain rate
[38,42]. Moreover, a recent study by Varchanis et al. [43] involved experimentally and numerically
investigating EVP fluids under steady, planar elongation, wherein the normal stresses that developed
due to the elastic stress contribution caused a significant deviation of the ratio of the elongational
to the shear yield stress from the standard value predicted by ideal viscoplastic theory, thus further
demonstrating the complex and nontrivial behavior of EVP fluids.

In the context of observing the role of plasticity in EVP fluids with large elasticity [Wi ∼
O(101)], Parvar et al. [36] recently demonstrated for two-dimensional (2D) randomized porous
media that elastic stresses help in overcoming the yield criteria. These large elastic effects at Re = 1
were shown to increase with both Wi and Bi, providing an avenue to eventually transition the EVP
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flow into unsteady turbulent-like flow behavior. However, the general behavior and characterization
of the inertialess turbulent EVP flow regime was beyond the scope of the investigation and thus
remained unaddressed. Much of the existing attention has instead focused on characterizing the
role of plasticity in inertial turbulent flows of EVP fluids [31,32,34], whereby the studies by Rosti
et al. [32] and Le Clainche et al. [34] involved studying turbulent channel flow of an EVP fluid at
Re = 2048 and Wi = 0.01 with varying Bi numbers. Both studies demonstrate that for low Bi values
(Bi <1), the EVP flow retains most of the Newtonian turbulent flow features. However, increasing
the plasticity to intermediate Bi values (Bi∼1) is accompanied by enhanced flow fluctuations and
intermittency, resulting from the dynamic yielding and unyielding process in the center of the
channel. The enhanced intermittency with Bi has also been recently observed by Abdelgawad,
Cannon, and Rosti [31] for homogeneous isotropic turbulent flow of EVP fluids at Wi � 1. Further
increasing the Bi number (Bi >1) ultimately results in laminarizing the EVP flow [32,34].

From the literature, it is clear that limited work has been conducted in investigating the role
of plasticity on viscoelastic instabilities, specifically, in the limit of negligible inertia (Re � 1).
Existing studies have instead focused on investigating the effects of plasticity on inertially driven
turbulent flows in the limit of low elasticity (Wi � 1) [31,32,34]. However, it is clear that EVP
instabilities likely exist in a large parameter space spanned by three dimensionless parameters,
namely, Re, Wi, and Bi. Thus, it remains unclear how plasticity impacts inertialess instabilities
in EVP fluids with high elasticity (Wi � 1). Additionally, the conclusions made from previous
studies of laminar and turbulent EVP flows have also been drawn from wall-bounded problems,
inducing strong shear-dominated flow regimes, such as porous media [35,36,41,42] and channel
flow [32,34,37]. To this aim, here we focus on numerically simulating inertialess viscoelastic and
EVP instabilities at varying Bi numbers using popular 2D benchmark cases of ET that produce
a strong elongational flow regime. We find that the unyielded regions grow with increasing Bi
number, whereby the general effect of plasticity appears to gradually suppress the strength of elastic
instabilities, providing an avenue to further control inertialess viscoelastic instabilities.

The remainder of this paper is organized as follows. In Sec. II, we define the governing
equations and numerical schemes used to describe viscoelastic and EVP flows. In Sec. III, we
describe the two popular benchmark cases used to generate an elongational flow regime to transition
the flow into inertialess viscoelastic instabilities, as well as the relevant dimensionless parameters.
Following this, we present and discuss the results in Sec. IV. eherein we demonstrate the general
effect of plasticity on inertialess viscoelastic instabilities in terms of both qualitative and quantitative
flow features. Finally, conclusions are drawn, and a future outlook is given in Sec. V.

II. GOVERNING EQUATIONS

We numerically investigate the two-dimensional incompressible flow of viscoelastic and elasto-
viscoplastic fluids. Two separate constitutive equations are required to describe the hydrodynamic
(i.e., solvent properties) and non-Newtonian (i.e., elastic and plastic properties) fields. The behavior
of the solvent can be described through the incompressible Navier-Stokes equations [30],

∇ · u = 0, ρ
Du
Dt

= −∇P + μs�u + ∇ · τ + F, (1)

which is coupled with the the polymer stress tensor τ = μp

λ
(C − I), described by a space-time-

dependent conformation tensor (C) constitutive equation,

DC
Dt

= C · (∇u) + (∇u)T · C − f

λ
(C − I), (2)

where ρ is the fluid density, P is the pressure, u is the velocity field, F is the external force, I
is the identity tensor, and μs and μp are the solvent and polymer dynamic viscosities, respectively.
Finally, f is an additional term allowing for various constitutive polymer models to be used. Here we
consider two cases for f . First, in the case where f = 1, Eq. (2) simply reduces to the well-known
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Oldroyd-B model [44] and describes the flow of viscoelastic liquids. Specifically, the model predicts
only purely elastic polymer effects and is thus useful for modeling constant-viscosity Boger fluids
[45]. In the case of EVP flow, we apply the Saramito model [24], such that f = max(0, τd −τ0

τd
),

whereby τ0 is the yield stress and τd is the magnitude of the deviatoric part of the stress tensor,

τd = τ − tr(τ)I/2, that is, τd =
√

1
2 (τd : τd ). Based on these two quantities over time, the Saramito

model predicts only recoverable Kelvin–Voigt viscoelastic deformation in the unyielded state (i.e.,
τd � τ0), whereas the Oldroyd-B viscoelastic model is retained beyond yielding (τd > τ0). In
the current form, the Saramito model only accounts for the elastic and plastic effects. However,
extensions of the model have been made to account for viscous effects, such as shear-thinning [46]
and thixotropic behavior [47]. However, here we only apply the general Saramito model described
above [24] to simplify the parameter space when investigating the role of plasticity on viscoelastic
instabilities with strong elastic effects.

Equations (1) and (2) are solved using a numerical solver comprising of the lattice Boltzmann
coupled with a high-order finite-difference scheme (detailed in our previous work [48]), which has
been applied in our previous investigations of viscoelastic instabilities [11,12,49–51]. The lattice
Boltzmann method (LBM) resolves the hydrodynamic field using a mesoscopic framework, which
inherently permits exact advection and is thus devoid of numerical diffusion in Eq. (1). To discretize
Eq. (2), we apply a second-order central difference scheme to all spatial gradients. To improve
stability and limit the level of numerical diffusion, the polymer solver treats the advection term
according to the high-resolution Kurganov-Tadmor scheme [52], while a fourth-order Runge-Kutta
scheme is applied for the temporal evolution, whereby any consequent numerical diffusion has been
shown to have a negligible effect on accurately depicting viscoelastic instabilities [49,53], retrieving
results in direct agreement with previous studies with pseudospectral solvers [48,54–56]. To further
enhance numerical stability, we preserve the symmetric-positive-definite property of C [Eq. (2)]
by construction by applying the Cholesky decomposition with the positivity enforced through the
logarithmic transformation [57]. Finally, an additional Laplace term, κ�C is added to the right-hand
side of Eq. (2) to stabilize and regulate the buildup of steep polymer stress gradients at high elastic
effects through a specified level of artificial diffusivity κ [49,53,55,58,59].

III. PROBLEM DESCRIPTION

In this work, we numerically simulate viscoelastic and elastoviscoplastic fluids in elongational
flow regimes that are capable of transitioning the flow into inertialess viscoelastic instabilities. In
doing so, two popular cases, namely the four-roll mill (FRM) problem [49,54,55,58] and the cellular
forcing (CF) scheme [50,53,60], are applied. The reason for choosing FRM and CF is twofold. On
the one hand, both FRM and CF are numerical recreations of popular viscoelastic experimental
cases [61–63] that admit the flow to symmetrical rotating and counter-rotating vortices (see Fig. 1).
The effect is the generation of well-defined central stagnation points, which allow us to investigae
EVP fluids in elongational flow regimes (see Appendix A, whereby the background forcing of FRM
is stronger than CF [53]. On the other hand, both cases are renowned benchmark problems for
simulating inertialess viscoelastic instabilities, where the flow behavior is well documented for
purely viscoelastic fluids [48–50,53,55,58,60], thus facilitating any comparison with EVP fluids.

Both cases are solved in a 2D domain x = [0, n × 2π ]2 with double periodic boundary condi-
tions (PBCs) where a single unit cell is [0, 2π ]2. Here n is the level of periodicity, for which n > 1
results in n2 unit cells to be solved. Based on our previous investigations [49,50], FRM with n = 1
will result in unphysical artifacts arising from insufficient periodicity, characterized by qualitative
anomalies that contaminate the base flow, thus preventing the accurate simulation of viscoelastic
instabilities, such as ET. Therefore, we set n = 2 for FRM and n = 1 for CF (note that additional
simulations for CF with n = 2 are reported in Appendix C and support the results presented in the
main text for n = 1). The experimental effect of rollers, which create an elongational flow regime,
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FIG. 1. Normalized vorticity field for the laminar regime in the absence of polymer feedback, for the FRM
forcing and CF scheme.

are mimicked through a constant external forcing, which for the FRM problem is given by

F(x) = F0(2 sin(Kx) cos(Ky),−2 cos(Kx) sin(Ky)), (3)

and for the CF forcing scheme,

F(x) = F0(− sin (Ky), sin (Kx)), (4)

in which the forcing amplitude is F0 = UνsK2, where νs is the solvent kinematic viscosity, U is the
characteristic velocity, and K is the spatial frequency (i.e., 
 = 1/K), resulting in a turnover time
T = νsK/F0. For FRM (3) K = 1 and for CF (4) K = 2.

To simulate ET using FRM and CF, a small perturbation δ is added to the initial conformation
tensor C = I + δ, as originally proposed in Ref. [55],

C(x, 0) = I +
[

δ cos(Ky)ψ (x) − δ sin(Kx) cos(2Ky)
−δ sin(Kx) cos(2Ky) δ cos(Kx)ψ (y)

]
, (5)

with δ = 0.01 and ψ (z) = 2 sin(Kz) − 3/2 sin(2Kz), z := x, y.
In all simulations, dimensionless groups are defined following previous numerical investigations

of inertialess viscoelastic instabilities using background periodic forcing [49,50,53,55,58,60]. First,
we define the relative inertial effects through the Reynolds number, Re = F0/ν

2
s K3. Here we admit

the flow to vanishingly low levels of inertia by setting Re = 1, which is below the critical value
at which inertial instabilities arise, Rec = √

2 [64]. To define the behavior of the polymer field,
we set the concentration using the parameter, β = νp/νs, which measures the relative polymer
kinematic viscosity, νp, to the solvent kinematic viscosity, νs. The value β = 0.5 will be fixed in
our simulations to match previous numerical [55,58] and experimental investigations [65]. The
relative importance of elastic effects to viscous effects is defined through the Weissenberg number,
Wi = λ/T , which we set constant to Wi = 10 to simulate viscoelastic instabilities in the limit
of high elastic effects [49]. The yield stress criteria of the plastic fluid response is controlled
through the Bingham number Bi, which defines the ratio of the yield and viscous stresses, Bi =
τ0/νsUK . It is clear that when Bi → 0, a viscoelastic fluid is obtained, whereas Wi → 0 describes a
viscoplastic fluid.

In terms of the numerical setup for both cases, we follow previous investigations [48–50,55,60].
All simulations are conducted with (n × N )2 = 2562 grid points, where each unit cell has N2

grid points, i.e., the resolution 2π/N for FRM is half of that used for CF. In terms of numerical
regulation, we set κ ∼ O(10−4), so that the Schmidt number, Sc = νs/κ = 103, matches previous
numerical investigations of inertialess viscoelastic instabilities [53,55,58]. Specifically, our previous
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FIG. 2. Representative snapshots of the trace of conformation tensor, tr(C) during the early steady-state
(t = 100T ) and unsteady late stages (t = 6000T ) for low plasticity (Bi = 0.1) and high plasticity (Bi = 0.5).
Superimposed in yellow are the unyielded regions of the flow, where τd < τ0. Note that green and magenta
borders correspond to results obtained for FRM and CF, respectively, over their respective unit cell [0, 2π ].

investigations of FRM with Sc = 103 [49] demonstrated that all features of ET can be retained
provided n � 2. Here we note that additional simulations are conducted for CF with higher peri-
odicity (n = 2) in Appendix C, which support the results presented in the main text with n = 1.
Additionally, we further justify the selection of N and κ in Appendix E.

IV. RESULTS AND DISCUSSION

To investigate the effect of plasticity on inertialess viscoelastic instabilities with high elastic
effects, we first qualitatively assess the flow behavior. Figure 2 shows representative snapshots of
the polymer field through the conformation tensor trace, tr(C), for an EVP fluid at low plasticity
(Bi = 0.1) and high plasticity (Bi = 0.5) during the early stages (t = 100T ) and the late stages
(t = 6000T ) of the flow. Notably, the appearance of unyielded regions (shown in yellow) is
observable for both FRM and CF at both Bi numbers. Specifically, during the early steady stages of
the flow, the polymer field in both cases is largely confined to the underlying background forcing
structure, which develops clear birefringent strands in the vicinity of the central stagnation points
that surround the rollers, as previously reported in literature for Wi > 1 and Bi = 0 [49,53–55].
For Bi = 0.1, as expected, the unyielded regions occur in the vortical regions of the flow where
polymers rapidly contract [53]. Careful inspection of the results obtained for CF reveals additional
small unyielded regions emerging directly above and below the birefringent strands. These regions
clearly grow for both FRM and CF at Bi = 0.5 and appear to suppress the relative polymer stretching
behavior in the birefringent strands. In the late stages of flow at Bi = 0.1, both cases reflect a
minor departure from the initial background forcing symmetry (see also the corresponding movies
in the online Supplemental Material [66]); however, the unyielded regions remain mostly confined
in the vorticity-dominated areas. During this period, the flow has transitioned into the previously
reported viscoelastic instabilities [49,50,53,55,60], characterized by strong time-dependent behavior
and minor losses of flow symmetry. Further increasing the plastic effects (Bi = 0.5) causes the
unyielded regions to grow and contaminate the base flow. The eventuating symptoms appear to be a
more dramatic deviation from the initial flow symmetry, as well as a suppression of time-dependent
behavior (see the corresponding movies in the online Supplemental Material [66]).

Qualitative discrepancies between varying Bi cases are not exclusively observed in the polymer
field but also appear in the hydrodynamic field. Figure 3 illustrates corresponding vorticity fields
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FIG. 3. Representative snapshots of the vorticity field, ω, during the early steady state (t = 100T ) for low
plasticity (Bi = 0.1) and high plasticity (Bi = 0.5). Note that results are illustrated within the vicinity of the
central stagnation point for FRM and CF, as represented by the black dashed area within their respective unit
cell [0, 2π ].

in the early stages of the flow (t = 100T ) for Bi = 0.1 and Bi = 0.5. As the yield criteria become
more strict and the unyielded regions grow, the strength of the vorticity field in the direct vicinity
of the central stagnation points appears to become weaker. Notably, the zero-vorticity regions that
emerge as Bi increases directly coincide with the unyielded regions that develop near the polymer
birefringent strands in Fig. 2. The strength of the counter-rotating vortices that develop due to the
background forcing is indeed an essential ingredient for driving inertialess viscoelastic instabilities
[4,53,55,58]. In what follows, we will demonstrate the implications of suppressing these vortical
regions, specifically in terms of the transition and strength of viscoelastic instabilities that develop.

Figure 4 shows the FRM results for the time series of the first component of the conformation
tensor Cxx at the central stagnation point position, [π, π ], for different Bi numbers. For the purely
viscoelastic case (Bi = 0), the flow transitions from a laminar steady-state solution into strong time-
dependent flow fluctuations at t ≈ 500T , as previously observed for FRM [49,55,58]. Imposing a
small but finite yield stress criterion (Bi = 0.05) results in the emergence of a new flow regime
prior to the transition into aperiodic flow fluctuations. Specifically, a small window of quasiperiodic
fluctuations develops, which qualitatively represents the polymer field regularly switching between
distinct flow states due to the emergence of dominant vortices (see the corresponding movies
in the online Supplemental Material [66]). Similar flow behavior has been previously observed
using the FRM for purely viscoelastic fluids (Bi = 0) [49,50,55,58], wherein the quasiperiodic
dynamics where labeled as numerical artefacts eventuating from the combined effect of insufficient
periodicity (n < 2) and global artificial diffusivity. Here we stress that in our simulations of FRM
with n = 2, we do not observe quasiperiodic flow behavior at Bi = 0, but only on imposing a
yield stress criteria (Bi > 0), thus likely reflecting a physically sourced origin as opposed to a
numerical artefact. Further increasing the plastic tendency of the EVP fluid generally causes the
quasiperiodic fluctuations to span a longer period of time. However, there are notable examples
which allude to a more complex underlying phenomena, wherein the transition between different
flow states does not appear in an expected linear fashion on increasing Bi. Such examples are evident
in Fig. 4 between Bi = 0.1 and Bi = 0.15, as well as between Bi = 0.2 and Bi = 0.3, whereby on
increasing Bi, the localized periodic fluctuations in both cases occur over a shorter time span. It is
also noticeable that gradually increasing the Bi number causes the quasiperiodic fluctuations (i.e., Bi
= 0.1) to obtain a more periodic behavior (i.e., Bi = 0.2) before eventually disappearing altogether
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FIG. 4. Time series of the first component of the conformation tensor Cxx for FRM at the position [π, π ]
taken over 0 � t/T � 5000. Results are compared at different Bi numbers, namely Bi = 0 (black), Bi = 0.05
(purple), Bi = 0.1 (dark blue), Bi = 0.15 (light blue), Bi = 0.2 (dark green), Bi = 0.3 (light green), Bi = 0.4
(yellow), and Bi = 0.5 (red). Note the inset in the subplot corresponding to Bi = 0.2 illustrates a zoomed-in
snapshot of the periodic regime.

(i.e., Bi = 0.4). Notably, the observed periodic orbits are highly sensitive to the underlying flow
conditions, specifically, the interplay between elastic and plastic effects, as shown in Appendix D.
In terms of the dynamics observed in the late stages of the flow, the purely viscoelastic case (Bi
= 0) experiences chaotic high-frequency flow fluctuations, which appear to become slower and
eventually disappear as Bi is increased.

Analogous results are obtained for CF in Fig. 5, which show similar flow behavior. Specifically,
three distinct flow regimes also emerge as the Bi number is gradually increased (i.e., laminar, peri-
odic, and aperiodic). However, the periodic orbits that appear for CF at Bi � 0.1 are characterized
by higher-frequency oscillations and qualitatively represent the periodic circulation of vortices,
which cause the polymer birefringent strands to rapidly stretch and contract in the strain-dominated
regions (see the corresponding movies in the online Supplemental Material [66]). The time taken
to overcome the periodic orbits and transition into the fully developed viscoelastic instability also
appears to follow a more linear trend as Bi increases. Akin to FRM, the aperiodic fluctuations in
the late stages of the flow for CF also appear to decrease and eventually laminarize as Bi increases.
Notably, we have conducted additional simulations for CF with n = 2 (see Appendix C, which
confirm the results obtained with n = 1 in Fig. 5.
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FIG. 5. Time series of the first component of the conformation tensor Cxx for CF at the position [π/2, π ]
taken over 0 � t/T � 3000. Results are compared at different Bi numbers, namely Bi = 0 (black), Bi = 0.05
(purple), Bi = 0.1 (dark blue), Bi = 0.15 (light blue), Bi = 0.2 (dark green), Bi = 0.3 (light green), Bi = 0.4
(yellow), and Bi = 0.5 (red). Note, the inset in the subplot corresponding to Bi = 0.1 illustrates a zoomed-in
snapshot of the periodic regime.

FIG. 6. Characterization of the flow fluctuations during the late stages of the flow for FRM: (a) The
probability density function (PDF) of the local temporal flow fluctuations, δrms, for different Bi numbers.
(b) The temporally averaged flow fluctuations, 〈δrms〉t , which monotonically decreases with Bi.
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We further characterize the behavior during the late stages of the flow for FRM in Fig. 6. More
specifically, we compute the local temporal fluctuations, δrms =

√
[Cxx(π, π, t ) − 〈Cxx(π, π, t )〉t ]2,

of the polymer field over a sample of 1000T in the statistically homogeneous regime. Figure 6(a)
shows the probability density function (PDF) of δrms for different Bi numbers, wherein the purely
viscoelastic case (Bi = 0) retains a broad range of fluctuations, the majority of which occur
in the upper limit (δrms > 8). On gradually increasing Bi, the solidlike behavior of the EVP
fluid tends to suppress the level of fluctuations in Cxx. This is especially noticeable for Bi = 0.4,
which is instead predominantly characterized by small fluctuations, such that δrms < 5. The tem-
porally averaged behavior, 〈δrms〉t , in Fig. 6(b) further demonstrates that as the solidlike tendency
of the EVP fluid increases with Bi, the level of fluctuations monotonically decreases. Analogous
results are obtained for CF in Appendix B, which draw the same conclusions. Notably, it is worth
mentioning that the FRM case exhibits stronger flow fluctuations compared to CF. As previously
mentioned, this tendency can be attributed to the inherently stronger background forcing of FRM
[53].

To further assess the impact of plasticity on the late stages of the flow, specifically, the frequency
of oscillations f , Fig. 7 compares the continuous Morlet wavelet transform of Cxx for different Bi
numbers using FRM. The purely viscoelastic case (Bi = 0) is characterized by highly temporal
behavior, appearing to activate a broad range of frequencies in the limit 0 � f � 1. For the EVP
fluid with Bi = 0.1, the emergence of unyielded regions appears to suppress some of the transient
nature of the viscoelastic instability and is not able to recover the full range of frequencies. This
effect becomes even more observable for Bi = 0.2, as the higher-frequency oscillations in Cxx do
not occur constantly but instead in intervals over time. Further increasing the plasticity (Bi = 0.4),
almost completely suppresses the strength and range of oscillations, as well as the intermittency.
Notably, this behavior is different from previous observations involving the flow of EVP fluids in
shear-dominated flow regimes, such as channel flow [32,34,67], wherein intermediate plastic effects
(Bi ∼1) contributed to enhanced flow fluctuations and intermittency, resulting from the dynamic
yielding and unyielding process in the center of the channel. Here, however, the general effect of
plasticity appears to monotonically suppress and laminarize the inertialess viscoelastic instabilities
that develop in elongational flow regimes.

We further quantify the type of flow developed in FRM and CF and its effect on the unyielded
regions by computing the flow topology parameter (also commonly referred to as the “flow-type
parameter”),

Q = ||D|| − ||�||
||D|| + ||�|| , (6)

which categorizes the local flow kinematics in terms of pure rotation (Q = −1), simple shear
(Q = 0), and pure extension (Q = 1), where D = 1

2 (∇u + ∇uT ) and � = 1
2 (∇u − ∇uT ) corre-

spond to the strain rate and vorticity tensors, respectively, with ||D|| = √
2D : D and ||�|| =√

2� : �. Figure 8(a) illustrates that in the early steady-state stages (t = 200T ) for both cases,
the flow remains unyielded predominantly in the rotational regions of the flow, as illustrated in the
qualitative snapshots from Fig. 2. Notably, a small portion of the flow is also unyielded in the elon-
gational regions, which correspond to the unyielded regions illustrated near the birefringent strands
in Fig. 2. As the Bi number increases, a larger portion of the flow surrounding the birefringent
strands remains unyielded [refer to the inset B in Fig. 8(a)]. Similar behavior is observed in the
late stages of the flow (t = 5000T ) in Fig. 8(b), as the effect of plasticity appears to decrease the
quantity of unyielded regions induced by rotational effects while increasing the unyielded regions
developed by strong elongational effects. Qualitatively, this behavior corresponds to the unyielded
regions that grow and contaminate the base flow in Fig. 2, provided Bi >0.1.

Thus far, certain discrepancies have been highlighted between the results obtained for FRM and
CF. These include the difference in transitioning times between the distinct flow states observed in
Figs. 4 and 5, as well as the contrasting behavior within the periodic regime. To further investigate
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FIG. 7. The continuous Morlet wavelet transformation of Cxx with FRM at the position [π, π ] taken over
the late stages of the flow, 4000 � t/T � 7000. Results are compared at different Bi numbers: (from top to
bottom) Bi = 0, 0.1, 0.2, and 0.4.

these discrepancies, we conduct a statistical binary analysis of the unyielded regions F(x, t ), where
F = 1.0 when τd (x, t ) � τ0; otherwise, F = 0.0. In particular, we compute the temporal average,
�(x) = 〈F(x, t )〉t . Figure 9 plots the corresponding contour for �(x) in the periodic regime with
temporally averaged contour lines 〈tr(C)〉t at different Bi numbers. Immediately observable is the
loss of initial flow symmetry for FRM, whereby distinct vortical regions are lost, and polymer
stretching becomes biased towards the longitudinal direction. In this periodic regime, the unyielded
regions are located in the vicinity of the polymer birefringent strands. On close visual inspection, it
is clear that making the yield stress criteria more stringent from Bi = 0.1 to Bi = 0.15 increases the
total number of sites that become unyielded over time. However, further increasing the plastic effects
(Bi >0.15) appears to instead gradually localize the total number of unyielded regions, specifically,
becoming more concentrated directly above and below the longitudinally stretched polymers. The
quantitative results in Figure 10(a) further support this finding by computing the ratio of the domain
N2 that is unyielded through the parameter �̃ = |{k:�(xk )>0}|

N2 , where “:” denotes the set formed by the
unyielded values of k and “| · |” represents the cardinality. The increasing values in �̃ observed for
CF with growing plasticity represent an expanding spatial dispersion of unyielded regions over time,
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FIG. 8. Representative histogram for the unyielded regions and their corresponding flow topology param-
eter, Q, during the (a) early steady-state (t = 200T ) and (b) aperiodic regime (t = 5000T ) for different Bi
numbers. Note that the FRM and CF results are represented by solid and dashed lines, respectively. The insets
in (a) are the zoomed-in results for the rotational (region A) and elongational (region B) flow regimes. The
inset in (b) corresponds to zoomed-in results for the elongational flow regime.

whereas the decreasing values in �̃ for FRM as Bi > 0.15 reflect a more concentrated system. In
terms of the normalized spatial average, we compute 〈�〉F>0, which reflects the average residence of
unyielded regions in the system. Figure 10(b) illustrates the existence of a critical transitioning point
for FRM at 0.15 < Bi < 0.2, wherein the results remain unchanged in 〈�〉F>0 for Bi � 0.15 and
suddenly increase for Bi >0.15, which qualitatively is reflected by the emergence of concentrated
regions in � directly above and below the longitudinally stretched polymers (refer to Fig. 9).

On the other hand, for the CF results in Fig. 9, the initial forcing symmetry is retained over time
in the periodic regime for all Bi numbers. As a result, the unyielded regions that develop follow

FIG. 9. Contour plots for �, sampled over a window of 300T . Results are illustrated for FRM (top row)
and CF (bottom row) at (from left to right) Bi = 0.1, 0.15, 0.2, and 0.3. Superimposed in white are the
corresponding temporally averaged conformation tensor trace, 〈tr(C)〉t , contour lines.
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FIG. 10. Characterization of the unyielded regions in the periodic regime at different Bi numbers. (a) The
total dispersion of unyielded regions over time, as represented by �̃. (b) The normalized spatial average,
〈�〉F>0. Results are obtained for both FRM (circles) and CF (squares). Notably, the results in CF follow a
monotonic trend, whereas the FRM results are less trivial.

a more predictable behavior with increasing Bi numbers. Qualitatively, the unyielded locations are
primarily contained within the vortical regions of the flow. Increasing Bi appears to simultaneously
enlarge the total number of locations within the vortical regions that become unyielded over time
[Fig. 10(a)], as well as the average number of unyielded instances [Fig. 10(b)]. These unyielded
regions appear to be responsible for the high-frequency periodic fluctuations in CF, which act to
delay the transition into aperiodic fluctuations with increasing Bi numbers (refer to Fig. 6). Overall,
the results further demonstrate the complex and nontrivial flow behavior that emerges in the periodic
flow state for FRM, which can be attributed to the unyielded flow regions that arise and destroy the
initial background forcing symmetry.

In the aperiodic late stages of the flow, both the FRM and CF cases largely conform to the same
flow behavior (Figs. 11 and 12), i.e., increasing Bi, and hence the solidlike tendencies of the EVP

FIG. 11. Contour plots for � in the aperiodic late stages of the flow, sampled over a window of 1000T .
Results are illustrated for FRM (top row) and CF (bottom row) at (from left to right) Bi = 0.1, 0.15, 0.2, and
0.3. Superimposed in white are the corresponding temporally averaged conformation tensor trace, 〈tr(C)〉t ,
contour lines.
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FIG. 12. Characterization of the unyielded regions in the aperiodic late stages of the flow at different Bi
numbers. (a) The total dispersion of unyielded regions over time, as represented by �̃. (b) The normalized
spatial average, 〈�〉F>0. Results are obtained for both FRM (circles) and CF (squares). Notably, both cases
conform to similar flow behavior in the late stages of the flow.

fluid suppress the strength of the fully developed viscoelastic instability (refer to Figs. 6 and 7, as
well as Appendix B. Figure 11, which illustrates the contour plots for �, provides an avenue for
explaining this shared similarity. More specifically, it is noticeable that within the late stages, both
FRM and CF mostly recover the initial background forcing symmetry, resulting in the emergence
of unyielded points predominantly within the vortical regions of the flow. However, as the yield
stress criteria (Bi) becomes more strict, additional unyielded locations emerge, which surround the
polymer birefringent strands. This is further reflected in Fig. 12(a), which shows a large increase in
�̃ by gradually incrementing the plastic effects in the limit, 0.1 � Bi � 0.2.

Notably, when Bi > 0.2, a diminishing value in �̃ is observed for both cases, corresponding to
a minor loss of flow symmetry evident in Fig. 11. This asymmetry is a persistent effect following
the initial transition into flow asymmetry and transient flow behavior, appearing to arise specifically
in EVP cases where solidlike tendencies prevail, delaying the recovery of the initial background
forcing symmetry (refer to the online Supplemental Material [66]). This effect appears to be more
dominant for FRM, whereby certain polymer birefringent strands, illustrated by the white contour
lines, appear to be unevenly stretched, resulting in small regions that yield directly above or below
longitudinally stretched polymers. In terms of the average unyielded flow states, 〈�〉F>0, Fig. 12(b)
shows that the results obtained for both FRM and CF collapse onto the same trend. That is,
in the statistically homogeneous regime, the normalized average quantity of unyielded points is
approximately the same for both cases across different Bi numbers. This shared behavior is largely
expected given that unlike with the periodic regime in Fig. 9, both cases in Fig. 11 retain the same
vortical geometry in the aperiodic regime. Thus, the smaller flow fluctuations observed for CF in the
late stages of the flow (refer to Appendix B are likely attributed to the more widespread distribution
of unyielded locations over time, specifically, those surrounding the polymer birefringent strands.

V. CONCLUSIONS

Non-Newtonian fluids possess several nonlinear material properties, which can give rise to
interesting time-dependent flow instabilities not experienced in purely Newtonian fluids [4]. In this
work, we investigate a subclass of non-Newtonian fluids, EVP fluids, which simultaneously possess
viscous, elastic, and plastic properties, giving rise to both solid and fluidlike tendencies depending
on the yield stress criterion. Specifically, we conduct numerical simulations of viscoelastic and
EVP fluids by integrating the Saramito model [24] into our previously developed hybrid lattice
Boltzmann model [48,51]. In contrast to previous studies of flow instabilities with EVP fluids, which
have focused on wall-bounded shear flow problems [32,34–36,42,67], here we conduct simulations
for benchmark cases that admit strong elongational effects, namely FRM and CF, wherein we focus
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on investigating the effects of plasticity (Bi) on viscoelastic instabilities originating from Boger
fluids (i.e., constant viscosity) in the limit of vanishingly small inertial effects (Re ∼ 1) and high
elastic effects (Wi = 10).

In our study, we demonstrate the emergence of three distinct flow states over time, which strongly
depend on the Bi number, namely a laminar steady state, periodic orbits, and an eventual transition
into aperiodic fluctuations in the late stages. The problem is well defined for Bi < 0.1 cases for both
the FRM and CF background forcing structures, with unyielded regions predominantly occurring in
the vortical regions of the flow. However, further increasing the solidlike tendencies of the EVP fluid
(Bi > 0.1) is shown to promote unyielding in the extension-dominated areas surrounding the poly-
mer birefringent strands, reflecting a decrease in the vorticity magnitude. Beyond this initial stage,
for certain Bi numbers and depending on the benchmark case (FRM or CF), the flow transitions
into a regime characterized by high-frequency periodic fluctuations. For FRM, these periodic orbits
emerge for only intermediate plastic effects (0.05 � Bi � 0.3) and disappear in the two extremities
of purely viscoelastic flow (Bi = 0) and when the EVP fluid approaches viscoplasticity (Bi > 0.3).
Moreover, the time of onset and duration of the periodic regime occur in a nonlinear manner
with increasing Bi. In the case of CF, strong periodic orbits develop beyond Bi � 0.1 and appear
to gradually delay the transition into the fully developed viscoelastic instability as Bi increases.
Contrasting results between FRM and CF were attributed to the vastly different unyielded behavior
in the periodic regime. For different Bi numbers, the FRM case leads to flow asymmetry, wherein
well-defined vortical structures are lost and unyielded regions surround longitudinally stretched
polymers. The effect is a nonmonotonic trend in the dispersion and average quantity of unyielded
points over time with increasing Bi number. On the other hand, during the periodic orbits, the
CF polymer field retains forcing symmetry, where large portions of the domain remain unyielded
exclusively in the vortical regions. Increasing the plastic effects only further increases the unyielded
vortical regions, thus delaying the transition into fully developed viscoelastic instability.

In the late stages of the flow, both FRM and CF mostly conform to similar flow behavior at
varying Bi numbers. With increasing plasticity, the unyielded regions grow outside of the vortical
regions and contaminate the base flow, restricting the motion of polymer birefringent strands. The
result is a suppression of the polymer feedback effects, which decreases the strength and frequency
range of flow fluctuations. That is, the effect of increasing plasticity on fully developed viscoelastic
instabilities that eventuate from inertialess elongational flow regimes is to suppress and laminarize
their behavior, thus allowing for a potential avenue to control their effects.

The analysis performed here only considers the effect of varying Bi at fixed elastic effects (Wi =
10) and omits any shear-thinning effects. It is clear that instabilities arising in EVP fluids likely
exist in a large parameter space spanned by three dimensionless parameters, namely, Re, Wi, and
Bi. Future studies should, therefore, focus on exploring how these competing effects simultaneously
impact inertialess viscoelastic instabilities. Furthermore, the results show that even for two identical
elongation-driven benchmark cases, the plastic response resulting from EVP fluids can significantly
alter the underlying flow behavior. The elongational flow regimes simulated in this work with FRM
and CF are just two of several potential flow types [4] that allow investigating EVP fluids beyond
previously explored shear-dominated problems.
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APPENDIX A: FLOW TOPOLOGY CHARACTERIZATION

The numerical results presented in the main text were obtained from popular benchmark cases of
viscoelastic instabilities, namely FRM and CF. A characteristic feature of these cases is their ability
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FIG. 13. Flow topology parameter Q histogram during the early stages of the flow (t = 100T ) for (a) FRM
and (b) CF. The insets in (a) and (b) correspond to contour plots for Q. Note that the results demonstrate the
elongational nature of the benchmark cases.

to generate an extension-dominated flow regime through multiple rotating and counter-rotating
rollers [49,53–55]. To demonstrate this, we compute the flow topology parameter, Q, using Eq. (6).
The corresponding results in Fig. 13, show that both FRM and CF reflect an elongational flow
regime. More specifically, the strong rotational flow regions, which directly coincide with the
placement of rollers, generate strong elongational effects, especially at the central stagnation points,
as well as shear flow directly in the locations surrounding the rollers.

APPENDIX B: FLOW FLUCTUATIONS FOR THE CELLULAR FORCING SCHEME

In this section of the Appendix, we present analogous results to Fig. 6 in the main text but
for CF. The results in Fig. 14(a) also demonstrate that for CF, increasing the solidlike behavior
of the EVP fluid suppresses the strength of flow fluctuations in the late stages of the flow. This
is further supported in Fig. 14(b), which shows that the temporally averaged fluctuations, 〈δrms〉t ,
monotonically decrease as Bi increases. Overall, the results obtained with CF confirm that the

FIG. 14. Characterization of the flow fluctuations during the late stages of the flow for CF. (a) The PDF
of the local temporal flow fluctuations, δrms, for different Bi numbers. (b) The temporally averaged flow
fluctuations, 〈δrms〉t , which monotonically decreases with Bi.
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FIG. 15. Results for CF using n = 2; (a) a snapshot of tr(C) during the early steady state (t = 100T ) for
low plasticity (Bi = 0.1). Superimposed in yellow are the unyielded regions of the flow, where τd < τ0. (b) The
temporally averaged flow fluctuations, 〈δrms〉t , which monotonically decreases with Bi. [(c) and (d)] The time
series of Cxx at the position [π/2, π ] taken over 0 � t/T � 2400 for Bi = 0 (black) and Bi = 0.2 (dark green),
respectively.

conclusions drawn from the main text are not specific to FRM but instead appear to generally apply
to extension-dominated problems with periodic background forcing.

APPENDIX C: HIGHER PERIODICITY RESULTS FOR THE CELLULAR FORCING SCHEME

In this section of the Appendix, we perform analogous simulations using CF with n = 2. The
results in Fig. 15 demonstrate that on increasing the level of periodicity, the same qualitative and
quantitative features are retrieved. Specifically, Fig. 15(a) shows the same steady-state behavior
in polymer field for Bi = 0.1, whereby unyielded regions develop in the vortical regions, as well
as near the birefringent strands, as observed in the main text for CF with n = 1 (refer to Fig. 2).
The time-dependent behavior for viscoelastic [Fig. 14(c)] and EVP [Fig. 15(d)] fluids also supports
the results from the main text (Fig. 5), ehereby the solidlike tendencies of the EVP fluid transition the
flow into periodic orbits before the fully developed viscoelastic instability. Moreover, the aperiodic
fluctuations in the late stages of the flow are suppressed and become weaker as the Bi number
increases [Fig. 15(b)].

APPENDIX D: EFFECT OF THE WEISSENBERG NUMBER
ON ELASTOVISCOPLASTIC SIMULATIONS

In the main text, a unique feature of increasing the Bi number involves transitioning the flow
dynamics into periodic orbits for both FRM and CF. In this section of the Appendix, we investigate
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FIG. 16. Time series of the first component of the conformation tensor Cxx for FRM at the position [π, π ].
Results are compared at Bi = 0.2 for different Wi numbers, namely Wi = 8 (black), Wi = 10 (blue), and
Wi = 12 (red). The inset corresponds to a zoomed-in snapshot of the periodic regimes for Wi = 8 and Wi = 10.

the uniqueness and sensitivity of the periodic orbits on the simulation parameters by conducting ad-
ditional simulations for FRM at Bi = 0.2 with varying elastic effects, namely Wi = 8, Wi = 10, and
Wi = 12 (Fig. 16). The results for Wi = 12 in Fig. 16, clearly demonstrate that the periodic orbits
are indeed sensitive to the competing levels of elasticity and plasticity, whereby, increasing the Wi
number generally appears to decrease the strength and duration of periodic fluctuations. However,
when directly comparing the results for Wi = 8 and Wi = 10, the duration of periodic fluctuations
is slightly longer for Wi = 10, which also posses a higher amplitude. The subsequent fluctuations
in the late stages for all cases become more chaotic as Wi increases, further supporting the main
conclusions from the investigation, that is, inertialess EVP instabilities induced by elongational
flow regimes are driven by purely elastic effects.

APPENDIX E: GRID REFINEMENT AND ARTIFICIAL DIFFUSIVITY

To justify the choice of simulation parameters from the investigation, we have conducted a grid
refinement study, as well as additional test cases where we vary the level of artificial diffusivity
through Sc. In Fig. 17(a), it is clear that an unresolved grid resolution [i.e., (n × N )2 = 1282] is

FIG. 17. Time series of the first component of the conformation tensor Cxx for FRM at the position [π, π ].
Results are compared at Bi = 0.2 for (a) different grid resolutions, namely 1282 (black), 2562 (blue square),
5122 (red circle), and 10242 (green). Analogous results are obtained with (n × N )2 = 5122 in (b), however, at
different levels of artificial diffusivity, namely Sc = 250 (black), Sc = 500 (blue), Sc = 1000 (red), Sc = 2000
(green), and Sc = 4000 (yellow). Note that the insets in (a) and (b) correspond to contour plots for tr(C) at
different grid resolutions at t = 12T and different Sc values at t = 25T , respectively.
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unable to handle the steep polymer stress gradients that develop from the strong elongational effects,
thus causing the simulation to rapidly diverge. For our hybrid LBM solver [48], we find that a grid
resolution of (n × N )2 = 2562 adequately resolves the qualitative and quantitative features of the
problem, as similarly observed in previous numerical studies of inertialess viscoelastic instabilities
using a periodic background forcing [49,53,55,68].

Additional numerical regularization terms in Eq. (2) are often required to preserve numerical
stability [30], particularly in the case of simulating inertialess viscoelastic instabilities, which are
renowned for producing steep polymer stress gradients that develop Hadamard instabilities [69].
A popular regularization technique involves adding an additional Laplace term, κ�C to the right-
hand side of Eq. (2) to stabilize and regulate the buildup of steep polymer stress gradients at high
elastic effects through a specified level of artificial diffusivity κ [30,49,50,53,55]. In Fig. 17(b) we
compare different levels of κ by varying Sc, wherein large diffusivity levels (i.e., Sc � 500) smear
the polymer field [refer to the inset in Fig. 17(b)], thereby suppressing strong polymer stretching
behavior, as similarly observed in previous studies [50,53]. On the other hand, imposing small values
of κ (i.e., Sc = 4000) is not sufficient in controlling the buildup of steep polymer stress gradients,
thus resulting in numerical instability. Using a grid resolution of (n × N )2 = 5122, we find that
the results for Sc = 1000 and Sc = 2000 retrieve similar qualitative and quantitative flow behavior.
Based on the results from Fig. 17(a) [i.e., using (n × N )2 = 2562], we, therefore, select Sc = 1000
in our simulations to preserve numerical stability, which matches previous values used for κ in
simulating inertialess viscoelastic instabilities [6,49,55].
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