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A model for the structure function constant associated with the index of refraction
fluctuations in Rayleigh-Bénard turbulence is developed. The model is based upon the
following assumptions: (1) the turbulence is homogeneous and isotropic at or near the
midplane, (2) the rate of production is in balance with the rate of dissipation, (3) an inertial
region exists, and (4) estimates for the rate of dissipation of temperature fluctuations and
of turbulent kinetic energy can be made by assuming that the large-scale turbulence is
dissipated in one eddy turnover time. From these assumptions, the dependence of the
structure function on the geometry, heat flux, and the properties of the fluid is obtained.
The model predicts that the normalized structure function constant is independent of
the Rayleigh number. To verify the model, numerical simulations of Rayleigh-Bénard
turbulence were performed using two different approaches: an in-house code based on
a pseudospectral method, and a finite volume code which employs a model for the smallest
scales of the turbulence. The model was found to agree with the results of the simulations,
thereby lending support for the assumptions underlying the theory.
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I. INTRODUCTION

Inhomogeneities in the index of refraction field resulting from turbulent temperature fluctuations
are a common occurrence in both the atmosphere and hydrosphere. These fluctuations are a
contributor, in addition to scattering and absorption, to the degradation of the propagation of light.
One such well-known effect attributed to atmospheric turbulence is the twinkling of stars. In this
case, the intensity level of the light is observed to vary in an irregular manner (scintillation). The
resulting index of refraction fluctuations are frequently referred to as optical turbulence. Light
fields propagating through optical turbulence suffer from a spreading effect (beyond diffraction),
fluctuations in the light beam position referred to as beam wander, and irradiance variation [1].
Thus, optical turbulence imposes limits on the performance capabilities of imaging systems, sensor
networks, directed-energy weapons, and laser-based communications [free space optics (FSO)].
Furthermore, insight into the interactions of light propagation through a turbulent medium using
physics-based approaches may inform higher fidelity models for the prediction of optical system
performance parameters. This could precipitate the development of advanced real-time adaptive
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optical systems that continually adjust their performance characteristics to compensate for signal
deterioration induced by evolving or degraded environmental conditions.

Field experimentation, both in the atmosphere and the water column, has provided a wealth of
information and contributed to various correlations between the environmental state and optical
propagation parameters [2–6]. However, experiments are often cost prohibitive, the environmental
conditions are typically uncontrolled, and may only provide limited spatial information from a finite
number of deployed instrumented monitoring stations. Numerical computations are proving to be a
cost effective and powerful approach to simulating multiphysics phenomena whose outcomes may
be used to inform and optimize experimental efforts. For this investigation, the Rayleigh-Bénard
(RB) turbulent convection problem is the framework in which we study the optical properties that
affect light propagation. Turbulent RB convection serves as a canonical flow model for various
environmental areas of research and technological applications [7]. In addition, the model con-
figuration has many attractive qualities for both experimental and simulation approaches such as a
simple geometrical setup, well defined boundary conditions, well understood stability and transition
characteristics, and rich dynamical behavior [8,9].

In light propagation studies through a turbulent medium, the magnitude of the index of refraction
structure constant (C2

n ) is often reported since it provides the magnitude of the variation in the
refractive index, and hence an estimate of the strength of the turbulence. Representative values,
for horizontal propagation in the atmosphere, range from 10−17 m−2/3 for weak turbulence to
10−13 m−2/3 for strong turbulence [1]. A predictive model for the behavior of the index of refraction
structure constant may be integrated directly into optical design expressions to estimate aperture
size limits, optical element diameters, spot size resolution, and other optical system performance
metrics [10].

The purpose of the current work is to determine the efficacy of determining the properties of
optical turbulence, and specifically C2

n , through the use of three-dimensional numerical simulations
of Rayleigh-Bénard turbulence, which serves as a convenient model for many environmental flows
driven by buoyancy. The simulations were carried out for air using both a pseudospectral method,
and a finite-volume method which employs a large-eddy-simulation model of the smallest scales
of turbulence. The simulations, which were carried out using identically the same fluid properties,
computational domain size, and Rayleigh (Ra) numbers, were used to determine C2

n over an order
of magnitude change in Ra. In addition, a model for C2

n was developed based on the scaling laws
of turbulence in the inertial range of turbulent length scales. The model was found to be in good
agreement with the simulations, indicating the efficacy in using numerical simulations to obtain
important properties of optical turbulence, as well as a means of verifying theoretical estimates of
these properties.

II. PROBLEM FORMULATION

The problem of interest, which is referred to as the Rayleigh-Bénard (RB) problem [9], is that of
a fluid initially at rest in a gravitational field which is driven by a temperature difference between
two parallel plates. In such a fluid, temperature differences give rise to density differences, which
in turn give rise to buoyancy forces. When buoyancy forces are sufficiently strong to overcome
viscous forces and thermal diffusion, fluid motion results. This problem is generally difficult to
solve since the fluid cannot be considered incompressible. However, when temperature induced
density differences are small compared to a reference density, the Boussinesq approximation is
often employed [11]. We employ this approximation in this work.

The Boussinesq equations of motion are given by

DV
Dt

= −ρ−1∇p + ν∇2 V + f B, (1)

where D/Dt is the material derivative, p is a modified pressure, ρ is a reference density, ν is
the kinematic viscosity, V = (u, v,w) is the fluid velocity in the x, y, z directions respectively,
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gravitational forces act in the negative y direction, and x and z denote coordinates in the horizontal
plane. In addition, f B is the buoyancy body force per unit mass given by f B = gβθ ĵ where g is
the gravitational acceleration, β is the coefficient of expansion of the fluid, θ = T − T0, where T is
the temperature and T0 is a reference temperature, and ĵ is a unit vector in the positive y direction.
Consistent with the Boussinesq approximation, conservation of mass is given by

∇ · V = 0, (2)

and the temperature field is governed by

Dθ

Dt
= α∇2θ, (3)

where α = k/ρcp is the thermal diffusivity, k is the thermal conductivity, and cp is the heat capacity
at constant pressure. The above formulation leads to three nondimensional numbers: the Nusselt
number, Nu = QL/k�T , the Rayleigh number, Ra = βg�T L3/να, and the Prandtl number, Pr =
ν/α, where L is the distance between the plates which have fixed temperatures which differ by
�T, and the vertically directed average heat flux from the bottom plate is Q. From dimensional
arguments we must have Nu = F (Ra, Pr), which implies that the nondimensional heat flux given
by the Nusselt number depends only on the Rayleigh and Prandtl numbers.

III. NUMERICAL SIMULATIONS

A. Fluid properties, boundary conditions, and initial conditions

Rayleigh-Bénard turbulence in air was simulated by two different numerical schemes: (A)
Pseudospectral methods using an in-house code, and (B) A finite-volume method which employs
a large-eddy-simulation (LES) model using the open source computational fluid dynamics package
OPENFOAM toolbox. It should be noted that the spectral simulations used in this work do not use
turbulence models and will be referred to as direct numerical simulations (DNSs).

The same computational domain size, fluid properties, and boundary conditions were used for
both spectral and OPENFOAM simulations. On the top and bottom walls of the domain, no-slip
conditions were imposed on the velocity field and the walls were kept at constant temperature.
Periodic boundary conditions were applied in the x and z directions.

The properties of air were chosen at 293.15 K, and are as follows: ν = 1.516×10−5 m2/s,
α = 2.074×10−5 m2/s, β = 3.411×10−3 K−1, and k = 2.514×10−2 W/(m − K). The Prandtl
number, specific heat, density, and atmospheric pressure were Pr = 0.7309, cp = 1007 J/(kg − K),
ρ = 1.204 kg/m3, and p0 = 1013.25 millibars. The computational domain dimensions were Lx =
0.5 m, Ly = L = 0.1 m, and Lz = 0.5 m in the x, y, and z directions respectively. In the OPENFOAM

simulations, the initial velocity was set equal to zero, and the temperature field was set to its ambient
value. In the spectral simulations, the initial velocity components were set equal to small random
values, and the initial temperature field was chosen to be the linear conduction profile given by
T (y) = �T ( 1

2 − y
L ) + T0 where y = 0 defines the center of the domain. With this initial condition

for the temperature field, the Nusselt number at time t = 0 is Nu = 1, since the initial heat flux at
the bottom wall is Q = −k∂T/∂y = k�T/L. We note that when Ra > 1708 [9] this flow will be
unstable to infinitely small disturbances, but the Rayleigh numbers in our simulations were about
two to three orders of magnitude greater than this, resulting in self-sustaining turbulence.

B. Description of DNS and LES simulations

For both DNS and LES simulations, five simulations were performed for �T = 1 ◦C, 2 ◦C, 5 ◦C,
10 ◦C, and 20 ◦C, which correspond to Rayleigh numbers of 1.063×105 to 2.126×106. Further
details concerning the simulations are given in Table I. In all simulations, statistics were obtained
from uncorrelated realizations of the velocity and temperature fields, after the flow reached a
statistically steady state.
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TABLE I. List of simulation parameters for spectral and finite volume simulations.

Temperature Total
Numerical difference Rayleigh Grid size Time simulation
method (�T ◦C) number (Ra) (x, y, z) step (s) time (s)

Pseudospectral (DNS) 1.0 1.063×105 128×65×128 1.5×10−4 240
2.0 2.126×105 128×65×128 1.5×10−4 240
5.0 5.315×105 128×65×128 1.5×10−4 240

10.0 1.063×106 128×65×128 1.5×10−4 240
20.0 2.126×106 128×65×128 1.5×10−4 240

Finite volume (LES) 1.0 1.063×105 250×250×250 1.0×10−2 75
2.0 2.126×105 250×250×250 1.0×10−2 75
5.0 5.315×105 250×250×250 1.0×10−2 75

10.0 1.063×106 250×100×250 variable 35
20.0 2.126×106 250×100×250 variable 35

The spectral simulations, which employ Eqs. (1)–(3), were performed on the Clemson University
Palmetto Cluster using an in-house pseudospectral code [12] which employs Fourier modes in the
horizontal (x−z) plane and Chebyshev modes in the vertical (y) direction. The grid resolution was
128×65×128 in the x, y, and z directions respectively, and the time step was �t = 1.5×10−4 s. In
each simulation, the Rayleigh number was fixed by choosing a temperature difference between top
and bottom walls. The physical time duration for each simulation was 240 s.

The OPENFOAM, finite volume simulations were performed on Centennial, an SGI ICE XA with
1848 compute nodes, at the Army Research Laboratory, Department of Defense Supercomputing
Resource Center (ARL DSRC), one of the supercomputing centers of the DoD High Performance
Computing Modernization Program (HPCMP). OPENFOAM is a Navier-Stokes solver based on the
finite volume method. For turbulence modeling, the large eddy simulation (LES) approach was used,
where the model solves the filtered Navier-Stokes equations. The filter size is dependent on the grid
spacing and the subgrid scales (SGSs) are modeled. In our setup, SGS stresses were modeled using
the wall adapting local-eddy viscosity (WALE) model [13]. The grid resolution was 250×250×250
in the x, y, and z directions for the runs with �T = 1 ◦C, 2 ◦C, 5 ◦C. For the cases with higher
Rayleigh number (i.e.,�T = 10 ◦C, 20 ◦C) the grid resolution was 250×100×250. The time step
for these simulations was �t = 1.0×10−2 s for the lower Ra cases and were variable for the higher
Ra simulations with a criterion to keep the CFL (Courant-Fredrichs-Lewy) number less than 1 [14],
a requirement for numerical stability.

It should be noted that spectral methods exhibit exponential convergence [15] and have been used
with success in simulating a wide variety of turbulent flows [16]. This accounts for the significantly
larger number of grid nodes (i.e., smaller spacing between grid nodes) required for the OPENFOAM

simulations compared to the spectral simulations.

IV. SIMULATION RESULTS

A detailed comparison of the velocity and temperature fields obtained from the DNS and LES
[17,18] has been performed. The results show quantitative and qualitative agreement. Therefore, to
avoid unnecessary repetition, we will primarily exhibit DNS results unless otherwise stated. Here,
in order to give an overall impression of the flow, we present results for the temporal evolution
of the Nusselt number, the relation between the Nusselt and Rayleigh numbers, visualizations
of instantaneous snapshots of the temperature and index of refraction fields, and the statistics
associated with these fields.
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FIG. 1. Nusselt number (Nu = QL/k�T ) versus time obtained from the DNS. Arrow indicates decreasing
�T .

A. Temporal evolution of the Nusselt number

The evolution of the Nusselt number, which is essentially a proxy for the heat flux across the
domain, is shown in Fig. 1 for all DNS runs. Since the Rayleigh number for all runs was above
the linear stability limit, flow instability was induced by seeding the initial velocity field with small
random values. This excites a strong response, as can be seen by the rapid increase of the Nusselt
number in the first few seconds of each simulation. The flows are seen to fairly quickly establish
a steady state in which the Nusselt number oscillates randomly about a mean value. All statistics
from the DNS runs were obtained by averaging over the last 60 s of these simulations.

B. Visualization of the temperature field

In Fig. 2, a three-dimensional snapshot of the instantaneous temperature field obtained from the
last 60 s of the DNS for �T = 20 ◦C and Ra = 2.126×106 is shown. The numerous warm (red)
and cold (blue) cusplike shapes at the bottom and top walls correspond to rising and falling fluid
respectively, which was confirmed through numerous visualizations of the velocity field not shown
here.

C. Dependence of the Nusselt number on Rayleigh number

In Fig. 3 the dependence of the Nusselt number on the Rayleigh number is shown for both DNS
and LES. The results show close agreement over a range of more than one order of magnitude
in Rayleigh number, despite the significant differences between the two numerical approaches. In
addition, a least squares curve fit using the data from both simulations gives Nu = 0.186Ra0.274.
This is in reasonable agreement with Nu = 0.1Ra0.31Pr0.05 obtained from a series of comprehen-
sive experiments [19] cited in the classic work of Chandrasekar in 1961 [9] as representative of
laboratory scale RB turbulence. However, it is important to recognize that the relationship between
the Nusselt, Rayleigh, and Prandtl numbers for RB turbulence will be sensitive to the aspect ratio
(L/Lx) as well as the boundary conditions employed on the side walls.

054605-5



HANDLER, WATKINS, MATT, AND JUDD

FIG. 2. Three-dimensional visualization of the temperature field, θ = T − T0( ◦C), obtained from a statis-
tically steady state flow from the DNS for which �T = 20 ◦C and Ra = 2.126×106 at t = 180 s. Hot and cold
fluid associated with cusplike regions are rising and falling from bottom and top boundaries respectively. Axes
are denoted in meters and the arrow indicates the direction of gravity.

D. Visualization of the index of refraction field

We are concerned with the index of refraction in this work, since its structure function can be
used to determine the structure function constant C2

n . It is straightforward to determine the index of

FIG. 3. Nusselt number vs Rayleigh number. DNS: LES: . The Nusselt number was obtained from the
heat flux at the top and bottom walls of the domain during a time period in which the flow was statistically
steady. A least squares curve fit of these results gives Nu = 0.186Ra0.274.
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FIG. 4. Three-dimensional snapshot of the index of refraction field, n0 = n−1. This image was generated
from the thermal field shown in Fig. 2.

refraction n in air from the temperature field as follows [1]:

n − 1 = −C
p0

T 2
0

(T − T0), (4)

where C = 79×10−6 K/mbar, p0 = 1013.25 mbar, and T0 is the reference temperature. The left-
hand side represents deviations of the index of refraction from its equilibrium value of 1. In Fig. 4
a three-dimensional snapshot of n0 = n−1 is shown. Here it is evident that n0 is strictly negative
since the temperature field is always greater than the reference temperature, which is defined to be
the temperature of the top wall. Rising warm plumes (see Fig. 2) are seen to be associated with the
largest negative index of refraction (e.g., blue cusplike features in Fig. 4).

In Figs. 5(a) and 5(b) horizontal (x−z) slices of the index of refraction field, obtained from
the Fig. 4 snapshot, are shown. Figure 5(a) shows that the index of refraction field near the top
wall exhibits an interesting spider-web structure composed of narrow (red) linear features. These
features have been confirmed to be associated with falling cold plumes. On the other hand, the index
of refraction field at the exact center of the flow shown in Fig. 5(b) appears relatively featureless.

E. Statistics of the temperature, velocity, and index of refraction

The statistics of the temperature, velocity, and index of refraction fields are presented in
Figs. 6–8. Here for any field φ, φ̄ is defined as its average (mean) and is obtained by summing over
all realizations of the flow in a given time period and over the horizontal plane. Its root-mean-square

(rms) is defined by φrms(y) = [(φ−φ̄)2]
1/2
. All statistics presented here were obtained over the time

interval t = 180–240 s for each simulation. It is expected that the so-called convective scales [20]
of velocity, w∗, and temperature, θ∗, defined by

w∗ = (βgLq0)1/3 (5)

and

θ∗ = q0/w
∗ (6)
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FIG. 5. (a) Visualization of the index of refraction field, n0 = n−1, in the horizontal (x−z) plane near the
top surface (y = 0.045 m) obtained from the snapshot shown in Fig. 4. Note the spider-web-like structure. (b)
Visualization of the index of refraction field in the horizontal (x−z) plane at the center (y = 0.0 m) of the
domain.

give reasonable estimates of the velocity and thermal fluctuations for RB turbulence, where
q0 = Q/(ρcp), and Q is the heat flux.

The mean temperature profiles shown in Fig. 6(a) indicate the expected deviations from the linear
conduction profile used as the initial condition in each simulation as turbulent mixing increases
thermal gradients near the walls. As an example, the heat flux for the case �T = 20 ◦C has increased
by about one order of magnitude compared to pure thermal conduction as indicated by the fact that
the Nusselt is O(10) in this case, as shown in Fig. 3. The rms thermal profiles shown in Fig. 6(b)
have been scaled using θ∗. This scaling appears to give good data collapse in the central region.
Further, the thermal fluctuations scaled in this way are all O(1), which confirms that the thermal
convective scale gives reasonable estimates of thermal fluctuation magnitudes. The rms velocity
profiles shown in Fig. 7 have been scaled using w∗. Similar to the thermal fluctuations, all three
velocity components are O(1), and the horizontal (u,w) velocity results show that the flow has no
x−z bias as we should expect from the symmetry of the flow.

In the center of the flow, although the vertical (v) fluctuations are somewhat larger than the
horizontal (u,w) fluctuations, it is reasonable to assume that the flow can be considered nearly
isotropic at its center. In fact, this was also found to be true in recent experiments [21]. Finally, the

FIG. 6. Temperature statistics obtained from the DNS. (a) Mean temperature θ̄ versus vertical distance y
for five temperature differences �T. The bottom wall of the domain is at y = −0.05 m. (b) Root-mean-square
temperature θrms made nondimensional by the convective thermal scale θ∗.
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FIG. 7. Root-mean-square velocities, urms, vrms, wrms, obtained from the DNS. These have been made
nondimensional by the convective velocity scale w∗.

rms of the index of refraction fluctuations (ηrms) are shown in Fig. 8(a). We note that these profiles,
along with those for the horizontal (u,w) velocity components and those for temperature fields, all
exhibit maxima near the no-slip walls, where the turbulence is expected to deviate from isotropy. In
addition, as shown in Fig. 8(b), when ηrms is scaled with the characteristic convective temperature
scale θ∗, we see that reasonable collapse is obtained. This is expected since from Eq. (4), index of
refraction fluctuations are proportional to thermal fluctuations.

V. MODEL FOR THE STRUCTURE FUNCTION CONSTANTS

In RB turbulence, it is appropriate to define the structure function for temperature fluctuations as
a function of r, which represents a coordinate in a given horizontal (x−z) plane, and the coordinate
y, which corresponds to that plane as follows:

DT (r, y) = 〈[T (0, y) − T (r, y)]2〉, (7)

FIG. 8. (a) Root-mean-square index of refraction, ηrms, and (b) ηrms/θ
∗. These results were obtained from

the DNS.
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where the brackets represent averaging over all flow realizations. According to Kolmogorov scaling
laws [22] there exists a region such that l0 � r � L0, the so-called inertial region, where l0 and L0

are the inner and outer scales of turbulence for which the structure function is

DT (r, y) = C2
T r2/3, (8)

where C2
T is the structure function constant for thermal fluctuations. Similarly, the structure function

Dn for the index of refraction fluctuations is defined by

Dn(r, y) = 〈[n(0, y) − n(r, y)]2〉. (9)

Since the index of refraction fluctuations are assumed to be directly proportional to thermal
fluctuations, as a first approximation [1] we must have

Dn(r, y) = K2C2
T r2/3, (10)

where K = −C p0

T 2
0
, so that an estimate C2

T will allow us to estimate C2
n as follows:

C2
n = K2C2

T . (11)

The proposed model for the structure function constants is based on data obtained from the exact
center of the simulated RB turbulence where we have shown above that the turbulence is reasonably
close to isotropy. Therefore C2

T can be directly related to the properties of an isotropic, homogeneous
turbulence in the inertial range [22] by

C2
T ∼ εT ε−1/3, (12)

where εT = α〈∂iT ′∂iT ′〉 is the rate of dissipation of temperature fluctuations, ε = 2ν〈Si jSi j〉 is the
rate of dissipation of kinetic energy, Si j = 1/2(∂ jui + ∂i u j ) is the rate-of-strain tensor, fluctuations
in temperature and velocity are given by T ′ and ui, and repeated indices imply summation. Further-
more, since the simulated RB turbulence is in a statistically steady state, the production of turbulence
equals the rate at which it is being dissipated. In this case, energy is assumed to be supplied to the
turbulence at the largest length scales and is dissipated in one large-eddy turnover time, tE = L/w∗,
a basic assumption in the Kolmogorov model of turbulence [22]. These considerations lead to the
following estimates for the dissipation rates in terms of the convective scales w∗and θ∗ and the tE :

εT ∼ (θ∗)2
w∗/L, (13)

and

ε ∼ (w∗)3
/L. (14)

The final estimate for C2
T can be determined by substituting Eqs. (13) and (14) into Eq. (12)

which gives

C2
T ∼

(
Q

ρcpL

)4/3

(βg)−2/3. (15)

This result implies that

C2
T /χ ≡ γ , (16)

where χ = ( q0

L )4/3(βg)−2/3 and γ is a dimensionless constant which should not depend on Rayleigh
or Prandtl numbers. Naturally, since the Rayleigh number depends on the Nusselt and Prandtl
numbers, γ should also be independent of the Nusselt number as well. The extent to which this
model describes the nature of the structure function constant will be determined by comparing it to
simulations.
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FIG. 9. Dependence of thermal structure function constant C2
T on the Nusselt number (a) and Rayleigh

number (b). Theory given by C2
T = ( Q

ρcpL )
4/3

(βg)−2/3 using the Q from DNS ( ) and LES ( ). C2
T from DNS

( ) and LES ( ). Dependence of the thermal structure function constant made nondimensional by the theory
(C2

T /χ ) on Nusselt number (c) and Rayleigh number (d) for DNS (×) and LES ( ). Dimensions of C2
T are

◦C2m−2/3.

VI. COMPARISON OF THE MODEL FOR C2
T AND C2

n WITH SIMULATIONS

For both the DNS and LES simulations, the structure function DT was determined using Eq. (7)
and data from the center plane of the computational domain. Then using Eq. (8), the best fit of the
structure function to the two-thirds law was used to determine the structure function constant C2

T . In
all cases, the goodness of fit parameter R2 was greater than 0.95 indicating that the two-thirds law
was well satisfied.

In Figs. 9(a) and 9(b) the dependence of C2
T on Nusselt and Rayleigh numbers are shown for

both DNS and LES simulations. These results are compared with the theory given by Eq. (15).
It is evident that the simulation results and the theory show the same dependence on Nusselt and
Rayleigh numbers since both simulation and theory give nearly straight lines with virtually the same
slopes as shown using log-log axes. Furthermore, when C2

T is made nondimensional as described
in Eq. (16), it is clear from Figs. 9(c) and 9(d) that γ is essentially independent of the Nusselt and
Rayleigh numbers, as predicted by the theory.

Naturally, we expect some variation in the constant γ . Using the DNS and LES data, the average
and root-mean-square values for γ are found to be γ̄ = 6.171 and γrms = 0.4721 respectively. The
final result for the normalized thermal structure function constant for RB turbulence is then

C2
T /χ = 6.171 ± 0.4721. (17)

The dependence of the index of refraction constant C2
n on heat flux is shown in Fig. 10. Here the

theory, given by C2
n = γ̄ K2( Q

ρcpL )
4/3

(βg)−2/3, is compared to the simulations. Excellent agreement
is obtained, confirming that the model given by Eq. (15) gives an accurate estimate of the index
of refraction structure function constant. We note that although we have shown that C2

T /χ is
independent of the Nusselt and Rayleigh numbers, we have not shown that it is independent of the
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FIG. 10. Dependence of the index of refraction structure function constant, C2
n = K2C2

T where
K = −C p0

T 2
0

, on heat flux Q (W/m2). Simulation results: DNS ( ), LES ( ). Theory (∗) given by C2
n =

γ̄ K2( Q
ρcpL )

4/3
(βg)−2/3. Units for C2

n are m−2/3.

Prandtl number. This dependence, if any, could not be determined based on our current simulations
which were performed at constant Prandtl number.

VII. SUMMARY AND DISCUSSION

The objective of this effort was to determine the efficacy of determining the properties of optical
turbulence through the use of three-dimensional numerical simulations. The classic and well-studied
case of Rayleigh-Bénard turbulence was chosen for the simulations since this form of turbulence has
many of the features we expect to find in natural flows in atmospheres and oceans, and is therefore
of particular interest to the optics and fluid mechanics communities. The simulations were used to
study the nature of the structure function constant C2

n . This statistic is a measure of the intensity of
optical turbulence, and therefore determines the effects of thermal fluctuations on the propagation
of light through random media.

The simulations were carried out for air using two different numerical schemes: (A) Pseu-
dospectral methods using an in-house code (DNS), and (B) A finite-volume method which
employs a large-eddy-simulation (LES) model using the OPENFOAM toolbox. The DNS and
LES were carried out in identically the same computational domain (aspect ratio of 5:1), with
identically the same fluid properties, and for the same temperature changes across the domain
(�T = 1 ◦C, 2 ◦C, 5 ◦C, 20 ◦C). This resulted in a Rayleigh number variation of 1.063×105 to
2.126×106. The statistics (e.g., velocity, temperature) obtained from the DNS and LES simulations
were compared in previous work, and were shown to be in very close agreement. It is important
to emphasize that such close agreement was obtained despite the fact that the DNS and LES use
different representations for the small scales of turbulence, and were performed on entirely different
computational platforms. In fact, the DNS uses no turbulence models, and therefore uses no special
representation of the smallest scales of turbulence.

Three-dimensional visualizations of the temperature and index of refraction fields show a
dendritic or spider-web structure near the walls, and a more featureless structure at the center of
the domain. Root-mean-square (rms) statistics of the velocity field reveal an isotropic structure at
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the domain center, and are shown to collapse reasonably well by using the convective scale w∗.
Similarly, the rms statistics of the temperature field are shown to collapse using the scale θ∗.

A model for the structure function constant for RB turbulence is proposed based on the idea
that the turbulence is nearly isotropic at its center, which allows the standard Kolmogorov theory
of turbulence to be invoked. Based on this idea, the structure function constant for the thermal
fluctuations C2

T can be represented in the inertial range by C2
T ∼ εT ε−1/3, where εT and ε are the

dissipation rates for the temperature and kinetic energy respectively. The dissipation rates as well
as the large eddy turnover time can then be expressed in terms of the convective scales to give
C2

T /[( q0

L )4/3(βg)−2/3] ≡ γ , where γ is a constant, independent of Rayleigh or Prandtl numbers.
Excellent agreement was found between this theoretical result and the simulations. The comparison
gives the final result of this work: C2

T /χ = 6.171 ± 0.4721. From this, C2
n can be determined since

it is directly proportional to C2
T . We emphasize that the theory predicts that γ should be independent

of Rayleigh number, which is confirmed by the simulations for a one order of magnitude change in
the Rayleigh number.

In conclusion, this work shows the efficacy in using numerical simulations to obtain important
properties of optical turbulence, as well as a means of verifying theoretical estimates of these
properties. We also recognize the importance of experimentally verifying the results obtained in
this work. In particular, the theory predicts that the structure function constant is related to the heat
flux Q as follows: C2

T ∼ Q4/3. An experimental effort with this goal in mind is now underway in the
Clemson University VTG (Variable Turbulence Generator) facility [23,24].

The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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