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Direct numerical simulations of a cylinder cutting a vortex
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The interaction between a vortex and an impacting body which is oriented normally to it
is complex due to the interaction of inviscid and viscous three-dimensional mechanisms. To
model this process, direct numerical simulations of a thin cylinder intersecting a columnar
vortex oriented normally to it are conducted. By varying the impact parameter and the
Reynolds number, the two regimes of interaction mentioned in the literature are distin-
guished: the weak and strong vortex regimes. Low impact parameters, representing strong
vortices, led to ejection and interaction of secondary vorticity from the cylinder’s boundary
layer, while high impact parameters, representing weak vortices, led to approximately
inviscid interaction of the cylinder with the primary vortex through deformations. No
significant effect of the Reynolds number in the overall phenomenology is found, even
if larger Reynolds numbers lead to the formation of increasingly smaller and more intense
vortex structures in the parameter range studied. Finally, the hydrodynamic force curves on
the cylinder are analyzed, showing that intense forces could be locally generated for some
parameter regimes, but that the average force on the cylinder does not substantially deviate
from baseline cases where no vortex was present. Our results shed light on the underlying
mechanisms of vortex-body interactions and their dependence on various parameters.
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I. INTRODUCTION

Vortices are one of the most characteristic structures present in fluid flows, and they have been
referred to as “the sinews and muscles of fluid dynamics” [1]. At high Reynolds numbers, vortices
are generally modeled as singular lines or sheets. A wide variety of flows such as aircraft or
propeller-tip wakes or bubble rings can then be studied through the composition of singular solutions
[1]. Much attention has been given to how vortex tubes, rings, or sheets interact with each other or
with solid boundaries, including changes in the topology of singular solutions such as those seen in
reconnecting vortex rings [2]. However, the purposeful breaking or “cutting” of topological vortex
lines with solid objects has seen less work due to experimental and numerical challenges [3–5].
This flow phenomenology finds significant relevance in a specific context: blade-vortex interaction
(BVI), which involves the intricate physical interaction when a rotating blade encounters a nearby
vortex tube [6] but is also present in other physical systems such as Type II superconductors [7,8].
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BVI holds widespread significance in various engineering applications, spanning wind turbines,
helicopter rotors, marine propellers, and industrial fans [6], and due to its practical applications has
been the workhorse of research in vortex line cutting in fluid dynamics. The majority of research
on BVI concentrates on aerodynamic blades intersecting a straight vortex tube. This specific BVI
scenario, referred to as perpendicular or normal BVI, occurs when the vortex and blade axes are
perpendicular, and the blade cleaves through the vortex tube. Normal BVI is commonly encountered
in applications such as helicopter rotors and wind turbines, where rotating blades confront vortices
originating from prior blades or generated by their own motion [9–13]. Other orientations of the
blade in relation to the vortex are possible, resulting in other types of BVI: grazing BVI, where
the blade is perpendicular to the tube, but it moves in the direction of the core, and parallel BVI
[14], where the blade is parallel to the tube and cuts the tube throughout its extent rather than
at a single point. These are outside the scope of our study, which focuses on swift cutting of
the core.

Experiments and simulations have shown that the interaction between a vortex tube and a body
such as a blade or a cylinder depends on various parameters, such as body velocity, vortex core
radius, vortex swirl velocity, body geometry and size, and turbulence within the body’s boundary
layer [15–21]. In particular, for a body impacting a vortex with no axial flow, three dimensionless
parameters are relevant. These parameters are (1) the impact parameter (IP = 2πσ0V/�), which
is the ratio of the body’s free-stream velocity to the maximum vortex swirl velocity, where σ0 is
the radius of the vortex, V the velocity of the body, and � the vortex’s circulation; (2) the vortex
Reynolds number (Re� = �/ν), where ν is the kinematic viscosity; and (3) the body thickness
parameter (T ), which is the ratio of a characteristic length such as the blade’s curvature or the
cylinder diameter D to the vortex core radius σ0 [17,22].

Depending on both the response of the primary vortex to the body and about the interaction of the
vortex with the body’s boundary layer, response regimes can be constructed depending on the value
the dimensionless parameters take. The response regimes are commonly referred to as the weak
vortex regime, the strong vortex regime, and the bending regime. In this paper we will simulate
cases in the weak and strong vortex regime, while the bending regime will not be investigated.
However, we discuss here all three regimes for completeness.

The weak vortex regime occurs for thin bodies (T = D/σ0 � 1) when the vortex is suf-
ficiently weak (IP > 0.2). This regime is characterized with very minimal boundary layer
separation and ejection until after the body has penetrated the primary vortex [22]. Once the
boundary layer has separated, the separated vorticity becomes entrained within the primary
vortex and does not wrap around it, instead spreading away from the body and into the
vortex core.

The strong vortex regime has been seen to occur when the vortex is sufficiently strong (IP < 0.08)
and is independent of the thickness parameter [17]. This regime is characterized with a large amount
of interaction between the body’s boundary layer and the vortex prior to the body’s leading edge,
making contact with the vortex. The ejected vorticity from the body’s boundary layer will roll
up into a series of vortex loops that will wrap around the primary vortex. The wrapping of the
secondary vorticities creates a series of wave motions that will eventually disrupt the primary
vortex. This procedure of primary vortex disruption may also occur when the body is several
core radii away from the vortex, but only when the value of the impact parameter is relatively
low [3].

The bending regime occurs when the vortex is sufficiently weak (IP > 0.2) and the body is
sufficiently thick (T > 5) [22,23]. Separation of the boundary layer does not occur before the
body has traveled through the original position of the vortex. This regime also sees large-scale
deformation of the primary vortex due to the inviscid interaction with the body. The core radius
of the vortex will thin near the region where the body will impact the vortex due to stretching of
the flow about the body. Once the vortex has deformed around the body, the body’s boundary layer
will separate and generate wave motions within the vortex eventually leading to a disruption of the
vortex [3,17].
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While experimental studies of this process exist, experiments are limited in their access to
the full velocity and pressure fields. Furthermore, the effect of turbulence in the boundary layer
on the interaction process is not well understood, partly due to the challenges in experimentally
controlling inlet turbulence. Numerical simulations could in principle allow a detailed study of the
development and evolution of the vortex formation and boundary layer detachment, determining
the spatial and temporal forces present on the blade, as well as having full control over the
turbulence in the system. They also have the advantage of being able to controlling input param-
eters separately, i.e., varying Re� separately from the impact parameter, which is not easy in an
experiment.

Inviscid filament models are the oldest method used to simulate BVI, due to their straightfor-
wardness and effectiveness, but present well-known limitations: they require extensions to account
for variations in the vortex core area and to ensure no-penetration conditions on the surfaces;
and they are inviscid, which means that they cannot be used to analyze vortex-induced boundary
layer separation [3,23–26], a crucial phenomenon in the weak vortex regime. Nonetheless, they are
useful for predicting how the body will penetrate the vortex or how the vortex will react to the
motion of the body, and can also be used to estimate the pressure on the body surface during the
interaction with a vortex up to a certain distance from the body [23,27]. A number of extensions
to the filament model which incorporate two-dimensional boundary layer dynamics have been
conducted, which hint at the type of complex flow phenomena which arise [28,29]. These were
later extended to include three-dimensional boundary layers [30,31]. However, they remain limited
by the fact that the underlying filament models present singularities and cannot fully resolve the
dynamics [31].

The highest fidelity simulations of normal BVI available in the literature employ three-
dimensional direct numerical simulations of a vortex impacting a blade [5,32]. These studies have
detailed the way a vortex cuts through a blade, and the way this cutting generates circulation and a
lift force. Reference [5] was limited in the range of Reynolds numbers they could simulate, as well
as the choice of large impact parameters due to the lack of adequate computational power. Reference
[32] simulates larger Reynolds numbers by fixing the blade Reynolds number to be Reb = 1000 and
varying the strength of the vortex. This study focuses on large impact parameters, IP > 0.5, and
does not access the strong vortex regime.

As can be gathered from above, a detailed numerical study of the separation process in the
weak vortex regime and the transition from weak to strong vortex regimes is missing. The use
of DNS in vortex-body interaction studies has the potential to clarify previously unclear areas
such as the viscous interaction of the body with the vortex [32]. Simulations also allow careful
control of the Reynolds number and can assess questions of Reynolds number independence
unanswered in experiments [17]. In this paper, we set out to address these knowledge gaps by
conducting three-dimensional direct numerical simulations (DNS) of tube cutting using state-
of-the-art numerical techniques. We will simulate a simplified problem: a thin wire (cylinder)
impacting normally a high-Reynolds-number vortex. We will study the interaction process by
varying two parameters: the impact parameter IP and the circulation Reynolds number Re� . Values
of IP will be chosen such that simulations can access the weak and strong vortex regimes, while
varying Re� will modify the secondary vorticity of the cylinder, as well potentially triggering more
hydrodynamical instabilities in the primary tubes which set in at values of Re� ∼ O(103) [33].
We will focus on key flow phenomena observed during the interaction, calculate the induced force
on the cylinder as it cuts through the vortex, and relate how major flow structures influence the
force curve.

The paper is organized as follows: Sec. II details the numerical methods used in the
manuscript. Section III presents the main results from the flow field, including the transi-
tion between strong and weak vortex regimes (Sec. III A) and in-depth analysis of the strong
(Sec. III B) and weak vortex regimes (Sec. III C). Section IV examines the force in the
wire. Finally, Sec. V presents a summary of the findings as well as an outlook for future
work.
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FIG. 1. Schematic view of the computational domain. The z direction is shortened for clarity.

II. NUMERICAL METHODS

To study BVI, we directly simulate the the incompressible Navier-Stokes equations:

∂u
∂t

+ u · ∇u = −ρ−1∇p + ν∇2u + f, (1)

∇ · u = 0, (2)

where u is the velocity, t is time, ρ is the fluid density, ν is the fluid kinematic viscosity, and f is a
body force originating from the the immersed boundary method (IBM) forcing used to model the
cylinder. A schematic of the system is presented in Fig. 1, which shows a cylinder of diameter D,
with an axis parallel to the z axis, that travels in the x direction at a velocity V towards a vortex of
core size σ0 which has an axis parallel to the y direction. This vortex is initialized at the initial time
with a Lamb-Ossen (Gaussian) velocity profile with circulation �. The vortex circulation � and the
vortex radius σ0 are used to nondimensionalize the system.

The computational domain is taken as triply periodic, with periodic lengths Lx × Ly × Lz =
30σ0 × 30σ0 × 90σ0. The larger length in Lz allows for the force on the object to return to baseline
values; this effect is fully discussed in Sec. IV. The simulation is initialized with a zero velocity
field except for the Lamb-Ossen vortex with the core extending in the y direction and centered at
(x = 0, z = 0). The cylinder starts from rest and travels for 10σ0 at V velocity before reaching the
vortex’s core line. Because the distance is the same, this means that for varying cylinder velocity
(through changing IP), the cylinder reaches the vortex at different times. After cutting the axis of the
vortex, the cylinder then travels to the opposing end of the box. This allows us to capture all stages
of the interaction with the vortex.

The diameter of the cylinder is fixed as 0.95σ0, keeping the thickness parameter T = D/σ0 ≈ 1
in the thin regime. The impact parameter is varied between IP ∈ (0.05, 0.25). With this value of T ,
the degree of (inviscid) vortex bending that occurs before the ejection of boundary layer vorticity is
determined by the impact parameter. The range of values of IP chosen, which allows us to explore
the weak and strong interaction regimes for low and high values of IP, respectively. Finally, the
circulation-based Reynolds numbers are varied in the range Re� ∈ (1000, 3000). This will impact
the flow in two ways: the boundary layer of the cylinder will be thinner with higher vorticity, and
the increased Reynolds number may also trigger hydrodynamical instabilities in the primary tube,
as many instabilities in tubes set in at values of Re� which are between 1000 and 3000 [33].

The associated cylinder Reynolds number Rec = V D/ν is calculated as Rec = �IPT/(2πν) =
Re�IPT/(2π ) and varies in the range Rec ∈ (7.96, 119). Table I summarizes the control parameters
used for all the runs in this paper. We note that while the values of Rec used here appear substantially
lower than those used in Ref. [32], the reference uses a chord-based Reynolds number, while this

054701-4



DIRECT NUMERICAL SIMULATIONS OF A CYLINDER …

TABLE I. Control parameters for the simulations of tube-wire interaction.

T IP Re� Rec

0.95 0.05 1000 7.56
0.95 0.15 1000 22.7
0.95 0.25 1000 37.8
0.95 0.05 2000 15.1
0.95 0.25 2000 75.6
0.95 0.05 3000 22.7
0.95 0.25 3000 113

paper uses something analogous to a “thickness”-based Reynolds number leading to an order of
magnitude discrepancy when comparing Rec to the blade Reynolds number in Ref. [32].

Simulations are run using the open-source code AFiD [34]. This code uses energy-conserving
second-order centered finite differences to spatially discretize the domain. Time marching is done
through a third-order Runge-Kutta for the nonlinear terms and a second-order Crank-Nicolson for
the viscous terms. The spatial resolution is taken as 624 × 624 × 1872, meaning the grid is equally
spaced in all directions, with a grid length ∼0.05σ0 ≈ 0.05D. Resolution adequacy is checked
by monitoring numerical dissipation to be less than 2%. To increase the confidence in the mesh
adequacy, the Appendix shows a comparison between a coarser mesh, the mesh used in this paper,
and a finer mesh for the IP = 0.25, Re� = 3000 case.

The cylinder is incorporated through the immersed boundary method (IBM) using a moving-
least-squares formulation [35]. This algorithm has been used previously for turbulent simulations
with rigid, moving, and deforming boundaries, and has been well validated [36–38]. The surface
is discretized using 388 800 triangles. The triangle skewness is <0.3, and the average edge length
is about 70% of the grid spacing. This ensures adequate resolution without consuming excessive
computational resources [35].

III. FLOW DYNAMICS FOR TUBE-WIRE INTERACTION

A. The distinction between weak and strong vortex regimes

This subsection examines cases at Re� = 1000, varying IP to illustrate the difference between
the strong and weak vortex regimes. The Q criterium [39,40] will be used to highlight the primary
vortex. This is defined as

Q = −∂u j

∂xi

∂ui

∂x j
= 1

2
ω2 − σ 2, (3)

where ω2 = (∇ × u)2 is the vorticity magnitude squared, and σi j = 1
2 (∂iu j + ∂ jui ) the strain tensor,

with σ 2 = σi jσi j . Q represents the source term in the pressure-Poisson equation [41] and is useful
for distinguishing rotation-dominated regions of the flow, which will tend to have positive values of
Q, from strain-dominated regions, which have negative values of Q. Visualizing regions of positive
Q through time will highlight the dynamics of the primary vortex, which is rotation-dominated,
while leaving out the boundary layers. Later, |ω| visualizations will be presented to emphasize the
dynamics of the wire’s boundary layer and secondary vortices and its interaction with the primary
vortex.

Figure 2 depicts a volume rendering of Q for a simulation within the strong vortex regime
(Re� = 1000, IP = 0.05). As discussed in Ref. [17] and elsewhere, the vortex “pre-senses” the
wire’s presence prior to its approach to the core. Even before the wire penetrates the core, the
central area of the vortex is disrupted. As the wire gradually traverses the core, numerous secondary
structures coil around the primary tube; a detailed analysis of these occurs later during vorticity
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FIG. 2. Volume rendering visualization of the time evolution of Q [Eq. (3)] for a simulation in the strong
vortex regime with Re� = 1000, IP = 0.05. Regions in blue indicate regions of strongly positive Q. The wire
is shown as a solid black object.

visualization. By the end of the interaction, little remains of the tube the wire passed through. The
BVI process has significantly diminished the vortex’s strength by its conclusion.

Figure 3 depicts a similar volume rendering of Q in the weak vortex regime (Re� = 1000, IP =
0.25). In this regime the primary vortex does not “pre-sense” the wire, instead interacting with
it solely when it is in close proximity to the vortex core. The vortex swiftly traverses the tube,
causing significant deformation to the core. This deformation generates upwards- and downwards-
propagating waves. As time progresses, the wire completes its passage through the primary vortex
tube, leaving behind a minor wake and a distorted tube. Surprisingly, despite the distortion, the
“weak” vortex tube displays better resilience compared to the scenario involving a strong vortex. By
the end of the BVI process, the waves have transversed the tube, and a distorted vortex tube remains
behind. Counterintuitively this means that at Re� = 1000, a vortex tube endures the “cut” of its core
more effectively when encountering a faster moving cutting object. Primarily, this outcome emerges
because the interaction with a slower wire is prolonged, allowing the vortex more time to engage
with secondary vorticity originating from the wire. This extended interaction disrupts the primary
vortex to a greater extent than the short interaction of the weak vortex regime.

Figure 4 highlights this result by showing Q visualizations for the four simulated cases at
various IP values after the wire’s passage. In the case of the smallest IP, the vortex experiences
complete disruption. However, for IP = 0.15 and 0.25, the vortex undergoes deformation, exhibiting
propagating waves along its axis, yet retains some coherence. The IP = 0.1 scenario lies between
these extremes, displaying weakening in certain regions and deformation in others. Notably, the
extent and nature of disruption in the primary core serve as markers distinguishing between weak

FIG. 3. Volume rendering visualization of the time evolution of Q [Eq. (3)] for a simulation in the weak
vortex regime with Re� = 1000, IP = 0.25. Regions in blue indicate regions of strongly positive Q. The wire
is shown as a solid black object.
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FIG. 4. Volume rendering visualization of Q [Eq. (3)] after the wire has passed through the cylinder axis
for Re� = 1000 and IP = 0.05, 0.1, 0.15, and 0.25 (left to right). Regions in blue indicate regions of strongly
positive Q. The wire is shown as a solid black object.

and strong vortex regimes. The behavior observed in Fig. 4 suggests a smooth transition between
these regimes taking place around IP ≈ 0.1. This was observed in experiments, and a value of
IP ≈ 0.08 was given for the transition between regimes in Ref. [17].

B. The strong vortex regime (IP = 0.05)

As the weak and strong vortex regimes show very different dynamics, they will be discussed
separately, taking the lowest and highest values of IP as paradigmatic for each regime. This
subsection discusses the strong vortex regime, with IP = 0.05.

To investigate the role of secondary vorticity in the vortex-wire interaction, Fig. 5 presents
volumetric representations of the vorticity magnitude |ω| at the early stages of interaction for both
Re� = 1000 and Re� = 3000. This stage of the interaction is rich in details, and the visualizations

FIG. 5. Volume rendering visualization of the time evolution of |ω| during the early stages for a simulation
in the strong vortex regime IP = 0.05 with Re� = 1000 (top row) and Re� = 3000 (bottom row). Regions
shown in orange-brownish are regions of high vorticity.
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FIG. 6. Vorticity magnitude |ω| at the z = 0 plane evolution just before impact in the strong vortex regime
with IP = 0.05 at Re� = 1000 (top row) and Re� = 3000 (bottom row). Snapshots are at t�/D2 = 940 (left),
1140 (middle), and 1340 (right). Abbreviations: “DSV” detached secondary vorticity, “PVN” primary vortex
necking.

align with the experimental images and descriptions in Ref. [17]: as the vortex approaches the tube,
vorticity from its boundary layer detaches and begins to curl around the primary tube. This is marked
with a blue arrow at t�/D2 = 740. Even before the wire approaches the vortex core, this detached
vorticity loops once around the main vortex, distorting the core, as seen at t�/D2 = 940. This
is because the wrapped vorticity induces velocities which commence a compression or “necking”
of the core. This phenomenon is accentuated as the cylinder approaches the primary vortex. In the
impact zone, the vortex and cylinder have oppositely signed vorticity, which, when pressed together,
further thins the neck region. The primary vorticity increases to conserve circulation, and a region
with increased vorticity magnitude becomes apparent at t�/D2 = 1140 (marked with a black arrow)
and t�/D2 = 1340. At the same time, the detached vorticity propagates further along the vortex
axis, nearly reaching the computational domain’s periodic boundaries as seen in the last snapshot at
t�/D2 = 1540.

The observations detailed here mirror those documented experimentally in Ref. [17], while
expanding upon the experimental groundwork in several crucial ways. First, Fig. 5 portrays vorticity
three-dimensionally rather than photographs of dye visualization. This representation enables us to
illustrate the propagation of secondary vorticity through the axis, a phenomenon which is not clear
in the experiments, as well as showing the new vortex filaments produced. Second, we demonstrate
that secondary vorticity arises without the need to introduce a source of turbulence, through either
background flow or vibrations of the structure. Even starting from simple initial conditions, such as
a Lamb-Oseen vortex, the secondary vorticity originating solely from the wire’s boundary layer is
enough to faithfully reproduce the significant disruptions in the primary vortex seen experimentally.
Last, we note that our results are roughly symmetrical around the cutting plane in our results due
to the absence of axial flow. This shows that the presence of a weak axial flow does not change the
phenomenology of strong vortex BVI very much. We also note that for both Reynolds numbers, the
flow phenomenology at the early stages is very similar, including the extent of wrapping and speed
of propagation of secondary vorticity around the primary vortex, even if the vorticity itself appears
much sharper due to the reduced viscosity. This facilitates the comparison to the experiment.

To focus on the early stages of the collision, Fig. 6 provides more qualitative data by representing
the vorticity magnitude plotted at the central x-y plane at three time instants as the wire is
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FIG. 7. Vorticity magnitude |ω| at the y = 0 midplane evolution for a simulation in the strong vortex regime
at IP = 0.05 with Re� = 1000 (top row) and with Re� = 3000 (bottom row). Snapshots are at t�/D2 = 740
(left), 940 (middle), 1340 (right). Abbreviations: “DSV,” detached secondary vorticity; “PVN,” primary vortex
necking.

approaching the tube. The early detachment of secondary vorticity is seen in the left panels of Fig. 6.
Significant detachment and wrapping are present even if the wire is several diameters away from
the core. The detached vorticity appears much sharper at Re� = 3000, but the degree of wrapping
is similar, as will be confirmed below. The middle panels show how the primary vortex has already
been distorted before the wire begins to penetrate into the vortex. The wrapped vorticity induces
velocities which begin to thin out the center of the vortex. This process is accentuated as the physical
interaction begins: the core is further compressed producing a “necking” seen in the right panels.
We note that at Re� = 1000, even if the core is compressed, the vorticity intensification is smaller
(or nonpresent). The reasons for this will be analyzed below.

Another view of the process is shown in Fig. 7, which presents the vorticity magnitude plotted at
the central x-z plane. The snapshots in the left column confirm that the dynamics of the secondary
vorticity detachment process are approximately Reynolds independent: the degree of wrapping is
the same for both Reynolds numbers. The middle panel also shows how the vortex is distorted by
the wrapped vorticity before the close interaction begins. Finally, the right panel shows the degree of
“necking” present in the primary vortex as the body comes close to the vortex. The middle and right
panels also reveal the main effect of Re�: while at Re� = 1000 the primary vortex remains more
or less smooth, at Re� = 3000 the vorticity profile is highly deformed as vorticity concentrates in
thin sheets outside the center. We also note that the core has been substantially displaced from its
original position.

However, these differences do not result in distinct outcomes of the BVI. Figure 8 shows the
vorticity modulus for the late stages of the interaction, once the wire has cut the vortex core.
As discussed in Sec. III A, in the strong vortex case the vortex remnants are much weaker than
the original primary vortex. Instead, the flow appears to consist of a turbulent cloud with vortices
oriented in many directions.

Another view of the remnants is shown in Fig. 9, which presents the vorticity at the y = 0 plane
at a late stage. For Re� = 1000, the remnants of the primary vortex can still be distinguished. It
has been displaced, six to seven vortex radii from its initial position, and has a circulation which
has been reduced to a quarter of its original strength. For Re� = 3000, the remnants are extremely
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FIG. 8. Volume visualization of the time evolution of |ω| during the late stages for a simulation in the
strong vortex regime IP = 0.05 with Re� = 1000 (top row) and Re� = 3000 (bottom row). Regions shown in
orange-brownish are regions of high vorticity.

weak, and the circulation cannot be adequately measured as a single remnant cannot be identified.
For both Re� , the remnants are dissipated by viscosity a few time-units later.

FIG. 9. Vorticity magnitude |ω| at the y = 0 midplane evolution and t�/D2 = 2140 for a simulation in the
strong vortex regime at IP = 0.05 with Re� = 1000 (left) and with Re� = 3000 (right). Abbreviation: “PVR,”
primary vortex remnant.
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FIG. 10. Volume rendering visualization of the time evolution of |ω| during the early stages for a simulation
in the weak vortex regime IP = 0.25 with Re� = 1000 (top row) and Re� = 3000 (bottom row). Regions shown
in orange-brownish are regions of high vorticity.

C. The weak vortex regime (IP = 0.25)

Turning to the weak vortex regime, Fig. 10 shows volume plots of the vorticity magnitude |ω|
for IP = 0.25 and the two Reynolds numbers simulated at the early stages of the interaction. As
in the strong vortex regime, two sources of vorticity are evident: the primary vortex and the wire’s
boundary layer. However, the overall flow evolution looks very different when compared to Fig. 5.
The presence of a weaker vortex results in lower induced velocities on the wire. The wire’s boundary
layer is only beginning to lift off in the leftmost panels at t�/D2 = 200 and 220, and has no time
to curl around and deform the primary vortex before impact. This can be appreciated by contrasting
with the visualization at t�/D2 = 740 in Fig. 5 where the primary core is seen to have deformed on
the right side.

Consequently, the wire’s boundary layer does not play a significant role in this scenario. This
lack of interaction before the wire approaches the core serves as a key characteristic of the weak
vortex regime and has historically facilitated its modeling using inviscid methods. Instead, the
physics in this regime are dominated by the displacement and deformation of the core, which is
propagated through axial waves, as illustrated in the visualizations at t�/D2 = 240 and onwards.
The core is deformed due to the physical presence of the wire, which forces oppositely signed
vorticity to approach the core in a process reminiscent of vortical reconnection [32] (marked by a
blue arrow in Fig. 10). This displaces the vortex tube and stretches it into a thin “neck” until the
core is eventually “cut.” This process is more marked in the Re� = 3000 case, where the vorticity
is intensified substantially.

Simultaneously, the core deformations close to the wire propagate through waves along the
primary tube’s axis, as was previously observed in Fig. 3. These waves do not substantially modify
the radius of the primary vortex, a phenomenon observed in the simulations and experiments of
weak-vortex BVI with axial flow in Ref. [22]. Here there is a crucial difference from the experiments
with axial flow which introduces a notable asymmetry in wave propagation. Our simulations instead
show a symmetrical propagation originating from the cylinder impact zone.
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FIG. 11. Vorticity magnitude |ω| at the z = 0 plane evolution just before impact in the weak vortex regime
with IP = 0.25 at Re� = 1000 (top row) and Re� = 3000 (bottom row). Snapshots are at t�/D2 = 220 (left),
240 (middle), and 260 (right). Abbreviations: “PVN,” primary vortex necking; “DSV,” detached secondary
vorticity.

As in the previous section, a closer look is provided by looking at two-dimensional cuts.
Figure 11 represents the vorticity magnitude plotted at the central x-y plane at three time instants
as the wire is approaching the tube for the two Reynolds numbers, and Fig. 12 shows the vorticity
through the x-z plane for the same time instants and the two Reynolds numbers.

The Reynolds number dependence is first reflected as thinner and more intense boundary layers.
For the first panel at t�/D2 = 220, the secondary vorticity has not had time to completely wrap
around the core and is not visible in the z = 0 cut. The primary vortex has been deformed by the

FIG. 12. Vorticity magnitude |ω| at the y = 0 midplane evolution for a simulation in the weak vortex regime
at IP = 0.25 with Re� = 1000 (top row) and Re� = 3000 (bottom row). Snapshots are at t�/D2 = 220 (left),
240 (middle), and 260 (right). Abbreviations: “DSV,” detached secondary vorticity; “OV,” opposite vorticity;
“PV,” primary vortex.
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FIG. 13. Volume visualization of the time evolution of |ω| during the late stages for a simulation in the
weak vortex regime IP = 0.25 with Re� = 1000 (top row) and Re� = 3000 (bottom row). Regions shown in
orange-brownish are regions of high vorticity.

presence of the wire, which is pushing oppositely signed vorticity towards it. Notably, although the
vorticity has less time to detach, it exhibits a higher value than in Fig. 7. This can be attributed to
the nondimensionalization using �/σ as a velocity scale, where higher values of IP lead to greater
wire velocities, resulting in larger vorticity values for a boundary layer when normalized using �-σ
units.

By t�/D2 = 240, the secondary vorticity has had time to begin to wrap around the primary
vortex. As suggested by Ref. [22], the primary vortex can entrain a small quantity of vorticity from
the boundary layer during the interaction. However, it is almost indiscernible for the panel at Re� =
1000, and for Re� = 3000, while visible, it is eclipsed by the vorticity intensification due to the
core stretching and deformation. The intensification of vorticity is particularly marked for the higher
Reynolds number, a phenomenon which is again reminiscent of reconnection, where increases in
Reynolds number produce increasingly thinner vortex sheets of large vorticity magnitudes [42].
However, once viscosity takes over, annihilating or reconnecting the primary and opposite vorticity,
this does not seem to have a bearing on the rest of the flow. This can explain why flow models
which neglect secondary vorticity can adequately capture the interaction within this regime: the
phenomenology is primarily driven by the deformations induced by the moving object, rather than
the annihilation of vorticity.

By the latest time, t�/D2 = 260, the cylinder is cutting the vortex, and almost no vorticity is
visible in the plots close to the wire. By returning to the three-dimensional visualization of Fig. 10,
it is clear that the cut has taken place. In these simulations, some of the phenomena usually attributed
to the bending regime can be observed, i.e., deformations of the primary vortex, and the stretching
(or “necking”) of the core near the impact location. This hints at the fact that the transition between
strong vortex and bending regimes, which is outside the scope of this paper, will also be smooth.

The flow phenomenology after the wire has completely transversed the vortex is shown in full
three-dimensional visualizations in Fig. 13 and in a selected cut in the y = 0 plane in Fig. 14.
As the wire passes through the vortex, it leaves behind a wake. The waves reach the limit of the
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FIG. 14. Vorticity magnitude |ω| at the y = 0 midplane evolution and t�/D2 = 400 for a simulation in the
weak vortex regime at IP = 0.25 with Re� = 1000 (left) and with Re� = 3000 (right).

computational domain around t�/D2 = 400. The primary vortex reconstitutes itself, even if vortex
loops are seen to detach from it, especially at high Reynolds number. The resulting distribution
of vorticity is different from the original Gaussian, as it is now concentrated in a thin sheet and
displaced to the right by a few vortex cores. Despite this, a comparison of the initial and final
circulation of the vortex for Re� = 1000 reveals only a 5% loss throughout the entire process,
while at Re� = 3000 the core has lost 15% of its original circulation, very likely to the small-scale
structures which arise and dissipate. This showcases the vortex’s ability to withstand the interaction
significantly better than the case at IP = 0.05, which suffered a 75% loss of its original circulation
at Re� = 1000 and was not significantly detectable at Re� = 3000.

The loss of circulation after the interaction has taken place (� f ) can be quantified for all cases at
Re� = 1000. Figure 15 shows � f /�0, �0 being the original circulation of the vortex. The amount of
circulation in the vortex by the end of the interaction monotonically increases with IP in the range
studied. We note that this trend cannot persist, as the circulation must saturate at � f ≈ �0 at higher
values of IP, as it is not expected that the wire imparts additional circulation to the vortex.

From these findings, it becomes evident that the primary control parameter in BVI is the
impact parameter IP. Varying the Reynolds number results in vorticity intensification and amplified
distortion along the primary vortex, driven by either secondary vorticity or wave propagation. Also,
at the later stages finer flow structures and turbulent clouds appear at higher Reynolds number,
due to the increased instability of the vortices. However, these alterations do not significantly
impact the fundamental collision features, at least up to Re� = 3000. Furthermore, our simulations

FIG. 15. Loss of circulation during the interaction quantified as the ratio between final and initial circula-
tions as a function of IP for the four cases simulated at Re� = 1000.
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FIG. 16. Left: Pressure coefficient along the cylinder for Re� = 1000, IP = 0.25 at time t�/D2 = 160.
Middle: Force coefficient along the cylinder axis for the same case. Left: Evolution of drag coefficient with
time for the full cylinder (orange) and half the cylinder (blue).

successfully reproduce and provide reasoning for most experimental outcomes, demonstrating that
even in the absence of turbulence, the phenomenology of weak and strong BVI can be faithfully
replicated.

IV. FORCES ON THE WIRE

A. Initial remarks

This section discusses an area which is much less analyzed in BVI: measurement of the force on
the cylinder. However, an adequate definition of the force is not simple. Two things have to be taken
into account: first, the force coming from BVI is a deviation from a constant drag which resists the
movement of the cylinder at a constant velocity in a quiescent flow. Second, this deviation will be
localized to the point of interaction, and if the forces for a quasi-infinite cylinder or blade undergoing
BVI are added up, they would be approximately the same for those where there is no BVI, as the
constant drag would overwhelm the forces from BVI.

To elaborate on this, the left panel of Fig. 16 shows the force coefficient distribution Cf ,x =
fx/( 1

2ρ[�/σ ]2) on the cylinder for the weak vortex case (IP = 0.25, Re� = 1000) before the
cylinder has reached the vortex core. We note that this representation is highly distorted as the
cylinder is very long. However, it is useful to note a few things. First, the distribution is sym-
metric around θ = 0, which corresponds to the leading edge of the cylinder. This is a natural
product of the symmetry of the system. Second, while the region of strongest interaction is
closely localized to the impact point, as could be expected, the return to asymptotic values is
rather slow. Finally, a rather small region of the cylinder sees an overall force in the direction
of motion of motion of the cylinder (Cf ,x > 0). This is due to the fact that locally the flow
direction can be reversed when the velocity induced due to the vortex is larger than the cylinder
motion.

These results are emphasized in the middle panel of Fig. 16, which shows the force on
the cylinder along its axis Cf (z). The baseline case where no vortex is present is shown as
a solid line. The forces can be seen to be somewhat symmetrical around z = 0, i.e., the col-
lision point. The overall force again shows positive values, coincident with regions where the
velocity the cylinder sees is reversed. Finally, a long tail decay is observed: the forces do not
return to the baseline case even at the edges of the cylinder. We note that the simulations yield
qualitatively similar curves to those presented in the simplified models of Ref. [23], with the
presence of a suction peaks and regions of increased pressure. However, comparison is diffi-
cult due to the simplifying assumptions made of the flow and the different parameter regimes
investigated.

As a final step, the average drag coefficient can be calculated. If the entire extent of the cylinder
is used, a value of CF = 0.449 is obtained. If the cylinder half closest to the vortex is used, and
the two quarters close to the edges are discarded, a value of CF = 0.428 is obtained. While both
values are almost indistinguishable from the baseline value of CF = 0.436, one deviates upwards
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FIG. 17. Force coefficient along the cylinder axis at several time instances. Left column is cases at IP =
0.05, while right column is cases at IP = 0.25. Top row is at Re� = 1000, while bottom row is at Re� = 3000.
Symbols: left column (IP = 0.05), light to dark: t�/D2 = 700 (light red), 1100 (dark red), 1500 (black), 1900
(dark blue), and 2300 (blue). Right column (IP = 0.25): t�/D2 = 160 (light red), 200 (dark red), 240 (black),
280 (dark blue), and 320 (light blue). The horizontal thin line represents the baseline value.

and the other downwards. These problems of adequately calculating CF are showcased in the right
panel of Fig. 16, which shows the time evolution of CF calculated using the full cylinder and half the
cylinder. Both values show similar trends of increasing and decreasing during stages of the collision.
However, they can be either above or below the baseline value depending on the cylinder segment
considered for calculation. In any case, the deviations are mild and reach only a maximum of 20%
drag increase for the half-cylinder calculation. We also note that some small oscillations are present
in the force calculation, which have a frequency close to the natural frequency of the cylinder D/V .

Due to the problems of adequately defining CF , we choose not to represent it for other cases and
will show only the evolution of Cf (z) for a few select cases below.

B. Results

In this section Cf (z) is calculated for a few selected time instants for four characteristic cases.
These are two cases for each of the strong (IP = 0.05) and weak (IP = 0.25) vortex regimes, at the
two Reynolds numbers simulated. These are shown in Fig. 17.

The discussion starts with the case with IP = 0.05 and Re� = 1000. The curves are relatively
similar to those shown in the previous subsection. The curves deviate from the baseline value, and
they are roughly antisymmetrical around the collision point z = 0. The deviations increase as the
cylinder approaches the vortex, but they reach a maximum at distinct times: the peak force inversion
(Cf > 0) happens earlier than the peak suction (Cf < 0). In the same manner, the values in the force
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inversion side return to the baseline values earlier than in the suction side. This is probably due to
the fact that the cylinder boundary layer is being lifted up earlier from the force inversion side, so
the interaction happens first on this half of the cylinder. Finally, the deviations from the baseline
value are much more significant in this case: after all, the vortex is strong. This means that it will
create forces on the cylinder which are much larger than those originating solely from the ordinary
drag force.

Turning to the case with IP = 0.25 and Re� = 1000, the behavior of the force has some
similarities but also some differences when compared to the earlier case. The main difference is that
the forces in the regions of large positive Cf fluctuate much less: it attains a maximum value and
remains close to that maximum value for most of the interaction. This suggests a probable absence
of significant boundary layer liftoff. On the cylinder half experiencing force reversal, temporal
variations are more pronounced yet localized due to the weaker vortex. In essence, little more can
be extrapolated from these observations.

Finally, the bottom panels of Fig. 17 show the Reynolds number dependence of the force, which
can be contrasted to the top row. There is a relatively weak dependence of behavior on Reynolds
number. The primary difference lies in the smaller baseline values of CF , yet both curves exhibit
analogous behavior. Close to the impact point, spatial oscillations in Cf (z) become more discernible,
likely owing to the influence of smaller and more intense vortical structures on the cylinder.

In essence, our investigation into the forces on the cylinder reveals that while locally BVI can
generate substantial forces, especially within the strong vortex regime, these forces tend to average
out across the cylinder halves facing either positive or negative vortex velocities. Consequently, the
average force remains relatively consistent.

V. SUMMARY AND CONCLUSIONS

Results from direct numerical simulations of normal body-vortex interaction using a thin cylinder
have been presented. The focus was on the transition and the differences in the weak and strong
vortex regimes. Three findings were reported:

(1) The simulations confirm that the transition between weak and strong vortex regimes is a
smooth transition controlled by IP and primarily driven by the capacity of the cylinder’s boundary
layer to detach and wrap around the primary vortex before impact takes place.

(2) In the strong vortex regime, this detached, or secondary, vorticity propagates along the
vortex’s axis, interacting with it and heavily debilitating it, with the result that by the end of the
interaction the vortex has almost dissipated.

(3) In the weak vortex regime, the cylinder interacts only with the vortex once the body reaches
the tube. It then deforms it, propagating waves along the axis. The behavior of the waves was
significantly different from those observed when axial flow is present [17].

The Reynolds number dependence of the flow was also investigated by simulating two cases
at Re� = 3000. The effect of Re� on the system was reflected in two aspects: at higher Re� the
boundary layers are thinner and have more vorticity, and vortices are more unstable and prone to
breaking down. Three main results were found:

(1) In the strong vortex regime, qualitative differences in the flow can be seen before the impact
of the cylinder. The secondary vorticity, which is now concentrated in smaller and more intense
structures, has a stronger interaction with the primary tube leading to more deformations in the neck
area. These differences are absent from the weak vortex regime due to the reduced importance of
secondary vorticity originating from the boundary layer in the early stages of the interaction.

(2) In the weak vortex regime, the stretching and necking of the primary vortex due to the
cylinder forcing oppositely signed vorticity close to it is enhanced. However, this does not result
in significantly different outcomes.

(3) After the interaction, the vortex remnants tend to break down rather than recompose again
into a primary tube. The simulations indicate that even in the absence of background perturbations,
the flow left behind the cylinder will be turbulent.
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FIG. 18. Vorticity magnitude for the IP = 0.25 and Re� = 3000 case at t�2/D = 220 and z = 0 (top), at
t�2/D = 220 and y = 0 (middle) and at t�2/D = 400 and y = 0 (bottom). The left, middle, and right columns
show the coarse, medium, and fine resolutions, respectively.

The results presented in this manuscript qualitatively reproduce existing experimental data
[17,22] when the presence of axial flow is not important. The simulations also confirm that the
adequate modeling of the boundary layer is necessary to capture the intricacies of the strong vortex
regime.

The distribution of pressure forces on the cylinder was also reported. The results show local
deviations from the baseline value (considered as the one where no vortex is present), which are
concentrated around the impact point. The deviations are large, to the point that the force can locally
reverse direction, with the cylinder feeling a force in the direction of the motion. However, in general
the forces average out on both sides of the interaction, and the integrated force coefficients are very
similar to the baseline value.

As the introduction stated, the starting point of the study was on “cutting” vortex lines. However,
these simulations showed that the phenomenology is much more complicated, especially for the
strong vortex case, and that the interaction deviates from what one could expect from ideal vortex
models. While the scope of the paper has been restricted to normal BVI, with minor modifications
the code could be extended to simulating parallel and grazing BVI, and regimes in between. Another
possible extension of this work is the question of what happens when a vortex ring and not a vortex
tube is cut. Very few studies of cutting a vortex ring with a wire have been made [4]. Structures such
as “elephant ears” have been reported, which to our knowledge have not been related in the wider
literature on BVI.
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FIG. 19. Force coefficient at t�2/D = 220 for the IP = 0.25 and Re� = 3000 case for the three grids. A
horizontal line shows the baseline value when no vortex is present. Symbols: blue, coarse grid; orange, medium
grid; green, fine grid.
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APPENDIX: GRID DEPENDENCE STUDIES

To assess the adequateness of the grid, two additional simulations of the case with IP = 0.25
and Re� = 3000 were conducted with coarse and fine grids. These parameters were chosen as this
simulation case was the most unfavorable as the cylinder Reynolds number was highest (Rec =
113), so it provides an upper limit for the problems with the grid. The coarse grid is obtain by
halving the resolution in each spatial direction, i.e., 312 × 312 × 936 points, while the fine grid is
obtained by increasing the resolution by a factor 1.5× in every direction, i.e., 936 × 936 × 2808.

Figure 18 shows the vorticity magnitude for the three grids alongside two plane cuts. The first
two rows show the variable at t�2/D = 220: this time instant was chosen because it is close to peak
dissipation, the tube has been stretched and displaced, and vorticity has intensified, which makes it
challenging to resolve. Cuts are shown for both z = 0, i.e., across the wire, and y = 0, i.e., across the
vortex core. Clear signatures of underresolution can be seen for the coarse mesh: there are marks of
numerical dispersion behind the cylinder in the top-left panel, as well as deformations in the vortex
core not seen for the medium and fine grids. While some differences to appear between the medium
and fine grids, they are not as significant. This can be quantified by measuring the total circulation
in the vortex cores shown in the right column: the coarse grid has a circulation which is 25% lower
than the medium grid, while the fine grid has a circulation which is 2% higher than the medium grid.
This confirms our assessment that the medium grid can be considered is adequate to within 2%, but
that further coarsening gives results which are inaccurate due to numerical dispersion.

Finally, the bottom row shows the vorticity magnitude at t�2/D = 400 through the y = 0 plane.
This is after the interaction has finished, so the differences between cases should be maximum.
Once again, the medium and fine grids show similarities, while the coarse grid shows a pic-
ture that is somewhat similar to the other two grids, yet with vorticity concentrated in different
points.

A further check was conducted by assessing the variation in the force on the wire. Figure 19
shows Cf (z) at the same time instant for the three meshes. Again, differences can be seen between
the three cases, but the difference between the coarse grid and the medium and fine grids is much
larger than the difference between medium and fine grids. The integrated force coefficients are
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CF = 0.24, CF = 0.31, and CF = 0.33 for the coarse, medium, and fine grids, respectively. This
shows that the quantities on the wire are slightly more sensitive than the vorticity statistics. However,
the curves all show similar phenomenology, with a strong suction peak, and a strong increase
close to the vortex core. Hence, we do not expect the results from the medium mesh to miss any
important physics, while the coarse mesh shows Cf dropping below the baseline value, questioning
its use.

To summarize, the medium mesh shows small discrepancies when compared to a finer mesh,
especially when measuring the force on the wire. However, the overall phenomenology is well
captured, unlike what is seen for the coarser mesh, where the flow topology is changed. We also
reiterate that this is the most unfavourable instance, and yet the medium grid is able to produce
reasonable results with a much lower computational cost.
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