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Relating interfacial Rossby wave interaction in shear flows with Feynman’s
two-state coupled quantum system model for the Josephson junction
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Here we show how Feynman’s simplified model for the Josephson junction, as a
macroscopic two-state coupled quantum system, has a one-to-one correspondence with
the stable dynamics of two interfacial Rossby waves in piecewise linear shear flows. The
conservation of electric charge and energy of the superconducting electron gas layers
become, respectively, equivalent to the conservation of wave action and pseudoenergy of
the Rossby waves. Quantumlike tunneling is enabled via action at a distance between the
two Rossby waves. Furthermore, the quantumlike phenomena of avoided crossing between
eigenstates, described by the Klein-Gordon equation, is obtained as well in the classical
shear flow system. In the latter, it results from the inherent difference in pseudoenergy
between the in-phase and antiphased normal modes of the interfacial waves. This provides
an intuitive physical meaning to the role of the wave function’s phase in the quantum
system. A partial analog to the quantum collapse of the wave function is also obtained
due to the existence of a separatrix between normal mode regions of influence on the
phase plane, describing the system’s dynamics. As for two-state quantum bits (qubits),
the two-Rossby wave system solutions can be represented on a Bloch sphere, where
the Hadamard gate transforms the two normal modes and eigenstates into an intuitive
computational basis in which only one interface is occupied by a Rossby wave. Yet, it
is a classical system which lacks exact analogs to collapse and entanglement, and thus
cannot be used for quantum computation, even in principle.
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(U1 = U0+ qV)

(U2 = U0)

FIG. 1. A Josephson junction device, detached from an electric circuit, is composed of two superconducting
electron gas layers, separated by a thin insulator. The Cooper pairs in layer 2 are in the ground-state energy
U0. Layer 1 was previously charged by voltage V , thus in energy state U0 + qV (where q is the Cooper pair’s
electric charge). Each electron gas layer is described by a macroscopic wave function ψ , Eq. (1). If the insulator
is thin enough, a supercurrent may flow via tunneling from one layer to the other.

I. INTRODUCTION

In the very last chapter of The Feynman Lectures on Physics [1] (Vol. III, Chap. 21, Sec. 9),
Feynman et al. suggested a simplified model for the Josephson junction. In this model, two layers
(1 and 2) of superconducting electron gas (that is, a gas composed of quasiparticle Cooper pairs
of electrons [2], whose electrical resistance vanishes below a critical temperature) are separated
by a thin insulating layer (Fig. 1). Since Cooper pairs behave as bosons, they tend to aggregate in
the lowest possible energy quantum states, U1,2, of each layer. Cooper pairs occupying the same
quantum state are indistinguishable; thus, for a very large number of pairs, the quantum probability
density function ρ for finding a single pair becomes their macroscopic density [3]. Consequently, a
macroscopic wave function can be assigned for each layer,

ψ1,2 = √
ρ1,2ei θ1,2 , (1)

where it can be shown that in the absence of a magnetic vector potential, the gradients of the phases,
∇θ1,2, are proportional to the momenta carried by the electron currents along each layer [1].

Feynman’s simplified model assumes two homogeneous, nonmagnetized, superconducting elec-
tron gas layers with zero current, thus ψ1,2 are functions of time but not of space. The electron gas in
layer 1 was first charged by voltage V , making a difference in their lowest energies: U1 − U2 = qV
(where, here, q is the electric charge of a Cooper pair, equal to twice the electron charge). The model
equations then read

ih̄ψ̇1 = U1ψ1 + Kψ2 , (2a)

ih̄ψ̇2 = U2ψ2 + Kψ1 . (2b)

Under perfect insulation between the two layers (when K = 0), these are just the Schrödinger
equations for particles in the energy states U1,2 (h̄ is the reduced Planck’s constant). For nonzero
values of the coupling constant K , the insulator is not perfect, hence quantum tunneling is possible
between the layers, where K generally decreases as the width of the insulator increases.

Equation set (2) is an example of a two-state coupled quantum system. As will be shown in this
paper, it also describes a seemingly unrelated system—the stable interaction at a distance between
two interfacial Rossby waves in shear flows. This is quite intriguing, as the latter system is purely
classical. The main purposes of this paper are to understand how the physical processes in these two
systems are related and what added value is obtained from a comparison between the two systems.
In Sec. II, we present the main physical properties of the superconducting system and then show, in
Sec. III, how they reemerge in the context of the Rossby-wave system. Then, in Sec. IV, we examine
the quantumlike phenomena in the classical system and conclude, in Sec. V, with a discussion on
the equivalency between the two systems.
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II. PROPERTIES OF THE FEYNMAN MODEL

A. Representation as a dynamical system

Equation set (2) can then be rewritten as

ψ̇1 = −iω̂1ψ1 − iσψ2 , (3a)

ψ̇2 = −iω̂2ψ2 − iσψ1 , (3b)

where ω̂1,2 = U1,2/h̄, are effective frequencies associated with the energy states in the absence of
interaction, and σ = K/h̄ is the tunneling coupling coefficient, scaled by h̄. Inserting the polar form
of Eq. (1) in Eqs. (3), Feynman obtained dynamical equations for the densities and phases in the
two layers. In terms of ω̂1,2 and σ , we obtain

ρ̇1 = −2σ
√

ρ1ρ2 sin δ = −ρ̇2 , (4a)

θ̇1 = −
(

ω̂1 + σ

√
ρ2

ρ1
cos δ

)
; θ̇2 = −

(
ω̂2 + σ

√
ρ1

ρ2
cos δ

)
, (4b)

δ̇ = −�ω̂ + σ

(√
ρ1

ρ2
−

√
ρ2

ρ1

)
cos δ , (4c)

where δ = θ1 − θ2, �ω̂ = ω̂1 − ω̂2 and J = 2σ
√

ρ1ρ2| sin δ| is the magnitude of the supercurrent
that may flow from one layer to the other by tunneling through the insulator barrier [4].

B. Hamiltonian and Hamilton equations

Equation (4a) indicates that the total charge, ρ = ρ1 + ρ2, is conserved. Equation set (4b) are
the scaled Hamilton-Jacobi density equations, θ̇i = −Hi [5], where Hi is the Hamiltonian density
(scaled by h̄) of each layer i = 1, 2. Assuming that the volume of each layer is the same as the
Hamiltonian per unit volume, H = ρ1H1 + ρ2H2, is conserved,

H =
2∑

i=1

ρiHi = −
2∑

i=1

ρiθ̇i =
2∑

i=1

ρiω̂i + 2σ
√

ρ1ρ2 cos δ , (5)

where substitution in Eq. (4) verifies Ḣ = 0 . Equivalently, Eqs. (3) can be written in the matrix
form

i �̇	 = Ĥ �	 , where �	 =
(

ψ1

ψ2

)
and Ĥ =

(
ω̂1 σ

σ ω̂2

)
= ĤT (6)

are the wave function vector in the Hilbert space and the Hermitian Hamiltonian density operator
[superscript (.)T denotes the Hermitian transpose]. The Hamiltonian in bra-ket notation (scaled by
the volume) reads

H = 〈	|Ĥ|	〉 ≡ �	T Ĥ �	 , (7)

where it can be verified by direct substitution that the right-hand side (RHS) of Eqs. (5) and (7) are
the same. The vanishing of the time derivative of H in Eq. (7) is obtained directly as well when

writing �̇	 = −iĤ �	 and �̇	T = i �	T Ĥ .
Equations (4a) and (4b) can then be written in the compact form of the canonical Hamilton

equations,

ρ̇i = ∂H

∂θi
, θ̇i = −∂H

∂ρi
, (8)

implying that in the four-dimensional phase space, x ≡ (ρ1, ρ2, θ1, θ2), the Hamiltonian H serves as
the stream function of the associated velocity field: u ≡ (ρ̇1, ρ̇2, θ̇1, θ̇2), so u · ∇H = {H, H} = 0,
where ∇ is the four-component nabla operator in the phase space of coordinates x. Furthermore,
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{ f , H} = ∑2
i=1( ∂H

∂θi

∂ f
∂ρi

− ∂H
∂ρi

∂ f
∂θi

) = u · ∇ f is the Poisson bracket of a general function f (x, t ) with
H . The phase space flow is volume preserving (i.e., divergence-free, ∇ · u = 0), in agreement with
Liouville’s theorem [6].

C. Eigenstates and avoided crossing

As will be shown here, the frequency eigenvalues of the two-level system of Eqs. (3) exhibit the
phenomena of avoided crossing (e.g., Ref. [7] in the context of diatomic molecules), i.e., the two
frequency eigenvalues of the coupled system never equal each other (their values never cross). This
is valid even in the degenerated case where the two separated frequencies of the uncoupled system
are equal (when ω̂1 = ω̂2).

The time-independent Schrödinger equation,

ω �� = Ĥ ��, (9)

for �	 = ��e−iωt (with the corresponding energy eigenvalues E = h̄ω), gives the frequency eigen-
values

ω± = ¯̂ω ± [(
1
2�ω̂

)2 + σ 2
]1/2

, (10)

where ¯̂ω = (ω̂1 + ω̂2)/2 . As expected, in the absence of tunneling (σ = 0), the two layers are
uncoupled: ω+ = ω̂1, and ω− = ω̂2, with the corresponding eigenvectors ��T

+ = (
√

ρ1, 0); ��T
− =

(0,
√

ρ2) .
Without loss of generality, we can move to the frame in which ω̂1 = −ω̂2 ≡ ω̂, so ¯̂ω = 0 and

�ω̂/2 = ω̂. Equation (10) then simplifies to the Klein-Gordon dispersion relation:

ω± = ±(ω̂2 + σ 2)1/2 ≡ ±� . (11)

In Fig. 2, we plot ω± as a function of ω̂. For σ = 0, the dashed straight lines in ±45◦ correspond to
the solutions ω+ = ω̂1 and ω− = ω̂2, respectively. In the presence of tunneling, σ > 0, the coupled
solutions of the upper and lower hyperbolic branches never cross (even in the degenerate case where
ω̂1 = ω̂2 = 0).

The corresponding two orthonormal eigenstate vectors ��±, obtained from Eq. (9) are

��+ = 1√
2

⎛
⎝

√
�+ω̂

�√
�−ω̂

�

⎞
⎠ ; ��− = 1√

2

⎛
⎝

√
�−ω̂

�

−
√

�+ω̂
�

⎞
⎠ , (12)

where the general solution of Eqs. (3) is the superposition of the eigenstates:

�	(t ) = a+ ��+e−iω+t + a− ��−e−iω−t (13)

(a± = A±eiα± are two complex amplitudes). Since ��+ and ��− are orthonormal, a± = 〈�±|	(t =
0)〉 . Hence, the seemingly complicated nonlinear dynamics in Eqs. (4) can be projected into
the superposition of the two eigenvectors, where each propagates with its constant eigenvalue
frequency. For example, starting from an initial condition of zero density in the lower layer,
�	T (t = 0) = (1, 0)T , yields a± = φ1± (where φ1± corresponds to the first entries of the vectors
��±). Furthermore, for each pure eigenstate solution,

�	± =
(√

ρ1eiθ1

√
ρ2eiθ2

)
±

= a± ��±e−iω±t =
(√

ρ1ei(θ0
1 −ωt )

√
ρ2ei(θ0

2 −ωt )

)
±

(14)

(here the zero superscript corresponds to the initial time t = 0), ρ1,2, their ratio, ρ1/ρ2, as well
as θ0

1,2 are all constant. Since θ1,2 = θ0
1,2 − ωt , the phase difference δ = θ1 − θ2 = θ0

1 − θ0
2 is also
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In phase

An� phase

FIG. 2. Eigenstate frequencies, ω±, satisfying the Klein-Gordon dispersion relation Eq. (11) for tunneling
coupling coefficient σ = 1.5. The upper (lower) hyperbola corresponds to eigenstate solutions in which the two
layers of wave functions are in (anti)phase. Dashed lines correspond to the uncoupled solutions (σ = 0) of each
electron gas layer in isolation. The avoided crossing phenomena is evident as the two hyperbolas never cross,
even on the ordinate where the frequencies of each layer in isolation are equal. The inset on the middle left
shows the eigenstate density ratio for the two hyperbolas, as obtained from Eqs. (12). The eigenstate structures
of the Josephson junction system are visualized in the insets (with red and green waves and arrows) in terms
of the normal modes of the equivalent Rossby waves system (see a detailed explanation for the interaction
mechanism in Secs. IV A and IV B).

constant, where θ̇1 = θ̇2 = −ω . As (� ± ω̂) are both positive (for nonzero positive values of σ ),
Eqs. (12) indicate that δ+ = 0 and δ− = π . Thus, the upper branch of the hyperbola corresponds to
the cases where the upper and lower macroscopic wave functions are in phase, whereas the lower
branch corresponds to the cases where they are antiphased. The eigenstate energy then satisfies
Eq. (5):

H± = (ρ1 − ρ2)ω̂ ± 2σ
√

ρ1ρ2 = ρ ω± . (15)

We recall that H is scaled by h̄, which is the elementary action unit of a quantum particle. Thus,
when integrating ρ h̄ over the volume of the two electron gas layers, we obtain the total action of the
Cooper pairs in the system. We will indeed see that in the Rossby wave system, ρ corresponds to
their wave action.

While the mathematical analysis shown above is straightforward, the physical interpretation of
the dynamics is somewhat obscured. For the eigenstate solutions, the layers interact with each other
via tunneling but no super-current flows from one layer to the other. The phase difference in the
wave functions affects the charge density ratio between the layers and acts as well to synchronize
the phase rate in the two layers. This is despite the fact that phase gradients are zero and thus do
not correspond to currents within the layers. As will be discussed in the following sections, these
issues become clear when implementing Feynman’s model to describe the seemingly unrelated
stable interaction at a distance between interfacial Rossby waves in piecewise linear shear flows.
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III. FEYNMAN’S MODEL APPLIED FOR INTERFACIAL ROSSBY WAVES

A. Wave action and pseudoenergy conservation

For our purposes, it is sufficient to consider inviscid, constant density, two-dimensional horizon-
tal flows in the x–y plane. The linearized dynamics of monochromatic small perturbations, with
respect to a mean shear profile ū(y) (denoted by overbars), satisfies the momentum, vorticity, and
continuity equations:

Du
Dt

= −∇p + x̂ q̄ v ;
Dq

Dt
= −q̄y v ; ∇ · u = 0 . (16)

Here u = (u, v) is the perturbation velocity with respect to the mean flow ū(y), p is the pressure
perturbation scaled by the constant density, and q = ẑ · (∇ × u) = ( ∂v

∂x − ∂u
∂y ) is the vertical compo-

nent of the vorticity perturbation (the hat superscript denotes a unit vector and ∇ is the horizontal
nabla operator). The linearized material derivative is D

Dt = ∂
∂t + ū ∂

∂x and the mean flow vorticity and

its gradient are, respectively, q̄(y) = − ∂ ū
∂y and q̄y ≡ ∂ q̄

∂y = − ∂2 ū
∂y2 .

We denote the cross-stream displacement (in the y direction) by η so v = Dη

Dt ; the perturbation
vorticity equation in Eqs. (16) then yields D

Dt (q + q̄yη) = 0. We assume isovortical dynamics in
which the vorticity perturbation results solely from the deformation of the basic state vorticity,
q = −q̄yη, thus the vorticity perturbation can be nonzero only in regions where q̄y �= 0. For a
horizontal domain (−Lx/2 < x < Lx/2 ; −Ly/2 < y < Ly/2) with periodic stream-wise boundary
conditions and vanishing cross-stream fluxes on the streamwise boundaries, v(y = ±Ly/2) = 0, the
linearized dynamics of Eqs. (16) conserves the two constants of motion: the pseudomomentum
(and its associated wave action) and pseudoenergy [8]. Defining the stream-wise averaging as

¯(...) ≡ 1
Lx

∫ Lx/2
−Lx/2(...)dx and its integration in the cross-stream direction as 〈...〉 ≡ ∫ Ly/2

−Ly/2
¯(...)dy , the

pseudomomentum

P = −1

2

〈
q2

q̄y

〉
= −1

2
〈q̄y η2〉 , (17)

is the additional mean streamwise momentum imposed by the perturbation on the flow. If the mean
vorticity gradient q̄y does not change signs within the domain, this ensures stability as the vorticity
perturbation cannot grow in time without violating the conservation of P [9]. For a monochromatic
perturbation of the form f = f̃ (y, t, k)eikx , where k is the streamwise wave number (and f is a
general field), the wave action

A = P

k
(18)

is conserved as well. The second invariant is the pseudoenergy which is the additional kinetic energy
imposed by the perturbation on the base flow,

E = 1

2

〈
u2 − ū

q̄y
q2

〉
= 1

2
〈u2 − ū q̄y η2〉 , (19)

from which a generalization of the additional stability condition of Fjørtoft, sgn(ū) = −sgn(q̄y), is
deduced [10,11].

From the incompressibility condition, the perturbation stream function φ satisfies

∇ · u = 0 ⇒ u = ẑ × ∇φ ⇒ q = ∇2φ . (20)

The eddy kinetic energy integral can then be written as K = 1
2 〈u2〉 = − 1

2 〈q φ〉, which allows writing
the pseudoenergy as

E = −1

2

〈
q

(
∇−2 + ū

q̄y

)
q

〉
, (21)
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FIG. 3. Schematic illustration of an interfacial counter propagating Rossby wave at y = y0. The shear
profile of Eq. (25) has a negative δ-function value of mean vorticity gradient. Consequently, the Rossby wave
acts to propagate to the right (leaving the lower mean vorticity to its left) countering the mean flow ū0. The
position of the wave after a short time interval is shown by the green dashed curve.

where ∇−2 denotes the inverse horizontal Laplacian operator. Considering, hereafter, monochro-
matic wave dynamics, the RHS of Eq. (20) yields

q̃(y, t, k) = ∇2
k φ̃ =

(
−k2 + ∂2

∂y2

)
φ̃ ⇒ φ̃(y, t, k) = ∇−2

k q̃ =
∫ Ly/2

−Ly/2
q̃(y′, t, k)Gk (y, y′)dy′ , (22)

where G(y, y′) is the Green’s function, satisfying ∇2
k Gk (y, y′) = δ(y − y′) and δ is the Dirac delta

function. For the purpose of the analysis here, it is enough only to consider the open domain case:
Ly → ∞ for which Gk (y, y′) = −e−k|y−y′ |/2k [12].

Writing the vorticity perturbation in terms of amplitude and phase, q̃ = Qeiθ , when recalling that
for two general monochromatic functions ( f , g) = ( f̃ , g̃)eikx = (Feiθ f , Geiθg )eikx, we obtain ¯f g =
1
2�{ f̃ g̃∗} = 1

2 FG cos (θ f − θg) (where asterisk denotes complex conjugate), and the wave action
and the pseudoenergy become [13]

A = − lim
Ly→∞

∫ Ly/2

−Ly/2

Q2(y)

4kq̄y(y)
dy ; (23)

E = lim
Ly→∞

∫ Ly/2

−Ly/2

Q(y)

4

[∫ Ly/2

−Ly/2
Q(y′) cos (θ (y) − θ (y′))

e−k|y−y′ |

2k
dy′ − ū(y) Q(y)

q̄y(y)

]
dy . (24)

It will be shown that wave-action A plays the equivalent role of the charge density ρ in the Josephson
junction and the pseudoenergy E the role of the Hamiltonian H .

B. Single interfacial vorticity wave

Consider first the piecewise linear shear flow profile (Fig. 3),

ū(y) = ū0 −
{

q̄T (y − y0), y � y0

q̄B(y − y0), y � y0
; q̄(y) =

{
q̄T y > y0

q̄B y < y0
; q̄y = �q̄0 δ(y − y0) , (25)

where ū0 is negative, (q̄T , q̄B) are both positive constants, and �q̄0 ≡ q̄T − q̄B is assumed negative.
The isovortical monochromatic vorticity perturbation therefore has a delta function structure:
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q̃ = −η̃�q̄0 δ(y − y0) ≡ q̂0(t )δ(y − y0). Substituting q̃ on the RHS equation of Eq. (22), we obtain

φ̃(y, t ) = Gk (y, y0)q̂0(t ) = −e−k|y−y0|

2k
q̂0(t ) . (26)

While φ̃ is continuous across the interface y0, ∂φ̃

∂y is discontinuous. Consequently, ṽ = ikφ̃ is

continuous, but ũ = − ∂
∂y φ̃ flips sign across the interface. The latter yields an infinite perturbation

shear, − ∂u′
∂y , across the interface, corresponding to the delta function structure of the vorticity

perturbation.
Substituting an interfacial vorticity wave perturbation q′

0 = Q̂0δ(y − y0)ei(kx−ω̂0t ) (so θ0 = −ω̂0t)
together with its associated stream function Eq. (26) in the vorticity equation of Eqs. (16), for profile
Eq. (25) we obtain at y = y0:

˙̃q0 = −iω̂0 q̃0 ; θ̇0 = −ω̂0 , (27)

with the frequency

ω̂0 = kĉ0 = k

(
ū0 − �q̄0

2k

)
= k

(
−|ū0| + |�q̄0|

2k

)
= −k(|ū0| + |�q̄0|Gs), (28)

where, hereafter, we use ˙(...) ≡ ∂
∂t (...) (to relate between the two common notations of temporal

derivative in quantum and fluid mechanics), and Gs ≡ −1/2k = Gk (y0, y0) is the self-induced
Green’s function. The propagation mechanism is of interfacial counterpropagating Rossby waves
[14] (Fig. 3). The vorticity perturbation field at the interface induces a cross-stream velocity field,
located a quarter of wavelength to its right. Since �q̄0 is negative, the advection of the mean vorticity
by the perturbation velocity across the interface results in fresh interfacial vorticity anomalies to the
right. This acts to translate the waves in the positive x direction [the term |�q̄0|

2k in Eq. (28)] counter
the mean flow −|ū0|. As the wave number k is positive definite, the dispersion relation in Eq. (28)
indicates that the sign of ω̂0 is positive (negative) for k < kc (k > kc), where kc ≡ 0.5|�q̄0|/|ū0|.
Hence, for long enough wavelengths, the waves overcome the mean flow Doppler shift and propa-
gate to the right when viewed from a frame of rest, whereas waves with smaller wavelengths than
2π/kc are drifted to the left in the direction of the interfacial mean flow ū0. Substituting Eqs. (27)
and (28) in Eqs. (23) and (24), we obtain the single interface action-angle relations:

E0 = −A0θ̇0 = A0ω̂0 ; A0 = Q̂2
0

4k|�q̄0| . (29)

C. Two interfacial vorticity waves

Consider now the shear flow profile (Fig. 4):

ū(y) =

⎧⎪⎨
⎪⎩

ū1 − q̄T (y − y1), y � y1

ū2 − q̄M (y − y2), y2 � y � y1

ū2 − q̄B(y − y2), y � y2

; q̄(y) =

⎧⎪⎨
⎪⎩

q̄T , y > y1

q̄M , y2 < y < y1

q̄B, y < y2

, (30)

so

q̄y = �q̄1 δ(y − y1) + �q̄2 δ(y − y2) , (31)

where ū1 < ū2 < 0 and q̄B > q̄M > q̄T > 0 ⇒ �q̄1 ≡ q̄T − q̄M < 0 and �q̄2 ≡ q̄M − q̄B < 0. De-
noting the distance between the interface by Y ≡ y1 − y2, Eqs. (30) imply that q̄M = −(ū1 − ū2)/Y .

For isovortical dynamics, q̃ = q̂1(t )δ(y − y1) + q̂2(t )δ(y − y2), with the corresponding stream
function φ̃ = − 1

2k (q̂1e−k|y−y1| + q̂2e−k|y−y2|). Substituting q̃ and φ̃ in the vorticity equation of
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FIG. 4. Schematic illustration of two interfacial counter propagating Rossby waves on the shear profile
Eqs. (30). As in Fig. 3, each wave acts to propagate to the right, countering the local mean flow at its interface.
The waves interact at a distance by inducing their cross-stream velocity which decays exponentially with
distance from their home bases. In this example, the upper wave’s amplitude is larger than the lower one.
Consequently, the influence of the upper wave on the lower is larger than vice versa. The phase difference
between the waves at this snapshot is −π/2 < δ < 0. As a result, both waves amplify each others’ right-
ward propagating speed, but have am opposite effect on the amplitudes—the lower (upper) wave increases
(decreases) the upper (lower) wave’s amplitude.

Eqs. (16) for y = (y1, y2) (and recall that ṽ = ikφ̃), we obtain

˙̂q1 = −iω̂1q̂1 − iσ1q̂2 , (32a)

˙̂q2 = −iω̂2q̂2 − iσ2q̂1 , (32b)

with the wave frequencies, at the absence of interaction,

ω̂1,2 = kĉ1,2 = k

(
−|ū| + |�q̄|

2k

)
1,2

= −k(|ū| + |�q̄|Gs)1,2 , (33)

and the interaction coefficients

σ1,2 = e−kY

2
|�q̄|1,2 = −k|�q̄|1,2Gi , (34)

where we denote (Gs, Gi ) ≡ −(1, e−kY )/2k as the self- and induced values of the Green’s function
of each wave on itself and on the opposed one. Writing q̂1,2 = Q̂1,2eiθ1,2 , the wave action of the
perturbation can be obtained from Eq. (23) to be

A = Q̂2
1

4k|�q̄1| + Q̂2
2

4k|�q̄2| = A1 + A2 . (35)

Now, if we choose to define a wave function for the interfacial Rossby waves,

ψRos
1,2 ≡ √

A1,2ei θ1,2 ⇒ q̂1,2 = 2
√

k|�q̄|1,2 ψRos
1,2 , (36)
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(b) (d)

(c)(a)

FIG. 5. Representative snapshots of the waves action-at-a-distance interaction according to their phase
difference δ = ( π

2 , − π

2 , 0, π ) in (a)–(d), respectively. When δ = π/2, the upper wave reinforces the amplitude
of the lower wave while the lower wave diminishes the amplitude of the upper wave. When δ = −π/2, the
opposite occurs. When the waves are in phase (δ = 0), they help each other to propagate to the right, while
when in antiphase (δ = π ), they slow each other.

and substitute back in Eqs. (32), we obtain

ψ̇Ros
1 = −iω̂1ψ

Ros
1 − iσψRos

2 , (37a)

ψ̇Ros
2 = −iω̂2ψ

Ros
2 − iσψRos

1 , (37b)

with the scaled interaction coefficient σ = √|�q̄1||�q̄2| e−kY /2 . Hence, assigning ψRos
1,2 �→ ψ1,2

and A1,2 �→ ρ1,2, we obtain Eqs. (3) and thus Eq. (4). Using Eq. (24), it is shown in Appendix B
that when assigning E �→ H , Eq. (5) holds as well. Consequently, Eqs. (6)–(14) apply as well for
the two Rossby wave systems, thus completing the mathematical equivalence between the quantum
and the classical systems.

IV. QUANTUMLIKE EFFECTS IN THE ROSSBY WAVE SYSTEM

A. Interaction mechanism as tunneling

In Fig. 4, we sketch an example for the interaction between the two interfacial waves. Since at
each interface, �q̄ is negative, the cross-stream displacement η , the vorticity field q , and the wave
function ψRos are all in phase. At each interface, the cross-stream velocity field is composed of two
contributions: self (s), from the home-base wave and induced (i) from the remote wave. According
to Eq. (22) at each interface ṽ = ṽs + ṽi = ik(Gsq̂s + Giq̂i ) = −0.5 i (q̂s + e−kY q̂i ). Hence, ṽs,i is
positioned a quarter of a wavelength ahead of q̂s,i where the action-at-a-distance interaction decays
exponentially with the wave number, scaled by the distance between the interfaces. ṽi therefore
accounts to the analog effect of tunneling in this classical system [15]. More analysis on its nature
is provided in Appendix A.

In Fig. 5, we show representative snapshots of the interaction according to their phase difference
δ. When δ = π/2 [Fig. 5(a)], the upper wave reinforces the amplitude of the lower wave by inducing
a velocity field which is in phase with the displacement of the upper wave. In contrast, the lower
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wave diminishes the amplitude of the upper wave as the induced velocity is in the antiphase with
the lower wave displacement. When δ = −π/2 [Fig. 5(b)], the opposite scenario occurs. These are
instantaneous snapshots as both the amplitude ratio ρ1/ρ2 [Eq. (4a)] and the phase difference δ

[Eq. (4c)] are continuously changing (unless �ω̂ = 0). Hence, such phase configurations cannot
describe eigenstates (in the quantum system) or, equivalently, normal modes (in the fluid system).
We see that the waves cannot mutually amplify each other when the sign of their home base mean
vorticity gradients is the same [16].

When the waves are in phase (δ = 0), Fig. 5(c), the self- and induced velocities are superposed,
thus the waves help each other to propagate to the right with respect to their local mean flow ū
[Eq. (4b)]. In contrast, in the antiphase (δ = π ), Fig. 5(d), the induced velocity acts against the self-
velocity, thus slowing the rightward propagation tendency of each wave in isolation. Furthermore,
if Q̂i/Q̂s > ekY , the induced velocity overpowers the self one, forcing the wave to propagate to the
left with respect to its local mean flow. These phase and antiphased configurations may form the
normal modes when δ̇ = 0 [Eq. (4c)], as discussed next.

B. Mechanistic interpretation for the normal modes and avoided crossing

As pointed out in the previous section, neutral normal modes in the fluid system [which are
equivalent to the eigenstates Eqs. (12) in the quantum system] can be obtained when the waves’
amplitudes are either in phase (δ = 0) or in antiphase (δ = π ) [Eq. (4a)]. We wish to provide a
mechanistic interpretation of the structure of these eigenstates and normal modes from the Rossby
wave interaction perspective. Recall that due to the negative sign of �q̄, at the two interfaces, each
Rossby wave acts to propagate to the right, however, the local mean flow at each interface adds a
Doppler shift toward the left direction. When the waves are in phase, they reinforce each other’s
tendency to propagate to the right and, when they are in antiphase, they hinder their rightward
propagation.

First, consider the case when ω̂ > 0, that is, in isolation, viewed from a frame of rest, the upper
wave propagates to the right (ω1 = ω̂) and the lower to the left (ω2 = −ω̂). In the upper right
hyperbola of Fig. 2, the waves are in phase, where the upper wave’s amplitude is larger than the
lower one. Consequently, they help each other to propagate to the right but the upper wave provides
more help to the lower one than vice versa. The upper wave’s amplitude should be large enough so
the velocity field it induces on the lower wave (although attenuated by e−kY ) will help the latter to
overcome the leftward mean flow and, consequently, propagate to the right. The lower wave helps
(albeit, a little) the upper wave to propagate more to the right, thus their joint (eigen)frequency is
larger than the frequency of the upper wave in isolation.

In the lower right branch of the hyperbola, the waves are antiphased when the amplitude of
the lower wave is larger than the upper wave. Consequently, the velocity that the lower wave
induces on the upper opposes and overpowers the latter (despite the exponential attenuation),
making the upper wave propagate to the left. At the same time, the upper wave reduces by
little the tendency of the lower wave to propagate to the right; thus, consequently, their joint
(eigen)frequency is more negative than the frequency of the lower wave in isolation. Following
the same logic, on the left side of Fig. 2 (when ω2 = −ω1 = −ω̂ < 0), in the upper left of the
hyperbolas the waves are in phase, where the amplitude of the lower wave is larger than the upper.
In the lower left part, the waves are antiphased and the amplitude of the upper wave is larger than the
lower.

The avoided crossing phenomena is easily explained in terms of the wave interaction mechanism.
In the degenerate case when each wave in isolation has the same frequency (ω1 = ω2 = 0), they
still interact. When they are in phase and have the same amplitude, they equally help each other to
propagate, thus their joint eigenstate frequency is positive. When they are in antiphase, with equal
amplitudes, they equally hinder each other’s propagation to the right and consequently their joint
frequency becomes negative.
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FIG. 6. Bloch sphere representation adopted from Ref. [17]. Each quantum state |	〉 satisfying Eq. (39) is
a point on the sphere envelope, where each pair of opposite unit vectors form an orthonormal computational
basis. The two eigenstates (|0〉, |1〉) are located on the z axis where the (|+〉, |−〉) basis, obtained from applying
the Hadamard gate on the eigenstates, are located on the x axis. The general structure of |	〉 can be visualized
in terms of snapshots of the two Rossby waves (here presented for the avoided crossing point of �ω = 0). The
two eigenstates are Rossby waves in phase and antiphase. The (|+〉, |−〉) basis represents the setups in which
only one wave exists on each interface. The ±π/2 out-of-phase setups of Figs. 5(a) and 5(b) are obtained for
the computational basis (|0〉 ∓ i|1〉)/

√
2.

C. Qubitlike representation on a Bloch sphere

Although the Rossby wave system is classical, it shares the same dynamical equations for a
two-state coupled quantum system, where the latter can be seen as a quantum bit (qubit) device for
quantum computations [18]. In this section, we apply quantum computation notation to describe the
Rossby wave system. We denote the in-phase eigenstate ��+ in Eqs. (12) as |0〉, and the antiphase
eigenvector ��− as |1〉. Then, their superposition Eq. (13) can be rewritten for t = 0 as

|	〉 = eiα+ [A+|0〉 + A−ei(α−−α+ )|1〉] . (38)

As |0〉 and |1〉 are orthonormal, then for normalized |	〉, A2
+ + A2

− = 1. Hence, we can assign an
angle θ so A+ = cos θ

2 and A− = sin θ
2 . Denoting the eigenstate phase difference as φ ≡ (α− − α+)

and choosing α+ = 0 (without loss of generality), the superposition of Eq. (38) reads

|	〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉 , (39)

which can be represented on the Bloch sphere of unit radius [18], as illustrated in Fig. 6. Motion on
the sphere envelope is obtained by applying a sequence of unitary transformations, where each pair
of opposite unit vectors forms an orthonormal computational basis. For instance, the useful action
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of the Hadamard gate on the eigenstates

1√
2

[
1 1

1 −1

][|0〉
|1〉

]
= 1√

2

[|0〉 + |1〉
|0〉 − |1〉

]
≡

[|+〉
|−〉

]
(40)

transforms |0〉 �→ (|0〉 + |1〉)/
√

2 (rotates a unit vector in the positive z coordinate into the positive
x coordinate) and |1〉 �→ (|0〉 − |1〉)/

√
2 (rotates a unit vector in the negative z coordinate into the

negative x coordinate). In other words, this transforms the orthonormal eigenstate computational
basis (|0〉, |1〉) from the z coordinate into the orthonormal computational basis (|+〉, |−〉) on the x
coordinate.

For the avoided crossing point of �ω̂ = 0, these two central computational basis (Fig. 6) become

|0〉 = 1√
2

[
1
1

]
; |1〉 = 1√

2

[
1

−1

]
, |+〉 =

[
1
0

]
; |−〉 =

[
0
1

]
. (41)

Thus, the (|+〉, |−〉) basis represents the two cases where only one wave at each interface exists
(equivalent to that, only one layer is filled with an electron gas and the other is empty). The
assignment of the Rossby wave Eq. (36) to the quantum wave function provides as well simple
intuitive meaning for other computational basis. For instance, the application of the S gate [18]
rotates the eigenstates into (|0〉 ± i|1〉)/

√
2, corresponding to the structures where the upper wave

lags (advances) the lower wave by a quarter of wavelength [as in Figs. 5(a) and 5(b)].

D. Separatrix on a phase plane—classical fuzzy collapse

Relating the wave-function amplitude ratio to a radius r ≡
√

ρ1√
ρ2

=
√
A1√
A2

, equation set (4) can be
reduced to the compact form of radial and azimuthal velocities on the polar coordinates (r, δ):

ur ≡ ṙ = −(r2 + 1) sin δ , (42a)

uδ ≡ rδ̇ = (r2 − 1) cos δ − μr , (42b)

where the time was scaled by the interaction coefficient, t �→ σ t . μ ≡ �ω̂/σ , indicating the amount
of coupling between the waves (the ratio between the frequency difference between the waves in
isolation and their interaction coefficient), can then be regarded as the control parameter of the
dynamical system. In the frame of reference where ¯̂ω = 0, μ/2 = ω̂/σ , the two eigenstates Eqs. (12)
are the two neutral fixed points on the phase plane:

[r, δ]∗+ =
[(

μ

2
±

√(μ

2

)2
+ 1

)
, 0

]
, (43a)

[r, δ]∗− =
[(

−μ

2
±

√(μ

2

)2
+ 1

)
, π

]
, (43b)

where only positive values of r∗ are considered. The divergence and vorticity field of the phase
plane flows become

∇ · u = 1

r

[
∂

∂r
(rur ) + ∂uδ

∂δ

]
= −4r sin δ , (44a)

ẑ · (∇ × u) = 1

r

[
∂

∂r
(ruδ ) − ∂ur

∂δ

]
= 4r cos δ − 2μ , (44b)

where the divergence vanishes on the neutral fixed points. A separatrix is obtained at xs = μ

2 ,
as is evident when writing the velocity in the x direction: ux = ur cos δ − uδ sin δ = y(μ − 2x).
Furthermore, from the conservation of charge (wave) action and energy Eq. (5), we find that the
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FIG. 7. Phase plane flow of the dynamical system Eqs. (42), for control parameter values μ = (−5, 0, 5).
The fixed points Eqs. (43) are indicated by the green stars. Colors show the values of the curl and the divergence
fields in the upper and lower rows, respectively, according to Eqs. (44). Unit circles around the origin are

indicated by the dashed lines. Solid black circles of radius
√

( μ

2 )2 + 1 connect the fixed points and are cut in

half by the separatrix xs = μ/2. Trajectories on the phase plane encircle the fixed points, following Eq. (45),
are indicated by the white closed curves. For the avoided crossing point, μ = 0, the dynamics on the separatrix
for δ = ± π

2 corresponds, respectively, to the wave configurations of Figs. 5(a) and 5(b).

phase plane flow follows the closed curves, encircling the fixed points:

(μr + 2 cos δ)r

r2 + 1
= const . (45)

Examples of the phase plane flow are shown in Fig. 7 for the control parameter values: μ =
(−5, 0, 5).

The separatrix separates the left and right sides of the phase plane into two regions of influence of
the normal modes, eigenstates, and fixed points. For any initial conditions of wave action amplitude
ratio and phase difference, the dynamics satellites one of the fixed points, according to Eq. (45),
without crossing to the other fixed point region of influence. This is intriguing when considering
the analog to the collapse of the wave function in quantum mechanics. In the latter, the state
of the system is obtained by the superposition of Eq. (13), but when a measurement is taken,
the system collapses immediately to one of the eigenstates ��±, with the respective probability
A2

±, and then stays there forever, unless perturbed again. The collapse is in a sense exterior to
the dynamics described by the Schrödinger equation and does not have a classical counterpart.
Nevertheless, the phase-plane analysis suggests a classical fuzzy-collapse counterpart. Suppose that
a wave maker generates a monochromatic wave perturbation with random amplitude ratio and phase
difference between the two interfaces and then lets it evolve according to Eqs. (4). When we take
a measurement, the dynamics is certainly not collapsing into one of the normal modes, but the
measurement reveals at which side of the separatrix the system is, that is, around which of the two
eigenstates ��± it keeps circulating.
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V. DISCUSSION

This paper shows that the mathematical description of the interfacial Rossby wave interaction
mechanism is equivalent to the description of Feynman’s simplified model for the Josephson junc-
tion as a two-state coupled quantum system. The added value resulting from this comparison seems
to be twofold. For the quantum system, it provides a simple mechanistic interpretation for its dy-
namics and eigenstates, especially for the central but obscured role of the phase difference between
the macroscopic wave functions. For the fluid system, it sheds light on the mechanism of tunneling
in terms of the superposition of the self- and induced components of their cross-stream velocity
fields. Furthermore, the conservation laws of wave action and pseudoenergy obtain an interesting
interpretation. Usually, the two Rossby wave action-at-a-distance interaction is considered to be a
paradigm for barotropic and baroclinic instabilities [19]. There the system is non-Hermitian, and
while the dynamic equations can be represented elegantly by the canonical action-angle Hamilton
equations [11,13], the conserved quantities of the wave action and pseudoenergy must vanish to
obtain modal instability—a somewhat confusing result. However, here, for the stable interaction,
the system is Hermitian and consists of a straightforward analog to the elementary Planck-Einstein
(particle) energy-(wave) frequency relation E = h̄ω. h̄ is the elementary action unit of a single
quantum particle, thus for the electron gas of density ρ, the energy density is E = [ρ h̄]ω. For Rossby
waves, the pseudoenergy E = Aω, where the wave action A is shown here to be equivalent to the
electron gas density. Therefore, up to the scaling constant factors of the Planck number and the
electron gas layers’ volume, the conservation of wave action is analogous to the conservation of the
total action of the Cooper pair quasiparticles. Furthermore, following the same logic, (18) can be
regarded as a classical manifestation of the de Broglie (particle) momentum-wave number relation
P = h̄k. This suggests an intriguing classical perspective on wave-particle duality.

One may ask why the analogy between two such remote physical systems, one quantum and
the other classical, works. The correspondence is even more surprising when considering the
fundamental dispersion relations of de Broglie matter waves and Rossby waves. The Schrödinger
equation for the wave function ψ of a particle with mass m, in the absence of an external potential
[20], and the vorticity equation for stream function φ on a negative constant vorticity gradient β

plane, in the absence of mean flow [21], read

ψ̇ = i

(
h̄

2m

)
∇2ψ , q̇ = ∇2φ̇ = i(βk)φ . (46)

Hence, for a given wave number k in the x direction, the roles of the function and its Laplacian are
flipped when we compare the two equations. Consequently, the dispersion relations of plane waves
of the form ei(k·x−ωt ) (where k and x are the wave number and position vectors) are very different:
ωdeBro = h̄

2m k2 and ωRos = β k
k2 . The former can be interpreted as a sort of irrotational compressible

quantum pressure wave [22], whereas the latter as vortical waves, resulting from advection of the
mean flow vorticity. In the presence of a constant potential U in the Schrödinger equation, and a
constant mean flow ū, in the vorticity equation, Eqs. (46) become

ψ̇ = i

(
h̄

2m

)
∇2ψ − i

U

h̄
ψ ⇒ ωdeBro = h̄

2m
k2 + U

h̄
, (47a)

∇2φ̇ = i(βk)φ − i(ūk)∇2φ ⇒ ωRos = k

(
β

k2
+ ū

)
. (47b)

Thus, for the de Broglie waves, the constant potential adds energy but does not affect their group
velocity, whereas for the Rossby waves the mean flow adds a Doppler shift. In the Feynman
model, the macroscopic wave function is assumed constant along each electron gas layer; thus,
∇2ψ = 0. This assumption degenerates the de Broglie wave dynamics, consequently resulting in
constant frequency U/h̄ for each isolated gas layer. It also excludes the existence of the nonlinear
quantum (Bohm) potential, appearing in the Madelung fluidlike representation of the Schrödinger
equation [5].
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For the interfacial Rossby waves at y = y0, β = |�q̄0|δ(y − y0), which makes the vorticity
perturbation a delta function at the interface with a wavy stream function in the x direction and
evanescent structure in the y direction. For ū0 < 0, this gives the dispersion relation of Eq. (28)
( 1

2 |�q̄0| − k|ū0|). Consequently, U/h̄ ⇐⇒ ( 1
2 |�q̄0| − k|ū0|); thus, for given values of the interfa-

cial mean flow and vorticity gradient, a change in the wave number k accounts for a change in the
ground state U of the Cooper pairs in the electron gas layer. The other ingredient that fits in is the
simple representation for the tunneling between the superconducting layers in the Feynman model
(σ ) that is represented by the evanescent structure of the cross-stream velocity induced by each
interfacial waves σ �→ √|�q̄1||�q̄2| e−kY /2 .

The equivalence between the two systems has therefore resulted from the gross simplification of
the physics describing the two systems. It would be interesting to examine whether such equivalence
is maintained when considering more realistic setups. For instance, a straightforward extension
could be a case where the superconducting layers are not entirely homogeneous, so the gradients
of the phases yield currents within the layers. In the fluid system, this may be equivalent to a slow
variation of the mean flow and the mean vorticity gradients across the interfaces, so the Rossby
wave dynamics would be described using WKB approximation. We leave this analysis for a future
work.

The comparison between the systems raises the question whether the two-Rossby wave system
can serve as a sort of a hydrodynamic qubit device (which would obviously be enormous in size
and extremely slow in comparison to trapped ions or superconducting quantum interference devices
(SQUIDs) [17]), even in principle. However, despite the equivalence between the two systems, in-
cluding the fuzzy collapse behavior, the fluid system is classical, thus lacks the features of quantum
collapse and entanglement, which are essential requirements to perform quantum computation.
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APPENDIX A: ACTION-AT-A-DISTANCE AS TUNNELING

As discussed in Sec. IV A, the analog for tunneling in the fluid system is the action-at-a-distance
between the waves, mediated by the far field cross-stream velocity vi, induced by each wave on
the other. For a classical incompressible fluid, action at a distance is not “spooky” as in quantum
mechanics [23], in the sense that the speed of sound (playing an equivalent role to the speed of light
in quantum mechanics), is assumed infinite (zero Mach number); thus, information is assumed to
be traveling infinitely fast within the fluid.

The constant shear layer in between the two interfaces is the analog for the insulator in the
Josephson junction device. As the vorticity perturbation field is nonzero only at the interfaces, the
in-between shear layer is transparent to it. However, one may ask how the two components of the
induced velocity field, together with the induced pressure field, resist the shear and maintain untilted
structures.

Then, consider profile Eqs. (30) and the fields induced by the upper interfacial wave, q1 =
Q̂1δ(y − y1)eik(x−ĉ1t ) on the shear layer below y2 < y < y1. Applying Eq. (26) for y0 �→ y1, the
induced fields satisfy (φ1, u1, v1) = 0.5(−k−1, 1,−i)Q̂1ek(y−y1 )eik(x−ĉ1t ), together with a pressure
field p1 = p̃(y)eik(x−ĉ1t ), that is yet need to be found. The steering level, that is the height ys, where
the mean flow is equal to the phase velocity of the wave, ū(ys) = ĉ1 = (−|ū1| + |�q̄1|

2k ), is located at
ys = y1 − 1

2k
|�q̄1|

q̄M
, where we choose |�q̄1|

q̄M
= 1 − q̄T

q̄M
< 2kY to ensure the steering level to be found

inside the middle shear layer. Above the steering level ĉ1 > ū(y), whereas below it ĉ1 < ū(y).
Hence, as indicated from the momentum equation of Eqs. (16), to maintain the untilted structure
of the induced fields outside the steering level, the pressure gradient force implied by the wave field,
together with the cross-stream advection of the mean shear flow, must balance the advection of the
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FIG. 8. The velocity and pressure fields induced by the interfacial wave, positioned at y = y1. The undu-
lated solid line indicates the wave displacement η at the interface. The velocity arrows indicate the Rossby
propagation mechanism, translating the displacement to the right, countering the mean flow ū1. The velocity
field decays exponentially away from the interface but induces a nonzero field on interface y2 (the tunneling
effect). The induced pressure field Eq. (A2), is indicated by the colored contours where red (blue) refers to
positive (negative) values. At the steering level ys, ĉ1 = ū1(ys ). This is enabled as in the x direction the pressure
gradient force balances the acceleration (deceleration) of u1(ys ), resulting from the vertical advection of the
mean flow by the velocity perturbation v1(ys ). In the y direction, the pressure gradient must vanish there to
allow the v field to be passively advected by ū1(ys ).

mean flow. Substituting in the two-component of the momentum equations, we obtain

[ĉ1 − ū(y)]u1 = p1 − q̄Mφ1 ; [ĉ1 − ū(y)]v1 = − i

k

∂ p

∂y
, (A1)

from which we obtain the induced pressure field:

p1 = −0.5

[
q̄T + q̄M

2k
+ q̄M (y1 − y)

]
Q̂1ek(y−y1 )eik(x−ĉ1t ). (A2)

Thus, the wave’s induced pressure field is in the antiphase with its vorticity field (Fig. 8). At its
home base interface (y = y1), p1

1 = −( q̄T +q̄M

4k )Q̂1eik(x−ĉ1t ) = ( q̄T +q̄M

2 )φ1
1 ≡ q̄1φ1

1 [24]. At the steering
level, ps

1 = q̄Mφs
1 and ( ∂ p1

∂y )ys = 0. The complete untilted wave structure that is induced (tunneled)
from the interfacial vorticity Rossby wave at interface 1 onto interface 2 is

(u, v, p)2
1 = 0.5

[
1,−i,−

(
q̄T + q̄M

2k
+ q̄MY

)]
Q̂1e−kY eik(x−ĉ1t ). (A3)

APPENDIX B: EQUIVALENCE BETWEEN THE HAMILTONIANS OF THE ROSSBY WAVE
AND THE JOSEPHSON JUNCTION SYSTEMS

We first write the Josephson junction Hamiltonian (5) in terms of the Rossby wave system
properties, implementing ρ1,2 �→ A1,2 :

H =
2∑

i=1

Aiω̂i + 2σ
√
A1A2 cos (θ1 − θ2) . (B1)

Next we substitute (33) and (35) in (B1) and use the Green’s function expressions (Gs, Gi ) =
−(1, e−kY )/2k and the scaled interaction coefficient σ = √|�q̄1||�q̄2| e−kY /2 to obtain

H = 1

4

[
Q̂2

1

2k
+ Q̂2

2

2k
+ e−k|Y |

k
Q̂1Q̂2 cos (θ1 − θ2) −

( |ū1|
|�q̄1| Q̂2

1 + |ū2|
|�q̄2| Q̂2

2

)]
. (B2)
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It is now left to show that (B2) is obtained as well when we substitute (31) and Q(y) = Q̂1δ(y −
y1) + Q̂2δ(y − y2) in (24). The inner integral in (24) over the dummy variable y′ gives∫ Ly/2

−Ly/2
Q(y′) cos (θ (y) − θ (y′))

e−k|y−y′ |

2k
dy′

= 1

2k
[Q̂1 cos (θ (y) − θ1)e−k|y−y1| + Q̂2 cos (θ (y) − θ2)e−k|y−y2|].

Consequently, ∫ Ly/2

−Ly/2

Q(y)

4

[∫ Ly/2

−Ly/2
Q(y′) cos (θ (y) − θ (y′))

e−k|y−y′ |

2k
dy′

]
dy

= 1

4

[
Q̂2

1

2k
+ Q̂2

2

2k
+ e−k|Y |

k
Q̂1Q̂2 cos (θ1 − θ2)

]
.

The last term of (24) becomes

−
∫ Ly/2

−Ly/2

Q(y)

4

ū(y) Q(y)

q̄y(y)
dy = −1

4

( |ū1|
|�q̄1| Q̂2

1 + |ū2|
|�q̄2| Q̂2

2

)
.

Gathering now the two RHS terms in the last two equations, we obtain the RHS of (B2), so indeed
ERossby ↔ HJosephson.

We note that (B2) indicates that the Fjørtoft stability condition is not satisfied as sgn(ūi ) =
sgn(q̄yi ) for each of the two interfaces (i = 1, 2). Nevertheless, the Rayleigh stability condition
is satisfied as sgn(q̄y1 ) = sgn(q̄y2 ) (Fig. 4). Thus, for this setup, it is the conservation of the wave
action A, rather than the conservation of energy H , that assures modal stability.
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