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It is believed that the space-time correlation is a fundamental statistical tool for analyzing
the dynamic coupling between spatial and temporal scales of the motion in turbulent
flows. In this paper, by coupling the inner-outer interaction model with the attached-eddy
hypothesis, the space-time correlations of both wall-shear fluctuations and the streamwise
velocity fluctuations carried by wall-attached eddies at a given length scale are investigated.
The present results demonstrate that the space-time correlations for the wall-shear stress
fluctuation are mainly dominated by near-wall small-scale motions and the superposition
effects generated by wall-attached eddies are only reflected in the weakly correlated regions
with large space separations and/or time delays. Furthermore, the findings in the present
study demonstrate that wall-attached eddies at a given length scale feature distinctly
different space-time properties as compared to those of ensembled eddies with multiple
length scales, which provides an alternative perspective for analyzing the decorrelation
mechanisms in turbulence theory and developing an advanced space-time correlation
model.
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I. INTRODUCTION

A fundamental concept in the statistical theory of turbulence is that the energy-containing eddy is
progressively decorrelated in time. The corresponding decorrelation process can be characterized by
the correlation of fluctuating velocities at two different points in space and time, known as the space-
time correlation. The space-time correlation is widely applicable to turbulence research from both
fundamental and practical viewpoints. From a fundamental perspective, it quantifies how turbulent
fluctuations at one location and a specific time covary with those at another location and time instant
and thus is crucial for understanding the physical mechanisms of spatially developed boundary-layer
flow structures [1] as well as their time evolution [2]. From a practical perspective, a space-time-
correlation model describes the dynamic behaviors of turbulent fluctuations across both spatial and
temporal scales [3] and is beneficial for the development of time-accurate turbulence models for
large-eddy simulations [4–8] as well as advanced prediction methodologies for aeroacoustics [9].
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(a) (b)

FIG. 1. Schematic diagrams for the isocorrelation contours: (a) straight lines with a constant slope in
Taylor’s frozen-flow hypothesis and (b) elliptic curves with a uniform preference direction and a constant
aspect ratio in the EA model.

The first model to describe space-time correlations in turbulence is known as Taylor’s frozen-flow
hypothesis [10], which suggests that the spatial patterns of turbulent motion can be transported past
a fixed location entirely by the mean flow, and the corresponding advection speed is generally taken
as the local average streamwise flow velocity (referred to as the speed of the wind stream in Taylor’s
original paper). As a result, the relation connecting the velocity signals between two locations with
temporal separation τ can be derived as

u(x + r, t + τ ) = u(x + r − Uτ, t ), (1)

where x and r denote the spatial flow coordinate and the spatial separation, respectively, t and τ

denote the physical time and temporal separation, respectively, and U denotes the local average
streamwise flow velocity. Consequently, the corresponding space-time correlation can be defined as

R(r, τ ) = 〈u(x, t )u(x + r, t + τ )〉 = R(r − Uτ, 0), (2)

where 〈·〉 represents the averaging in the temporal and spatially homogeneous directions. This
model has been widely utilized to evaluate the spatial energy spectrum in hot-wire measurements
[11] and reconstruct space-time energy spectra in particle image velocimetry measurements [12].
Furthermore, Taylor’s hypothesis generates new insights into the spatiotemporal dynamics of tur-
bulence, such as the dominant convection process [13] and the propagation velocity of turbulence
structures [14]. With Taylor’s hypothesis, the space-time correlation can be purely described by
the space correlation through a linear transformation r − Uτ . However, it is easily understood
that Taylor’s hypothesis intuitively has some limitations [15], such as the weak shear rate and
low turbulence intensity, since the frozen-flow assumption implies that the space-time correlation
remains a constant (not decaying) for any given spatial separation r and temporal separation τ along
the characteristic line r − Uτ = C, where C depends on the contour level [as shown in Fig. 1(a)].

He and Zhang proposed the elliptic approximation (EA) model for turbulent shear flows [16]. The
EA model specifies that the small-scale turbulent motion is convected by mean flows while being
distorted by the shearing of mean flows and the sweeping of energy-containing eddies in fluctuating
velocity fields. Correspondingly, the space-time correlation in shear flows can be described by the
space correlation through a transformation

R(r, τ ) = R[
√

(r − Uτ )2 + V 2τ 2, 0], (3)
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where U indicates the local convection velocity of the turbulence flow patterns and the sweeping
characteristic velocity V denotes the sum of the random sweeping velocity manifesting the turbu-
lence intensity and the shear-induced velocity, which takes into account the shear effects explicitly
up to the second-order time derivatives of fluctuating velocities [17]. Compared with Taylor’s
classical frozen-flow model, which determines the decorrelation only by the convection velocity,
the EA model not only manifests the convection effect but also integrates Kraichnan’s sweeping
hypothesis [18], which describes the random sweeping of small-scale eddies by energy-containing
eddies. Consequently, the EA model achieves a successive approximation to the isocorrelation
contours and has been demonstrated in many turbulent shear flows [19–21].

On the other hand, previous research has shown evidence that the wall-bounded turbulence at
high Reynolds number is characterized by coherent structures of disparate scales. Specifically, in
addition to the streaks and the vortical structures residing in the near-wall region [22,23], there
are also large-scale motions, very-large-scale motions, and self-similar motions populating the
logarithmic and outer regions [24–26]. As one of the most elegant conceptual models describing the
multiscale nature of fluid motion in wall-bounded turbulence, the attached-eddy model proposed by
Townsend [27] and Perry and Chong [28] hypothesizes that the logarithmic region is occupied by an
array of randomly distributed and self-similar energy-containing motions (or eddies) with their roots
attached to the near-wall region. Over the past decades, a growing number of studies have supported
the existence of the attached eddies in wall-bounded turbulence [29–33]. For more details, we refer
the reader to a recent review work by Marusic and Monty [34].

Considering that the multiscale attached eddies can penetrate deep into the near-wall region,
resulting in the increment of the near-wall fluctuation intensities [35,36] and the imprint on near-wall
turbulence as “footprints”, also known as superposition effects [1,37–39], it would be quite natural
to hypothesize that the superposition effects would affect the near-wall turbulent physical variable
to some extent, such as the wall-shear fluctuation, which is a crucial physical quantity for drag
generation, noise radiation, and heat transfer [40]. However, some fundamental questions may be
raised, e.g., whether the superposition effects of multiscale attached eddies on near-wall turbulence
account for the space-time correlation. If so, is there a corresponding Reynolds-number effect?
These questions are still unanswered. In addition, since the characteristic scale of an individual
attached-eddy is proportional to its wall-normal height [27,28], the examined space-time correlation
in the logarithmic region using the traditional statistical approach is indeed the ensembled effects of
the multiscale eddies and the space-time properties of wall-attached eddies at a given length scale
is still ambiguous. For a more in-depth understanding of flow physics and to give insight into the
underlying mechanisms that drive turbulent flows at different scales, the present work is dedicated to
further investigating the space-time correlations of wall-shear fluctuations and streamwise velocity
signals in a multiscale manner by relying on the inner-outer interaction model (IOIM) [41,42] and
the attached-eddy hypothesis [27] and dissecting the direct numerical simulation (DNS) database
with intensive time spanning and moderate Reynolds number.

The remainder of this paper is organized as follows. In Sec. II, the DNS database and the scale
decomposition method are briefly introduced. In Sec. III, we present and evaluate the space-time
correlations of wall-shear fluctuations and streamwise velocity fluctuations carried by wall-attached
eddies at a given length scale. We summarize our conclusions in Sec. IV.

II. DNS DATABASE AND SCALE DECOMPOSITION METHOD

The code deployed to compute the extensively validated DNS database for channel flows [25,43–
45] is utilized to generate the time-resolved channel flow data with Reτ = 934 (Reτ = huτ /ν, where
h denotes the channel half height, uτ is the wall friction velocity, and ν is the kinematic viscosity).
The simulation is conducted in a computational domain of 8πh × 3πh × 2h with Nx = 3072, Nz =
2304, and Ny = 385 in the streamwise, spanwise, and wall-normal directions, respectively. The
corresponding streamwise and spanwise grid resolutions in viscous units are given by �x+ = 11.5
and �z+ = 5.7, respectively. The finest and coarsest resolutions in the wall-normal direction are
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given by �y+
min = 0.03 and �y+

max = 7.6, respectively. To calculate the space-time correlation, 499
raw snapshots with a constant time interval of 0.02 are deployed. To validate the computational
code and configurations deployed in this study, comparisons of the mean and root-mean-square
(rms) velocity profiles with the open-source DNS database [43] are provided in Appendix A.

The decomposition of near-wall streamwise velocity fluctuation is based on the IOIM first
proposed by Marusic et al. [41]. To avoid artificial scale decomposition, Baars et al. [42] modified
the computational process by introducing spectral stochastic estimation, and the modified version
takes the form

u′+
p (y+) = u∗(y+)[1 + �uuu′+

L (y+
o , y+)]︸ ︷︷ ︸

u′+
s

+u′+
L (y+

o , y+), (4)

in which u′+
p denotes the predicted near-wall streamwise velocity fluctuation, u∗ denotes the uni-

versal velocity signal without large-scale impact, u′+
L is the superposition component, �uu is the

amplitude-modulation coefficient, and u′+
s denotes the amplitude modulation of the universal signal

u∗. Here u′+
L is obtained by spectral stochastic estimation of the streamwise velocity fluctuation at

the logarithmic region y+
o , which can be expressed as

u′+
L (x+, y+

o , y+, z+) = F−1
x {HL(λ+

x , y+
o , y+)Fx[u′+

o (x+, y+
o , z+)]}, (5)

where u′+
o denotes the streamwise velocity fluctuation at yo

+ in the logarithmic region; Fx and F−1
x

denote the fast Fourier transformation (FFT) and inverse FFT in the streamwise direction for one
instantaneous DNS realization of the turbulent flow field, respectively; and HL is the scale-dependent
complex-valued kernel, which evaluates the coherence between u′(y+) and u′

o(yo
+) at a given length

scale λ+
x and can be calculated as

HL(λ+
x , yo

+, y+) = 〈û′(λ+
x , y+, z+) ˆ̄u′

o(λ+
x , y+

o , z+)〉
〈û′

o(λ+
x , y+

o , z+) ˆ̄u′
o(λ+

x , y+
o , z+)〉 , (6)

where û′ is the Fourier coefficient of u′ and ˆ̄u′
o is the complex conjugate of û′

o.
In this work, we mainly focus on the streamwise velocity fluctuation generated by the wall-

attached eddies in the logarithmic region. Thus, the predicted near-wall position y+
w is set as

y+
w = 0.03 and the outer reference height yo

+ varies from y+ = 100 (denoted by y+
o,s) to 0.2h+

(denoted by y+
o,e), i.e., the lower and upper boundaries of the logarithmic region [46]. According

to the hierarchical energy-containing eddies in high-Reynolds-number wall turbulence [34] (as
shown in Fig. 2), an array of wall-attached eddies with distinct wall-normal heights can convect
simultaneously past this reference position yo

+ and the calculated signal u′+
L (x, yo

+, y+
w, z) in Eq. (5)

represents the superposition contributed from the wall-coherent eddies with their heights larger than
yo

+; detached eddies cannot contribute to it since the necessary interaction with the wall is absent.
Consequently, the superposition component of streamwise wall-shear stress fluctuation ε′+

x can be
calculated by definition, i.e., ∂u′+

L (x, yo
+, y+

w, z)/∂y+ at the wall, and is denoted by ε′+
x,L(y+

o ).

III. RESULTS AND DISCUSSION

A. Space-time correlations of wall-shear fluctuations due to the Reynolds-number effect

Previous studies [47,48] verified that the generation of wall-shear stress fluctuations can be
considered as the additive outcomes of the momentum cascade across momentum-carried eddies of
different scales, and the amplification of the corresponding inner-outer interactions as the Reynolds
number increases is typically attributed to the growing large-scale eddies populating the logarithmic
and outer regions [36,49]. Combined with the numerical framework in the preceding section, the
difference value �ε′+

x (yo
+) = ε′+

x − ε′+
x,L(y+

o ) can be further interpreted as the accumulation of the
superposition generated by the wall-coherent eddies with their wall-normal heights smaller than
yo

+ and the contribution of the near-wall small-scale motions. When increasing the outer reference
location yo

+, more and more large-scale energy-containing eddies populating the logarithmic region
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FIG. 2. Sketch of the multiscale analysis for wall turbulence [30]. Each circle represents an individual
attached eddy. Here y+

s (y+ = 100) and y+
e (0.2h+) denote the lower and upper bounds of the logarithmic

region, respectively, y+
o is the outer reference height, and �y+ is the local grid spacing in the wall-normal

direction.

will be incorporated by �ε′+
x (yo

+), which is in line with the effect of increasing the Reynolds
number. Considering that the normalized outer reference height y+

o = yo/δv = youτ /ν = yoReτ /h
can be interpreted as the local Reτ , the increase of yo

+ corresponds to the enlargement of the local
Reτ . In this way, the Reynolds-number effect on the space-time correlation of wall-shear fluctuations
can be estimated directly.

To demonstrate the scale characteristics of �ε′+
x (yo

+) for different wall-normal heights yo
+,

Fig. 3 shows the premultiplied spectra of �ε′+
x (yo

+). To facilitate the comparison, the spectrum
of wall-shear stress fluctuations ε′+

x is also included [denoted by kxφ
+, where φ+ stands for the

(a) (b)

FIG. 3. Streamwise premultiplied spectra of streamwise wall-shear stress fluctuations ε′+
x and the differ-

ence value �ε′+
x (yo

+) for yo
+ = 99.8, 145.1, and 188.6. The spectra are normalized by (a) the corresponding

intensity and (b) the energy of ε′+
x . The vertical dashed line denotes the characteristic length scales of the

near-wall turbulence [50,51].
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(a) (b)

(c) (d)

FIG. 4. Contours of space-time correlations as a function of space separation and time delay for ε′+
x (black)

and �ε′+
x (yo

+) (red) at (a) y+
o = 99.8, (b) y+

o = 145.1, and (c) y+
o = 188.6. The contour levels are equally

spaced from 0.3 to 0.9 with increments of 0.1. (d) Space-time correlation R as a function of time delay along
the preference direction (blue dashed line).

energy for specific streamwise wave number kx, with both φ+ and kx calculated by the FFT of
the signal ϕ+, which can be ε′+

x or �ε′+
x (yo

+)] and each spectrum in Fig. 3(a) is normalized by
its corresponding intensity. It is apparent that the relative energy proportion of small length scales
in �ε′+

x (yo
+) increases as the outer reference height yo

+ decreases, whereas for the large length
scales, the contrary is the case. This scenario is consistent with the expectation that more and more
superposition components generated by the large-scale wall-coherent eddies with their heights larger
than yo

+ will be removed as the outer reference height yo
+ decreases. Furthermore, when the energy

spectra are normalized by the energy of ε′+
x , as shown in Fig. 3(b), the spectral curves with length

scales smaller than λ+
x ≈ 1000, i.e., the well-documented spectral scale characteristics of the near-

wall turbulence and streaks, almost overlap with each other. This observation highlights the fact that
the aforementioned numerical methodology does not disturb the near-wall small-scale structures.
Additionally, the energy distribution for large length scales in �ε′+

x (yo
+) gradually approaches that

of ε′+
x as the reference location yo

+ increases, which also demonstrates the feasibility of inspecting
the Reynolds-number effect with the signal �ε′+

x (yo
+).
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Figures 4(a)–4(c) show the contours of space-time correlations as a function of space separation
and time delay for the �ε′+

x (yo
+) with the inputs of three selected wall-normal positions yo

+ in
the logarithmic region and compared with that for the full streamwise wall-shear stress fluctuations
ε′+

x . Other wall-normal positions in the logarithmic region have similar characteristics and are not
shown here for brevity. It can be seen that the isocorrelation contours show approximately elliptical
shapes instead of straight lines, and the space-time correlations reach a maximum at the origin
and decay with increasing separations in space and/or time. To illustrate vividly the variation of
space-time correlations, Fig. 4(d) displays the space-time correlations in the preference direction,
i.e., the direction with the slowest decay rate [shown by the blue dashed line in Figs. 4(a)–4(c)],
as a function of the time delay. It can be seen that for the central regions with strong correlation,
where R > 0.8, the space-time correlations of �ε′+

x (yo
+) with the inputs of different wall-normal

positions yo
+ have morphological characteristics virtually identical to the full channel data ε′+

x and
the decaying rates of correlations in the preference direction are roughly synchronous. This under-
scores the fact that the wall-shear stress fluctuation with strong space-time correlations is mainly
dominated by near-wall small-scale motions, and the Reynolds-number effect can be neglected.
For the weakly correlated regions with large space separations and/or time delays, where R < 0.8,
the decaying rate of space-time correlations decreases monotonically as the wall-normal location
yo

+ increases and the isocorrelation contours concurrently move closer to the full channel data.
This implies that the space-time correlations of wall-shear fluctuations are amplified as the local
Reynolds number increases, which is typically attributed to the magnitude increase of the footprint
for wall-attached eddies in the logarithmic region. Furthermore, this monotonic variation highlights
that the superpositions of wall-attached logarithmic-region motions on the wall surface follow the
additive process, which is consistent with the well-documented attached-eddy hypothesis.

To further dissect the statistical characteristics, Fig. 5(a) shows the comparison of the convection
velocities for ε′+

x and �ε′+
x (yo

+) with the inputs of different wall-normal positions yo
+. Following

previous research [52,53], the overall convection velocity Uc is defined as

Uc = arg max
U

F (U ), F (U ) =
∫ +∞

−∞
R(Uτ, τ )dτ, (7)

which achieves the maximum value for the integrated space-time correlation. Additionally,
Figs. 5(b) and 5(c) display the convection velocity U and sweeping velocity V , respectively, defined
by the EA model R(r, τ ) = R[

√
(r − Uτ )2 + V 2τ 2, 0]. It can be observed that the magnitudes of

both convection velocities Uc and U increase monotonically as yo
+ increases and gradually approach

the convection velocity of full channel data ε′+
x . This observation can also be explained through

the hierarchical organization of wall-attached eddies in high-Reynolds-number wall turbulence.
Specifically, the increase of yo

+ indicates that �ε′+
x (yo

+) will be contributed by more and more
superposition effects generated by high-speed logarithmic eddies with their wall-normal heights
smaller than yo

+. In this way, this scenario indicates that the amplification of the inner-outer
interactions as the Reynolds number increases not only increases the magnitude of the fluctuation
intensity [36] but also can accelerate the convection velocity of small-scale turbulence motions in
the near-wall region. In contrast, for the sweeping velocity V , which describes the random sweeping
of small-scale eddies, the corresponding value is not affected visibly with the increment of the local
Reynolds number.

In addition, it is instructive to compare the geometric parameters of the space-time correlation
contours for ε′+

x and �ε′+
x (yo

+) with the inputs of different wall-normal positions, such as the
lengths of the major axis and the minor axis for specific contour levels (denoted by a and b in Fig. 1,
respectively). Figure 5(d) shows the length of a major axis as a function of the length of a minor axis
for three selected wall-normal positions yo

+. It can be seen that the length of the main axis almost
increases linearly with the length of the minor axis within the range of a+ < 15; the corresponding
slope, known as the aspect ratio, is approximately equal to a constant, which is consistent with
the main hypothesis of the EA model as stated by He and Zhang [16]. For space-time correlation
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(a) (b)

(c) (d)

FIG. 5. Variations of (a) overall convection velocity Uc, (b) convection velocity U , and (c) sweeping
velocity V defined by the EA model for ε′+

x (black) and �ε′+
x (yo

+) (red) as a function of the wall-normal
position yo

+. (d) Length of the major axis as a function of the length of the minor axis for the contours of ε′+
x

and �ε′+
x (yo

+) at three selected wall-normal positions yo
+.

contours with a larger axis length, slight monotonic discrepancies are observed with the increment
of wall-normal position yo

+, indicating that the increase of local Reynolds number will change
the geometric characteristics of contours to a larger aspect ratio and the corresponding space-time
correlation is amplified in the preference direction in a monotonic manner. Other wall-normal
positions bear similar results and are not shown here for brevity.

B. Space-time correlation of streamwise velocity fluctuation in the logarithmic region

Before studying the streamwise velocity fluctuation with the multiscale analysis, it is better to
have an overall picture of the ensembled space-time correlations in the logarithmic region. Figure 6
shows the contours of space-time correlations as a function of space separation and time delay for
the streamwise velocity fluctuation at four selected wall-normal positions in the logarithmic region.
It can be observed that these contours are clustered in a thin band, which implies the strong convec-
tive nature of the streamwise velocity fluctuation in the logarithmic region. Additionally, the slopes
of the preference directions become large with increasing wall-normal location (to be specific,
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(a) (b)

(c) (d)

FIG. 6. Contours of space-time correlations as a function of space separation and time delay for the
streamwise velocity fluctuation u′+(y+) at (a) y+ = 99.8, (b) y+ = 121.5, (c) y+ = 153.4, and (d) y+ = 188.6.
The contour levels are equally spaced from 0.3 to 0.9 with increments of 0.1.

Uc,(y+=99.8) = 16.69, Uc,(y+=121.5) = 17.11, Uc,(y+=153.4) = 17.67, and Uc,(y+=188.6) = 18.14), which
is consistent with the variation tendency of the mean streamwise velocity.

Figure 7 plots the evolution of the space-time correlations R with respect to the time separation
τ+ and the separation rEA =

√
(r − Uτ )2 + V 2τ 2 defined by the EA model for different space

separations r+ = 0, 145.4, 298.4, 451.5, 604.6, 757.6 at the locations y+ = 99.8 and 188.6. Here
the parameters U and V are calculated from the DNS data [16]. For y+ = 99.8 and 188.6, (U,V )
are calculated as (16.01,2.33) and (17.67,2.09), respectively. It can be seen that the normalization
defined by the EA model causes an excellent collapse for the correlation curves at different space
separations with that at zero space separation, i.e., r+ = 0. This observation signifies that the EA
model provides a feasible interpretation for the decorrelation process of the ensembled space-time
properties of logarithmic motions. Other locations yield similar results and are not shown here for
brevity.

For a more in-depth understanding of the space-time properties of attached eddies at a given
length scale, we can also use the streamwise velocity fluctuation in the near-wall position y+

w as
the input signal to reconstruct the wall-coherent streamwise velocity fluctuation in the logarithmic
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(a) (b)

(c) (d)

FIG. 7. Space-time correlations R at (a) and (b) y+ = 99.8 and (c) and (d) y+ = 188.6 for different
space separation r+ plotted against (a) and (c) the time separation τ+ and (b) and (d) the separation rEA =√

(r − Uτ )2 + V 2τ 2 defined by the EA model.

region y+
o by spectral stochastic estimation [54], i.e.,

u′+
W (x+, y+

w, y+
o , z+) = F−1

x {HW (λ+
x , y+

w, y+
o )Fx[u′+(x+, y+

w, z+)]}, (8)

where u′+
W is the wall-coherent component of u′+

o and can be considered approximately the stream-
wise velocity fluctuations carried by the wall-attached eddies with their height larger than y+

o [55].
The input near-wall position y+

w is set as 0.03 in this study and the statistic sensitivity to the choice
of y+

w is examined in Appendix B. The wall-based transfer kernel HW can be calculated as

HW (λ+
x , y+

w, y+
o ) = 〈û′

o(λ+
x , y+

o , z+) ˆ̄u′(λ+
x , y+

w, z+)〉
〈û′(λ+

x , y+
w, z+) ˆ̄u′(λ+

x , y+
w, z+)〉 . (9)

According to the hierarchical distribution of the multiscale wall-attached eddies in high-Reynolds-
number wall turbulence (see Fig. 2), the difference value �u′+

W (yo
+) = u′+

W (yo
+) − u′+

W (yo
+ + �y+)

can be interpreted as the streamwise velocity fluctuation carried by wall-attached eddies populating
the region between y+

o and yo
+ + �y+, where yo

+ + �y+ represents the location of the wall-normal
grid cell adjacent to that at y+

o , and �y+ is the local grid spacing in the wall-normal direction, in
viscous units, which is a simulation-defined parameter.
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(a) (b)

FIG. 8. Streamwise premultiplied spectra of u′+(y+) and �u′+
W (yo

+) as a function of (a) λx/h and
(b) λx/(yo + �y/2) at four selected wall-normal positions. Each spectrum is normalized with its maximum
value.

To investigate further the scale characteristics, Fig. 8 shows the premultiplied spectra of
�u′+

W (yo
+) for different wall-normal locations. The spectra of streamwise velocity fluctuation

u′+(y+) from full-channel data are also included for comparison. Each spectrum is normalized with
its maximum value. It can be seen from Fig. 8(a) that the energy distributions of �u′+

W (yo
+) are more

concentrated in large length scales compared to the full-channel data u′+ and the corresponding
streamwise length scales of the dominant spectral curve increase with yo

+, which is in accordance
with the energy fraction captured by the attached-eddy model [56,57]. In addition, since the statis-
tical characteristics of an individual attached eddy are self-similar with its wall-normal height as
per the attached-eddy hypothesis [27], Fig. 8(b) displays the variations of streamwise premultiplied
spectra as a function of λx/(yo + �y/2), i.e., the characteristic scale of the wall-attached motions
within yo and yo + �y. It can be seen that the profiles of �u′+

W (yo
+) for all wall-normal locations

collapse with each other. This observation also supports the viewpoint put forward above that the
�u′+

W (yo
+) signals are the streamwise velocity fluctuations carried by the self-similar attached eddies

at the specific characteristic length scale.
Figure 9 compares the contours of space-time correlations as a function of space separation

and time delay for �u′+
W (yo

+) at four selected wall-normal positions yo
+ in the logarithmic region.

Other wall-normal positions in the logarithmic region have similar characteristics and are not shown
here for brevity. It can be seen that the space-time correlations of streamwise velocity fluctuations
carried by attached eddies at a given length scale feature distinctly different contours from those
illustrated in Fig. 6. They are more like wide elliptical shapes in alignment with the preference
direction. To characterize quantitatively the difference of geometric parameters, Fig. 10(a) plots the
length of the major axis as a function of the length of the minor axis for u′+(y+) and �u′+

W (yo
+)

at four selected wall-normal positions. It can be observed that the space-time correlation contours
for attached eddies at a given length scale display a different self-similarity property, as evidenced
by the fact that the corresponding aspect ratios are much smaller than those of ensembled space-
time correlation with strong convective nature. Additionally, Fig. 10(b) shows the variations of
convection velocity Uc for �u′+

W (yo
+) as a function of the wall-normal position yo

+. In conjunction
with Fig. 9, it can be seen that both the counter area for a specific correlation and the advection
velocity increase as the wall-normal position yo

+ increases. This observation underscores the fact
that attached eddies with larger characteristic scales feature not only larger spatial structures but also
a longer lifetime. Furthermore, as the characteristic scale increases, the corresponding convection
velocity of the attached eddies also gradually increases, remaining at approximately 93% of the
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(a) (b)

(c) (d)

FIG. 9. Contours of space-time correlations as a function of space separation and time delay for �u′+
W (yo

+)
at (a) y+

o = 99.8, (b) y+
o = 121.5, (c) y+

o = 153.4, and (d) y+
o = 188.6. The contour levels are equally spaced

from 0.3 to 0.9 with increments of 0.1.

local mean streamwise velocity. The Reynolds-number effect on the presented results is examined
in Appendix C.

IV. CONCLUSION

In the present study we investigated the space-time correlations of both wall-shear fluctuations
and the streamwise velocity fluctuations carried by wall-attached eddies at a given length scale in
a multiscale manner, by coupling the IOIM with the attached-eddy hypothesis. The conclusions are
summarized as follows.

(i) The wall-shear stress fluctuations with strong space-time correlations are mainly dominated
by near-wall small-scale motions and the Reynolds-number effect can be neglected. For the weakly
correlated regions with large space separations and/or time delays, the corresponding space-time
correlations are amplified in a self-similar manner with increasing local Reynolds number as a
result of the superposition effects of wall-attached eddies in the logarithmic region.

(ii) The EA model, which accounts for the shearing of mean flows and random sweeping of
velocity fluctuations in the logarithmic region via a second-order approximation to the isocorrelation
contours, leads to an excellent collapse of ensembled space-time correlations in the present database
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(a) (b)

FIG. 10. (a) Length of the major axis as a function of the length of the minor axis for u′+(y+) and �u′+
W (yo

+)
at four selected wall-normal positions. (b) Variation of the mean streamwise velocity U + (black) and overall
convection velocity Uc for �u′+

W (yo
+) (red) as a function of the wall-normal position yo

+.

at high-Reynolds number. However, the space-time correlation contour of streamwise velocity fluc-
tuation carried by attached eddies at a given length scale exhibits a distinctly different self-similarity
property as compared to that of ensembled space-time correlation with strong convective nature.
The characteristic scale dependence of space-time correlation of these eddies should be accounted
for by an advanced model in this sense. Our results further reveal that wall-attached eddies with
larger characteristic scales feature a longer lifetime and larger convection velocity, which remains
at approximately 93% of the local mean streamwise velocity.

Considering the wall-modeled large-eddy simulation (WMLES), which models the near-wall
underresolved small-scale turbulent motions with the Reynolds-averaged Navier-Stokes (RANS)
model while resolving the turbulence scales above the grid spacing in the outer boundary layer
with large-eddy simulation (LES), is believed to be the next-generation high-fidelity simulation tool
when compared to the RANS and DNS methods, the numerical framework deployed in this study
may pave a way for analyzing the space-time properties for different flow scales and optimizing the
modeling capability of WMLES to the interrelated problems. To be specific, it is well known that
the solution quality from the WMLES approach heavily depends on the deployed LES subgrid-scale
(SGS) model and the numerical scheme as well as the wall model. Different combinations of the
SGS model and the numerical method may result in huge cross-code uncertainties, even when the
same state-of-the-art wall model is adopted. The conventional choice in terms of combining different
numerical schemes, SGS models, and the near-wall models is generally based on the metrics
of replicating the mean flow statistics [58,59], without giving sufficient credit to the space-time
properties of the different turbulence scales, which are important for high-order turbulence statistics
or acoustic noise prediction. In order to develop the optimal WMLES framework that not only
delivers accurate mean flow statistics but also predicts reliable space-time statistics with different
flow scales, the present multiscale analysis of the space-time correlation can serve as a potential
option to diagnose the performance of one specific WMLES framework.
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APPENDIX A: VALIDATION OF THE DNS CODE AND CONFIGURATIONS

In Fig. 11 the DNS database generated by the code deployed in this study is compared with
the open-source DNS database [25,43] for the mean streamwise velocity and the rms velocities. To
obtain statistically convergent results, the normalized total simulation time uτ T/h is increased to
5.0 in each case. It can be seen that the discrepancy between the statistics of the two data sets is
negligible, which demonstrates that the DNS data generated in this study are reliable.

APPENDIX B: STATISTIC SENSITIVITY TO THE INPUT NEAR-WALL POSITION y+
w

The influence of the input near-wall position y+
w for calculating space-time correlations is

examined. Figures 12(a), 12(b) and 12(c), 12(d) show the contours of space-time correlations as a
function of space separation and time delay for �u′+

W (yo
+) with input near-wall position y+

w = 1.12
in the viscous sublayer and y+

w = 10.12 in the buffer layer, respectively. To facilitate the comparison,
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(a) (b)

(c) (d)

FIG. 12. Contours of space-time correlations as a function of space separation and time delay for �u′+
W (yo

+)
with the input near-wall position (a) and (b) y+

w = 1.12 in the viscous sublayer and (c) and (d) y+
w = 10.12 in the

buffer layer at (a) and (c) y+
o = 99.8 and (b) and (d) y+

o = 188.6. The red lines denote the corresponding results
with y+

w = 0.03 deployed in this study. The contour levels are equally spaced from 0.3 to 0.9 with increments
of 0.1.

the corresponding results with y+
w = 0.03 deployed in this study are also included and marked as

red lines.
The space-time correlation contours in Figs. 12(c) and 12(d) display a noticeable deviation as

the input near-wall position shifts to the buffer layer with y+
w = 10.12, whereas for the input near-

wall position y+
w = 1.12 in the viscous sublayer, the deviation is negligible. This observation is

reminiscent of the property of coherent detached eddies that are also capable of interacting with the
near-wall turbulence. To be specific, the increase of y+

w leads to a larger fractional contribution from
coherent detached eddies to �u′+

W (yo
+) rather than just the contribution from the attached eddies at a

given length scale which is of interest to us. We have also checked that as long as the input position
is around y+

w < 1, the results put forward above are insensitive to the choice of specific y+
w .

APPENDIX C: SPACE-TIME CORRELATIONS OF STREAMWISE VELOCITY FLUCTUATION
FOR CHANNEL FLOW WITH Reτ = 547

To further demonstrate the Reynolds-number effect on the space-time correlations of streamwise
velocity fluctuation carried by wall-attached eddies at a given length scale, the time-resolved DNS
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(a) (b)

(c) (d)

(e) (f)

FIG. 13. Contours of space-time correlations as a function of space separation and time delay for (a) and
(c) the streamwise velocity fluctuation u′+(y+) and (b) and (d) �u′+

W (yo
+) at two selected wall-normal positions

in the logarithmic region: (a) y+ = 81.2, (b) yo
+ = 81.2, (c) y+ = 103.6, and (d) yo

+ = 103.6. The contour
levels are equally spaced from 0.3 to 0.9 with increments of 0.1. The length of the major axis is plotted as a
function of the length of the minor axis for (e) u′+(y+) and (f) �u′+

W (yo
+) at four selected wall-normal positions

with two Reynolds numbers.
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channel flow data with Reτ = 547 are simulated. The simulation is conducted in a computa-
tional domain of 8πh × 4πh × 2h with Nx = 1536, Nz = 1536, and Ny = 257 in the streamwise,
spanwise, and wall-normal directions, respectively. The corresponding streamwise and spanwise
grid resolutions in viscous units are given by �x+ = 13.4 and �z+ = 6.8, respectively. For the
space-time correlation study, 499 raw snapshots with a constant time interval of 0.02 are deployed.
The computational code and configurations deployed in this study are validated by the comparisons
of the mean and rms profiles with the open-source DNS database [25], as shown in Appendix A.

Figures 13(a), 13(c) and 13(b), 13(d) display the space-time correlation contours as a function of
space separation and time delay for the streamwise velocity fluctuation u′+(y+) and �u′+

W (yo
+) at

two selected wall-normal positions in the logarithmic region, respectively. The corresponding length
of the major axis as a function of the length of the minor axis for the contours is plotted in Figs. 13(e)
and 13(f) and the results for the channel flow data with Reτ = 934 are also included to facilitate
comparison. Other wall-normal positions in the logarithmic region have similar characteristics and
are not shown here for brevity. It can be seen that the space-time correlations of streamwise velocity
fluctuations carried by attached eddies at a given length scale feature wider elliptical shapes and
much smaller aspect ratios than those of the ensembled space-time correlations, which is consistent
with the results for the channel flow data with Reτ = 934. Furthermore, it is not difficult to observe
that the aspect ratios for the space-time correlation contours of streamwise velocity fluctuations
carried by attached eddies at a given length scale are mainly dominated by the wall-normal position
yo

+, i.e., the characteristic length scale of attached eddies, rather than the Reynolds number. These
visible results are consistent with our previous analyses.
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