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This paper presents a quadrant analysis of turbulent rotor wakes, placing a particular
emphasis on the self-similarity in single-point turbulent statistics. The self-similarity
analysis reveals that within the wake self-similar region, the distribution of the Reynolds
shear stress −u′v′ and the turbulent kinetic energy k in different quadrants can also attain
a state of self-similarity. The length scaling is the same for −u′v′, k, and their different
quadrant contributions. However, the velocity scaling of the ejection contribution differs
from that of −u′v′ and k. Additionally, the analysis of hole filtering and spectrum filtering
effects on the self-similarity and scaling of the ejection contribution to −u′v′ reveals a
strong connection between ejection events and large-scale coherent structures, as well as
deceleration extreme events. This finding is further confirmed through quadrant analysis of
the time evolution of velocity fluctuations. The present study can be helpful in improving
our understanding of the turbulent wake self-similarity.

DOI: 10.1103/PhysRevFluids.9.054608

I. INTRODUCTION

Numerous studies have demonstrated that turbulent wakes can attain a state of self-
similarity/self-preservation in the far wake region [1–9]. The self-similar state of turbulent wakes
refers to the lateral distribution of single-point turbulent statistics evolving with streamwise distance
while maintaining a geometric similarity [10]. For instance, in the case of the Reynolds shear stress
−u′v′ in axisymmetric turbulent wakes, self-similarity implies that −u′v′(x, r) = Rs(x)g[r/δ(x)],
with the normalized distribution function, g, remaining consistent at different streamwise locations.
Note that the streamwise evolution of the characteristic scales, Rs(x) and δ(x), is often referred to as
the scaling laws [4,5,9]. The self-similarity of turbulent wakes holds both research and engineering
application significance, i.e., prerequisites for the development of an analytical prediction model of
wind turbine wake [11–19].

However, the development of turbulent wake self-similarity theory has been hindered by the
complexities introduced by turbulent energy transport and turbulent dissipation, which are closely
intertwined with the self-similarity and scaling laws of turbulent wakes [1–5,9]. Moreover, the root
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cause of the turbulent wake self-similarity, or in other words, why some wake profiles can reach a
self-similar state is not clear as stated by Vassilicos [20]. It is well known that the Reynolds shear
stress plays a pivotal role in turbulent energy transport. Therefore, an in-depth study of the Reynolds
shear stress and the evolution of its self-similar state can improve our understanding of the physics
underlying turbulent wake self-similarity.

As early as the 1970s, it was found that the Reynolds stress is closely related to the vortex
stretching, as documented in the textbook by Tennekes and Lumley [1]. Subsequently, the work
of Philip and Marusic [21] demonstrated that a random collection of coherent large-scale eddies is
sufficient for describing the first- and second-order turbulence statistics in axisymmetric jets and
wakes. More recently, Chen et al. [22] revealed that when large-scale vortices prevail, the Reynolds
shear stress associated with the coherent motion is a good approximation to the conventional
Reynolds shear stress. Thus, the root cause of the self-similarity of the Reynolds shear stress profiles
or the self-similarity of turbulent wake profiles can be explored via the self-similarity analysis of
large-scale vortices or large-scale coherent structures. Note that the concept of studying flow through
coherent structures is not novel, since about 60 years ago Kühemann [23] described the vortex
motion as “the sinews and muscles of fluid motions.”

To characterize the vortex motions or coherent structures within a flow field, three-dimensional
flow field data are typically needed, which is a straightforward task in numerical simulations.
However, in the context of experimental measurements, which are more feasible for high Reynolds
number flows, acquiring three-dimensional flow field data presents significant challenges. In most
of the scenarios, the available data are limited to single-point velocity measurements, obtained using
instruments such as hot wires, Cobra probes, or anemometers. While deriving coherent structures
from single-point measurements is a nontrivial endeavor, various analytical methods can partially
address this challenge, e.g., spectrum analysis, quadrant analysis, etc.

Quadrant analysis initially conceived and applied fifty years ago by Wallace et al. [24] has gained
widespread adoption in the context of the Reynolds shear stress analysis to study the coherent
structures of shear flows [15,25–28]. Studies have demonstrated that the distribution of Reynolds
shear stress in the ejection quadrant (quadrant two) and sweep quadrant (quadrant four) closely
correlates with the vortex structures [29,30]. Recently Yin et al. [27] identified a similarity in the
profiles of the Reynolds shear stress across different quadrants at various streamwise locations in the
far wake region of an axisymmetric turbulent wake. However, the scaling laws of different quadrant
contributions and the effect of coherent structures across different scales on the self-similarity
characteristics exhibited by the contribution from different quadrants to single-point turbulent
statistics are still unclear.

The Reynolds shear stress plays a pivotal role in understanding turbulent energy transport and
the self-similar state within turbulent wakes. There is a close connection between ejection and
sweep events and the coherent structures. Therefore, the main purpose of this study is to investigate
the self-similarity state of these different quadrant contributions. We also consider the impact of
hole filtering and spectrum filtering to unveil the intricate relationship between contributions from
different quadrants, large-scale coherent structures, and extreme events. Note that the extreme
events, characterized by velocity fluctuations with probability distribution deviating from Gaussian
distributions and exhibiting larger flatness compared to their Gaussian counterparts [31–36], are
closely correlated with intense velocity fluctuations and the Reynolds shear stress.

The remainder of this paper is organized as follows. The experimental data and theoretical
background of quadrant analysis are described in Sec. II. The distribution of the Reynolds shear
stress −u′v′ and the turbulent kinetic energy in each quadrant is then presented in Sec. III. The
self-similarity state of different quadrant contributions are discussed in Sec. IV A. The effect of hole
filtering and spectrum filtering on the self-similarity and scaling laws are presented in Secs. IV B
and IV C, respectively. The time distribution of each quadrant contribution is studied in Sec. V.
Finally, main conclusions are drawn in Sec. VI.
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TABLE I. Key parameters and operation condition of the rotor.

U∞(m/s) D(mm) �(r/min) λ ReD

10.4 65 9700 3.17 4.6 × 104

II. EXPERIMENT SETUP AND THEORY BACKGROUND

A. Experiment setup

The data used in this study are derived from the rotor wake experiments conducted by Xiong
et al. [9]. Note that numerous studies have confirmed the similarity between the rotor wakes and
other canonical axisymmetric wakes in the far wake region [37–42]. Therefore, the findings in the
present study can be extended to other canonical axisymmetric wakes. With detailed information on
the experiment setup available in Ref. [9], in this section, only the key parameters of the experiments
are presented for reference. The experiments were performed in an open circuit wind tunnel with
the test section measuring 450 mm (width) × 430 mm (height) × 2500 mm (length). Uniform
and steady inflow with free-stream velocity U∞ = 10.4 m/s and turbulence intensity below 0.6%
was maintained in all experiments. A two-blade rotor model (GWS/EP − 2510 × 2) with diameter
D = 65 mm was used to simulate the wind turbine rotor wake. The Reynolds number based on the
inflow velocity U∞ and rotor diameter D is ReD = U∞D/ν ≈ 4.6 × 104, where ν is the kinematic
viscosity. According to the study of Chamorro et al. [43] and Xiong et al. [17], the mean velocity and
high-order turbulence statistics of the rotor far wake are independent of the Reynolds number when
ReD is larger than 4.6 × 104. Therefore, the results of this study can provide useful information for
engineering applications, i.e., in enhancing the understanding of the full-scale wind turbine wakes.
Throughout the experiments, the rotor rotation speed � was selected to be � = 9700 r/min, with the
corresponding tip-speed ratio being λ = 0.5 × �D/U∞ ≈ 3.17. The key parameters and operation
conditions of the rotor model are listed in Table I.

Figure 1 illustrates the wake measurements setup in the experiments. A Cartesian coordinate
system (x, y, z) with its origin set at the rotor center is used, where x, y, and z represent the
streamwise, horizontal, and vertical directions, respectively. A Cobra probe Anemometry system
(TFI Series 100, Turbulent Flow Instrumentation), which can measure velocity fluctuations char-
acterized by frequencies lower than 1250 Hz, was used to obtain the three velocity components
u, v, w in the x, y, z directions, respectively. The data were sampled at 5 kHz for a duration of
60 s during the experiments. The lateral measurement region was −2.12 � y/D � 2.12 and the

FIG. 1. Illustration of the experimental setup.
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TABLE II. Key parameters of the measuring/experimental instruments.

Position error Frequency response Flow velocity Flow angle Angle accuracy

�0.1 mm 0 to �2000 Hz 2–100 m/s ±45o cone ±1.0o

streamwise measurement locations were x/D = 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, as shown
in Fig. 1. Some key parameters of the measuring/experimental instruments are listed in Table II.

B. Quadrant analysis

Quadrant analysis, originally conceived and applied by Wallace et al. [24], has been widely
applied to the Reynolds shear stress analysis to study the its relationship with coherent structures
in turbulent wakes [15,25–28]. Based on the direction of velocity fluctuations u′ and v′, quadrant
analysis [29] divides the Reynolds shear stress −u′v′ into four quadrants (Q1–Q4), as illustrated in
Fig. 2. The average contribution of quadrant i to −u′v′ is defined as −u′v′

Qi, which is computed as

−u′v′
Qi = 1

N

N∑
n=1

[−u′v′Ii(u
′, v′)]n, (1)

Ii(u
′,v′) =

{
1, if (u′, v′) in quadrant i
0, otherwise . (2)

According to the above definition, we have u′v′ = u′v′
Q1 + u′v′

Q2 + u′v′
Q3 + u′v′

Q4. The ejec-
tion contribution to −u′v′ (−u′v′

Q2) and sweep contribution to −u′v′ (−u′v′
Q4) are crucial for energy

transport [29], which also can be seen from Fig. 2. For further information, one may refer to Ref. [29]
and the references cited therein.

III. QUADRANT CONTRIBUTION

First, the distribution of the Reynolds shear stress −u′v′ and the turbulent kinetic energy k in
different quadrants is analyzed. The lateral profiles of the quadrant distribution of the Reynolds
shear stress (−u′v′

Qi) are plotted in Fig. 3 for different streamwise locations. It is obvious that the
distribution of the Reynolds shear stress −u′v′ in Q2 (ejection) is predominate, particularly in the
outer part of the wake (≈0.3Lb ∼ 1.0Lb, where Lb denotes the half-width of the wake distribution),
while in the near wake region, Q4 (sweep) also makes a significant contribution in the inner part
of the wake (≈0.0Lb ∼ 0.3Lb). The peak positions of −u′v′

Q2 profiles are situated farther outward
than those of −u′v′, while the peak positions of −u′v′

Q4 profiles are located more inward than those

FIG. 2. Sketch of quadrant distribution for a turbulent wake.
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FIG. 3. Lateral profiles of the Reynolds shear stress −u′v′ and its distribution in four different quadrants
at some streamwise locations: (a) x/D = 3, (b) x/D = 5, (c) x/D = 8, (d) x/D = 12, (e) x/D = 16, and
(f) x/D = 20.

of −u′v′. This observation suggests that high-momentum fluids are transported toward the wake
central region, while low-momentum fluids are transported toward the ambient flow.

Moreover, in the outer part of the wake, −u′v′
Q2 ≈ −u′v′, indicates that −u′v′ can be effectively

represented by its contribution in Q2 in this region. In the central wake region, the absolute value
of −u′v′

Qi is approximately the same for all four quadrants, particularly in the far wake region.
This observation implies that −u′v′ ≈ 0 in the central wake region according to Eq. (1), indicating
a higher degree of isotropic in the turbulence within the central region compared to the outer region
of the wake. This observation aligns with previous findings indicating that large-scale motions are
predominantly founded at the outer edges of the wake, while the central wake region is primarily
characterized by small-scale motions [28,44].

Similar to the definition of the quadrant distribution of the Reynolds shear stress (−u′v′
Qi), we

can define a quadrant distribution of the turbulent kinetic energy k as

kQi = 1

N

N∑
n=1

[
1

2
(u′u′ + v′v′ + w′w′)Ii(u

′, v′)
]

n

. (3)

Figure 4 shows the lateral profiles of kQi at different streamwise locations. From Fig. 4 one
can conclude that the quadrant distribution of k is similar to the quadrant distribution of −u′v′.
Moreover, in the far wake region, despite the peak positions of the lateral profiles of k being located
at the wake center, the peak positions of the lateral profiles of kQ2 and kQ4 are approximately the
same as the peak positions of the lateral profiles of −u′v′

Q2 and −u′v′
Q4, respectively. Note that,

different from −u′v′
Q2 ≈ −u′v′ in the outer part of the wake, kQ2 < k in the outer part of the wake,

since the distribution of k in all four quadrants is positive.
In conclusion, −u′v′

Q2 plays a dominant contribution to −u′v′, and −u′v′
Q2 ≈ −u′v′ in the outer

part of the wake suggests that the momentum transported from ambient flow to the wake region
is primarily due to the ejection events. Moreover, the quadrant distribution of k is similar to the
quadrant distribution of −u′v′, with the peak positions of the lateral profiles of kQ2 and kQ4 aligning
closely with the peak positions of the lateral profiles of −u′v′

Q2 and −u′v′
Q4, respectively.
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FIG. 4. The same as Fig. 3 but for the turbulent kinetic energy k.

IV. SELF-SIMILARITY OF QUADRANT CONTRIBUTION

In this section, the self-similarity of different quadrant contributions of −u′v′ and k will be
analyzed in detail. As demonstrated in Sec. III, ejection events (Q2) make the most contributions
to −u′v′ and k. Given the well-established connection between ejection events and coherent struc-
tures in previous research [29], this section will focus on the self-similar state of ejection events
contribution and its relationship with coherent structures.

A. Self-similarity state of different quadrant contributions

To perform the self-similarity analysis, two different characteristic scales are first defined. For
the lateral profiles of −u′v′, as illustrated in Fig. 5, the characteristic length scale δ is defined as the
distance between the wake center and the peak position of the lateral profile, and the characteristic
velocity scale

√
Rs is defined as the square root of the peak value of the lateral profile. Note that

the definition of the characteristic velocity scale
√

Rs,Qi,
√

Ks, and
√

Ks,Qi for the lateral profiles of
−u′v′

Qi, k, and kQi, respectively, is similar to the definition of the characteristic velocity scale
√

Rs

for the lateral profiles of −u′v′.

FIG. 5. Definition of the characteristic parameters for the Reynolds shear stress −u′v′.
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FIG. 6. Self-similarity in the normalized profiles of (a) −u′v′, (b) −u′v′
Q1, (c) −u′v′

Q2, (d) −u′v′
Q3, and

(e) −u′v′
Q4.

The normalized profiles of −u′v′ and its corresponding quadrant contribution −u′v′
Qi are shown

in Fig. 6. Consistent with our previous research [9], when normalized by δ and Rs, the lateral profiles
of −u′v′ exhibit excellent collapse into a single line in the region x/D � 4. Concerning the quadrant
contributions, the normalized lateral profiles of −u′v′

Q1 and −u′v′
Q4 can also be well collapsed into

a single line in the region x/D � 4, while the normalized lateral profiles of −u′v′
Q2 and −u′v′

Q3

only can be well collapsed into a single line in the region x/D � 14. Note that, even though the
normalized profiles of −u′v′

Q2 do not collapse into a single line in the region 4 � x/D � 14, their
normalized peak positions remain consistent. This implies that despite the difference in velocity
scaling between −u′v′

Q2 and −u′v′, their length scaling remains the same.
Similarly, we can define the corresponding characteristic velocity scale

√
Rs,Qi for the lateral

profiles of −u′v′
Qi, and use Rs,Qi and δ for the normalization. Figures 7(a) and 7(c) show that the

profiles of −u′v′
Q2 and −u′v′

Q3 can be well collapsed into a single line in the region x/D � 4
when normalized by Rs,Qi and δ. Moreover, Fig. 7(b) shows that there is an increase in the ratio
Rs,Q2/Rs in the streamwise direction within the measurement region, although this trend is less
pronounced in the region 14 � x/D � 20. This suggests a growing contribution of ejection events
to the total Reynolds shear stress −u′v′ in this region. To maintain balance, there is also an increase
in the absolute value of the ratio Rs,Q3/Rs in this region (Rs,Q2/Rs > 0, Rs,Q3/Rs < 0), as shown in
Fig. 7(d), signifying that the increased contribution of ejection events (Q2) is accompanied by an
increased contribution of inward interaction (Q3).

In our previous research [9], we revealed that Rs/U 2
s increase with x in the region 5 � x/D � 12,

and transitions to Rs/U 2
s ∼ constant in the region x/D � 12, where Us is the characteristic velocity

scale of the velocity deficit profile. Note that the constant eddy viscosity hypothesis assumes
the eddy viscosity to be νT = αUsδ [45–47]. Through the momentum conservation equation, we
have that Rs = αU 2

s . Thus, α �= constant in the region 5 � x/D � 12, and α = constant in the
region x/D � 12. Apparently, the self-similarity state is different for these two region. There we
define the self-similarity region with α �= constant as “stage I” and define the self-similarity region
with α = constant as “stage II.” The start position of self-similarity stage I (α �= constant) and
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FIG. 7. Self-similarity and scaling law of −u′v′
Q2 and −u′v′

Q3. (a), (c) The normalized profiles of −u′v′
Q2

and −u′v′
Q3; (b), (d) the streamwise evolution of the ratio Rs,Q2/Rs and Rs,Q3/Rs. The vertical dotted and dashed

lines in (b) and (d), denoting the start position of self-similarity stage I (α �= constant) and self-similarity stage
II (α = constant), respectively, are plotted based on Ref. [9].

self-similarity stage II (α = constant) is indicated by vertical dotted and dashed lines, respectively,
in Figs. 7(b) and 7(d) for ease of reference.

By considering momentum conservation in the self-similar region of an axisymmetric wake, we
can theoretically derive the relationship Usδ

2 ∼ constant. Thus, Rsδ
4 ∼ α with α �= constant in the

region 5 � x/D � 12, and α = constant in the region x/D � 12. The above analysis demonstrates
that the length scaling of the profiles of −u′v′ and −u′v′

Qi is the same. Thus, we can define the
self-similarity stage of different quadrant contribution in terms of Rs,Qi/Rs. Figures 7(b) and 7(d)
illustrate an increasing absolute value of Rs,Q2/Rs and Rs,Q3/Rs in the streamwise direction, which
indicates that Rs,Q2δ

4 �= constant and Rs,Q3δ
4 �= constant. This suggests that the contribution of Q2

and Q3 is in a state of self-similarity stage I in the whole measurement region, regardless of the
self-similarity stage of −u′v′. Figures 7(b) and 7(d) show that Rs,Q2/Rs and Rs,Q3/Rs eventually
approach a constant, indicating that the contribution of Q2 and Q3 will reach a state of self-similarity
stage II farther downstream. As for Q1 and Q4, since the velocity scaling of −u′v′

Q1, −u′v′
Q4 and

−u′v′ is the same, their self-similarity state is the same.
Similar to the definition of the characteristic velocity scale

√
Rs and

√
Rs,Qi for the Reynolds

shear stress −u′v′ and its quadrant distribution −u′v′
Qi, the corresponding characteristic value√

Ks and
√

Ks,Qi for the turbulent kinetic energy k and its quadrant distribution kQi can be defined
and used for the normalization. Figures 8 and 9 show that the streamwise evolution of the self-
similarity state of kQi is similar to −u′v′

Qi. Moreover, previous research confirmed the assumption
of constant anisotropy is valid when the wake reaches a state of self-similarity [5,9]. According
to the assumption of constant anisotropy, −u′v′ and k evolves synchronously in the streamwise
direction (Rs/Ks = constant). The above analysis shows that their distribution in Q1 and Q4 also
evolves synchronously in the streamwise direction when the wake reaches a state of self-similarity.
Figure 10 shows the streamwise evolution of Rs,Q2/Ks,Q2. It is clear that Rs,Q2/Ks,Q2 approximates
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FIG. 8. Self-similarity in the normalized profiles of (a) k, (b) kQ1, (c) kQ2, (d) kQ3, and (e) kQ4.

a constant in the region x/D � 4, suggesting that the distribution of −u′v′ and k in Q2 also evolves
synchronously in the streamwise direction in the self-similar region. Thus, the constant anisotropy
assumption remains valid for different quadrant contributions in the self-similar region.

In conclusion, the distribution of −u′v′ and k in different quadrants can also reach a self-similar
state in the wake self-similar region, with consistent length scaling for −u′v′, k and their distribution
in different quadrants. However, their velocity scaling is different in the case of their distribution
in Q2 and Q3. The self-similarity state of −u′v′ is the combined effects of all four quadrant
contributions. The two components −u′v′

Q2 and −u′v′
Q3 are expected to reach self-similarity stage

II farther downstream compared to −u′v′. Moreover, the constant anisotropy assumption remains
valid for different quadrant contributions in the self-similar region.

B. Hole filtering effect on the self-similar state of different quadrant contributions

The above analysis shows that momentum transported from ambient flow to the wake region is
primarily due to ejection events (Q2), and the velocity scaling of −u′v′

Q2 is different from that of
−u′v′. Note that the above analysis considers full fluctuation components. In this section quadrant
hole filtering is applied to explore the contribution of the intense Reynolds shear stress to the self-
similar state of −u′v′

Q2. The quadrant hole filtering method (Fig. 11) is defined as

−u′v′
Qi,H = 1

N

N∑
n=1

[−u′v′Ii,H (u′, v′)]n, (4)

Ii,H (u′,v′) =
{

1, if (u′, v′) in quadrant i and |u′v′| < H (u′
rmsv

′
rms)

0, otherwise , (5)

where H is the hole filtering parameter, and u′
rms, v

′
rms denote the root mean square values of velocity

fluctuations u′ and v′, respectively. Consequently, only when |u′v′| > H (u′
rmsv

′
rms), is its contribution

to different quadrants considered. Hereafter, the hole filtering parameter H is referred to as the
“hole size.” An increase in the hole size leads to a higher percentage of small-magnitude velocity
fluctuations being filtered out, thereby an increase in the contribution of extreme events.

054608-9



XIONG, LAIMA, LI, AND ZHOU

FIG. 9. Self-similarity and scaling law of kQ2 and kQ3. (a), (c) The normalized profiles of kQ2 and kQ3;
(b), (d) the streamwise evolution of the ratio Ks,Q2/Ks and Ks,Q3/Ks. The vertical dotted and dashed lines in
(b) and (d), denoting the start position of self-similarity stage I (α �= constant) and self-similarity stage II
(α = constant), respectively, are plotted based on Ref. [9].

FIG. 10. Streamwise evolution of the ratio Rs,Q2/Ks,Q2.

FIG. 11. Illustration of hole filtering method.
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FIG. 12. Normalized lateral profiles of −u′v′
Q2,H by Rs with hole size (a) H = 1, (b) H = 2, and (c) H = 5.

The normalized lateral profiles of −u′v′
Q2,H for various hole sizes H are presented in Fig. 12.

As expected, the value of −u′v′
Q2,H decreases as the hole size H increases. Another finding is that

the hole size H has no effect on the length scaling of the lateral profiles of −u′v′
Q2,H . Figure 13

shows the profiles of −u′v′
Q2,H normalized by Rs,Q2,H (defined in a similar manner as Rs,Q2 but with

consideration of the hole filtering effect). These profiles can also be well collapsed into a single
line in the region x/D � 4. Figure 14(a) shows that the choice of hole filtering size also has some
influence on the normalized profiles of −u′v′

Q2,H . More specifically, as the hole size H increases, the
peak position of the profiles shifts outward. Additionally, the symmetry of the normalized profiles
improves with the increase of the hole size H . Moreover, Fig. 14(b) illustrates that Rs,Q2,H/Rs,Q2,H=0

remains roughly constant in the x/D � 4 region. This observation implies that the hole filtering does
not affect the velocity scaling of the lateral profiles of −u′v′

Q2,H . Figure 15 shows the profiles of
−u′v′

Q2,H/Rs,Q2,H=0. It is worth noting that −u′v′
Q2,H/Rs,Q2,H=0 remains approximately equal to

each other in the outer part of the wake for various hole sizes, as illustrated in Fig. 15. This finding
suggests that the hole filtering has a negligible effect on −u′v′

Q2 in the outer part of the wake. It is
widely known that extreme events are more prevalent in the wake edge region [31–36], which shall
be discussed in Sec. V below. Thus one may argue that extreme events are closely related to ejection
events and thus are crucial to the momentum transport.

In conclusion, the distribution of the intense Reynolds shear stress in ejection quadrant u′v′
Q2,H

can remain in a self-similar state. Besides, the hole size H has some influence on the shape of the
normalized profiles of −u′v′

Q2,H , but not its length scaling and velocity scaling.

C. Spectrum filtering effect on the self-similar state of different quadrant contributions

Small-magnitude velocity fluctuations are filtered out via the hole filtering method. However,
small-magnitude velocity fluctuations can result from both small-scale and large-scale coherent

FIG. 13. Normalized lateral profiles of −u′v′
Q2,H by Rs,Q2,H with hole size (a) H = 1, (b) H = 2, and

(c) H = 5.
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FIG. 14. (a) The fitted curve of the normalized lateral profiles of −u′v′
Q2,H . (b) The streamwise evolution

of the ratio Rs,Q2,H/Rs,Q2,H=0.

structures. To delve into the contribution of large-scale coherent structures, the spectrum filtering
method is applied in this section.

Figure 16 shows an illustration of low-pass filtering of the spectrum of u′ and the cross-spectrum
of u′ and v′ at x/D = 14, y/D = 1.6, where the velocity fluctuations above a certain frequency
are filtered out. Based on Taylor’s frozen hypothesis, low-pass filtering implies that the coherent
structures below a specific length scale are filtered out. Note that spectrum filtering is computed via
Python’s zero-phase digital filtering function filtfilt.

Firstly, the effect of spectrum filtering on the self-similarity and scaling of the lateral profiles
of −u′v′ is analyzed. Figure 17 shows the normalized profiles of the spectrum-filtered Reynolds
shear stress −u′v′

f . It is clear that these normalized profiles can be well collapsed into a single line,
although there is a slight discrepancy noted for the smallest filtering frequency fsD/U∞ = 0.16,
which is likely to be mitigated by employing longer sampling times. Figure 18 shows the streamwise
evolution of Rs, fs/Rs. Here Rs, fs represents the square value of the characteristic velocity scale of
the lateral profiles of −u′v′

f with filtering frequency fs. As shown in Fig. 18, the ratio Rs, fs/Rs

remains approximately constant within the measurement region of the present study. This finding
suggests that the spectrum filtering does not impact the scaling of the characteristic velocity scale
of the lateral profiles of −u′v′, at least within a specified frequency range. Consequently, data sets
obtained with relatively lower sampling frequency, i.e., data sets obtained using anemometers (with
typical sampling frequencies of 1–30 Hz [48–52]), may be sufficient for the scaling analysis.

The effect of the cutoff frequency selection on the self-similarity of the ejection contribution to
−u′v′

f (−u′v′
Q2, f ) is analyzed. Figure 19 shows the normalized profiles of −u′v′

Q2, f . As shown
in Figs. 19(a)–19(c), the choice of the cutoff frequency does impact the value of the characteristic
velocity scale of the profiles of −u′v′

Q2, f , while it does not affect the characteristic length scale.
Figs. 19(d)–19(f) reveals that when normalized by Rs,Q2, fs and δ, the normalized profiles can be

FIG. 15. The fitted curve of the lateral profiles of −u′v′
Q2,H normalized by Rs,Q2,H=0.
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FIG. 16. Illustration of spectrum filtering on (a) the spectrum of u′, and (b) the cross-spectrum of u′ and v′.
Note that the frequency scale that can be reached by the Cobra Probe used in the present study is 1250 Hz.

well collapsed into the same single line as the no spectrum-filtered case in the region x/D � 4,
irrespective of the cutoff frequency. Note that the discrepancy is slightly large for the case of
fsD/U∞ = 0.16. Moreover, Fig. 20 shows that Rs,Q2, fs/Rs,Q2 remains approximately constant in
the region x/D � 4, underscoring that the spectrum filtering does not affect the scaling law of the
characteristic velocity scale of the lateral profiles of −u′v′

Q2.
In conclusion, spectrum filtering exerts no influence on the shape of the normalized profiles of

−u′v′ and −u′v′
Q2, nor their characteristic length scale. Moreover, while spectrum filtering does

reduce the magnitude of −u′v′ and −u′v′
Q2, and consequently the corresponding characteristic

velocity scale, it does not affect the scaling law of the characteristic velocity scale.

V. QUADRANT CONTRIBUTION IN TIME SERIES AND ITS RELATION TO EXTREME EVENTS

The hole filtering analysis suggests a potential link between ejection events and extreme events,
while spectrum filtering analysis reveals a connection between ejection events and large-scale
coherent structures. In this section, the quadrant distribution in time series is analyzed to unveil
the intricate relationship between extreme events and coherent structures and their relationship with
different quadrant contributions.

FIG. 17. The normalized lateral profiles of −u′v′
f with filter frequency (a) fsD/U∞ = 0.63, (b) fsD/U∞ =

0.31, and (c) fsD/U∞ = 0.16.
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FIG. 18. Streamwise evolution of the ratio of the characteristic velocity scale of −u′v′
f with different filter

frequencies.

Figure 21 shows the lateral profiles of skewness Su and kurtosis Ku at x/D = 20, along with an
illustrative example of the probability distribution function (PDF) of streamwise velocity fluctuation
u′ at x/D = 20, y/D = 1.6, where Su and Ku are defined as

Su = u′3

(u′2)3/2
, (6)

Ku = u′4

(u′2)2
. (7)

As shown in Fig. 21, Su decreases in the lateral direction with Su < 0 in the outer part of the
wake, Ku increases in the lateral direction with Ku > 3 in the outer part of the wake, and the PDF
of u′ at y/D = 1.6 is characterized by a flatter left tail in contrast to the right tail. This indicates an
increase in the occurrences of deceleration extreme events in the outer part of the wake [31–36].

FIG. 19. Normalized lateral profiles of −u′v′
Q2, f by Rs, fs with filter frequency (a) fsD/U∞ = 0.63, (b)

fsD/U∞ = 0.31, and (c) fsD/U∞ = 0.16; and normalized lateral profiles of −u′v′
Q2, f by Rs,Q2, fs with filter

frequency (a) fsD/U∞ = 0.63, (b) fsD/U∞ = 0.31, and (c) fsD/U∞ = 0.16. The black curve in (d), (e), and
(f) is the fitted curve of the normalized profiles of −u′v′

Q2.
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FIG. 20. Streamwise evolution of the ratio of the characteristic velocity scale of −u′v′
Q2, f with different

filter frequencies.

Figure 22 shows the time evolution of streamwise velocity alongside its spectrum-filtered and
hole-filtered versions within different quadrants at x/D = 20, y/D = 1.6. This visualization high-
lights how hole filtering eliminates small-magnitude fluctuations, retaining only large-magnitude
fluctuations that are associated with extreme events. Figure 23(a) shows the PDF of hole-filtered
u′. The pronounced hole-filtering effect is clear confined to the central region of the PDF, which
further confirms these hole filtering effects. Note that Fig. 23(a) shows that the tail of the PDF of
the hole-filtered u′ is slightly reduced compared to the original distribution. This is due to the fact
that even during extreme events, some streamwise velocity fluctuations are filtered out due to the
relatively small magnitude of lateral velocity fluctuation v′.

With respect to spectrum filtering, Fig. 22 illustrates that it smooths the time evolution of u′
through low-pass filtering, which results in a more pronounced reduction of the tail of the PDF
of u′, as can be seen from Fig. 23(a). Moreover, Fig. 22 shows that after the low-pass spectrum
filtering, both extreme events and other large-scale motions are still preserved, which can explain
why the spectrum filter does not affect on the self-similarity of the normalized profiles of −u′v′

f

and −u′v′
Q2, f , as shown in Figs. 17 and 19. In addition, the positive part of the PDF of the spectrum-

filtered u′ closely resembles a Gaussian function, indicating that the acceleration extreme events are
filtered out. Thus, the size of the coherent structures related to the deceleration extreme events is
much larger compared to those related to the acceleration extreme events.

Moreover, Fig. 22(b) also illustrates that the deceleration extreme events are mainly related to
the ejection events. Figure 23(b) shows the PDF of different quadrants distribution of u′. As can
be seen from Fig. 23(b), the left tail of the PDF of u′ is mainly due to the ejection contribution.
This observation further emphasizes that the deceleration extreme events are primarily induced by
ejection events. This correlation explains the observation that −u′v′

Q2,H/Rs,Q2,H=0 remains approx-
imately constant across various hole sizes, as shown in Fig. 15. Therefore, deceleration extreme
events, large-scale coherent structures, and ejection events, serving as the dominant mechanisms in
the outer part of the wake, are closely related to each other.

FIG. 21. Lateral profiles of (a) skewness, (b) kurtosis, and (c) probability distribution function of stream-
wise velocity fluctuation u′. The black horizontal line in subplot (b) represents Ku = 3.
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FIG. 22. Quadrant distribution in the time series of the streamwise velocity in quadrant (a) Q1, (b) Q2,
(c) Q3, and (d) Q4. The shaded area represents the duration of the events in the corresponding quadrant.

In conclusion, deceleration extreme events, large-scale coherent structures, and ejection events,
serving as the dominant mechanisms in the outer part of the wake, are closely related to each
other. The size of the coherent structures related to the deceleration extreme events is much larger
compared to those related to the acceleration extreme events.

VI. CONCLUSION

A comprehensive quadrant analysis of the turbulent rotor wake is performed to investigate the
self-similar state of single-point turbulent statistics across different quadrants. The effects of intense
Reynolds shear stress and large-scale coherent structures on the self-similar state and scaling laws
of the normalized profiles are analyzed. The main conclusions can be drawn as follows:

(1) The peak positions of the profiles of −u′v′
Q2 and −u′v′

Q4 are found to be approximately
consistent with those of kQ2 and kQ4, respectively. Indicating a strong correlation between −u′v′

Q2

and kQ2, as well as a notable correlation between −u′v′
Q4 and kQ4. Sweeps and ejections detected

FIG. 23. (a) Filtering effects on the probability distribution function of the streamwise velocity fluctuations.
(b) Contribution of different quadrants to the probability distribution function of the streamwise velocity
fluctuation.
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by quadrant analysis are closely related to coherent structures, thus, the high conventional turbulent
kinetic energy at the wake center is mainly attributed to small-scale coherent structures.

(2) In the wake self-similar region, the lateral profiles of −u′v′
Qi and kQi can also reach a

self-similar state. The length scaling is the same for the profile of −u′v′, k, and their different
quadrant contributions. However, the velocity scaling of their distribution in Q2 and Q3 is different.
Moreover, their distribution in Q2 and Q3 reaches a state of self-similarity stage II (α = constant)
farther downstream compared to the streamwise evolution of the self-similarity stage of the wake.

(3) The exploration of the intense Reynolds shear stress reveals that the choice of hole filtering
size has some influence on the shape of the normalized profiles of −u′v′

Q2, but does not affect
their self-similar state, length scaling and velocity scaling. Therefore, to some extent, provides
some support for the self-similarity of the distribution of coherent structures in turbulent wake.
Additionally, the hole filtering effect on −u′v′

Q2 is negligible in the outer part of the wake, indicating
a close interrelationship between ejection events and deceleration extreme events.

(4) The exploration of the contributions of different scale coherent structures reveals that the
choice of cutoff frequency has no impact on the self-similarity of the lateral profiles of −u′v′ and
−u′v′

Q2, including the shape of the normalized profiles and the length scale. For the characteristic
velocity scale of −u′v′ and −u′v′

Q2, spectrum filtering reduces their magnitude without affecting
their scaling.

(5) Quadrant analysis of the temporal evolution of velocity fluctuations reveals a close interre-
lationship among ejection events, large-scale coherent structures, and deceleration extreme events,
which serve as the predominant mechanisms in the outer part of the wake. Moreover, the size of
the coherent structures related to the deceleration extreme events is much larger compared to those
related to the acceleration extreme events.

This study explores the self-similar state of different quadrant contributions and elucidates
the intricate relationships among large-scale coherent structures, deceleration extreme events, and
ejection events. The spatio-temporal evolution of coherent structures and energy transportation in
turbulent wakes shall be studied in future work.
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[32] S. Laizet, J. Nedić, and J. C. Vassilicos, The spatial origin of −5/3 spectra in grid-generated turbulence,
Phys. Fluids 27, 065115 (2015).

[33] I. Paul, G. Papadakis, and J. Vassilicos, Genesis and evolution of velocity gradients in near-field spatially
developing turbulence, J. Fluid Mech. 815, 295 (2017).

[34] Y. Zhou, K. Nagata, Y. Sakai, and T. Watanabe, Extreme events and non-Kolmogorov spectra in turbulent
flows behind two side-by-side square cylinders, J. Fluid Mech. 874, 677 (2019).

[35] Y. Zhou, K. Nagata, Y. Sakai, T. Watanabe, Y. Ito, and T. Hayase, Energy transfer in turbulent flows behind
two side-by-side square cylinders, J. Fluid Mech. 903, A4 (2020).

[36] H. Moffatt, Extreme events in turbulent flow, J. Fluid Mech. 914, F1 (2021).
[37] S. Aubrun, S. Loyer, P. E. Hancock, and P. Hayden, Wind turbine wake properties: Comparison between

a non-rotating simplified wind turbine model and a rotating model, J. Wind Eng. Ind. Aerodyn. 120, 1
(2013).

[38] E. H. Camp and R. B. Cal, Mean kinetic energy transport and event classification in a model wind turbine
array versus an array of porous disks: Energy budget and octant analysis, Phys. Rev. Fluids 1, 044404
(2016).

[39] L. Lignarolo, D. Ragni, C. Ferreira, and G. Van Bussel, Experimental comparison of a wind-turbine and
of an actuator-disc near wake, J. Renewable Sustainable Energy 8, 023301 (2016).

[40] L. E. Lignarolo, D. Mehta, R. J. Stevens, A. E. Yilmaz, G. van Kuik, S. J. Andersen, C. Meneveau,
C. J. Ferreira, D. Ragni, J. Meyers et al., Validation of four LES and a vortex model against stereo-PIV
measurements in the near wake of an actuator disc and a wind turbine, Renewable Energy 94, 510 (2016).

[41] I. Neunaber, M. Hölling, J. Whale, and J. Peinke, Comparison of the turbulence in the wakes of an actuator
disc and a model wind turbine by higher order statistics: A wind tunnel study, Renewable Energy 179,
1650 (2021).

[42] M. K. Vinnes, S. Gambuzza, B. Ganapathisubramani, and R. J. Hearst, The far wake of porous disks
and a model wind turbine: Similarities and differences assessed by hot-wire anemometry, J. Renewable
Sustainable Energy 14, 023304 (2022).

[43] L. P. Chamorro, R. E. Arndt, and F. Sotiropoulos, Reynolds number dependence of turbulence statistics
in the wake of wind turbines, Wind Energy 15, 733 (2012).

[44] J.-P. Hickey, F. Hussain, and X. Wu, Role of coherent structures in multiple self-similar states of turbulent
planar wakes, J. Fluid Mech. 731, 312 (2013).

[45] H. Schlichting and J. Kestin, Boundary Layer Theory (Springer, New York, 1961), Vol. 121.
[46] G. Cafiero, M. Obligado, and J. C. Vassilicos, Length scales in turbulent free shear flows, J. Turbul. 21,

243 (2020).
[47] J. C. Vassilicos, Dissipation in turbulent flows, Annu. Rev. Fluid Mech. 47, 95 (2015).
[48] J. Wyngaard, Cup, propeller, vane, and sonic anemometers in turbulence research, Annu. Rev. Fluid Mech.

13, 399 (1981).
[49] H. Ren, S. Laima, W.-L. Chen, B. Zhang, A. Guo, and H. Li, Numerical simulation and prediction of

spatial wind field under complex terrain, J. Wind Eng. Ind. Aerodyn. 180, 49 (2018).
[50] I. Suomi and T. Vihma, Wind gust measurement techniques—From traditional anemometry to new

possibilities, Sensors 18, 1300 (2018).
[51] S. Li, E. Kaiser, S. Laima, H. Li, S. L. Brunton, and J. N. Kutz, Discovering time-varying aerodynamics

of a prototype bridge by sparse identification of nonlinear dynamical systems, Phys. Rev. E 100, 022220
(2019).

[52] S. Li, S. Laima, and H. Li, Physics-guided deep learning framework for predictive modeling of bridge
vortex-induced vibrations from field monitoring, Phys. Fluids 33, 037113 (2021).

054608-19

https://doi.org/10.1063/1.4870167
https://doi.org/10.1063/1.4923042
https://doi.org/10.1017/jfm.2017.54
https://doi.org/10.1017/jfm.2019.456
https://doi.org/10.1017/jfm.2020.611
https://doi.org/10.1017/jfm.2020.1079
https://doi.org/10.1016/j.jweia.2013.06.007
https://doi.org/10.1103/PhysRevFluids.1.044404
https://doi.org/10.1063/1.4941926
https://doi.org/10.1016/j.renene.2016.03.070
https://doi.org/10.1016/j.renene.2021.08.002
https://doi.org/10.1063/5.0074218
https://doi.org/10.1002/we.501
https://doi.org/10.1017/jfm.2013.315
https://doi.org/10.1080/14685248.2020.1752376
https://doi.org/10.1146/annurev-fluid-010814-014637
https://doi.org/10.1146/annurev.fl.13.010181.002151
https://doi.org/10.1016/j.jweia.2018.07.012
https://doi.org/10.3390/s18041300
https://doi.org/10.1103/PhysRevE.100.022220
https://doi.org/10.1063/5.0032402

