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Interfacial waves arising in a two-phase swirling flow driven by a low-frequency rotating
magnetic field (RMF) are studied. At low RMF frequencies, on the order of 1–10 Hz, the
oscillatory part of the induced Lorenz force becomes comparable to the time-averaged one
and cannot be neglected. In particular, when free surfaces or two-liquid stably stratified
systems are subject to a low-frequency RMF, induced pressure variations necessarily excite
free-surface/interfacial waves, which can improve mass transfer in different metallurgical
processes. In this paper we formulate a linear wave model and derive explicit analytical so-
lutions predicting RMF-driven wave patterns that closely resemble hyperbolic paraboloids.
These theoretical predictions are validated against experiments based on a nonintrusive
acoustic measurement technique, which measures liquid-liquid interface elevations in a
two-phase KOH-GaInSn stably stratified system. A good quantitative agreement is found
for nonresonant wave responses in the vicinity of the fundamental resonance frequency.
The experiments reveal the additional excitation of several higher harmonics superimpos-
ing the fundamental wave oscillation, which are visible even in the linear wave regime.

DOI: 10.1103/PhysRevFluids.9.054801

I. INTRODUCTION

Rotating magnetic fields (RMFs) are widely used in metallurgy as they allow contactless stirring
and mixing of liquid melts under controllable conditions [1,2]. In continuous casting, as one
prominent example, electromagnetic stirring is assumed to enhance the homogeneity of the molten
steel and can thereby reduce the number of casting defects [3,4]. In semiconductor industries, RMFs
likewise find application and are used to control heat and mass transfer in single-crystal growth both
in the melt and at the crystallization front [5,6]. Apart from the wide range of applications, RMF-
driven flows are also very attractive from an academic perspective, explaining why RMF stirring
has evolved to a textbook example in the field of magnetohydrodynamics [2]. A tremendous effort
has been made over the last 50 years to understand the intricate flow physics and the mechanisms of
action that RMFs have on electrically conducting liquids [7–14]. RMF flows attract such interest
because they involve various secondary flows alongside the dominant azimuthal swirling flow.
Perhaps most importantly, the lower (and possibly upper) end of the usually cylindrical stirring
vessel creates a meridional flow driven by the Ekman pumping mechanism [15], which can be of
the same scale as the primary azimuthal flow and facilitates vertical mixing. Also worth mentioning
is the occurrence of recirculating flows, resulting from often inevitable axial variations in the
stirring force, as well as different types of flow instabilities and the presence of Taylor-Görtler
vortices forming at higher Taylor numbers. More recent studies are mostly dedicated to the transient
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spin-up phase of the liquid metal flow [16–20] or spin-up of a concentrated vortex forming at the
metal free-surface in response to pulses of traveling magnetic fields (TMFs) superimposed to the
RMFs [21–23].

In several electromagnetic stirring applications, as in continuous casting, the stirring vessel is not
closed at the top, but instead the melt forms a free surface in contact with air, which is set in motion
by the RMFs in tandem with the bulk liquid. The motion and composition of the free surface can
have a significant effect on the metallurgical process. For example, the transitions from steady to
oscillatory flow regimes depend sensitively on the cleanliness of the liquid metal surface [16,20].
Also, a tornado-like vortex can be driven by a combination of rotating and traveling magnetic fields
that leads to funnel-like depression [21,22] of the free surface and allows the entrapment of floating
additives (unwetted particles) into the molten metal [24]. Such an entrainment of solid particles
can sometimes be beneficial in metallurgy, e.g., for alloying, preparing specific melts, or remelting
scrap. In continuous casting, however, strong surface deformations intensifying the entrapment of
slag or mold powder are to be avoided since impurities can lower the quality of steel products
considerably [25]. For these reasons, surface displacements that accompany the swirling flow have
come to the fore in several studies, but invariably only with regard to the RMF stirring force.

In general, the RMF-induced Lorentz force consists of two parts: a mean (time-averaged) part
that drives the swirling flow and an oscillatory part that is mostly neglected in the literature.
However, in the range of low RMF frequencies, from about 1 to 10 Hz—the typical frequency
range applied in industrial mold stirrers—the oscillatory part cannot be disregarded as it gener-
ates gravity (or capillary) waves on the free surface or interface. Such waves have already been
investigated for other magnetic field arrangements; most prominent are studies concerning waves
in free-surface liquid metal pools generated by alternating vertical magnetic fields [26–31]. It was
found that alternating magnetic fields can excite both axisymmetric standing wave modes, which
are direct solutions of the forced wave problem, as well as nonsymmetric azimuthal wave modes
resulting from a parametric instability. Interestingly, alternating magnetic fields were found to
trigger interface instabilities already for very small magnetic interaction parameters on the order
of N ∼ 0.001 [31,32], showing that even weak oscillatory magnetic fields can have a strong impact
and cause considerable wave motions. More recently, pulsed magnetic fields have been applied to
excite surface waves as well [33,34]. Such types of magnetic field-induced irrotational wave motions
are known to have some metallurgically favorable properties and can, in a similar way to free surface
motions driven by the mean part of the RMF Lorentz force, improve mass transfer as they increase
the surface area [35,36].

Despite the apparently large effects of surface motions, interfacial waves excited by RMFs have
not yet been investigated to our best knowledge, with the notable exception of the dissertation by
Wiederhold [37], where a rotating disk equipped with a permanent magnet was placed beneath a
cylindrical container filled with the eutectic alloy GaInSn. This setup allowed strong rotating wave
motions to be excited whenever resonance conditions could be established. Yet the magnetic field,
which decreases rapidly in the axial direction, is highly inhomogeneous and greatly complicates the
wave physics. This is precisely the point at which we intend to embark this study and investigate
interfacial waves that are excited by a vertically homogeneous RMF, which is much more accessible
for theoretical modeling. For this purpose, we consider an idealized setup of an upright circular
cylinder placed concentrically in an homogeneous RMF and filled by two immiscible electrically
conducting liquids forming a two-layer stably stratified system. In Sec. II we formulate a wave
model, which comprises the irrotational oscillatory part of the Lorentz force and can account for
both magnetically excited gravity-capillary free-surface and interfacial waves. Explicit analytic
solutions are derived for leading-order surface elevations. In Sec. III we present a magnetohy-
drodynamic wave experiment, in which a specific arrangement of induction coils is utilized to
generate a virtually homogeneous RMF that excites rotating waves on the interface formed between
stratified KOH and GaInSn liquid layers. Interface elevations are measured acoustically through an
arrangement of up to ten ultrasonic sensors. These measurements are fully nonintrusive. Finally,
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FIG. 1. Sketch of the theoretical setup. An upright cylindrical container of radius R is permeated by an
external homogeneous magnetic field B rotating horizontally around the z axis with constant angular frequency
� = �ez. The container is filled with two immiscible liquids i = 1, 2 of densities ρi, kinematic viscosities
νi, electrical conductivities σi, and layer heights hi, which are stably stratified due to gravity g. The origin
of the cylindrical coordinate system in placed in the center of the interface z = η(r, θ, z). The blue arrows
schematically show force lines of the conservative part of the induced Lorentz force.

different types of observed nonresonant and resonant wave motions are thoroughly discussed and
compared to the theoretical predictions in Sec. IV.

II. THEORETICAL MODEL

A. Mathematical framework

The theoretical framework to be treated in this study is illustrated in Fig. 1. We define an ideal
circular cylinder of radius R, which will embody two immiscible liquid phases (subscripts i = 1, 2)
specified by different densities ρ1, ρ2, kinematic viscosities ν1, ν2, and electrical conductivities σ1,
σ2, where ρ1 < ρ2 must be fulfilled to ensure a stable vertical stratification. We align the axis of
symmetry with the z axis of a cylindrical coordinate system (r, θ, z) with unit vectors (er, eθ , ez). At
equilibrium, the two phases occupy the fluid domains

V1 : (r, θ, z) ∈ [0, R] × [0, 2π ) × [0, h1], (1)

V2 : (r, θ, z) ∈ [0, R] × [0, 2π ) × [−h2, 0], (2)

where h1 and h2 are the heights of the two layers. The interface between both phases is placed
at z = η(r, θ, t ), and the coordinate origin O is defined in the center of the equilibrium interface.
We incorporate interfacial tension γ for the liquid-liquid interface but neglect capillary effects in
the contact line region, i.e., the interface is assumed to slide freely along the cylinder wall while
maintaining a static contact angle of 90◦ (no meniscus). Further, two independent volume forces are
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taken into account to act on the system. First, we need to consider gravity pointing in the negative
z direction (g = −gez), which manifests itself as a restoring force. Second, the entire cylinder is
horizontally permeated by an external homogeneously rotating magnetic field B given as

B(θ, t ) =
(

B0 sin(�t − θ )er

−B0 cos(�t − θ )eθ

)
, (3)

where � is the field’s angular frequency. This RMF first induces closing electrical currents in the
conductive layers via Ohm’s law, which then interact again with the RMF and create a rotating
Lorentz force. In general, the Lorentz force can be decomposed into a time-averaged mean part,
which drives an axisymmetric swirling flow widely established in stirring applications, and an
oscillatory part mostly neglected in the literature. The oscillatory part itself can again be split into
rotational and irrotational parts. The corresponding mathematical expressions are given below. In
this work, we are going to be concerned exactly the latter part (visualized by the blue force lines
in Fig. 1), which can excite irrotational wave motion on the interface in exactly the same manner
as classic conservative forces, such as, e.g., fictitious inertia forces appearing in shaken containers
cause sloshing waves.

This formulation is characterized by 13 physical variables and four physical dimensions. Fol-
lowing the Buckingham 
 theorem, the system can be uniquely described by nine independent
dimensionless quantities. We define the following set of dimensionless numbers for our two-layer
(i = 1, 2) analysis:

Fr = |σ2 − σ1|�B2
0R

(ρ2 − ρ1)g
, Ni = σiB2

0

�(ρ2 − ρ1)
, Rei = �R2

νi
, Hi = hi

R
,

Bo = (ρ2 − ρ1)gR2

γ
, A = ρ2 − ρ1

ρ1 + ρ2
. (4)

The magnetic Froude number Fr describes the ratio of the Lorentz force per unit mass to the
restoring gravity force acting on the interface. The numbers Ni are the phase-dependent magnetic
interaction parameters (also called the Stuart number) and are a measure for the impact Lorentz
forces can have on the hydrodynamic interface. The Reynolds numbers Rei are also phase dependent
and are here expressed in a way that they weight the cylinder radius with the characteristic Stokes
boundary layer thicknesses δi ∼ √

νi/�. The importance of gravitational forces compared with
interfacial tension forces to the wave motion is quantified by the Bond number Bo. Finally, Hi and
A are the layer aspect ratios and the Atwood number, which describes the transition from one-layer
free-surface waves (A = 1) to two-layer interfacial waves (A � 1).

B. Treatment of the Lorentz force

We evaluate the induced Lorentz force in the framework of the so called inductionless (also
magnetostatic) low-frequency approximation, demanding that both the magnetic Reynolds number
Rem = vRμ0σ [v denotes the characteristic velocity of the flow, see Eq. (33), and μ0 the vacuum
magnetic permeability] and the shielding parameter � = �R2μ0σ are small Rem < � � 1. Small
magnetic Reynolds numbers allow us to ignore advection of the magnetic field so that the liquids can
be treated as stationary solid conductors. Small shielding parameters ensure that B can completely
and sufficiently fast permeate into the liquids, i.e., the skin depth δs = √

2/µ0σ� must be large
relative to R. This approximation allows us to uniquely describe the electric field E through the
gradient of a scalar electrical potential E = −∇ϕ and the induced current j is calculated through
Ohm’s law in both liquids

ji = σi(−∇ϕi + ui × B). (5)

For calculating the Lorentz component u × B, we can make use of the fact that a magnetic field
rotating in a resting cylinder is equivalent to an oppositely rotating cylinder within a fixed magnetic
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field. As a result of the magnetic stirring, however, a angular flow will develop in the liquid,
which reduces the rotational difference between the field ∼r� and the fluid v. If the motion is
approximated as being independent of the height z, the difference in angular velocity r� − v is the
key driving parameter. Most generally, when considering finite cylinders, rotating liquids are known
to induces secondary flows so that all three velocity components (u, v,w) contribute to the Lorentz
force. The induced currents then yield [38]

jr,i(r, θ, z, t ) =

⎛
⎜⎜⎝

σi
[− ∂ϕi

∂r + wiB0 cos(�t − θ )
]
er

σi
[− 1

r
∂ϕi

∂θ
+ wiB0 sin(�t − θ )

]
eθ

σi
[− ∂ϕi

∂z + (r� − vi )B0 sin(�t − θ ) − uiB0 cos(�t − θ )
]
ez

⎞
⎟⎟⎠. (6)

The electrical potentials must be formally calculated by solving the Poisson equation. Yet, in some
cases, where the influence of the lower and upper boundaries can be neglected, no significant electric
fields are generated, and the potential contributions can be omitted. In our case of low-frequency
excitation, we can assume that secondary flows u,w caused by bulk electromagnetic stirring are
negligibly small as compared to wave-induced motions (u,w � r�). This is not necessarily true
for the primary azimuthal component v, which is smaller than the angular velocity of the field
v < r� but finite. The resulting flow will therefore be a superposition of swirling flow and the
rotating wave motion to be calculated, meaning that the wave will corotate with the stirred liquid
metal and additionally propagate, within this frame of reference, with its wave velocity. Whereas
the contribution of velocity in the mean Lorentz force is essential for a high-frequency RMF-driven
flow, it appears to be of lower order in the irrotational part of the Lorentz force driving the wave
motion in a low-frequency RMF. This can be justified by the fact that the timescales of excited
wave motions ∼1/(2�) are small compared to those of the swirling flow, i.e., 1/(2�) � r/v; see
Sec. IV B. Thus, the primary wave excitation is only weakly affected by the azimuthal swirling
flow, with the minor limitation that velocity components associated with the wave motion itself
can excite higher harmonics superimposing the fundamental wave mode (see Sec. IV E below).
Therefore, for calculating leading order solutions, we neglect the flow contribution to the azimuthal
electromagnetic force. Then the latter can simply be expressed as [38]

f i(r, θ, t ) = σiB2
0

2

(
r� sin(2�t − 2θ )er

r�(1 − cos(2�t − 2θ ))eθ

)
. (7)

The Lorentz force can now be divided into a periodic oscillatory and a nonperiodic averaged part.
The averaged Lorentz force is purely azimuthal at first approximation

〈 fi(r)〉 = σiB2
0

2
(r� − vi )eθ (8)

(the azimuthal velocity vi is of leading order here and must be kept) and is the key component
underlying magnetic stirring used in several industrial applications. The oscillatory part, in contrast,
is widely disregarded in the literature since most studies consider RMF frequencies of 50 or 60 Hz,
where the oscillatory component has no significant impact. In this study, we are examining small
RMF frequencies below 10 Hz. In this range, both force components are of comparable magnitude,
but still the oscillatory part cannot drive any flow in fluid systems without movable interfaces
and produces only magnetic pressure [8,9]. If, however, a free surface or interface is present, it
is exactly the irrotational part causing wave motion because the magnetic pressure is balanced
by the hydrostatic pressure resulting from free surface/interface elevations. The oscillatory part
is irrotational and can be uniquely expressed as a gradient of a scalar potential φL,i as f i = ∇φL,i,
where

φL,i = σiB2
0

4
�r2 sin(2�t − 2θ ). (9)
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This Lorentz force potential resembles the centrifugal potential commonly used to describe sloshing
waves in orbitally shaken containers [39], with the fine difference that it involves a 2θ (instead of
1θ ) azimuthal periodicity, exciting waves with two nodal diameters (two crest-trough pairs along
the circumference) instead of one nodal diameter in the leading order, as we are going to show in
the following.

C. Statement of the hydrodynamic boundary value problem

We formulate the wave problem within the framework of irrotational potential theory, which is
justified for not too small Reynolds numbers Rei � 100, ensuring that the boundary layer thickness
δi ∼ √

νi/� is orders of magnitude smaller than the characteristic length scales ∼R of the wave
motion, such that the rotational part of the flow is confined in the close vicinity of the tank walls
and the interface. The assumption of irrotationality ∇ × ui = 0 allows one to uniquely express
the flow fields as gradients of scalar flow potentials ui = ∇φi. In this way the 2 × 3 velocity
components (ur,1, uθ,1, uz,1) and (ur,2, uθ,2, uz,2) have been reduced by four degrees of freedom to
two flow potentials φ1 and φ2, whereby the problem is mathematically greatly simplified. As the last
simplification, we only seek for first-order solutions requiring that the wave amplitude η0 is small as
compared to the lateral dimensions η0 � R, which is ensured as long as the electromagnetic forcing
∼Fr ∼ B2

0 remains sufficiently small. Then the linear wave problem can be stated by the following
complete set of linear equations:

∂φi

∂t
− σiB2

0

4ρi
�r2 sin(2�t − 2θ ) + pi

ρi
+ gz = ci(t ), (Flow fields) (10a)

�φi = ∂2φi

∂r2
+ 1

r

∂φi

∂r
+ 1

r2

∂2φi

∂θ2
+ ∂2φi

∂z2
= 0, (Flow fields) (10b)

∂φ1

∂z
= 0|z=h1 , (Top wall) (10c)

∂φ2

∂z
= 0|z=−h2 , (Bottom wall) (10d)

∂φ1

∂r
= ∂φ2

∂r
= 0|r=R, (Side wall) (10e)

∂φ1

∂z
= ∂φ2

∂z
= ∂η

∂t
|z=0, (Interface) (10f)

γ�Hη = γ

(
∂2φi

∂r2
+ 1

r

∂φi

∂r
+ 1

r2

∂2φi

∂θ2

)
η = p1 − p2|z=0. (Interface) (10g)

The first two equations (10a) and (10b) are the instationary Bernoulli equation and the Laplace
equation ensuring energy and mass conservation in both layers. Equations (10c), (10d), and (10e)
comprise the kinematic no-outflow boundary conditions at the cylinder walls. Equation (10f) is an
additional kinematic boundary condition achieving the preservation of the interface. Finally, the
formulation is closed by the linearized Young-Laplace equation (10g) relating the pressure disconti-
nuity at the interface to the capillary pressure. In the Bernoulli equations, c1(t ) and c2(t ) are arbitrary
integration constants, which can be incorporated into the force potentials φ̃L,i = φL,i + ci(t ) and do
not need to be considered further. A detailed derivation of the governing equations (10) (without
Lorentz forcing) can be found in [40, Chapter 2.2.1]. Equation system (10) describes a classical
orbital sloshing problem, which, in principle, can also be approached even in its (weakly) nonlinear
formulations. A number of established solution techniques are available for these kinds of sloshing
problems. For one, widely used Narimanov-Moiseev multimodal approaches [41–43] allow one
to study resonant sloshing in fairly deep containers and can explain nonlinear effects such as
amplitude and phase hysteresis, which is of the hard-spring type in orbital sloshing. For another, the
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studies [44,45] recently derived weakly nonlinear amplitude equations using the multiple-timescale
method. This approach not only allows for capturing nonlinear effects in the vicinity of the
main harmonic resonance, but can also describe the occurrence of multiple-crest wave patterns or
symmetry breaking (in longitudinally forced cylinders) under superharmonic resonances conditions,
as well as counterdirected sloshing waves that appear in response to elliptical forcing [46]. In the
following, we restrict the theoretical study to leading-order solution of harmonic wave responses and
only apply small RMF forcings in the experiments to first demonstrate that an irrotational sloshing
model can in general be suitable to describe RMF-driven wave motions. Yet the mentioned nonlinear
approaches offer plenty of potential for more in-depth descriptions of magnetic field-induced
waves, assuming that higher orders of the Lorentz force including velocity-dependent terms can
be adequately formulated.

D. Modal equations and solutions

A convenient way to approach this problem is to first solve the Laplace equations (10b) together
with the kinematic conditions (10c)–(10f). The solutions can be expanded as a series of harmonic,
hyperbolic, and Bessel functions in the following way (see [40, Chapter A.1]):

φ1(r, θ, z, t ) = −
∞∑

m=0

∞∑
n=1

�mn(θ, t )
cosh

[
εmn
R (z − h1)

]
sinh

(
εmn
R h1

) Jm

(εmnr

R

)
, (11)

φ2(r, θ, z, t ) =
∞∑

m=0

∞∑
n=1

�mn(θ, t )
cosh

[
εmn
R (z + h2)

]
sinh

(
εmn
R h2

) Jm

(εmnr

R

)
, (12)

with �mn(θ, t ) = αmn(t ) cos(mθ ) + βmn(t ) sin(mθ ),

where Jm are the mth-order Bessel functions of the first kind and εmn denote the mode-dependent
(radial) wave numbers, restricted to the n roots of the first derivative of the mth-order Bessel
function J ′

m(εmn) = 0 in order to satisfy the no-outflow condition at the sidewalls. The integers
n ∈ N1 and m ∈ N0 indicate the number of antinodal cycles (crest-trough pairs along the diameter)
and antinodal diameters (crest-trough pairs within one antinodal cycle along the circumference).
Finally αmn(t ) and βmn(t ) are the modal functions entailing the time dependence and are yet to
be determined. The change of the flow potentials in time is described by Eq. (10a), allowing us
to calculate the induced pressures p1 and p2, which are balanced by the capillary pressure at the
interface (10g). Eliminating the pressure difference in (10g) yields

γ�Hη = ρ2
∂φ2

∂t
− ρ1

∂φ1

∂t
+ (σ1 − σ2)B2

0�

4
r2 sin(2�t − 2θ ) + (ρ2 − ρ1)gη|z=0. (13)

Next, we can eliminate the interface elevation η by differentiating Eq. (13) with respect to time and
using Eq. (10f), giving

ρ2
∂2φ2

∂t2
− ρ1

∂2φ1

∂t2
+ (σ1 − σ2)B2

0�
2

2
r2 cos(2�t − 2θ ) + (ρ2 − ρ1)g

∂φ1

∂z
+ γ

∂3φ1

∂z3
= 0|z=0. (14)

The horizontal Laplacian was removed through the continuity equation ∂2
z φi = −�Hφi. Now the

only remaining problem is that the Lorentz force potential does not conform to the function basis of
the flow potentials (11) and (12). The force potential must therefore be projected onto the Fourier-
Bessel eigenbasis of the flow potentials, here easily achieved by expressing the radial component r2

in terms of a Bessel series as

r2 =
∞∑

n=1

4R2J2
(

ε2n
R r

)
(
ε2

2n − 4
)
J2(ε2n)

. (15)
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Inserting (15) and the potential solutions (11) and (12) into Eq. (14) allows us to derive conditions
for the modal coefficients; we find

∞∑
m=0

∞∑
n=1

ρ1 coth
(εmn

R
h1

)
[α̈mn(t ) cos(mθ ) + β̈mn(t ) sin(mθ )]Jm

(εmnr

R

)
,

∞∑
m=0

∞∑
n=1

ρ2 coth
(εmn

R
h2

)
[α̈mn(t ) cos(mθ ) + β̈mn(t ) sin(mθ )]Jm

(εmnr

R

)
,

∞∑
m=0

∞∑
n=1

(ρ2 − ρ1)g
εmn

R
[αmn(t ) cos(mθ ) + βmn(t ) sin(mθ )]Jm

(εmnr

R

)
,

∞∑
m=0

∞∑
n=1

γ
(εmn

R

)3
[αmn(t ) cos(mθ ) + βmn(t ) sin(mθ )]Jm

(εmnr

R

)

= −
∞∑

n=1

2(σ1 − σ2)B2
0R2�2(

ε2
2n − 4

)
J2(ε2n)

[cos(2�t ) cos(2θ ) + sin(2�t ) sin(2θ )]J2

(ε2n

R
r
)
. (16)

This equation can only be fulfilled for

αmn(t ) = βmn(t ) = 0 if m �= 2. (17)

For the modes m = 2, Eq. (16) can be rearranged into the following form:

∞∑
n=1

{[
ρ1 coth

(ε2n

R
h1

)
+ ρ2 coth

(ε2n

R
h2

)]
α̈2n(t ) + (ρ2 − ρ1)g

ε2n

R
α2n(t )

+γ
(ε2n

R

)3
α2n(t ) + 2(σ1 − σ2)B2

0R2�2(
ε2

2n − 4
)
J2(ε2n)

cos(2�t )

}
cos(2θ )J2

(ε2n

R
r
)
,

∞∑
n=1

{[
ρ1 coth

(ε2n

R
h1

)
+ ρ2 coth

(ε2n

R
h2

)]
β̈2n(t ) + (ρ2 − ρ1)g

ε2n

R
β2n(t )

+γ
(ε2n

R

)3
β2n(t ) + 2(σ1 − σ2)B2

0R2�2(
ε2

2n − 4
)
J2(ε2n)

sin(2�t )

}
sin(2θ )J2

(ε2n

R
r
)

= 0. (18)

The infinite sums can only yield zero if all individual summands disappear. Therefore, each
coefficient α2n(t ) and β2n(t ) must satisfy the following set of modal equations:

α̈2n(t ) + ω2
2nα2n(t ) + F2n cos(2�t ) = 0, (19)

β̈2n(t ) + ω2
2nβ2n(t ) + F2n sin(2�t ) = 0, (20)

where

ω2
2n = (ρ2 − ρ1)gε2n

R + γ
(

ε2n
R

)3

ρ1 coth( ε2n
R h1) + ρ2 coth( ε2n

R h2)
(21)

are the natural eigenfrequencies of gravity-capillary waves in cylinders and

F2n = 2(σ1 − σ2)B2
0�

2R2[
ρ1 coth

(
ε2n
R h1

) + ρ2 coth
(

ε2n
R h2

)](
ε2

2n − 4
)
J2(ε2n)

(22)

can be considered as mode-dependent forcing parameters. In this way, we have reduced a set of
four partial differential equations (10a)–(10b) together with five boundary conditions (10c)–(10g)
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into an infinite set of decoupled ordinary differential equations. Stationary solutions of the modal
equations (19) and (20) can be obtained as

α2n(t ) = F2n

4�2 − ω2
2n

cos(2�t ), β2n(t ) = F2n

4�2 − ω2
2n

sin(2�t ). (23)

Substituting the solutions (23) back into the ansatz potentials (11) and (12) finally yields the forced
potentials solutions

φ1(r, θ, z, t ) = −
∞∑

n=1

2(σ1 − σ2)B2
0R3�2ω2

2n[
(ρ2 − ρ1)g + γ

ε2
2n

R2

](
4�2 − ω2

2n

) cosh
[

ε2n
R (z − h1)

]
sinh

(
ε2n
R h1

)

× J2
(

ε2nr
R

)
ε2n

(
ε2

2n − 4
)
J2(ε2n)

cos(2�t − 2θ ), (24)

φ2(r, θ, z, t ) =
∞∑

n=1

2(σ1 − σ2)B2
0R3�2ω2

2n[
(ρ2 − ρ1)g + γ

ε2
2n

R2

](
4�2 − ω2

2n

) cosh
[

ε2n
R (z + h2)

]
sinh

(
ε2n
R h2

)

× J2
(

ε2nr
R

)
ε2n

(
ε2

2n − 4
)
J2(ε2n)

cos(2�t − 2θ ). (25)

The corresponding interface elevation η(r, θ, t ) derives from the boundary condition (10f) and can
be stated as

η(r, θ, t ) =
∞∑

n=1

(σ2 − σ1)B2
0R2�ω2

2n[
(ρ2 − ρ1)g + γ

ε2
2n

R2

](
ω2

2n − 4�2
) J2

(
ε2nr

R

)
(
ε2

2n − 4
)
J2(ε2n)

sin(2�t − 2θ ). (26)

The wave elevation grows with the square of the magnetic field ∼B2
0 and tank radius ∼R2, which is

why waves tend to be critical particularly in large-scale stirrers operating in the range of B0 ∼ 0.1 T.
Interestingly, the solution predicts that waves cannot occur for σ1 = σ2. The reason behind this
behavior is that the induced magnetic pressure is equal in both layers so that no net force is acting
on the interface within the framework of our idealized description. This is not necessarily true
anymore if we had included horizontal wall effects, but even then resulting wave motions would
be vanishingly small in cases where the fluid layers have comparable heights. We can conclude
that significant wave motions are to be expected only if one pairs a highly conducting fluid with a
poorly conducting fluid, as is the case in the most relevant application of free liquid metal surfaces.
It can further be seen that the sign change appearing in solution (26) between the two cases σ1 > σ2

and σ1 < σ2 causes a phase shift of 90◦ because sin(2�t − 2 × 90◦) = − sin(2�t − 2 × 0◦). The
simple explanation is (as long as we remain below the first resonance frequency � < ω21/2; see the
next section) that a force field locally pointing towards the side wall below the interface leads to a
local heightening, and the same force located above the interface leads to a local lowering of the
interface.

E. Theoretical results

In the following, we will elucidate the characteristics of the wave solution and discuss its
underlying physics in more detail. For the sake of simplicity, we rewrite Eq. (26) in a dimensionless
from by introducing the dimensionless variables r̃ = r/R, z̃ = z/R, and t̃ = �t , yielding

η(r̃, θ, t̃ )

R
=

∞∑
n=1

sgn(σ2 − σ1)Fr(
1 + ε2

2n
Bo

) �2
2n

�2
2n − 4

J2(ε2nr̃)(
ε2

2n − 4
)
J2(ε2n)

sin(2t̃ − 2θ ), (27)

with �2
2n = ω2

2n

�2
= N2 − N1

Fr

2Aε2n

(
1 + ε2

2n
B0

)
(1 − A) coth(ε2nH1) + (1 + A) coth(ε2nH2)

. (28)
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FIG. 2. Maximum wave elevation at the tank wall η0 = η(r = R) normalized by the container radius R and
the Froude number Fr as a function of the excitation frequency � normalized by the first natural eigenfrequency
ω21. Additionally, normalized 3D visualizations of excited interface elevations are shown at three different
points in the linear regime and close to the first and second resonance from two different perspectives.

The magnetic Froude number Fr is the key driving parameter governing nonresonant wave motions;
the Bond number Bo is likewise significant as it indicates the transition into the capillary wave
regime. This is important because it shows that the excited waves do not contain infinitely many
length scales, as appears to be the case through the infinite sum in solution (27). The solution
actually converges very fast since the term 1 + ε2

2n/Bo appearing in the denominator of solution (27)
increases for any given Bo with the wave numbers ε2n, so that summands become increasingly
smaller and higher wave modes are finally damped out by interfacial tension at the point where
wave lengths fall considerably below the capillary length lcap = R/

√
Bo. Further, we see that all

modes diverge at the frequencies �2
2n = 4 ⇔ � = ±ω2n/2, determining the resonance conditions.

Resonance occurs at half the eigenfrequency of the wave modes (2, n), and responding waves
always rotate with twice the frequency of the applied rotating magnetic field, i.e., waves always
follow the induced rotating Lorentz force potential (9). This statement, however, is true only for
linear wave responses. For example, super-harmonic waves can be excited at fractions of the natural
frequencies [44,47] under weakly nonlinear forcing conditions. The singularities at resonances
in solution (27) occur here only as an artifact from having neglected dissipation in our wave
model. The wave solution is therefore nonphysical in the close vicinity of the eigenfrequencies
ω2n; amplitudes must stay finite in reality. This problem is usually circumvented by equipping the
modal equations (20) with (linear) damping parameters, which can close the resonance curves;
see [39]. Viscous damping rates that can be calculated from Stokes boundary layers developing
at the tank walls (and above and below the interfaces in the case of two-fluid stratifications) are
well known for free-surface [48] and interfacial [49] waves in upright circular cylinders. In our
case, however, magnetic damping accounts for a significant part of the total dissipation. Magnetic
damping appears here because the waves rotate with twice the frequency of the magnetic field
2�, which is equivalent to a wave rotating with � through a static magnetic field. Whenever an
electrically conducting fluid moves through a magnetic field, Lenz’s law requires that a Lorentz
force is induced which exactly opposes its causative motion. This magnetic damping contribution
is, however, rather difficult to calculate, and due to the superimposed swirling flow driven by the
mean part of the Lorentz force (7), there is a third source of dissipation “Ekman pumping” [15,50]
present in the system. Due to these intricacies, we restrict the model to dissipationless nonresonant
wave excitations.

In order to gain further insight into the excited wave dynamics, we show in Fig. 2 maximal wave
elevations (normalized by the tank radius R and the Froude number Fr) as a function of the RMF
excitation frequency � (normalized by the first natural eigenfrequency ω21) in the limit of gravity
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waves Bo −→ ∞. Different wave regimes become evident, which are characterized by different
wave forms also visualized in Fig. 2. For small driving frequencies far before the first resonance
� � ω21/2, wave amplitudes grow linearly with the magnetic Froude number η0 ∼ Fr and the
interface takes the exact shape of a hyperbolic paraboloid. This is formally not a wave solution;
the interface displacement follows here directly from the balance between the Lorentz force and
the restoring gravitational acceleration. This can be shown by applying the limit Bo −→ ∞ to
solution (27) and rearranging the resonance terms as

�2
2n

�2
2n − 4

= 1 + 4

�2
2n − 4

, (29)

giving

η(r̃, θ, t̃ )

R
= sgn(σ2 − σ1)Fr

∞∑
n=1

(
1 + 4

�2
2n − 4

)
J2(ε2nr̃)(

ε2
2n − 4

)
J2(ε2n)

sin(2t̃ − 2θ ). (30)

Now the Bessel series (15) can be reinserted to eliminate the frequency-independent part of the
series, finally yielding

η(r̃, θ, t̃ )

R
= sgn(σ2 − σ1)Fr

4

[
r̃2 +

∞∑
n=1

16

�2
2n − 4

J2(ε2nr̃)(
ε2

2n − 4
)
J2(ε2n)

]
sin(2t̃ − 2θ ). (31)

For sufficiently small RMF frequencies � � ω21/2, the first parabolic term dominates the solution.
In Cartesian coordinates it reads

η(x, y, t )

R
≈ sgn(σ2 − σ1)Fr

4R2
[(x2 − y2) cos(2�t ) + 2xy sin(2�t )] for x2 + y2 < R2, (32)

which is the normal form of a hyperbolic paraboloid rotating with frequency 2�. This solution is
the counterpart to the rotating or oscillating disk (or plane) solution appearing in many sloshing
problems [39] under low-frequency excitation. However, it should be mentioned that this solution
violates the beforehand assumed static contact angle condition, so that this interface pattern can
emerge only in sufficiently large vessels R � lcap. In the case of small Bond numbers Bo � 1, all
summands of the series (27) are wave number dependent and the hyperbolic paraboloid solution
does not exist anymore. The interface then has the shape of Bessel functions. The same transition
takes place, independently of Bo, when � approaches the first resonance condition � = ω21/2. The
radial shaping is here predominantly described by the Bessel function of second order ∼J2(ε21r̃),
which now everywhere maintains the static contact angle condition of 90◦. This is a true wave
solution coming along with all common wave properties, as, in particular and in contrast to the
hyperbolic paraboloid solution, it drives secondary flows resulting in an azimuthal mean mass
transport commonly referred to as the “Stokes drift” [51]. Once the RMF frequency exceeds the
resonance condition � > ω21/2, the solution (27) changes its sign and the wave undergoes a phase
shift of 90◦. The interface elevation at the side wall is now locally in opposition to the Lorentz force
distribution, similar to the cases of better-known 180◦ phase jumps appearing in m = 1 sloshing
problems around resonance. The second resonance � = ω22/2 is also shown in Fig. 2, which is
distinguished by the appearance of n = 2 antinodal cycles. Compared to the first resonance, the
second resonance arises in a significantly reduced frequency range, which is also true for all higher
resonances. Therefore, the first wave mode can be regarded as the dominant mode in magnetic
stirring, reaching the highest amplitudes in practice. Whenever a two-layer system is stirred with
an RMF frequency close to ω21/2, the possible occurrence of critical free-surface or interface
displacements should be taken into account.
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FIG. 3. Sketch and photographs of the experimental setup.

III. EXPERIMENTS

A. Experimental setup

The experiments were conducted in an upright cylindrical container (R = 5 cm, h = 7.5 cm)
made of polished poly(methyl methacrylate) (PMMA) that is filled with two immiscible liquids self-
stratifying due to gravity; see Fig. 3. The room temperature-liquid eutectic alloy GaInSn is filling the
bottom space and functions here as the MHD active liquid in which Lorentz forces are induced under
exposure to magnetic fields. It has a kinematic viscosity of ν = 3.4 × 10−7 m2 s−1, a density of ρ =
6.36 × 103 kg m−3, and a high electrical conductivity of σ = 3.2 × 106 S m−1 at laboratory temper-
ature T = 20 ◦C. An aqueous 1% caustic potash (KOH) solution is layered on top and has virtually
the same material properties of water. Caustic potash was chosen for two reasons. First and foremost,
we intended to avoid the formation of an oxide layer at the metal surface, which immediately
develops once GaInSn comes into contact with air; and it also cannot be avoided when GaInSn is in
contact with most liquids such as water and oils. The oxide layer is known to have elastic properties
(similar to a membrane floating on top of a liquid [52]), causes additional dissipation, and com-
plicates the contact line boundary conditions. For this reason, we wanted to prevent the alloy from
oxidizing in line with the objectives of this study; however, the extension of our model by elastic
wave motions might be rewarding for a better understanding of RMF-induced oxide layer motions
being a determinant in various practical stirring applications. The oxide layer can easily be neutral-
ized by layering different alkaline and acidic solutions; e.g., hydrochloric acid (HCl) was employed
in many studies [20,22,53–55]. However, in preliminary experiments we observed that HCl caused
a pronounced meniscus not satisfying the contact line boundary conditions of our wave model.
We found that KOH remedies this issue; it forms only a very small meniscus of length ∼1 mm �
R = 5 cm (see Fig. 3) and allows the contact line to slide freely along the side wall (no pinning
effects).

The internal dimensions of the cylindrical cell measure a radius of R = 5 cm and a total height of
h1 + h2 = 7.5 cm, in which the interface position was varied during the experiments. The upper lid
covers ten equally distributed sockets for the attachment of ultrasonic sensors. The distance between
the rotational axis of the cylinder and the center of the sockets is 4.2 cm, sufficiently far from
the side wall to prevent acoustic interferences caused by wall reflections. To ensure noninvasive
measurements, the ultrasonic probes are not in direct contact with the working liquids, and a
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5 mm-thick base was kept between the probes and the interior space. The entire cell is placed
concentrically in the 20 cm bore hole of the magnetic induction system PERM available at HZDR,
which has already been used in a number of studies [19,21,22,56]. The system can both impose
traveling and rotating magnetic fields. The RMF used in this study is generated by a three-phase
current applied to a radial arrangement of six induction coils, in which opposing coils are connected
as pole pairs, analogously to the typical construction of a stator in asynchronous motors. This
configuration induces a magnetic field vector rotating homogeneously (over a height span of ∼20 cm
fully encompassing the cell) in the horizontal plane as described by Eq. (3). We applied small
RMF frequencies f = �/2π = 1–10 Hz (to meet the first wave’s natural frequencies) and magnetic
fields up to B0 = 5 mT. These values correspond to a minimal skin depth of δs = 8.8 cm, which is
larger than the cell radius and thereby guarantees that the liquid metal is always fully immersed
in the RMF. Finally, it must be noted that the PERM setup generates a rotating magnetic field
in the clockwise direction. The wave model was formulated for an RMF with a mathematically
positive (counterclockwise) sense of rotation, but due to the time-reversal invariance fulfilled for
all governing equation, the solutions can still be applied one-to-one to the experiments only by
assigning � → −�.

B. Ultrasound measurements

In order to measure the interfacial motions, we use the ultrasound pulse-echo technique presented
in Horstmann et al. [57] that was specially devised to detect wave motions in opaque liquids. This
method is based on ultrasound Doppler velocimetry (UDV), a widespread technique established
for high-resolution velocity measurements in liquid metals. The original measuring method relies
on the Doppler shift. UDV probes emit consecutively short ultrasonic pulses, which are reflected
on existing or artificially added scattering particles in the working liquid and any interfaces. After
some transit time depending on the distance of the single scattering particles, the pulse echoes are
recaptured by the probes. By means of differences in transit time of the scattering echoes between
consecutive pulse emissions, resulting from a finite displacement of the particle position locally
following the velocity field, the axial velocity component (in direction of the pulse) can be obtained.
However, as demonstrated in [57], this technique can likewise be utilized for the further purpose of
measuring position and movements of free surfaces and interfaces. The idea is to track the echo
signal corresponding to the interface directly. Here one encounters the problem that the echo is not
maintaining its shape throughout interface movements, because changes in the orientation of the
interface cause part of the echo signal to be reflected away from the UDV probe. This limits the
largest measurable interfacial elevations (ηmax/R � 20 %), but vertical interface motions can still
be measured reliably when one tracks the first echo value of the beginning echo signal curve that
is significantly higher than the echo values of the noise level; see [57]. Exactly this method was
reused for this study. We employed the ultrasound Doppler velocimeter DOP 3010 from Signal
Processing, which can drive up to ten ultrasound probes we adjusted into the top lid of the cell; see
Fig. 3. The utilized ultrasound probes operate with 4 MHz and encompass piezoelectric transducers
of 5 mm diameter. All probes were lubricated with ultrasonic gel before we inserted them into the
cylinder to optimize the acoustic coupling with the PMMA. Due to the significantly better acoustic
reflection capacity of the GaInSn-KOH interface compared to water-oil interfaces, we were able to
achieve even better resolution than in [57], allowing us to measure wave amplitudes as low as up to
η0 ∼ 0.01 mm.

To demonstrate our approach to signal processing, Fig. 4(a) shows an example of a recorded
single-echo signal corresponding to resonantly excited wave motion � = ω21/2. A harmonic time
response is clearly recognizable, which is, however, overshadowed by several higher frequencies.
This was initially surprising, as we would have expected an undisturbed harmonic wave at such
small amplitudes, as usually occurs in linear sloshing. But higher frequencies were always contained
in the measured echo signals and in all nonresonant cases. For this reason, we have analyzed the
underlying frequency spectra of all conducted measurements and always found frequency patterns
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FIG. 4. (a) Measured local interfacial echo distance η of sensor 1 and fitted cosine function as a function
of time t for the applied RMF frequency f = �/(2π ) = 1.81 Hz and magnetic field B0 = 4.5 mT. (b) Lomb-
Scargle spectrum corresponding to the measured echo signal.

similar to Fig. 4(b). As expected, the clearest peak is evident at the resonance frequency 2�.
Interestingly, several more peaks can be noticed at higher frequencies, which are always multiples
of twice the RMF frequency 2�. These are obviously higher harmonics of the excited fundamental
frequency. In Sec. IV E we will reveal why higher harmonics are inevitably excited by the Lorentz
force even in the small-amplitude limit. As part of signal processing, the presence of higher
harmonics impacts the accuracy of the amplitude evaluation, because maximum and minimum
interface displacements can no longer be unambiguously assigned to the primary irrotational wave
motion described by Eq. (27).

To be further able to reliably identify the amplitude corresponding to the primary wave response,
we always fitted sinusoidal signals to the echo data; see Fig. 4(a). We always took the fitted
sinusoidal waveform as the basis for determining the local primary amplitudes at the UDV sensor
positions r = 0.42 cm to be discussed in the following chapters. Through the simultaneous operation
of up to ten UDV probes, we can further resolve excited wave motion spatially. Figure 5 shows the
reconstructed three-dimensional interface elevation η corresponding to the sample measurement of
Fig. 4. To this end, we have visualized the fitted interface positions of all ten UDV probes for four
chosen times within one wave period T = π/�. Both the m = 2 paraboloidal waveform predicted
by the solution (27) and a clockwise rotational motion become clearly visible. The comparison with
the surface fits of solution (27), which are also displayed in Fig. 5, confirms the existence of the
predicted irrotational wave created upon magnetic stirring. It is important to note, however, that the
radial shaping of wave modes cannot be resolved due to the circumferential arrangement of the ten
ultrasonic probes. Therefore, the nonresonant hyperbolic paraboloid and the resonant Bessel wave

FIG. 5. 3D visualization of a magnetically excited interface at four different times within one period T
on the basis of ten simultaneously applied ultrasound probes. The measured interface elevation η/ηmax of all
probes are coded in color. Surface fits of the wave mode (2,1) are included and color coded.
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FIG. 6. Measured wave amplitude η0 at the sensor position η(r = 4.2 mm) as a function of the RMF
frequency f = �/(2π ) for an applied magnetic field of B0 = 4.6 mT and layer heights of h1 = 4 cm and
h2 = 3.5 cm. Snapshots of the metal surface are included to emphasize different observed wave regimes.

states predicted in the first two wave regimes (see Fig. 2) are indistinguishable in our experiment
and cannot be independently verified on the basis of such qualitative benchmarks. In order to verify
the significance and applicability of our simplified potential flow model to the quite complex and
multifaceted RMF-driven wave flow, amplitude curves and resonance frequencies are quantitatively
compared against the theoretical predictions in the following sections.

IV. RESULTS

A. General resonance profiles

For our chosen stratification of GaInSn and KOH with layer thicknesses h1 = 4–4.5 cm and
h2 = 3.5–3 cm and estimated interfacial tension of γ ≈ 0.6 N m−1, Eq. (21) predicts the first and
dominant resonance to occur around an applied RMF frequency of f = ω21/(4π ) = 1.66–1.68 Hz.
Consequently, we limited ourselves to slow RMF frequencies and carried out measurements mostly
in the range from 0 to 10 Hz. A typical profile of the observed amplitude-frequency curves within
this range is depicted in Fig. 6. The profile comprises different regimes, to which we have included
representative snapshots of the vibrating liquid metal interface. The wave motions cannot be
properly recognized on the photos, we therefore refer readers to the accompanying videos available
in the Supplemental Material [58].

At all excitation frequencies, small displacements of the metal surfaces were visible in form
of reflection patterns. For frequencies up to around � 3 Hz, the surface remained largely smooth
and followed the movement pattern of the anticipated rotating hyperbolic paraboloid. As predicted,
we always observed sharp peaks in the amplitude near the resonance frequency f = ω21/(4π );
however, the measured resonance frequencies were always found to be up to 10 % higher than
the predicted ones. The more we increased the magnetic field B0, the larger the deviation be-
tween the predicted and measured frequencies became. This behavior gives rise to a noticeable
frequency shift between the theoretical and experimental resonance curves. We will address this
issue in the next section. For higher RMF frequencies f � 3 Hz, amplitude responses were not
fully reproducible, and we have observed the appearance of different higher wave mode patterns
resembling Faraday waves. There are still regions with higher amplitude responses at around 5 Hz
and 8 Hz in this sample measurement. However, these do not represent classic resonances because
the amplitude profiles have been observed to change significantly with B0. At 8 Hz, the wave
motion, in contrast to 5 Hz, is already clearly dominated by the swirling flow (see video), which
is why we can no longer speak of a conventional wave motion here. Resonances of any higher
modes ω22/(4π ), ω23/(4π ), ω24/(4π ), . . . were not observed, which is, however, explained by the
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arrangement of the UDV sensors. Wave elevations are only measured locally at radial positions
close to the side wall (r = 4.2 cm). But higher modes form antinodal circles farther inwards (see
Fig. 2) and are therefore mostly outside the spatial measuring window. For this reason, we can only
capture the first ω21 resonance quantitatively and only properly compare measured amplitudes with
the linear wave model around the first observed peak, which is why we will focus on this regime in
the following.

B. Frequency correction

Before wave responses can be adequately compared to the wave model, we have to resolve
the observed frequency shift between measurements and the natural resonance frequency. The
discrepancy stems from the fact that we only considered the irrotational part of the Lorentz force
driving the wave motion. But there is also the mean part of the Lorentz force, Eq. (8), driving a
constant azimuthal swirling flow. This means that the RMF always excites a superimposed state of
oscillatory wave motion and a mean swirling flow, where the latter causes the frequency shift. It
can be understood as follows: the wave always follows the rotational motion of the induced Lorentz
force synchronously and thereby rotates with angular frequency 2� from the view of the labora-
tory’s frame of references. However, the carrier media (GaInSn and KOH) of the interfacial waves
itself are rotating in the same direction as the wave but with lower angular frequency v(r) < r2�.
In relation to the corotating carrier media the waves propagate respectively slower. Consequently,
the resonant frequencies measured in the stationary laboratory must be higher than the theoretical
resonance frequency f = ω21/(4π ), which apply only in the inertial frame of reference. Keeping
this in mind, we can easily estimate the observed frequency shift simply by calculating the azimuthal
swirling velocity induced by the mean part [Eq. (8)] of the Lorentz force. For the sake of simplicity,
we again neglect the influence of the upper and lower ends of the cylinder. Then the azimuthal
velocity profile directly derives from the balance between the electromagnetic and viscous forces
and can be stated in terms of the Hartmann number Ha as follows [38]:

v(r) = r� − R�
I1

(
Ha·r√

2R

)
I1(Ha/

√
2)

with Ha = B0R
√

σ2

ρ2ν2
. (33)

Here I1(x) denotes the modified Bessel function of the first kind and first order. The solution
comprises two parts. The first part r� describes a solid body rotation, which is occupied by the
liquid in the center of the tank (small radii). In this domain the liquid follows the mean Lorentz force
and no energy is injected. The swirling motion is instead driven in the peripheral region near the side
wall, where the azimuthal velocity drops to zero in order to fulfill the no-slip boundary condition.
This drop is described by the Bessel function term of Eq. (33) and is restricted to close proximity
of the side wall in the case of higher Hartmann numbers Ha � 20. Solution (33), however, predicts
a frequency increases considerably higher than those observed in the experiments. This mismatch
derives from the fact that the solution is valid only for single-liquid systems. In our experiments,
we have employed two stratified liquids, but only one of them, the GaInSn layer, is electrically
conducting. Energy injection takes place only in this layer, but the upper KOH layer is entrained
and also follows the swirling motion. The rotating KOH layer creates additional friction losses not
covered by the solution (33), which is why we corrected Eq. (33) by a factor χ that describes the
additional damping empirically. The frequency associated with the swirl flow evaluated at the UDV
sensor position r = r0 = 4.2 cm is then calculated as

fswirl(r0) = χ
1

2π

⎡
⎢⎣� − R�

r0

I1

(
Ha·r0√

2R

)
I1

(
Ha√

2

)
⎤
⎥⎦. (34)

Figure 7 shows the sum of the magnetic swirling frequency fswirl with χ = 0.15 and natural
resonance frequency ω21/(4π ) in comparison with measured peak frequencies as a function of
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FIG. 7. Measured peak frequencies f and theoretical estimates as a function of the applied magnetic field
B0. The orange line shows corrected frequencies including swirling frequencies with the correction factor
χ = 0.15, and the natural resonance frequency f = ω21/(4π ) is shown by the dotted black line.

different applied magnetic field intensities B0. Both curves are in reasonable agreement, which
suggests that the superimposed swirl flow can well reflect the dependence of resonance frequencies
on B0, although this comparison does not allow us to draw an irrefutable conclusion due to the
correction factor only determined empirically. On the basis of these findings, we have always shifted
the natural frequencies by the frequency fswirl for all the comparisons of the wave model against
measured resonance curves presented below.

C. Resonance curves

We have always only seen a clear peak at the sensor position r = 4.2 cm associated with the first
resonance f = ω21/(4π ) (see Fig. 6), for which reason we have devoted a number of finer frequency
step-resolved measurement campaigns to this region. We noticed that the measured wave amplitudes
were subject at times to significant fluctuations on the order of δη = 0.03 mm. Measurements were
reproducible only within the limits of fluctuations; repeating the same measurement occasionally
yielded slightly different values. We might also have observed small hysteresis effects in some cases.
Starting with frequencies lower than the peak frequency f < ω21/(4π ) and stepwise increasing or
starting with higher frequencies than the peak frequency f > ω21/(4π ) and stepwise reducing f
sometimes resulted in slightly misplaced resonance profiles. However, the differences tended to be
within the range of statistical fluctuations, preventing these effects from being clearly attributed
to hysteresis. Despite all these uncertainties, the wave response can be clearly assigned to the
irrotational part of the Lorentz force treated in our model. Figure 8 shows different representative
resonance curves in comparison with the measurements for differently selected magnetic fields B0

of two different stratification examples. Particularly at lower amplitudes, the measurement points
spread considerably around the theoretical curves. In most cases, the theory somewhat overestimates
measured amplitudes, and in a few cases measurements have also exceeded the predictions. For
higher amplitudes η0 � 0.1 mm, where the interface elevation more closely resembles the sinu-
soidal signal and wave amplitudes could be determined more precisely, most measurements agree
remarkably well with the model predictions. The width of the peak, which is represented quite well,
depends very sensitively on B0 and the geometric parameters. It can therefore be concluded that,
despite the many intricacies associated with the superimposed swirling flow, the presence of higher
harmonics, and secondary flow effects such as Ekman pumping, the dominant wave motion can be
clearly ascribed to the irrotational part of the Lorentz force modeled in this study.

D. Peak amplitudes

In a separate measurement campaign with the stratification h1 = 3.5 cm, h2 = 4 cm, we carefully
recorded the highest resonant peak amplitudes for different applied B0. This was achieved by
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FIG. 8. Wave amplitudes η0 for different applied RMF intensities B0 as a function of the RMF frequency
f measured in h1 = 3.5 cm, h2 = 4 cm (a) and h1 = 3 cm, h2 = 4.5 cm (b) stratifications. The dots mark
individual measurements, and the solid lines represent the predicted resonance curves [Eq. (27)] with corrected
resonance frequencies due to Eq. (34).

varying the frequency in small steps around the resonance frequency and always noting the highest
observed amplitude value. Contrary to nonresonant wave responses, peak amplitudes are governed
by dissipation mechanisms present in the system. If we subsume all dissipation sources into one
damping rate λ, linear peak amplitudes scale as [39]

η0

R
∼ Fr

ω21

λ
(35)

and are therefore predicted to grow quadratically with the magnetic field since Fr ∼ B2
0. As can be

seen in Fig. 9, we have indeed observed such a quadratic increase for magnetic fields larger than
B0 = 1.5 mT. Prior to that, however, the scaling behavior was exceptional. No significant wave
amplitudes were measured for smaller values. From B0 = 1.3 mT, the amplitude jumps up rapidly
and then follows the expected quadratic curve. The fitted quadratic curve thereby contains an offset
that is not reflected in our model. It is well known from sloshing experiments that some minimum
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Fit 0.011B2
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FIG. 9. Measured peak amplitudes η0 as a function of the applied magnetic field B0. The orange line shows
a square fit for all measurements accounting from the fourth value onwards with an coefficient of determination
of R2 = 0.984.
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forcing is always needed to overcome viscosity. Additionally, in our experiments we assume two
other mechanisms to be responsible for the offset. First, in two-layer stratifications there are always
some small pinning effects of the interfacial contact line at the side wall. No pinning was visible in
pre-experiments once the interface was in motion, but it is conceivable that a minimum forcing is
needed to overcome such contact line pinning effects. Second, the interface was sometimes slightly
contaminated with oxides particles, which, despite careful efforts, could not always be completely
avoided. Interface contamination is also known to increases damping and may likewise be causative
for the onset. Regardless of the origin of the onset, the scaling behavior is further complicated by the
driving magnetic field itself. As the wave rotates faster than the RMF, an electric current is induced,
which, according to Lenz’s rule, results in a Lorentz force that counteracts its causative motion.
This magnetic damping, which itself also depends on B0, usually quadratically, may also impact
the peak amplitudes. Due to these imponderabilities, the observed peak amplitude profile cannot be
completely explained by our model.

E. Explanation for the higher harmonics

We will complete our study with an explanation for the detected higher harmonics, which
usually do not appear in linear wave regimes. In our case of magnetically excited interfacial waves,
the driving Lorentz force itself is nonlinear and receives feedback from the rotating wave. In
the simplified Lorentz force (7) considered in our model, we have neglected RMF-induced flow
velocities u, v,w � r�. These force components are small compared to the Lorentz force directly
caused by RMFs, which is why our model can correctly describe nonresonant wave amplitudes
associated with the dominant wave mode (2,1). However, these flow-induced force components are
apparently strong enough to impair the amplitude signals with higher frequency components; see
Fig. 4. The flow velocities are composed of the swirling flow driven by the mean part of the Lorentz
force, secondary flows, and flows relating to the irrotational wave motion. The latter are responsible
for the higher harmonics. In the Lorentz force, we have velocity-dependent terms scaling as

f ∼ Re[(u, v,w) exp(i2�t − i2θ )]. (36)

From the potential solutions (11) and (12) we know that wave related velocities show the same
harmonic dependency

(u, v,w) ∼ Re[exp(i2�t − i2θ )], (37)

such that one obtains products of harmonic terms always involving multiples of 2�:

exp(i2�t − i2θ ) exp(i2�t − i2θ ) = exp(i4�t − i4θ ). (38)

This results in an additional 4� forcing that accordingly drives subsidiary (wave) flows with twice
the fundamental frequency and we end up with a flow velocity encompassing also the second
harmonic frequency

(u, v,w) ∼ Re[exp(i2�t − i2θ )] + exp(i4�t − i4θ )]. (39)

The second harmonic again reintegrates into the Lorentz force and yields the third harmonic

exp(i2�t − i2θ ) exp(i4�t − i4θ ) = exp(i6�t − i6θ ). (40)

In this way it becomes clear how the complete harmonic series is unfolded recursively through an
electromagnetic feedback mechanism. The higher harmonic force components, however, become
increasingly marginal, so that at a certain point higher frequencies can no longer be seen in the
amplitude signal. In the resonant cases, higher harmonic perturbations up to 8 × 2� were directly
recognizable in echo; see Fig. 4(b). Beyond that, harmonics were still apparent in the Lomb-Scargle
spectrum up to 12 × 2� or 13 × 2�. Higher frequencies than those could not be resolved in our
experiments due to the Nyquist limit.
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V. CONCLUDING REMARKS

We have demonstrated that beyond the generation of well-known and widely studied swirling
flows, rotating magnetic fields (RMFs) can also be used to excite considerable wave motions at free
surfaces and interfaces of electrically conducting liquids. This requires the RMFs to operate in the
low-frequency regime of about 1 to 10 Hz since in this range the oscillatory part of the Lorentz
force, which is irrotational in the leading order and drives the waves through pressure variations,
cannot be neglected with respect to the mean part of the Lorentz force. Moreover, the resonance
conditions of typical magnetic mold stirrers (R ∼ 10 cm) are met in this range. Our theoretical
model has revealed that a homogeneous RMF always excites m = 2 waves (two crest-trough pairs
along the circumference), and that the first and dominant wave mode (m = 2, n = 1) appearing at
the resonance condition � = ω21/2 closely resembles the shape of a hyperbolic paraboloid. This is
in contrast to surface waves excited by alternating axial magnetic fields that force axisymmetric
m = 0 standing waves, albeit traveling m � 1 waves may nevertheless arise from a parametric
instability [27,31]. We further found that all wave modes oscillate with twice the frequency ω = 2�

of the applied RMF, and resonance always appears at half the natural frequency � = ω2n/2 of the
excited wave mode n.

In our wave experiment, the parabolic waveform of the first resonant mode could be precisely
reconstructed and verified by utilizing an arrangement of ten ultrasonic transducers, which facilitate
precise point-by-point measurements of local interface elevations. The excellent acoustic reflectance
of the KOH-GaInSn interface has made it possible to measure amplitudes with a resolution of
the order of 0.01 mm. Moreover, quantitative comparison of the measured nonresonant wave
amplitudes with the theoretical predictions yielded a good agreement within the measurement
uncertainties. At the same time the measurement results also clearly demonstrated the limitations
of our linearized wave model. We concluded that the resulting wave dynamics must always be
understood as a superposition of a swirling flow, driven by the mean part of the Lorentz force, with
an irrotational (but rotating) wave motion described by our model. Owing to the wave propagation
in the rotating reference system of the swirling flow, the resonance frequencies measured in a
stationary system of reference appear to be shifted and were always about 10 % higher than the
theoretical resonance frequencies. By estimating the magnitude of the swirling flow, this virtual
frequency shift could be eliminated. The experiments also revealed that all captured amplitude
signals contained several higher harmonics, which were not represented in linear wave theories
that always predict single-frequency responses to single-frequency excitations. The Lorentz force
induced by the RMF, however, is by itself nonlinear and introduces higher harmonics recursively
through an electromagnetic feedback mechanism, even in small-amplitude regimes.

Together with the obtained results, this could be a promising starting point for future studies to
gain a better understanding of the overall dynamics, including the swirl flow and other secondary
flows arising, e.g., from Ekman pumping. The modeling of the latter and the calculation of magnetic
dissipation is essential for computing wave damping rates, by which it finally would become
possible to estimate resonant wave responses as well. It also seems promising for future studies to
venture into nonlinear wave regimes and to apply more elaborate sloshing models [43,44], possibly
allowing description of the observed higher harmonics or hysteresis effects. In this study we have
applied only very small magnetic fields up to B0 = 5 mT in order to keep the influence of the
swirling flow and nonlinear effects as small as possible. Industrial mold stirrers typically operate
with strong magnetic fields of B0 = 100 mT and more. For such cases, the wave model already
predicts substantial nonresonant wave amplitudes on the order of centimeters. If melts that involve
a free surface or interface are stirred in industrial processes, RMF waves can be expected to be
of high practical importance. In the most unfavorable case, some resonance frequency may be
met during operation and the melt’s surface could begin to splash out of control. In the best case,
however, surface waves could also be exploited for the purpose of enhancing the mass transfer and
homogenization of the melt, or to facilitate the entrapment of floating melt additives.
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