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Energetic inception of breaking in surface gravity waves under wind forcing
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The breaking of surface gravity waves is a key process contributing to air-sea fluxes and
turbulent ocean mixing. The highly nonlinear nature of wave breaking, combined with the
challenges of observing this process in a laboratory or field setting, leaves our understand-
ing of the energetic processes underpinning wave breaking incomplete. Progress towards
refining this understanding was made in a recent study [D. G. Boettger, S. R. Keating,
M. L. Banner, R. P. Morison, and X. Barthelemy, An energetic signature for breaking
inception in surface gravity waves, J. Fluid Mech. 959, A33 (2023)], which identified an
energetic signature in the wave kinetic energy evolution that preceded breaking onset and
correlated with the strength of the breaking event. In this paper, we examine the influence of
wind forcing on this energetic signature. We develop a numerical wave tank that simulates
wind flowing over mechanically generated waves and construct an ensemble of cases
with varying wave steepness and wind forcing speed. The wind is shown to modulate
the wave geometry and elevate kinetic energy at the crest tip by up to 35%. Despite these
influences on the wave, the energetic inception signature was found to robustly indicate
breaking inception in all cases examined. At breaking inception, a kinetic energy growth
rate threshold was found to separate breaking and nonbreaking waves. Under wind forcing,
the timing of the energetic inception point occurred slightly earlier than unforced breaking
waves, giving advance warning of breaking 0.3 wave periods prior to breaking onset.

DOI: 10.1103/PhysRevFluids.9.054803

I. INTRODUCTION

The breaking of surface waves is one of the principal mechanisms for the transfer of momentum,
energy, heat, and gas between the atmosphere and ocean [1]. While the implications of these fluxes
are typically characterized over large space and time scales, the physical processes leading to
wave breaking are highly localized. As a consequence of this contrast of scales, wave breaking
cannot be explicitly represented in Earth system models and must be parametrized; however, the
accuracy of these parametrizations [2,3] is limited by our incomplete understanding of the dynamics
underpinning wave breaking [4].

The breaking process can be conceptually described through the terms “breaking inception” and
“breaking onset,” where the former describes the initiation of an irreversible process within the crest
that leads to breaking, and the latter is the instant when the first surface manifestation of breaking
occurs at the crest [5]. Inception is a useful concept as it suggests the possibility of identifying a
breaking wave in the earlier stages of its evolution when the process is more readily parametrized.

Efforts to characterize breaking inception have utilized diagnostic parameters based on the
kinematic, geometric, or dynamic properties of the wave [6]. One such approach is based on the
diagnostic parameter B [7], which represents the normalized ratio of the energy flux to the energy
density. At the interface, this reduces to the kinematic ratio of particle velocity to crest speed
‖u‖/‖c‖. A range of laboratory and numerical studies [5,8–12] have reported that a threshold
value Bth = 0.855 ± 0.05 exists that separates breaking and nonbreaking waves such that if Bth
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is exceeded the crest will always evolve to break. Furthermore, it has been shown [5,13] that the
parameter

� = T
DbB

Dt

∣∣∣∣
Bth

, (1)

formulated as the rate of change of B as it passes through Bth normalized by the wave period T ,
accurately predicts the breaking strength parameter b [14], which has been shown to quantify the
energy dissipated through breaking (see, e.g., [15–17]).

While the approach of [7] has dynamical foundations and has proven to be a robust indicator
of breaking inception, it does not shed light on the underlying dynamical processes that cause
the wave to break. This motivated Boettger et al. [18] (hereafter B23) to identify a new breaking
inception threshold associated with the energetics, rather than the kinematics, of breaking waves.
B23 investigated the evolution of the energetic properties of breaking waves in the context of a
kinetic energy balance equation,

DbEk

Dt
= −∇ · (up + [u − b+]Ek )︸ ︷︷ ︸

CON

−ρgw︸ ︷︷ ︸
K2P

+ u · f︸︷︷︸
friction

+ u · nσκδs︸ ︷︷ ︸
SFC tension

, (2)

which tracks the rate of change of the kinetic energy density Ek at its local maxima x+ near the crest
tip. The operator DbEk/Dt = ∂Ek/∂t + b+ · ∇Ek captures the local and convective components of
the Ek evolution [see Eq. (2.2) in [19]], with b+ = dx+/dt . B23 found that (2) is dominated by the
convergence of kinetic energy (CON) and its conversion to potential energy (K2P), while surface
tension is negligible and friction is only significant at breaking onset. In nonbreaking waves, these
source and sink terms are approximately balanced, so that DbEk/Dt is weakly positive during wave
growth and negative during wave decay. For waves that go on to break, however, this balance is
disrupted by a rapid increase in CON that is not offset by a corresponding increase in the magnitude
of K2P, leading to rapid growth in Ek . This energetic signature was shown to occur up to 0.4 wave
periods prior to breaking onset, with the magnitude of DbEk/Dt at this instant also correlated with
breaking strength through the parameter �. Hence, this energetic inception threshold both predicts
the occurrence of breaking onset and indicates the strength of the breaking event.

In the open ocean, the growth of the wave field is driven by wind forcing, which injects kinetic
energy through both form drag and viscous stress components [4,20]. As well as being a primary
source of wave growth, wind forcing modulates the characteristics of breaking waves. The geometric
modulation is well reported: the height of the wave is increased (decreased) under following
(opposing) winds, while the horizontal and vertical asymmetry of the wave increase with wind speed
[21–23]. The energetic modulation is less well understood, which is partly due to the challenges of
measuring the wave energetic properties in experimental settings. Several authors have reported that
the time of breaking onset is accelerated in the presence of wind, with the majority of this impact
attributed to the wind drift current as opposed to the wind-induced pressure modulations [23,24].
The effect also appears to be dependent on the wave age cp/u∗ [25,26], with energetic growth rates
suppressed in old waves but enhanced for younger waves. These results allude to the complexity of
the energetic processes underlying wave breaking and which are yet to be fully explored.

The study of B23 provides unique insights into the dynamical evolution of a wave crest through
breaking inception and breaking onset, but it is unclear whether the energetic inception threshold
remains robust for the more realistic case of wind forced waves that are characteristic of the open
ocean. In this paper, we investigate how the terms in the Ek balance equation (2) evolve in wind
forced waves. We do so by developing a two-phase numerical wave tank (NWT) that accurately
simulates the interaction between the wind and the wave field, while being computationally efficient
enough to enable us to sample a wide range of wave and wind forcing magnitudes. The resultant
ensemble of wind forced waves enables us to present a comprehensive understanding of the role of
wind forcing on energetic breaking inception.
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FIG. 1. Schematic of our numerical wave tank. The boundary forcing U(t, z) is a combination of a
time-independent boundary layer velocity Ub(z) and the time-varying paddle velocity Up(t, z). Waves are
generated at the left-hand boundary and travel down the tank in the positive x direction before being absorbed
by the numerical sponge layer. A typical chirped wave (enlarged for clarity) is shown, with tank dimensions
normalized by the deep-water wavelength λp derived from the paddle frequency ωp.

II. EXPERIMENTAL DETAILS

We use the Navier-Stokes solver GERRIS [27,28] to simulate a two-dimensional NWT and
generate an ensemble of nonbreaking and breaking waves under the influence of a range of wind
speeds. GERRIS implements the volume-of-fluid method to simulate two-phase, incompressible flow,
including the effects of surface tension and viscosity. Adaptive grid refinement enables highly
complex flows to be efficiently simulated. GERRIS has been used to examine numerous aspects of
gravity waves, including waves breaking on a beach [29], wave breaking kinematics [30,31], energy
dissipation [32], and wind effects [26]. The NWT setup (Fig. 1) mimics laboratory experiments in
which a fan drives a steady wind flow and waves are mechanically generated by a paddle (see, e.g.,
[33–36]). The configuration is based on that utilized by B23, extended to enable the application
of a realistic air-water boundary layer profile. Here, we provide an overview of the features of the
NWT and the method utilized to implement the wind forcing and refer the reader to B23 for further
details.

The domain is configured in nondimensional coordinates scaled by the wavelength λp and
period Tp of the central wave in the wave packet, such that the tank has a height H of 1.18λp

and a usable length of 18.8λp (Fig. 1). The depth of water is set to d/λp = 0.59 so that there is
negligible interaction with the bottom of the NWT. The numerical domain extends a further 16.5λp

to accommodate a numerical sponge layer, which effectively absorbs the wave packet energy by
both gradually increasing viscosity and decreasing model grid resolution. The incoming wind flow is
matched by an outflow boundary condition for the air phase, enabling the wind to exit the simulation
domain.

To reduce computational cost, the domain is configured as a two-dimensional [x = (x, z)] NWT.
Previous studies [7,32,37] have reported no significant difference in the integrated wave energetics
between two- and three-dimensional simulations. Furthermore, the characteristics of the wind-wave
momentum and energy flux can also be sufficiently represented in two dimensions [22]. Limiting
the paper to two-dimensional simulations therefore allows a wide range of wave parameters to be
examined over a large ensemble within computational constraints, while still accurately capturing
the physical characteristics of the waves and airflow above.

Waves are generated at the left boundary of the NWT by applying the velocity and pressure
gradient solutions for a bottom-mounted, flexible flap paddle from wavemaker theory [38]. A
chirped packet function [39] is utilized to generate a compact, focusing wave packet with number
of waves in the paddle signal N = 5, chirp rate Cch = 1.0112 × 10−2, and a paddle frequency ωp
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equivalent to the orbital frequency of a deep water gravity wave with wavelength λp = 1 m and
linear phase speed cp = 1.15 ms−1.

Adaptive grid refinement is used to focus fine resolution in regions of high vorticity and at the
air-water interface. Each level of refinement divides the parent cell into four, resulting in a maximum
resolution equivalent to a uniform mesh with 2n × 2n grid cells, for n refinement levels. As our focus
is on the near-surface wave energetics, we assess the maximum refinement level required using the
viscous boundary layer thickness of the water phase δ ≈ λp/

√
Re [see Eq. (5.7.4) in [40]], where

Re = ρwcpλp/μw is the wave Reynolds number defined using the density ρw and dynamic viscosity
μw of the water phase. We set Re = 4 × 104, which enables the boundary layer to be resolved by
approximately four cells at a refinement level of 210 (equivalent to a grid resolution dx = λp/870)
and was shown by B23 to achieve numerical convergence. While the chosen Re is smaller than
the physical Re ≈ 1 × 106 for a deep water gravity wave, it has been shown [30,41] to be large
enough that viscous effects are not dominant and all energy within the boundary layer is adequately
resolved.

Particular attention is given to the simulation of the air-water boundary layer, the shape of which
is critical in determining the evolution of the wind-driven wave field. There are two main aspects of
the boundary layer that characterize these processes. The first of these is the wave age cp/u∗, which
is the ratio between the wave phase speed and the airside friction velocity u∗ = √|τ |/ρa, where |τ |
is the magnitude of the viscous shear stress at the air-water interface and ρa the air density. The
wave age signifies the balance of forces between the wind and the wave field. The wind and wave
field are in equilibrium when cp/u∗ ≈ 30, with values smaller (greater) than this typical of growing
(decaying) seas [4].

The second feature of importance is the wind drift layer in the water. This takes the form of
an exponentially decaying profile with a surface velocity Us ≈ 3% of the free stream air velocity
Ua [42–45]. The shape of the wind drift layer has a significant impact on the nonlinear wave-wave
interactions [46]. In a numerical study using a two-phase solver similar to that implemented in our
NWT, Zou and Chen [47] found that an exponential wind drift layer was necessary to accurately
replicate wave evolution, while an equivalent linear shear or uniform current layer misrepresented
the wave amplitude and breaking location.

In a two-phase numerical simulation of wind forced waves the proper representation of the
boundary layer is typically achieved by initializing the simulation from rest and allowing the
boundary layer to develop from an initially uniform wind flow [26,48]. This, however, requires
a large domain with sufficient fetch or the use of periodic boundary conditions. In both cases, the
duration of the initialization period may extend over O(100)Tp, which makes the simulation of a
large ensemble of breaking waves computationally challenging.

To overcome these challenges, we utilize a two-stage modeling approach similar to Sullivan et al.
[49] in which the air-water boundary layer is computed in a precursor simulation and then applied
as an initial and boundary condition for subsequent experiments. In this first stage, the NWT is run
without any paddle forcing and the air-water boundary layer evolves from an initially quiescent state
following the application of a steady, uniform air flow. An analytical solution of the form [50,51]

Ub(z) =
⎧⎨
⎩

(Ua − Us)erf
( z−η

δa

) + Us (z � η)

(Us − Uw )erf
( z−η

δw

) + Us (z < η)
(3)

is then fit to the velocity profile. Here, δa and δw are the thickness of the air and water boundary
layers, Ua and Uw are the undisturbed horizontal air and water velocities, and Us is the tangential
velocity at the air-water interface z = η. For an initial uniform air velocity of U0/cp = [1, 2, 6], the
resultant boundary layer profile has a surface velocity Us between 2.3 and 3.1% of the free stream air
velocity Ua and a wave age range spanning moderate (cp/u∗ ≈ 21.1) to strong (cp/u∗ ≈ 8.2) wind
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TABLE I. Summary of experiments included in this paper. The NWT was configured using a range of
boundary layer profiles derived from a uniform wind forcing U0/cp and described analytically with (3).
The characteristics of the wind profile are defined with the wave age cp/u∗, air Reynolds number Rea, and
friction Reynolds number Re∗. For each configuration the amplitude of the paddle Ap/λp was varied over nsim

simulations to generate an ensemble of nb breaking and nnb nonbreaking crests. All values are normalized by
the linear wavelength λp and phase speed cp of the paddle frequency ωp. Simulations with U0/cp = 0 are also
utilized in B23.

Boundary layer Paddle Simulations

U0/cp cp/u∗ Rea Re∗ Us/cp Ua/cp δa/λp δw/λp Ap/λp nsim nb nnb

0 ∞ 0 0 0 0 0 0 0.025 − 0.050 63 28 289
1.0 21.1 1200 60 0.034 1.50 0.361 0.132 0.040 − 0.044 26 14 144
2.0 17.3 2500 80 0.078 2.99 0.356 0.172 0.040 − 0.044 39 21 152
6.0 8.2 7400 150 0.259 8.31 0.295 0.169 0.043 − 0.050 45 36 144

Total: 173 99 729

forcing (Table I). The turbulent characteristics of the air boundary layer for the simulated wind
forcing speeds can be quantified using the air Reynolds number Rea = (ρaU0[H − d])/μa and the
friction Reynolds number Re∗ = (ρau∗[H − d])/μa, which utilize the height of the air phase [H −
d] as the length scale and either U0 or u∗ as the velocity scale. The magnitude of these parameters
(Table I) spans fully laminar to weakly turbulent flow [48,52].

Subsequent simulations are then initialized using (3) and the appropriate parameters from Table I.
The left-hand velocity and pressure boundary conditions of the NWT become the sum of (3) and
the chirped packet function described in B23. The paddle remains stationary for the first 10Tp of
each simulation to allow the turbulent characteristics of the boundary layer to develop, after which
it continues for a further 15Tp–20Tp as the wave packet propagates through the NWT. This approach
enables a realistic air-water boundary layer with balanced interfacial shear stress to be simulated in
a computationally efficient manner and negates the requirement for long initialization periods in
every experiment.

For each wind forcing speed, a series of simulations are conducted in which the amplitude
of the paddle signal is set within the range Ap/λp ∈ [0.025, 0.050] to generate a combination
of nonbreaking and breaking waves of varying steepness and breaking strength. Given the finite
resolution of the simulations, we define a crest as breaking if the interface contour exceeds the
vertical by a horizontal distance dηx � 0.5dx over a length dηz � dx, and the instant of breaking
onset as the first time that these thresholds are exceeded. Over the wind speed range U0/cp ∈ [0, 6]
the total ensemble consists of 99 breaking and 729 nonbreaking waves (Table I). The U0/cp = 0
simulations in this ensemble are the same as the N = 5, d/λp = 0.59 cases from B23, enabling a
point of comparison between these two studies.

With the objective of determining how the local crest energetic properties are modulated in the
presence of wind forcing, our analysis is focused on an examination of the evolution of the energetic
terms in (2). We characterize the local crest energetics at the location x+ = [x+(t ), z+(t )] where
the local kinetic energy density Ek has its maximum value and which moves with velocity b+ =
dx+/dt . To enable comparison of the crest energetics across all waves in the ensemble, a crest
reference location and time are set as [x0, t0] = [x+, t] at the instant of breaking onset for breaking
crests and at the instant of maximum Ek for nonbreaking crests. The evolution of the crest in space
and time is then referenced to these parameters using the nondimensional coordinates x∗ = (x −
x0)/λp, z∗ = z/λp and t∗ = (t − t0)/Tp utilizing the wavelength λp and period Tp derived from the
paddle forcing frequency ωp, which is constant for all simulations.
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FIG. 2. Left: The boundary layer profile applied at the left-hand boundary of the simulation domain for (top
to bottom) U/cp = [0, 1, 2, 6]. Right: The air vorticity ∂w/∂x − ∂u/∂z (see upper colorbar) and water kinetic
energy Ek (lower colorbar) field for the central wave in the (top to bottom) W0, W1, W2, and W6 packets at
breaking onset (t∗ = 0). Streamlines indicate the absolute air velocity ua. An animated version of this figure is
provided as Supplemental Material [53].

III. AIRFLOW AND WAVE CHARACTERISTICS

To illustrate the unique characteristics of the air flow and the wave field at each wind speed,
we choose four breaking waves with similar maximum wave steepness max(ak) ≈ 0.45. These
cases are shown in Fig. 2 at the instant of breaking onset (t∗ = 0) and labeled (top to bottom) W0,
W1, W2, and W6 respectively (an animation of this figure is provided as Supplemental Material
[53]). The air flow is characterized by the vorticity ∂w/∂x − ∂u/∂z and velocity streamlines. In
the absence of wind forcing (W0, Fig. 2 top), the airflow is dominated by wave-induced motions
characterized by regions of positive (negative) vorticity at the wave crest (trough). As the wind
speed increases, the wave-induced modulations are exceeded by the wind forcing and replaced by a
vertical shear layer characterized by negative vorticity of increasing magnitude with wind strength.
At the strongest wind forcing U0/cp = 6 airflow separation is evidenced by the stream of enhanced
negative vorticity emanating from the crest tip and the reversal of flow in the downstream wave
trough.

While the wave steepness ak in each case is similar, the symmetry of the wave clearly changes.
As the wind speed increases, the wave crest can be seen to lean further forwards such that the
forward face steepness exceeds that of the rear face, consistent with previous studies [21–23]. Wind
forcing also increases the wave kinetic energy density, such that Ek at x+(denoted by the +) for the
W6 case is 26% larger than the equivalent W0 wave. Conversely, the breaking strength parameter �

does not show a clear correlation with wind speed or Ek , with the W0 wave being a more strongly
breaking case than its W6 counterpart. While the addition of wind forcing clearly increases the
absolute energy of the waves, the underlying processes leading to wave breaking are characterized
by the rate of wave growth [see, e.g., Eq. (1)] and not necessarily the absolute values. This motivates
our analysis of the rate of wind energy input to the waves in the following section.
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FIG. 3. (a) The wave kinetic energy K is integrated over the area between the troughs xL and xR and over
the full water depth. (b) The kinetic energy Ek is measured at its spatial maxima x+. (c), (d) Each parameter
is shown for time t∗ = 0 as a function of wave steepness ak (c) or crest steepness Sc (d). Data are binned by
breaking (solid symbols) or nonbreaking (hollow symbols) and over intervals of 0.02 to represent the median
(symbol) and interquartile range (whiskers) over each bin.

IV. WIND ENERGY INPUT

The rate of energy input from the wind to the water

Sin = S f + Sν = −psn · us + τν · us (4)

consists of two components. The form drag contribution S f , arising from the pressure differential
caused by the flow of the wind over the wavy surface, is described by the alignment between
the surface pressure ps and the normal component of the surface velocity us. The viscous stress
component Sν is a function of the shear stress vector τν = μa(∇u + ∇uT ) · n and us. It can
be further decomposed into the component of τν aligned with the wave orbital velocity, which
contributes to wave growth, and the component aligned with the drift velocity, which enhances the
wind drift layer. For steep waves such as those in our ensemble, the majority of Sν goes towards the
wind drift layer and S f is primarily responsible for wave growth [35,45,48]. While our experiments
each run over a relatively short time period, we are able to accurately simulate the distribution of
energy into both the wind drift layer and the wave growth through the application of the boundary
condition Ub (3) outlined in Sec. II.

The resultant kinetic energy field for the wind forced waves therefore contains contributions
from mechanical generation, the drift current, and the instantaneous wind input. To quantify the
magnitude of the wind energy input relative to the hydrodynamic input from the chirped packet, we
consider both the local kinetic energy density Ek at x+ [Fig. 3(a)] as well as the total wave kinetic
energy K [Fig. 3(b)] for each wave in our ensemble. The total wave energy is calculated as

K =
∫ xR

xL

∫ η

−d
Ek (t∗ = 0) dx dz , (5)

where the integral limits are set to the wave trough locations [xL, xR] and extend vertically from the
bottom of the NWT z = −d to the interface z = η. While steepness is often used to characterize
waves, the appropriate formulation is dependent on the situation. We find the strongest correlation
between K and the time-averaged wave steepness ak, while the local Ek is best exemplified using
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FIG. 4. Evolution of the energetic terms for the central wave in the W6 packet. The crest interface, colored
by the local wind energy input Sin, is shown in (a) at intervals of t∗ = 0.2. The values of terms on the
right-hand side of the Ek balance equation (2) at the location x+ (indicated by the +) are shown in (b) and their
sum DbEk/Dt is shown in (c).

the crest steepness Sc = aπ/λc, where λc is the distance between wave zero crossings [7,54]. To
increase the clarity of Figs. 3(c) and 3(d) given the large number of individual waves within our
ensemble, we bin this data at 0.02 intervals and display the median and interquartile range for each
bin.

The local kinetic energy is significantly enhanced in breaking waves, with Ek up to twice the
magnitude compared to a nonbreaking wave of similar steepness. These elevated levels of kinetic
energy are, however, highly localized at the crest tip, with B23 finding that the difference between
the integrated kinetic energy of breaking and nonbreaking waves diminishes if the integral domain
exceeds the upper 20% of the crest. Accordingly, there is little difference between K for breaking
and nonbreaking waves of similar steepness in Fig. 3, which contrasts with Ek and demonstrates
the utility of the local energetic quantities in understanding breaking wave energetics. Conversely,
the impact of the wind forcing on the wave kinetic energy is clearly evident in both the local and
integrated magnitude of kinetic energy, with K systematically increasing by up to 20% and Ek by
up to 35% from U0/cp = 0 to 6 for waves of equivalent steepness.

V. ENERGETIC BREAKING INCEPTION

We explore the energetic evolution of the representative U0/cp = 6 breaking wave, W6, in Fig. 4.
Snapshots of the wave interface and the instantaneous wind energy input Sin are shown in Fig. 4(a)
at intervals of t∗ = 0.2. The rate of energy input varies significantly over the wave evolution but is
typified by large positive values in the crest tip region and weakly negative values in the troughs that
are associated with the reversal of the airflow at these locations (Fig. 2). The action of the wind on
the wave interface is therefore complex and cannot be represented by the local value at x+. Instead,
we consider the effect of Sin to be included as a component of the kinetic energy flux through the
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FIG. 5. Relationship between the two leading terms in the Ek balance equation (2) for the W0 (a), W1
(b), W2 (c), and W6 (d) representative breaking crests. In each panel, the preceding nonbreaking crest from
that packet is also shown (gray line). Values above (below) the dashed line indicate an increase (decrease)
in DbEk/Dt . The time of the energetic inception threshold (te) and the kinematic inception threshold (tk) are
annotated, with the superposed black lines indicating the period for which 0.83 < B < 0.88.

wave [see, e.g., Fig. 7(a) in B23] and we focus our analysis specifically on the energetic terms in
(2). These are shown in Fig. 4(b), with the resultant growth rate DbEk/Dt in Fig. 4(c).

As reported by B23 for the U0/cp = 0 cases, the kinetic energy budget (2) is dominated by the
CON and K2P terms, with the surface tension term u · nσκδs negligible and friction u · f only
significant just prior to breaking onset (t∗ = 0). Prior to t∗ = −0.3, DbEk/Dt increases slowly as
the input of kinetic energy to the crest tip from the CON term is largely offset by its conversion to
potential energy through the K2P term. Beyond this time, the magnitude of CON begins to increase
rapidly, while the magnitude of K2P steadily decreases as the wave approaches its maximum
amplitude. As a consequence, DbEk/Dt also increases rapidly up to (t∗ = 0). The interplay between
the Ek source and sink terms is more clearly seen in Fig. 5, where the relation between CON and
K2P − u · f for the time interval t∗ = [−1, 0] is shown for the representative waves (W0 to W6) at
each wind forcing. In this phase space, the magnitude of the growth rate DbEk/Dt is represented by
the distance from the dashed line (neglecting the negligible impact of surface tension). In each case,
the initial increase in CON is offset by a corresponding decrease in K2P − u · f such that DbEk/Dt
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FIG. 6. The magnitude of CON as a function of (a) K2P − u · f and (b) DbEk/Dt , at the time that the critical
point occurs. The 5 and 95% confidence intervals are also shown. Breaking crests are colored by the breaking
strength indicator �, and nonbreaking crests are colored gray. The DbEk/Dt threshold separating nonbreaking
and breaking crests from B23 is shown by the hatched region. The representative breaking crests W0 to W6
discussed in the text are indicated with black bordered markers.

remains small. At some time prior to breaking onset, an imbalance is seen to develop between these
terms (labelled te) at which point the increase in CON is no longer matched by a corresponding
decrease in K2P − u · f . This critical point, termed the energetic breaking inception threshold by
B23, is distinct from the kinematic breaking inception threshold [5,7], which at the wave surface is
quantified by the magnitude of the breaking inception parameter B = |u|/|c| exceeding a threshold
value of B = 0.855 ± 0.05. The timing of the kinematic inception threshold tk , shown in Fig. 5,
occurs after the energetic inception threshold and is clearly separated in phase space from te.

We define this critical point as the final local minimum of the parametric curve (x, y) = ([K2P −
u · f], CON) that occurs before t∗ = 0. We found this to be a generic feature of all breaking waves
examined in our ensemble. The locations of this point in CON and K2P − u · f phase space for
all of the waves in Table I are shown in Fig. 6(a), where the error bars represent the 5 and 95%
confidence intervals calculated using a time series bootstrap method. Despite the additional energy
input increasing crest Ek magnitudes by up to 35%, the waves under the influence of wind forcing
fall on the same phase space plane as those without wind forcing.

A key detail of the energetic inception threshold is that a critical point in the evolution of CON
is a necessary but not sufficient condition preceding breaking onset. Critical points are identified in
some nonbreaking cases (gray markers); however, the growth rate DbEk/Dt in these cases is small.
Consistent with B23, we find that a threshold region exists of DbEk/Dt = [0.198, 0.235] within the
confidence intervals of the data [Fig. 6(b)]. Below this threshold region a critical point in CON does
not lead to breaking, but all waves in our ensemble for which a critical point is observed above
this threshold proceed to break without exception. The energetic inception threshold can therefore
be considered an energetic tipping point: for DbEk/Dt � 0.235 any further increase in the rate of
kinetic energy convergence at the crest tip will lead to breaking onset.

For each breaking wave we also estimate the breaking strength with the parameter � using (1),
where we calculate DbB/Dt as the average rate of change over the interval B ∈ [0.83, 0.88] and T is
defined from the deep water wave relationship using the crest zero-crossing wavelength λc. In Fig. 6
we show that � increases with increasing magnitude of CON and DbEk/Dt at the time of energetic
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FIG. 7. The energetic (te) and kinematic (tk) inception times for all breaking crests in our ensemble, relative
to the time of breaking onset t∗ = 0. For each wind speed, times are represented by their quartiles (box) and the
minimum/maximum values within 1.5 times the interquartile range (whiskers). A representative Ek evolution
(dashed lines) is computed by fitting a line to the median Ek values at t∗ = [−1, te, tk, 0].

inception. This result indicates that the strength of the breaking event can be estimated using the
energetic quantities measured at the time of energetic breaking inception.

Recall that the energetic inception threshold clearly precedes the kinematic inception threshold
for the representative crests shown in Fig. 5. B23 found that while both are generic features of
the energetic evolution of a breaking wave, the energetic inception point precedes the kinematic
inception point by around 0.1–0.2 wave periods for the deep-water cases examined. We investigate
the impact of wind on the timing of these breaking inception thresholds in Fig. 7. For each
wind speed examined, the energetic (te) and kinematic (tk) inception times are represented by
their quartiles (box) and the minimum/maximum values within 1.5 times the interquartile range
(whiskers). A representative Ek evolution (dashed lines) is computed by regression to the median Ek

values at t∗ = [−1, te, tk, 0]. As the magnitude of wind forcing increases, the timing of the energetic
inception point occurs earlier in the crest evolution, increasing from a median value of te = −0.26t∗
for U0/cp = 0 to te = −0.31t∗ for U0/cp = 6. A similar, although less distinct, trend is also seen
for the kinematic inception point with inception generally occurring earlier in wind forced cases.

VI. CONCLUSIONS

In this paper, we have developed a numerical wave tank using a two-phase, volume-of-fluid
Navier-Stokes solver to generate an ensemble of nonbreaking and breaking waves under the influ-
ence of wind forcing. With this ensemble, which encompasses wind speeds ranging from moderate
to strong wind forcing, we have examined the evolution of the terms in the kinetic energy balance
equation (2) at the crest tip as the wave proceeds towards breaking onset.

The growth rate DbEk/Dt of the kinetic energy at this point is dominated by the convergence
of kinetic energy CON and its conversion to potential energy K2P. In nonbreaking waves, these
two terms are of approximately equal magnitude such that DbEk/Dt remains small. Conversely,
the evolution of breaking waves is characterized by a rapid increase in CON that is not offset by a
corresponding increase in K2P, which results in a rapid increase in DbEk/Dt up until breaking onset.
The critical point in the evolution of the CON term which precedes the rapid increase in DbEk/Dt
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was previously reported by B23 and termed the energetic inception threshold. We found that this
critical point was a generic feature of all breaking waves we examined in our ensemble.

B23 found that a threshold value of DbEk/Dt = [0.198, 0.235] exists, which must be exceeded
for the deflection in the evolution of CON to result in breaking inception. We found this threshold
value to be robust for our wind forced wave experiments, despite the local kinetic energy at the
crest tip Ek increasing by up to 35% relative to an unforced wave of equivalent steepness. We also
observed a correlation between the magnitude of CON and DbEk/Dt and the breaking strength
parameter � [5,10], indicating that the energetic inception threshold can also quantify the strength
of the subsequent breaking event. While wind forcing did not alter the threshold value, it did result
in a systematic increase in the time between breaking inception and onset as the magnitude of the
wind forcing was increased.

The energetic breaking inception threshold provides new insights into the dynamical processes
leading to wave breaking and offers opportunities for the parametrization of the breaking impacts
on larger scale ocean processes. The threshold has previously been shown to be robust for varying
wave packet size in deep and intermediate water depths [B23], and our new results demonstrate
that it is unaffected by wind forcing. Together, these results give confidence in the universality of
the threshold; however, further studies examining a broader range of wave types are necessary to
confirm these findings.
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