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Mean temperature scalings in compressible wall turbulence
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In the present study, we report a Mach number invariant function (φS) for the mean tem-
perature field in compressible wall turbulence. We demonstrate its validation by comparing
it with the invariant functions derived in the previous studies—the semilocal-type (φSL) and
van Driest-type (φV D) scalings—case by case. To be specific, φSL works well in the inner
layer of compressible channel flows with isothermal walls; φS works well in the inner layer
of compressible channel flows with adiabatic walls, and supersonic/hypersonic turbulent
boundary layers with cold walls; and φV D does not work the best among all three functions
in the flows under consideration. The proposed temperature transformations based on φS

show an improvement in channel flows over adiabatic walls and supersonic/hypersonic
turbulent boundary layers with cold walls. The effects of the generated high-order terms
during derivation are also clarified. These findings may be revealing for the development
of the near-wall model in high-speed aerodynamics.
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I. INTRODUCTION

It is well known that one of the most important properties of incompressible wall turbulence is
the law of the wall. The distributions of the mean streamwise velocities of high-Reynolds-number
wall-bounded turbulent flows versus the wall-normal coordinate (y) exhibit nearly universal wall-
normal profiles when they are scaled with the wall quantities (denoted by a superscript plus sign,
and the variables scaled by the semilocal scales are denoted by a superscript asterisk) and form the
so-called log region. Inspired by the Reynolds analogy, the mean temperature profiles in low-speed
turbulent boundary layers are also discovered to exhibit the logarithmic scaling [1], which takes
the form

θ̄

θτ

= 1

κt
ln(y+) + B, (1)

where θ = T − T w, i.e., the difference between the temperature at a given wall-normal position and
the mean wall temperature, κt is a constant and roughly equivalent to 0.459 [2], B is another constant
determined by the Prandtl number Pr, and θτ = q̄w/(ρ̄wcpuτ ) with qw, ρw, uτ , and cp being the
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heat flux on the wall (λ d θ̄
dy |w, λ is the molecular conductivity), the fluid density on the wall, the wall

friction velocity, and the specific heat at constant pressure, respectively. However, when high-speed
flows are taken into account, the situation is more complicated [3–5]. First, the compressibility
leads to the remarkable viscous heating in the boundary layer, which results in the modification
of the Reynolds analogy. As a result, the scaling (1) is not valid. Second, for compressible
flows over adiabatic walls, θτ cannot be mathematically defined, and thus Eq. (1) also faces
a challenge.

Inspired by the Morkovin’s hypothesis [6], numerous studies have been dedicated to developing
a transformation to map the compressible mean streamwise velocity profiles to their incompressible
counterparts and recovering the law of the wall, and thus continued progress has been made in
return [7–14]. As for the temperature scaling, however, far less attention has been paid. Patel
et al. [15] proposed a flow-property independent function for the mean scalar field in variable
property turbulent channel flows at low Mach numbers, which can be employed to construct a
transformation scheme. However, the non-negligible viscous heating in high-speed flows results
in the invalidation of such a scheme [16]. Very recently, Chen et al. [17] derived two kinds
of mean temperature transformations for high-speed flows over the isothermal and adiabatic
walls with monotonic temperature distributions, by following the logic of the established velocity
transformations deduced by van Driest [7] and Trettel and Larsson [9], respectively (for details
refer to Sec. II). These two schemes are validated by their self-built database of the Couette
flows and named the van Driest-type and semilocal-type transformations, respectively. However,
the accuracies of these schemes in different zones of boundary layers with distinct wall ther-
mal boundary conditions have not been scrutinized. This is one of the objectives of the present
work.

On the other hand, it is documented that both of these two types of velocity transformations
do not work well in some cases. To be specific, in diabatic boundary layers and channel flows,
the van Driest-type scaling cannot recover the incompressible law of the wall [9,12]. Similarly, the
semilocal-type scaling fails in the log region of the boundary layers with heat transfer [12,18,19].
Would the corresponding transformations for mean temperature field fail under some circum-
stances? It motivates us to take a new look at the transformations related to the temperature field.
Intrinsically, developing such transformations for both mean velocity and temperature fields is
equivalent to uncovering the Mach number invariant functions in different regions of the turbulent
boundary layers [10,12]. Hence, in the present study, we will evaluate the corresponding Mach
invariant functions (semilocal type and van Driest type) for the temperature field by resorting to the
open-source data from direct numerical simulations (DNS) with various Mach numbers and wall
thermal boundary conditions extensively. We will also propose a Mach number invariant function
for the log region of the flows and construct temperature transformations based on it. The current
study not only can deepen our understanding of the basic characteristics of compressible wall turbu-
lence, but also is of unique significance for near-wall modeling. Though simple algebraic relations
connecting the mean velocity and temperature in compressible flow have been developed, such as
the Crocco-Busemann formula and its modified versions [20–24], their employment for modeling
purposes is impeded by one factor, namely, it requires as input the velocity and temperature at
the boundary-layer edge due to its requirement of recovery temperature and edge velocity. For the
complex flows, it is rather difficult to determine the boundary edge, and extra approaches have to
be developed to estimate the values at the boundary-layer edge [25,26]. There is no doubt that
it enhances the complexity of the model. Additionally, in a standard wall-modeled large-eddy
simulation, the velocity and temperature in the log region are often treated as the inputs for a
near-wall model [3,4,27]. Thus, uncovering the scaling of the mean temperature in the inner layer of
compressible wall turbulence is beneficial for developing such a near-wall model for the temperature
field, which is independent of the values of the velocity and temperature at the boundary-layer
edge.
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II. MACH NUMBER INVARIANT FUNCTIONS

Before exhibiting the results of the present study, it is of significance to state our perspective on
turbulence modeling. That is, it is necessary to maintain the conciseness of the scalings. In light
of this, we try to avoid the involvement of the high-order terms in deducing the mean temperature
scalings. On the one hand, some existing open-source data do not contain these statistics, thus
providing difficulties for in-depth investigation of their relationship with the mean temperature. On
the other hand, more importantly, reserving these high-order terms impairs the conciseness of the
scalings and is not beneficial for turbulence modeling. However, as we show below, for several
cases, the abandonment of some high-order correlations would have non-negligible effects on the
accuracy of the deduced scalings. We will clarify them as much as possible.

Let us start with the total energy equation. Both the Reynolds (denoted as φ̄) and the Favre aver-
aged (denoted as φ̃ = ρφ/ρ) statistics are used in the present study. The corresponding fluctuating
components are represented as φ′ and φ′′, respectively. Assuming that the flow is statistically steady,
the two-dimensional energy equation can be cast as [28,29]

∂ (ρ̄H̃ ũ)

∂x
+ ∂ (ρ̄H̃ ṽ)

∂y
= ∂

∂x
(q̄x − ρH ′′u′′ + uτxx + vτyx ) + ∂

∂y
(q̄y − ρH ′′v′′ + uτxy + vτyy), (2)

where u, v, and H represent the instantaneous streamwise velocity, the wall-normal velocity, and
the total enthalpy (H = cpT + 1

2 u2), respectively, and τi j , qx and qy are the viscous stress tensor,
the streamwise heat flux, and the wall-normal heat flux, respectively. To simplify Eq. (2), we follow
Cebeci [28] to conduct the dimension analysis, and the details are reported in the Appendix. It is
noted that Cebeci [28] and Younes [29] have already deduced the boundary-layer approximation of
Eq. (2), thus we directly introduce it here. This simplified version takes the form of

∂

∂y
(q̄y − ρH ′′v′′ + uτxy) = 0. (3)

Integrating Eq. (3) along the whole boundary layer yields

q̄y − ρH ′′v′′ + uτxy = q̄w. (4)

Considering the definition of H , its fluctuating component can be deduced as

H ′′ = cpT ′′ + 1

2
u′′2 + ũu′′. (5)

Hence the second term on the left-hand side of Eq. (4) can be expanded as

ρH ′′v′′ = cpρv′′T ′′ + ρ
1

2
u′′2v′′ + ρũu′′v′′, (6)

and Eq. (4) can be recast as

qy − cpρv′′T ′′ = qw − uτxy + ρ
1

2
u′′2v′′ + ρũu′′v′′. (7)

Notably, the second term on the right-hand side of Eq. (6) is a third-order correlation, which can be
conjectured to be smaller than the other two terms. In addition, the third term on the right-hand side
of Eq. (6) can be approximated by its leading term,

ρũu′′v′′ ≈ ũρu′′v′′. (8)

The last term on the left-hand side of Eq. (4) can also be approximated by its dominant term,

uτxy ≈ ũμ̄
dũ

dy
, (9)
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where μ̄ denotes the mean dynamic viscosity. Accordingly, Eq. (7) can be rearranged as

q̄y − cpρv′′T ′′ + ũ

(
− ρu′′v′′ + μ̄

dũ

dy

)
= q̄w. (10)

We notice that the constant-stress layer approximation,

−ρu′′v′′ + μ̄
dũ

dy
= τw, (11)

can be employed to further simplify the formula. τw represents the mean wall shear stress. The
constant-stress relationship is validated in the inner layer (y/h � 1) of high-Reynolds-number flows
extensively, and frequently unitized for modeling purposes [9,28,30]. h denotes the channel half-
height or the boundary layer thickness. It follows that Eq. (10) can be rewritten as

qy − cpρv′′T ′′ = qw − ũτ̄w. (12)

To simplify the derivation, we further define the eddy thermal diffusivity as αt = −ρv′′θ ′′/( d θ̄
dy )

and the semilocal friction Reynolds number as Re∗
τ = Reτ

√
(ρ̄/ρ̄w )/(μ̄/μ̄w ). Equation (12) can be

rearranged as (
αt

μ̄
+ 1

Pr

)
h

Re∗
τ

√
ρ̄+ d θ̄+

dy︸ ︷︷ ︸
ψ1

= 1 − ũτ̄w

q̄w︸︷︷︸
ψ2

. (13)

ψ2 is reported to be representative of the intensity of the aerodynamic heating [16] and ignored
by Patel et al. [15] in their deduction [other terms are same as Eq. (13)], because they considered
only the low-speed channel flows with the variable property. Under this condition, Patel et al. [15]
pointed out that at a given Pr, ψ1 is only a function of y∗, regardless of the flow property. In other
words, ψ1(y∗) is a function which is independent of the flow property. It indicates that the function

ψ3(y∗) = αt

μ̄
+ 1

Pr
(14)

is also independent of the flow property when Pr is given. To account for the aerodynamic-heating
effects in high-speed flow, and maintain the invariant of ψ3(y∗) simultaneously, it can be directly
conjectured that the function

φSL(y∗) =
h

Re∗
τ

√
ρ̄+ d θ̄+

dy

1 − ũτ̄w

qw

(15)

is Mach number invariant. Integrating φSL with respect to y∗ yields the semilocal-type transforma-
tion put forward by Chen et al. [17] recently (denoted as θ+

SL hereafter). Though the derivation
of their transformation is different from that of the present study and also includes high-order
terms. They claimed that this transformation can recover a compressible temperature profile to an
incompressible one.

On the other hand, by analogy with the velocity transformation developed by van Driest [7], a
similar Mach number invariant function can be built:

φV D(y+) =
√

ρ̄+ d θ̄+
dy+

1 − ũτ̄w

qw

. (16)

According to Eq. (13), it suggests that the function

ψ4(y+) =
(

αt

μ̄
+ 1

Pr

)
h

Re∗
τ

dy+

dy
=

(
αt

μ̄
+ 1

Pr

)
Reτ

Re∗
τ

(17)
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is Mach invariant with respect to y+ when Pr is given. Integrating φV D with respect to y+ obtains
another temperature transformation (denoted as θ+

V D hereafter), which is named the van Driest-type
scaling by Chen et al. [17]. It is noted that φV D and φSL are considered as invariant functions for the
whole inner layer by Chen et al. [17]. However, a detailed comparison has not been conducted.

When inspecting the invariants of φSL and φV D with the DNS database, we observe that they
would be inaccurate in some cases (see the results shown in Sec. IV). It motivates us to look for other
Mach number invariant functions. To construct an invariant function for the mean temperature field,
it should be emphasized that several constraints and experience ought to be obeyed and followed.
First, the van Driest-type differentiation,

√
ρ̄+d θ̄+ (for mean velocity, that is

√
ρ̄+dū+), should

be kept to account for the density variation; second, the semilocal scaling should be utilized to
diminish the Mach number effects in the inner layer, which has been demonstrated extensively in
previous studies [9,12,31]; third, the term ψ2 should be included in the function to elucidate the
aerodynamic-heating effects. It manifests as the inclusion of ψ2 in the denominators of Eq. (15) and
Eq. (16). Based on the above understanding, we hypothesize that a function,

φS (y∗) =
√

ρ̄+ d θ̄+
dy∗

1 − ũτ̄w

qw

, (18)

is Mach number invariant with respect to y∗ in the log region. If this is true, it implies that the
function

ψ5(y∗) =
(

αt

μ̄
+ 1

Pr

)
h

Re∗
τ

dy∗

dy
=

(
αt

μ̄
+ 1

Pr

)(
1 + y

Re∗
τ

dRe∗
τ

dy

)
(19)

is Mach invariant with respect to y∗ when Pr is given. We notice that Younes and Hickey [14]
reported the Mach number invariant of

√
ρ̄+du+/dy∗ in the log layer very recently. They pointed

out that this function denotes a semilocal normalized mean spanwise vorticity, which can account
for the property variations in the log region. Considering the similarities between the velocity and
temperature fields [1,32–35], it is reasonable to hypothesize that φS , which also accounts for the
aerodynamic-heating effects, is a Mach number invariant function for the mean temperature field in
the log region.

It should be noted that the original formulas of φV D, φSL, and φS are singular for an adiabatic
wall because θ+ cannot be mathematically defined. This problem can be overcome by expanding
the definition of θτ . In this way, their alternative formulas can be given as

φSL(y∗) =
√

ρ̄+ρ̄wcpuτ

qw − ũτ̄w

h

Re∗
τ

d θ̄

dy
, (20)

φV D(y+) =
√

ρ̄+ρ̄wcpuτ

qw − ũτ̄w

d θ̄

dy+ , (21)

φS (y∗) =
√

ρ̄+ρ̄wcpuτ

qw − ũτ̄w

d θ̄

dy∗ , (22)

where θτ is not involved.
Let us summarize the assumptions and hypotheses related to the above discussion. They are listed

as follows:
(1) The constant-stress layer approximation (11)
(2) The neglect of the high-order terms when deducing Eq. (8), Eq. (9), and Eq. (10)
(3) The invariants of the functions ψ3, ψ4, and ψ5.
The first approximation has been validated extensively, as we mentioned above. As a sanity

check, we define the function

�1 =
−ρu′′v′′ + μ̄ dũ

dy

τ̄w

(23)
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to verify it. �1 ≈ 1 in the inner layer indicates the validation of this simplification. We can assess
the validation of Eq. (12) within the inner layer to justify the second assumption indirectly. To this
end, we define the function

�2 = qw − ũτ̄w

qy − cpρv′′T ′′ . (24)

If �2 ≈ 1 in the inner layer, it suggests that the second assumption is acceptable. Moreover, Eq. (9)
can be directly examined for some cases, because several open-source data contain the related
statistics. Hence, we define the function

�3 =
ũμ̄ dũ

dy

uτxy
. (25)

For the third hypothesis, we will also appraise it in the next section. It should be acknowledged that
the invariants of these specific functions can not be justified mathematically for now. Hence, in the
present study, we decide to do it in a heuristic way by exploiting the DNS database extensively.
Such a model of research is consistent with those of Patel et al. [10] and Patel et al. [15], who
put forward the semilocal-type transformations for the mean velocity and scalar fields in low-speed
channel flows with variable property successfully.

Finally, it is worth noting that the ignoring of the high-order terms is observed to bear non-
negligible effects on the accuracy of the deduced scalings for some cases; see Sec. III. In light of
this, it is necessary to give the complete form of the governing equation of the mean temperature
for comparison: (

αt

μ̄
+ 1

Pr

)
h

Re∗
τ

√
ρ̄+ d θ̄+

dy
= 1 − ψ6

q̄w

, (26)

where

ψ6 = uτxy − ρ
1

2
u′′2v′′ − ρũu′′v′′. (27)

In Eq. (13), ψ6 is modeled as ũτ̄w. If the third assumption above is valid, the modified versions of
φSL, φV D, and φS read as

φSL,m(y∗) =
h

Re∗
τ

√
ρ̄+ d θ̄+

dy

1 − ψ6

qw

, (28)

φV D,m(y+) =
√

ρ̄+ d θ̄+
dy+

1 − ψ6

qw

, (29)

φS,m(y∗) =
√

ρ̄+ d θ̄+
dy∗

1 − ψ6

qw

. (30)

The corresponding temperature transformations (θ+
SL,m, θ+

V D,m, θ+
S,m) can also be defined and not

shown here for brevity. We will appraise the results of the simplification Eq. (13) by comparing
with those of Eq. (26) frequently, and ascertain the terms that cannot be ignored or modeled.

III. DATA DESCRIPTION AND ASSUMPTIONS VERIFICATION

In this section, we will briefly introduce the open-source DNS database used in the present study
to appraise the three Mach number invariant functions of the mean temperature field mentioned
above and verify the associated assumptions in Sec. II. All these simulations are carried out with
a constant Pr within 0.7 to 0.72. The mean temperature statistics obtained in an incompressible
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FIG. 1. (a)–(c) Distributions of �: uτxy
+; ©: ρ 1

2 u′′2v′′+; �: ρũu′′v′′+ in a compressible turbulent channel
flow with (a) isothermal, (b) adiabatic walls, and (c) supersonic/hypersonic turbulent boundary layers with

cold walls [18,37]; (d)–(f) distributions of the ratio between ρ 1
2 u′′2v′′+ and the sum of uτxy

+ and ρũu′′v′′+ in
a compressible turbulent channel flow with (d) isothermal, (e) adiabatic walls, and (f) supersonic/hypersonic
turbulent boundary layers with cold walls. The core Mach number of the channel is 2.0. In panels (c) and (f)
each case is represented by a curve with a particular color.

channel flow with Reτ = 5000 and Pr = 0.71 [36] are used for reference. ũ and ρu′′v′′ are not
provided by some data, and we will adopt the existing ū and ρ̄u′v′ instead. In the present study, the
results of the DNS database are represented by blue lines in the figures if not specified otherwise.

The first type of data is from Lusher and Coleman [37], where the compressible turbulent channel
flows with mixed thermal conditions are simulated (seven cases). The lower walls are isothermal,
and the upper ones are adiabatic. The data cover a wide range of Reynolds numbers with maximal
Mach numbers between 1.1 and 2.2, and a constant Pr = 0.7. The flows over two sides can be
investigated separately to elucidate the effects of the isothermal and adiabatic wall conditions. The
detailed computational setups and the numerical methods can be found in Lusher and Coleman [37].
The statistics of this data set are ample, which are suitable for the verification of the hypotheses put
forward in Sec. II.

The second type of flow considered here is the supersonic/hypersonic turbulent boundary layers
with extensive Mach numbers and wall temperatures. The data are taken from Zhang et al. [18]
and Cogo et al. [38], with Mach number and wall-to-recovery temperature ranging from 2 to 14,
and 0.76 to 0.18, respectively. These cases contain eight cold walls with nonmonotonic temperature
distributions and heat transfer, which provide an excellent platform for examining the Mach number
invariants of these specific functions. Especially, the data of Zhang et al. [18] (four cases with cold
walls) contain rich information. We will appeal to them to verify the assumptions.

First, we compare the magnitude of each term in the right-hand side of Eq. (6) in Fig. 1 to

demonstrate that ignoring the correlation term ρ 1
2 u′′2v′′ is convincing, as only this term is ignored

and not modeled. For the flows over both isothermal and adiabatic walls, the case with the highest
Re∗

τ in the database of Lusher and Coleman [37] is chosen, and the approximation Eq. (8) is used
to estimate ρũu′′v′′. Results are shown in Figs. 1(a) and 1(b). As can be seen, uτxy is dominant in
magnitude in the near-wall region, whereas ρũu′′v′′ is dominant in the log region. By contrast, the

magnitudes of ρ 1
2 u′′2v′′ are negligible. It suggests that for these two types of flows, the ignoring
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FIG. 2. (a)–(c) Distributions of �1 in turbulent channel flows with (a) isothermal walls [37], (b) adiabatic
walls [37], and (c) supersonic/hypersonic turbulent boundary layers with cold walls [18]; (d)–(f) distri-
butions of �2 in turbulent channel flows with (d) isothermal walls [37], (e) adiabatic walls [37], and (f)
supersonic/hypersonic turbulent boundary layers with cold walls [18]. In panel (f) each case is represented
by a curve with a particular color.

of the three-order correlation ρ 1
2 u′′2v′′ is plausible in these two regions. As a result, ψ6 ≈ uτxy −

ρũu′′v′′ ≈ uτxy − ũρu′′v′′ is well established. For supersonic/hypersonic turbulent boundary layers,
the scenario is similar; see Fig. 1(c). It should be noted that we use u′′τ ′′

xy + ūτxy to approximate uτxy

for this kind of flow, due to the lack of the statistics of uτxy in the database of Zhang et al. [18].

In short, for the three types of flows under consideration, the three-order correlation term ρ 1
2 u′′2v′′

can be ignored by and large. To show this point more clearly, Figs. 1(d)–1(f) display the variations

of the ratios between ρ 1
2 u′′2v′′+ and the sum of uτxy

+ and ρũu′′v′′+ for these three types of flows.
One can see that, for each type of flow, the ratio varies abruptly only around y∗ = 11, that is, the
buffer region. It indicates that the three-order correlation is only non-negligible in this small range.
In fact, the results shown in Fig. 12 and Fig. 13 below imply that as long as the accuracies of the
Mach number invariants of the temperature gradient functions in the viscous sublayer and the log
region are settled, the derived transformation is sufficiently accurate. After all, the transformation is
an integral expression, and its effectiveness is dependent on the overall Mach number invariants of
the temperature gradient functions. Hence, we choose to ignore this term.

The constant-stress layer approximation is then examined in Figs. 2(a)–2(c), which display the
distributions of �1 in turbulent channel flows with (a) isothermal and (b) adiabatic walls [37], and
(c) supersonic/hypersonic turbulent boundary layers with cold walls [18]. It can be seen that for
these three different types of flows, �1 ≈ 1 is preserved in the inner layer (y/h < 0.1), and the devi-
ations are typically � 12%. It demonstrates that invoking the constant-stress layer approximation for
the simplification of Eq. (10) is acceptable. Figures 2(d)–2(f) show the variations of �2 as functions
of wall-normal height to check indirectly whether the neglect of the high-order terms is reasonable.
For turbulent channel flows with (d) isothermal and (e) adiabatic walls, �2 ≈ 1 in the whole
inner layer, with a maximum error smaller than 15%. However, the deviations of �2 from 1 are
more significant for flows over adiabatic walls in the near-wall region. For supersonic/hypersonic
turbulent boundary layers with cold walls, the profiles of �2 vary sharply around the extreme points
of the mean temperature profiles (denoted as yc hereafter). It indicates that these assumptions fail
near yc. However, apart from the wall-normal zone adjacent to yc, �2 ≈ 1 is validated in the other
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FIG. 3. Distributions of �3 in turbulent channel flows with (a) isothermal, (b) adiabatic walls, and
(c) supersonic/hypersonic turbulent boundary layers with cold walls [18,37]. In panel (c) each case is
represented by a curve with a particular color.

regions within the inner layer. However, some deviations can still be observed in the near-wall region
and the log region. Figures 3(a)–3(c) display the distributions of �3 in turbulent channel flows with
(a) isothermal, (b) adiabatic walls, and (c) supersonic/hypersonic turbulent boundary layers with
cold walls [18,37]. It can be seen that for these three types of flows, the maximum deviations of
�3 from 1 occur in the vicinity of the wall, where the influences of compressibility are remarkable.
It may underline the fact that the deviations of �2 from 1 shown in Figs. 2(e) and 2(f) are result
from the error in simplification Eq. (9). The ignored high-order terms during this simplification take
effect in the establishment of Eq. (13) in the inner layer.

To further quantify the errors in simplification Eq. (9), a modified version of the test function �2

can be defined as

�2,m = qw − ψ6

qy − cpρv′′T ′′ . (31)

It can be seen that ũτ̄w in the definition of �2 is replaced by ψ6 ≈ uτxy − ρũu′′v′′ in that of �2,m.
Figures 4(a)–4(c) display the distributions of �2,m in turbulent channel flows with (a) isothermal,
(b) adiabatic walls, and (c) supersonic/hypersonic turbulent boundary layers with cold walls by
using the same data as in Figs. 2(d)–2(f) and Figs. 3(a)–3(c). Surprisingly, the errors in the inner
region (y/h < 0.1) are remarkably attenuated for turbulent channel flows with adiabatic walls. The
maximum deviation of �2,m from 1 is less than 5% for this type of flow in the inner region. For
turbulent channel flows with isothermal walls, the improvements are not significant. It suggests
that for channel flows with isothermal walls, Eq. (13) is sufficiently accurate, while for turbulent
channel flows with adiabatic walls, it is not. For supersonic/hypersonic turbulent boundary layers
with cold walls, the errors in the near-wall region also reduced, compared with the results exhibited
in Fig. 2(f). All these observations indicate that the errors of Eq. (13) in the near-wall region

FIG. 4. Distributions of �2,m in turbulent channel flows with (a) isothermal and (b) adiabatic walls
and (c) supersonic/hypersonic turbulent boundary layers with cold walls [18,37]. In panel (c) each case is
represented by a curve with a particular color.
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FIG. 5. (a)–(c) Distributions of (a) ψ3, (b) ψ4, and (c) ψ5 in turbulent channel flows with isothermal walls
[37]; (d)–(f) distributions of (d) ψ3, (e) ψ4, and (f) ψ5 in turbulent channel flows with adiabatic walls [37];
(g)–(i) distributions of (g) ψ3, (h) ψ4, and (i) ψ5 in supersonic/hypersonic turbulent boundary layers with cold
walls [18]. Incompressible channel data of Alcántara-Ávila et al. [36] is shown for reference (black lines).

should be mainly ascribed to the simplification (9), uτxy ≈ ũμ̄ dũ
dy . Furthermore, current analyses also

demonstrate that the simplification (8), ρũu′′v′′ ≈ ũρu′′v′′, is acceptable for all these three types of
flows.

Finally, we assess the Mach number invariants of ψ3, ψ4, and ψ5 in different types of flows.
Figures 5(a)–5(c) show the distributions of ψ3, ψ4, and ψ5 in turbulent channel flows with isothermal
walls [37], respectively. ψ4 of each case deviates from the reference data visibly, whereas ψ3 and ψ5

show reasonable collapses with the incompressible data in the log layer. It signifies that for turbulent
channel flows with isothermal walls, φSL (φSL,m) and φS (φS,m) may be the Mach number invariant
functions in the log layer. Which one is better remains to be checked in Sec. IV. For the viscous
sublayer, only the distributions of ψ3 collapse with the reference one. The counterparts of turbulent
channel flows with adiabatic walls [37] are compared in Figs. 5(d)–5(f). It is not difficult to observe
that the variations of ψ5 are most consistent with that of the reference data in the log region. For the
viscous sublayer, no discernible difference among them can be observed. It verifies the applicability
of the scaling proposed by the present study for this kind of flow. Figures 5(g)–5(i) exhibit the
distributions of ψ3, ψ4, and ψ5 in supersonic/hypersonic turbulent boundary layers with cold walls
[18], respectively. The humps around y+(y∗) ≈ 10–20 in the panels result from the nonmonotonicity
of the mean temperature profiles. The performances of these three functions are utterly distinct. For
both ψ3 and ψ4, they deviate from the reference data evidently within 20 � y+(y∗) � 100, whereas
for ψ5, good collapses are obtained in this range. It indicates that the scaling φS (φS,m) is superior to
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FIG. 6. Distributions of (a) y+φV D,m, (b) y∗φSL,m, and (c) y∗φS,m in the isothermal sides of turbulent channel
flows with mixed thermal conditions [37] (seven cases). All cases are of monotonic temperature distributions.
Incompressible channel data of Alcántara-Ávila et al. [36] with Reτ = 5000 and Pr = 0.71 are shown for
reference (black lines).

the other two functions for supersonic/hypersonic turbulent boundary layers with cold walls in the
log region.

In summary, analyses conducted in this section demonstrate that the assumptions and hypotheses
raised in Sec. II are roughly valid in the inner region for all three types of flows under consideration.
However, the simplification Eq. (9) is not entirely accurate for the near-wall regions of flows over
adiabatic walls and supersonic/hypersonic turbulent boundary layers with cold walls. Furthermore,
the Mach number invariant of ψ5 is compared with those of ψ3 and ψ4. It is worth noting again
that the Mach number invariants of ψ3, ψ4, and ψ5 are closely connected with the properties of
the temperature gradient functions φSL (φSL,m), φV D (φV D,m), and φS (φS,m), respectively. Hence, we
will directly appraise these temperature gradient functions in Sec. IV. To quantify the errors of these
functions, the integrated error of a temperature gradient function can be defined as

ε =
∫ β

α
|φa − φI |dya∫ β

α
φI dya

, (32)

where φa is the temperature gradient function, ya is the nondimensional wall-normal coordinate that
corresponds to a specific gradient function, α and β are the bounds of the integration, and φI denotes
the incompressible reference gradient profile (normalized with respect to wall units) for a channel
flow at Reτ = 5000 [36]. In the following sections, for channel flows with isothermal and adiabatic
walls, we show only the results associated with θ+

SL,m, θ+
V D,m, and θ+

S,m. The reason is given above.
For the database of Cogo et al. [38] of supersonic/hypersonic turbulent boundary layers with cold
walls, we show the results related to θ+

SL, θ+
V D, and θ+

S due to the lack of the statistics of uτxy in the
open-source database, whereas for the database of Zhang et al. [18], we exhibit the results related
to θ+

SL,m, θ+
V D,m, and θ+

S,m.

IV. ASSESSMENT OF MACH NUMBER INVARIANTS OF THE TEMPERATURE
GRADIENT FUNCTIONS

A. Compressible turbulent channel flows with isothermal walls

Figures 6(a)–6(c) show the distributions of y+φV D,m, y∗φSL,m, and y∗φS,m in compressible channel
flows with isothermal walls [37], respectively. By careful comparison, it can be found that only
φSL,m is a Mach number invariant function in the viscous sublayer (y∗ < 5), whereas φV D,m and
φS,m deviate from the reference data remarkably. For the lower part of the log region, 20 < y∗ < 40,
φS,m and φSL,m behave similarly and are roughly close to the incompressible profile, whereas the
distributions of φV D,m are case-dependent. In Fig. 7 the integrated errors of these functions in the
log region are compared with α = 20 and β = 40. The errors of φSL,m and φS,m are very close to
each other in the log region, and significantly lower than those of φV D,m. All in all, φSL,m performs

054610-11



CHENG CHENG AND LIN FU

FIG. 7. Integrated errors of φV D,m, φSL,m, and φS,m with respect to Reτ in the log region for isothermal sides
of turbulent channel flows with mixed thermal conditions [37].

the best in the whole inner layer of this type of flow, φV D,m the worst, and the performance of φS,m

is as good as that of φSL,m in the log region.

B. Compressible turbulent channel flows with adiabatic walls

We concentrate on the seven cases with adiabatic walls in Lusher and Coleman [37] (without
heat transfer, monotonic temperature distributions) herein. The variations of y+φV D,m, y∗φSL,m, and
y∗φS,m with respect to y+ or y∗ for the adiabatic sides are shown in Figs. 8(a)–8(c), respectively.
At first glance, all these functions work well in the inner layer. As the increases of the Reynolds
number, their profiles tend to overlap with that of the reference data. If we look closely and and
quantify the errors of these three functions (see Fig. 9), the performance of φS,m can be observed
to be superior to those of φSL,m and φV D,m for all cases in both the viscous sublayer and the log
region, and its error in the log region is decreased as the increase of the Reynolds number. These
observations suggest that φS,m can be treated as an invariant function in the inner layer of turbulent
channel flows with adiabatic walls indeed. For the calculation of the integrated errors in the viscous
sublayer, α and β are chosen as 0 and 5, respectively. For the log region, they are set as 20 and 60,
respectively.

FIG. 8. Distributions of (a) y+φV D,m, (b) y∗φSL,m, and (c) y∗φS,m in compressible channel flows with
adiabatic walls (without heat transfer) and monotonic temperature distributions [37].
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FIG. 9. Integrated errors of φV D,m, φSL,m, and φS,m with respect to Reτ in the (a) viscous sublayer and the
(b) log region for compressible turbulent channel flows with adiabatic walls [37].

C. Supersonic/hypersonic turbulent boundary layers with cold walls

Figure 10 shows the distributions of y+φV D (y+φV D,m), y∗φSL (y∗φSL,m), and y∗φS (y∗φS,m) in
the [Figs. 10(a)–10(c)] viscous sublayer (four cases) and the [Figs. 10(d)–10(f)] log region (seven
cases). Due to the nonmonotonicity of the mean temperature profiles in wall turbulence with cold
walls, we remove the cases with yc adjacent to the viscous sublayer in Figs. 10(a)–10(c) and the log
region in Figs. 10(d)–10(f), because in the vicinity of the extreme points, some assumptions for the
deduction of the invariant functions are invalid [see Fig. 2(f)], and thus the magnitudes of them alter
sharply.

For φV D (φV D,m), the results are most case-dependent and sensitive to the Mach number and
the wall thermal condition, regardless of the wall-normal location. For φSL (φSL,m), its profiles are

FIG. 10. Distributions of y+φV D (y+φV D,m), y∗φSL (y∗φSL,m), and y∗φS (y∗φS,m) in the (a)–(c) viscous
sublayer (four cases) and the (d)–(f) log region (seven cases) of supersonic/hypersonic turbulent boundary
layers [18,38]. These cases include cold walls with nonmonotonic distributions with heat transfer. Black lines
are the same as Fig. 6.
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FIG. 11. Integrated errors of φV D (φV D,m), φSL (φSL,m), and φS (φS,m) with respect to Reτ in (a) the viscous
sublayer and (b) the log region of supersonic/hypersonic turbulent boundary layers with cold walls [18,38].

roughly consistent with the reference data in the viscous sublayer and deviate from it in the log
region. The profiles of φS (φS,m) of all cases collapse well in the inner region. Figures 11(a) and
11(b) gauge the integrated errors of these three functions in the viscous sublayer (α = 0, β = 5)
and the log region (α = 30, β = 80), respectively. It is transparent that the errors of φS and φSL

are at a similar level in the viscous sublayer. In the log region, the errors of φS are also stable
and small. It is noted that in some cases, the errors of φS are larger than those of φSL and φV D.
This is not strange, because the distributions of φSL and φV D are more spread than those of φS [see
Figs. 10(d)–10(f)]. Finally, it is worth noting that the viscous sublayers of several cases (y∗

c = 0–5)
considered here are not far from the extreme point of the temperature profiles (y∗

c ≈ 9). As a result,
the validation of Mach number invariants of the scalings in this region would be inevitably impacted
by the invalidation of the governing Eqs. (13) and (26) near yc. In light of this, choosing φSL (φSL,m)
or φS (φS,m) as the Mach number invariant function in the viscous sublayer of this type of flow is
only a makeshift choice. Further work should be done on the relationship between the high-order
terms and the mean temperature profile in the viscous sublayer and the buffer layer. On the other
hand, for the log region far from the extreme point, the superiority of φS,m over φV D,m and φSL,m

as a Mach number invariant function is well established; see Fig. 10. The Mach number invariant
functions of mean temperature field presented case by case above are summarized in Table I.

V. TEMPERATURE TRANSFORMATION

To develop an advanced modeling approach, it is essential to derive a temperature transformation
to recover the mean temperature profiles in compressible wall turbulence with various Mach num-
bers and wall thermal conditions into the classical incompressible ones. Upon the above discussion,
for the flows over isothermal walls, it is not difficult to observe that the most effective way is to
deploy φSL,m in the whole inner region, θ+

SL,m(y∗) = ∫
φSL,m dy∗. For compressible channel flows

with adiabatic walls and supersonic/hypersonic turbulent boundary layers with cold walls, the
appropriate transformations are θ+

S,m(y∗) = ∫
φS,m dy∗ (θ+

S (y∗) = ∫
φS dy∗). For those flows above

TABLE I. Mach number invariant functions of mean temperature field in different zones of each type of flow.

Region Isothermal channel Adiabatic channel Cold boundary layer

Viscous sublayer φSL,m φS,m φSL,m, φS,m

Log region φSL,m, φS,m φS,m φS,m
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FIG. 12. Temperature profiles transformed as per the (a) van Driest-type, (b) semilocal-type, and (c) present
φS,m-based-type transformations for the isothermal sides of turbulent channel flows with mixed thermal
conditions [37]. Incompressible temperature profile of Alcántara-Ávila et al. [36] is shown for reference (black
lines).

the cold walls with nonmonotonic temperature profiles, if y∗
c is located in the buffer layer, φS,m (φS)

works well in the viscous sublayer and the log region. Hence, for this circumstance, θ+
S,m (θ+

S ) can
recover the variation tendencies of the incompressible profiles in these two regions, i.e., the slope
of the corresponding incompressible one.

Figures 12(a), 12(b), and 12(c) show the transformed mean temperature velocity profiles by
employing the functions φV D,m, φSL,m, and φS,m for the compressible channel flows with isothermal
walls [37], respectively. It can be seen that the profiles of θ+

V D,m and θ+
S,m are not consistent with the

incompressible one in the inner layer, whereas θ+
SL,m can recover the incompressible counterparts in

the inner layer perfectly.
Figures 13(a), 13(b), and 13(c) display the results of θ+

V D,m, θ+
SL,m, and θ+

S,m for the adiabatic sides
of compressible turbulent channel flows with mixed thermal conditions [37], respectively. It is not
difficult to observe that the performance of θ+

S,m is the best, and their slopes most closely match
the incompressible one. The slight advantage of φS,m over φV D,m and φSL,m in the inner layer (see
Fig. 9) leads to the collapses of the profiles with the incompressible one for high-Reynolds-number
cases. Note that a paper published very recently by Huang et al. [39] also displayed the transformed
profiles of compressible channel flows with adiabatic walls by leveraging the semilocal-type scaling
and using the same database; see Fig. 11(b) of their paper. Even in high Reynolds numbers, the
transformed profiles reported in their study do not match well the reference data in both the viscous
sublayer and the log region. Specifically, the magnitude of the transformed profile of each case is
slightly larger than that of the reference in the viscous sublayer and the log region. The present
study improves their results through clarifying the role of the high-order terms and deploying an
alternative Mach number invariant function, φS,m.

FIG. 13. Temperature profiles transformed as per the (a) van Driest-type, (b) semilocal-type, and (c) φS,m-
based type transformations for the compressible channel flows with adiabatic walls [37]. Black lines are the
same as Fig. 12.
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FIG. 14. Temperature profiles transformed as per the (a) van Driest-type, (b) semilocal-type, and (c) present
φS (φS,m)-based-type transformations for supersonic/hypersonic turbulent boundary layers (namely, the cases
shown in Fig. 10) [18,38] in the (a)–(c) viscous sublayer and the (d)–(f) log region. Black lines are the same as
Fig. 12.

In Fig. 14 we report the results of supersonic/hypersonic turbulent boundary layers [18,38]
for the [Figs. 14(a)–14(c)] viscous sublayer and the [Figs. 14(d)–14(f)] log region separately.
To facilitate comparison, in Figs. 14(a)–14(c), the cases with y∗

c within the viscous sublayer are
eliminated, and the profiles of the compressible cases in Figs. 14(d)–14(f) are shifted to match
the incompressible one at y+ = 50 or y∗ = 50. It can be seen that θ+

SL (θ+
SL,m) and θ+

S (θ+
S,m) are

closer to the incompressible profile in the viscous sublayer than θ+
V D (θ+

V D,m). In the log region, the
performance of θ+

S (θ+
S,m) is the most outstanding. As a side note, there is some scatter from the

reference data in Figs. 14(b) and 14(c) in the upper boundary of the viscous sublayer for θ+
S,L (θ+

SL,m)
and θ+

S (θ+
S,m). This is expected because the temperature distribution in a boundary layer with cold

wall is nonmonotonic.
For modeling purposes, Patel et al. [15] pointed out that a mean temperature profile can be further

transformed into another one based on φT L,

θ+
τ,SL =

∫
φτ,SL dy∗, (33)

where

φτ,SL = φSL
1/Pr + αt/μ̄

1 + αt/μ̄
. (34)

According to Eq. (13), in the vicinity of the wall, θ+
τ = y∗, whereas in the log region, θ+

τ =
κ−1

t ln(y∗) + C (C is a constant, and roughly equivalent to 6.5). This transformation is based on the
Mach number invariant of ψ3, and can diminish the Prandtl-number dependence of the transformed
profile.

Here we propose another transformation of this type based on our proposed function φS:

θ+
τ,S =

∫
φτ,S dy∗, (35)
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FIG. 15. Temperature profiles transformed (a) θ+
τ,SL and (b) θ+

τ,S for compressible channel flows with
adiabatic walls [37].

where

φτ,S = φS,m
1/Pr + αt/μ̄

1 + αt/μ̄
. (36)

According to the discussions above, it can be conjectured that θ+
τ,S would be closer to the prediction

than θ+
τ,SL for compressible channel flows with adiabatic walls. The assertion is validated in Fig. 15,

where θ+
τ,SL and θ+

τ,S of compressible channel flows with adiabatic walls are compared. It can be seen
that θ+

τ,S are closer to the prediction as the increase of the Reynolds number.

VI. CONCLUDING REMARKS AND OUTLOOK

In the present study, we compare the semilocal-type (φSL), van Driest-type (φV D) scalings, and
the invariant function proposed by the present study (φS) associated with the mean temperature field
in compressible wall turbulence case by case. φSL works well in the inner layer of compressible
channel flows with isothermal walls; φS works well in the inner layer of compressible channel flows
with adiabatic walls, and supersonic/hypersonic turbulent boundary layers with cold walls; φV D

does not work the best among all three functions in the flows under consideration. The high-order
terms are shown to influence the scaling in the viscous sublayer of supersonic/hypersonic turbulent
boundary layers with cold walls and channel flows over adiabatic walls. Upon this understanding,
we propose temperature transformations based on φS , which show an improvement in channel flows
over adiabatic walls and supersonic/hypersonic turbulent boundary layers with cold walls.

It can be observed that the temperature field is more challenging to model than the velocity field.
The current study gives some insights into the mean temperature scaling. However, we want to
acknowledge that the current work, as well as the previous ones by other groups, is not perfect.
There are some issues remaining to be settled:

(a) Is there a unified Mach invariant function for all kinds of flows under consideration?
(b) Is there a more general transformation for the flows with nonmonotonic temperature distri-

butions? Especially, how can we model the nonmonotonicity of a temperature profile?
We hope the present study, along with these open questions, can be instructive for near-wall

modeling in high-speed aerodynamics and trigger new studies on this significant topic.
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APPENDIX: DIMENSION ANALYSIS OF EQ. (2)

According to Cebeci [28], the dimensions of the physical quantities appeared in Eq. (2) are

ρ = O(1), u = O(1), v = O(1), H = O(1), T = O(1), h = O(1), ∂/∂x = O(1),

∂/∂y = O
(
h−1

)
, λ = O

(
h2

)
, μ = O

(
h2

)
, ρH ′′ = O(h), ρH ′′u′′ = O(h), ρH ′′v′′ = O(h),

(A1)

where h denotes the boundary layer thickness, and h � 1. Apparently, the left-hand side of Eq. (2)
is O(1). The dimensions of the two terms on the right-hand side can also be estimated by evaluating
each component individually. Only the leading-order component with O(1) is dominant:

∂ q̄x

∂x
= O(h2),

∂ρH ′′u′′

∂x
= O(h),

∂uτxx

∂x
= O(h2),

∂vτyx

∂x
= O(h2),

∂ q̄y

∂y
= O(1),

∂ρH ′′v′′

∂y
= O(1),

∂uτxy

∂y
= O(1),

∂vτyy

∂y
= O(h2). (A2)

Hence, Eq. (2) can be simplified by neglecting the high-order terms, which yields

∂ (ρ̄H̃ ũ)

∂x
+ ∂ (ρ̄H̃ ṽ)

∂y
= ∂

∂y
(q̄y − ρH ′′v′′ + uτxy). (A3)

Equation (A3) can be further simplified by taking no account of the streamwise development of the
boundary layer, and assuming the one-dimensionality of the flow,

∂

∂y
(q̄y − ρH ′′v′′ + uτxy) = 0. (A4)
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