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Isotropic turbulence of variable-density incompressible flows
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In the present study, the effects of density variations on structures developing in an
isotropic incompressible turbulent flow are investigated. Statistical analyses are carried
out on data sets obtained from direct numerical simulations of forced turbulence. The
discretized variable-density incompressible Navier-Stokes equations are time advanced
with a Fourier-Fourier spectral solver coupled with a semi-implicit second order in time
Runge-Kutta scheme. Turbulence is forced using an extension of the Lundgren method to
the variable-density equations including mass diffusion effects. Numerical evidence shows
that the introduction of a variable-density field into a turbulent field modifies the coherent
structures and the energy spectrum in the inertial range. The analysis of probability density
functions of velocity gradients and Lagrangian acceleration suggests an increase in time
and space intermittency beyond a threshold density ratio associated with the two-fluid
mixture. These modifications are not captured by the classical scaling laws of skewness and
flatness factors given in the literature for the constant-density flow case. The energy spectra
preserve the Kolmogorov slope while exhibiting an energy level alteration within the
smallest scales of the inertial range. This region corresponds to the range of modes where
the energy levels of the Rayleigh-Taylor instability criterion are the highest, giving some
physical arguments that the aforementioned structural modifications may be attributed to
Rayleigh-Taylor-like instabilities.
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I. INTRODUCTION

Flows characterized by large spatial density variations play a crucial role in various industrial
and environmental applications, such as releases of pollutants to the environment. It is therefore of
fundamental importance to investigate transport properties of gas mixtures into the atmosphere. In
this context the study of isotropic turbulent structures that may emerge from such flows can provide
a preliminary understanding of how to more efficiently predict the dispersion of pollutants in the
atmosphere.

In this vein intensive pioneering work carried out by Livescu and Ristorcelli [1], Livescu et al.
[2], Rao et al. [3], and Nomura and Elghobashi [4], among a few others, was devoted to exploring the
properties of variable-density turbulence and its interactions with other physical phenomena. These
authors deeply explore the energy transfer and the mixing process of variable-density turbulence in
buoyancy-driven flows and nonpremixed flames flow configurations.

Mohaghar et al. [5] focus on the interactions between variable-density isotropic turbulence and
shock waves in a mixing process, and

Tian et al. [6] investigate the density effects on the structure and dynamics of postshock
turbulence.
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Although the above findings constitute an important step forward, the understanding of the small-
scale statistics of variable-density isotropic turbulence is still lacking. Motivated to overcoming this
blind spot, the main objective of the present work is to address this problem using direct numerical
simulations (DNSs) and statistical analyses.

Following the initial research by Kolmogorov [7], which states that small-scale statistics of
turbulence are unaffected by forcing and boundary conditions at larger scales, numerous numerical
studies devoted to constant density incompressible flows have been conducted based on triply
periodic DNSs [8–12]. Within this framework, computational costs are reduced, making possible
the investigation of small-scale turbulence. Recently it also highlights the potential universality of
turbulence small-scale statistics, and recent progress in supercomputing facilities has led to a rapid
increase in the resolution level of DNSs (e.g., see Ishihara et al. [13]). This achievement has enabled
statistical analyses of small-scale isotropic turbulence in constant-density flows. Sreenivasan and
Antonia [14] and more recently Dubrulle [15] undertake a comprehensive review of the recent
progress made. Notably, Kerr [8], Jiménez et al. [10], and Ishihara et al. [13], conduct studies
on the one-point statistics and energy spectra of small-scale turbulence. Their works clearly show
the effect of the microscale Reynolds number on temporal and spatial intermittency, which are also
strongly connected to the statistics of velocity gradients.

As mentioned above, the behavior of small-scale turbulence is mainly investigated through
statistical analysis. Since the turbulent fields have random features, statistics are computed using the
time average of data sets to reduce statistical variance. It then requires that processes are statistically
stationary in time. However, isotropic turbulence is not stationary, and energy must be injected into
the flow continuously, which is the so-called forced isotropic turbulence. This technique allows
achieving higher Reynolds number and longer statistics than is possible with isotropic decaying
turbulence. This has been widely used since the early works of Siggia and Patterson [16], Overholt
and Pope [17], Kerr [8], and Eswaran and Pope [18]. The forcing technique developed by the
aforementioned authors prevents the decay of turbulence by injecting energy into the large turbulent
structures through a narrow region in the spectral space. These forcing methods rely on the cascade
notion of Kolmogorov [7], which states that the small scales of turbulence are independent of
the behavior of the large-scale motions. More recently, Lundgren [19] introduced a forcing term
in the physical space, where the corresponding source term takes the form f = qu, which is
analogous to the kinetic energy production term that appears in shear flows. One of the advantages
of this approach is its simple extension to variable-density—compressible or incompressible—flows
[20,21]. Carroll and Blanquart [20] and Janin et al. [22] propose modifications to the latter method to
reduce statistics oscillations and control integral length scale. Despite the benefits, it also adds some
extra control parameters not present in our initial data set. Especially, for inhomogeneous density
flows, these improvements would require additional control parameters which should be a function
of the Schmidt Sc numbers, density ratio s, and initial condition ρ0(x) for the density field. Hence,
the present study will rely upon the Lundgren’s method that will be extended to incompressible
equations with mass diffusion.

While Lundgren’s method enables simulations of forced variable-density isotropic turbulence,
the development of specific numerical methods [23,24] and analyses of mass diffusion effect on
turbulence small-scale statistics are still lightly explored topics. From the above discussion, it
seems that a comprehensive understanding of the development of isotropic turbulent structures in
incompressible flow within inhomogeneous density fields is still lacking.

The purpose of this paper is to extend the studies of small-scale flow structures that emerge
in forced isotropic turbulence to the variable-density flow case. In the next section, following a
brief presentation of the system of equations and numerical schemes, the forcing method based
upon Lundgren’s technique is introduced. The following section presents two studies of variable-
density flow simulations. The first study offers a statistical analysis of small-scale structures by
examining the probability density functions (PDFs) and moments of velocity field gradients, as well
as their dependence on the microscale Reynolds number. The second study focuses on providing
some physical insights from a structural perspective through the use of Fourier spectral analyses
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and visualization of flow fields to draw a complete picture. Finally, the conclusions are summarized
in the last section and prospects are given.

II. GOVERNING EQUATIONS AND NUMERICAL METHODS

A. Mathematical model

We consider the isotropic turbulent motion of a viscous fluid in an inhomogeneous medium
that takes places in a bounded cubic domain � of volume V —where the Cartesian coordinate
system is defined by the x, y, and z axes—and in time interval t ∈ [0, tf]. The turbulence fields
are assumed to be periodic in each direction of the Cartesian coordinates within the periodic box
� of size 2π , so it can be expressed as a Fourier series with both the minimum wave number
kmin and the wave-number increment being 1. The mathematical model for the variable-density
incompressible Navier-Stokes equations (VDINSEs) used in the present contribution is detailed
by Frank-Kamenetskii [25], Kazhikhov and Smagulov [26], Antontsev et al. [27], and Guillén-
González et al. [28]. Within this framework, mass diffusion is modeled according to Fick’s diffusion
law, and large density variations are considered—where the Boussinesq approximation is no longer
verified—while being sufficiently smooth to be accurately projected onto a spectral basis. In regard
to the above-mentioned references, we introduce the mean density ρ(x, t ) and the mean-volume
velocities u = (u, v,w)T(x, t ). The dimensionless equations of motion read

∂u
∂t

+ (u · ∇)u + ∇p

ρ
= ζ(ρ, u) + f , (1a)

∂ρ

∂t
+ (u · ∇)ρ = 1

ReSc
∇2ρ, (1b)

∇ · u = 0, (1c)

ζ(ρ, u) = 1

ρRe
∇2u + 1

ρReSc
[(u · ∇)∇ρ + (∇ρ · ∇)u], (1d)

where ζ(ρ, u) represents the—viscous and mass—momentum diffusion terms. In the momentum
equation (1a), p is a potential function analogous to the pressure and f represents an external
volumetric body force. In Eqs. (1b) and (1d), Re and Sc are the Reynolds and Schmidt numbers,
respectively, defined as

Re = ρcvcLc

η
, Sc = η

ρcD
, (2)

with η and D the dynamic viscosity and mass diffusivity of the fluid, respectively, and ρc, vc, Lc are
characteristic density, velocity, and length scales.

It is essential to note that the incompressible formulation arises from the selection of the
mean-volume velocity u for representing the velocity field of the variable-density flow. Conven-
tionally, the Navier-Stokes equations are written in terms of the barycentric mean-mass velocity
ū, which does not lead to a divergence-free velocity field. Equations (1a) and (1b) are derived
by initially formulating the Navier-Stokes equations on the mass-averaged velocity and subse-
quently substituting the latter with the mean-volume velocity using Fick’s diffusion law

ū = u − D

ρ
∇ρ, (3)

which relates the velocity ū with nonzero divergence to the divergence-free velocity u. Additional
details are provided by Guillén-González et al. [28].

The initial conditions of the system (1) are

u(x, 0) = u0(x), p(x, 0) = p0(x), ρ(x, 0) = ρ0(x), ∀x ∈ �, (4)
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where u0 and p0 are the initial turbulent velocity and pressure fields obtained from a preliminary
constant-density forced isotropic turbulence simulation and ρ0 is the smooth initial density profile.
We then introduce an additional control parameter which characterizes the density ratio:

s = max ρ0(x)

min ρ0(x)
. (5)

B. Numerical methods

VDINSE (1) are solved using a Fourier-Fourier spectral numerical scheme. Turbulence fields
are expressed as Fourier series where aliasing errors are removed by phase shifting that keeps all
the Fourier modes satisfying |k| < kmax = N/3, where k is the wave number and N the number of
grid points along each spatial Cartesian direction. The time-stepping procedure is a second-order
Runge-Kutta method for the nonlinear terms with semi-implicit Crank-Nicholson treatment for the
momentum diffusion terms (RK2CN). This is based on the work of Reynier et al. [24], which is an
extension of Peyret [29], Bell and Marcus [30], Tadjeran [31], Di Pierro and Abid [32], and which
is briefly outlined below:

un+1 − un

δt
= −[(u · ∇)u]n+1/2 − ∇pn+1/2

ρn+1/2

+ 1

2
[ζ(ρn+1/2, un+1) + ζ(ρn+1/2, un)] + f n, (6a)

ρn+1 − ρn

δt
= −[(u · ∇)ρ]n+1/2 + 1

2

1

ReSc
(∇2ρn+1 + ∇2ρn), (6b)

∇ · un+1 = 0. (6c)

The n superscript symbolizes the solution at time t n = nδt , and the n + 1/2 superscript refers
to the second-order substep solution at time t n+1/2 = (n + 1

2 )δt , where δt is the integration time
step. Advection terms [(u · ∇)u]n+1/2 and [(u · ∇)ρ]n+1/2 are estimated through a Runge-Kutta
2 (RK2) scheme. The momentum diffusion term ζ(ρ, u) is computed with the substep density
ρn+1/2 = 1

2 (ρn+1 + ρn) following Tadjeran [31] for stability considerations. In order to preserve
the second-order accuracy in time and to ensure incompressibility, the pressure—and the update
pressure pn+1/2—is computed with the projection technique proposed by Reynier et al. [24], by
solving

∇ ·
(

1

ρn+1/2
∇pn+1/2

)
= f (u) (7)

through the inversion of the pressure operator. This is performed using a generalized minimal
residual (GMRES) algorithm preconditioned with the inverse of the discrete Laplacian operator.
The semi-implicit treatment of the equations of motion also requires the inversion of the momentum
diffusion operator. These computations are performed with a GMRES method preconditioned with
the inverse operator associated with constant-density flow as suggested by Reynier et al. [24]. These
preconditioning techniques greatly improve the convergence properties of the iterative solver by
reducing the condition number of the aforementioned operators.

Finally, to prevent the emergence of steep structures that are challenging to capture with the
spectral scheme, the density field is filtered after each time step when deemed necessary with a
spectral Gaussian filter

ρn
f = F−1(ρ̂n(k) exp[−σ (k/kf )

p]), (8)

where ρn
f is the filtered density field after the nth time advancement. In Eq. (8) and following, the

spectral representation of ϕn is noted ϕ̂n and the Fourier transform of a given function is symbolized
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F (·). The filter parameters are set to kf = 0.55kmax, σ = 18, and p = 16 hereafter. Specifically,
the filter is applied at the beginning of the simulations, spanning 100 iterations. This is done to
prevent the emergence of problematic steep structures following the injection of the density field, as
elaborated upon in Sec. III A.

C. Turbulence forcing

Stationary isotropic turbulence is studied numerically by injecting energy through the forcing
term f in the momentum Eq. (1a). We recall that for the constant-density case, the rate of change of
the turbulent kinetic energy per unit of mass reads∫

�

∂

∂t

(
1

2
u2

)
dV =

∫
�

1

Re
u · ∇2u dV +

∫
�

f · u dV. (9)

The forcing term is adjusted to achieve a statistically stationary state which guarantees that the
integrated kinetic energy is conserved. In that regard, we should verify∫

�

f · udV = −
∫

�

1

Re
u · ∇2udV. (10)

Lundgren [19] proposes a linear method in the physical space where f = qu injects energy
proportionally to the velocity field fluctuations. This approach injects energy over all scales of the
flow unlike the spectral forcing methods—such as the method of Kerr [8]—which excite only a
narrow region of the spectral space. As the largest scales are subjects to the largest fluctuations,
these scales are the most impacted ones by the source term and the smallest scales are essentially
unaffected [19,20]. This method has the advantage of being conveniently extendable to variable-
density simulations. The forcing coefficient q is computed from Eq. (9) to verify the stationarity
condition of Eq. (10) and reads

q(u) = − 1

Re

∫
�

u · ∇2u dV∫
�

u · u dV
. (11)

The forcing term being proportional to the velocity field, the latter must be initialized. To ensure that
small structures are not affected by the initial condition, we adopt an initial condition u0 similar to
the forcing term of Kerr’s method, which forces the Fourier modes associated to the smallest wave
numbers to a constant amplitude:

u0 = F−1( f̂ ), f̂ (k) = f0, ‖k‖2 = 1 (12)

with f0 = 1
4 so that the initial velocity amplitude is unity. This initial velocity condition is finally

projected into the divergence-free space.
For variable-density flows, the integrated turbulent kinetic energy per unit of volume 1

2ρu2 is
now considered. The latter is driven by

d

dt

(
1

2
ρu2

)
= ρ

d

dt

(
1

2
u2

)
+ 1

2
u2 dρ

dt

= −u · ∇p + ρu · ζ(ρ, u) + ρu · f + 1

2ReSc
u2∇2ρ. (13)

Following the same line of thought as in the constant-density case, the forcing term should verify∫
�

ρ f · u dV = −
∫

�

ρu · ζ(ρ, u) dV −
∫

�

1

2ReSc
u2∇2ρ dV. (14)
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TABLE I. DNS parameters of variable-density forced turbulence simulations, and turbulence characteris-
tics at the final time t = tf and averaged 〈·〉	 over the study time interval 	. N represents both the number of
Fourier modes (prior to aliasing) and the number of mesh points in each direction of physical space. To enhance
readability, the notation 〈·〉	 is omitted in the text. Final velocity and pressure fields from the constant-density
simulation 256-1 are used as initial conditions along with the sphere density profile from Eq. (18) for the
variable-density simulations.

Run N Re s d Sc tf 	 〈Reλ〉	 〈T 〉	 〈L〉	 〈λ〉	 103〈η〉	 kmax〈η〉	 〈λ〉	/〈η〉	 −〈S〉	 〈F 〉	

256-0.25 256 103 0.25 10 1 6.0 [2, 6] 249 1.43 0.81 0.20 6.41 1.1 31.0 0.51 4.92
256-0.5 256 103 0.5 10 1 10.0 [2, 6] 246 1.43 0.81 0.20 6.41 1.1 31.0 0.51 4.92
256-1 256 103 1 — 1 70.0 [40, 70] 214 1.44 0.78 0.17 5.85 1.0 28.8 0.48 4.97
256-2 256 103 2 10 1 6.0 [2, 6] 172 1.42 0.81 0.14 5.39 0.92 25.9 0.43 4.82
256-4 256 103 4 10 1 10.0 [2, 6] 143 1.39 0.80 0.12 4.86 0.83 23.7 0.30 4.37
256-6 256 103 6 10 1 6.0 [2, 6] 120 1.39 0.80 0.09 4.19 0.72 20.0 0.18 4.03
256-8 256 103 8 10 1 10.0 [2, 6] 108 1.36 0.80 0.08 4.19 0.72 20.5 0.18 4.03

Within this framework, the forcing coefficient q reads

q(ρ, u) = −
∫
�

u · [ρζ(ρ, u) + (2ReSc)−1u∇2ρ] dV∫
�

ρu · u dV
, (15)

which is now a function of both ρ and u.

III. RESULTS

A. Simulation methodology

Table I summarizes simulation parameters and some key turbulent parameter values characteriz-
ing the simulation runs. The integral length scale L and the Taylor microscale λ are computed from
the one-dimensional energy spectrum E (k) such as

L = 3π

4

∫ kmax

0
k−1E (k) dk

/ ∫ kmax

0
E (k) dk (16)

and

λ =
(

5
∫ kmax

0
E (k) dk

/ ∫ kmax

0
k2E (k) dk

) 1
2

. (17)

The microscale Reynolds number Reλ is defined as Reλ = (λ/L)Re. The eddy turnover time T is
given by T = L/u′, where 3

2 u′2 is the total turbulent kinetic energy per unit of mass.
A preliminary simulation is carried out with constant density using Lundgren’s method described

by Eqs. (10) to (12). Turbulent parameters of this specific run can be found in Table I under the
label 256-1. The (turbulent) resulting velocity field is used as the initial condition for variable-
density simulations. Table II presents the turbulent characteristics of this initial condition, and Fig. 1
displays its energy spectra.

TABLE II. DNS parameters and turbulence characteristics at the final time t = t f of the constant-density
HIT simulation employed to generate the turbulent initial conditions for the variable-density HIT simulations.

Run N Re tf Reλ T L λ 103η kmaxη λ/η −S F

256-1 256 103 40 210 1.56 0.89 0.19 6.54 1.1 28.6 0.48 5.36
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FIG. 1. Energy spectra at final time t = t f of constant-density HIT run 256-1 used as initial condition for
the variable-density HIT simulations. The vertical line delimits the mode associated with the aliasing filter.
Simulation parameters for the constant-density HIT DNS are listed in Table II.

In this work, the density field is initialized with a smooth profile ρ0(x) in which a sphere of
volume 1

2V is located at the center of the computational box

ρ0(r) = 1 + s − 1

2

(
1 − tanh

r − r0

d

)
, (18)

where r = ‖x‖2 and r0 = (3π2)1/3. The parameter d is the length of the transition region between
the interior of the sphere and the surrounding fluid, and is fixed to 10 mesh cells. One may recall
that the parameter s represents the density ratio between the fluid filling the sphere and the fluid
surrounding it.

In simpler terms, simulations are initialized by the injection of an inhomogeneous density field
into a turbulent flow. The abrupt injection of the density field is mitigated by applying the filter
described in Eq. (8) during the initial 100 iterations of the simulation. This filtering process spans a
time interval equivalent to one-tenth of an eddy turnover time.

One can specify that using a turbulent field as initial condition is necessary since injecting the
variable-density field before forced turbulence is fully developed will result in complete mixing of
the mass field before reaching a statistically stationary turbulent state.

In addition, it is also essential to select a specific time window for the study that encompasses
mass diffusion effects while ensuring that the turbulent fields can reach an almost statistically
stationary state.

For illustration purposes, the run 256-4 is now considered. Figure 2 shows the initial density field
and its time evolution.

Data statistics are plotted in Fig. 3 where the time evolution of integrated kinetic energy per
unit of volume, isotropy degree [33] (see Appendix B), microscale Reynolds number, density
field standard deviation in space, velocity longitudinal-derivative skewness (the expression of the
skewness is recalled in the next section), and eddy turnover time are displayed. The standard
deviation of the density field σ (ρ) is computed as the square root of the average of the squared
deviations from the mean of the density field. On one hand, the figure shows that the adjusted
forcing in time is able to guarantee integrated kinetic energy conservation and isotropy. On the
other hand, the figure shows that we are able to select a specific time interval of approximately two
eddy turnover times, where the turbulent Reynolds number as well as the skewness factor keep an
almost constant value while mass diffusion effects are still significant. In the following, this time
interval used for the statistical study is noted 	.
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FIG. 2. xz cross-section plot of the density field at different times during simulation run 256-4. Re = 1000,
s = 4, Sc = 1, N = 256.

B. Density field mixing

The introduction of an inhomogeneous density field into a turbulent flow initiates its mixing,
facilitated by the turbulent eddies. PDFs can be employed to characterize the state of mixing
and its evolution. Figure 4 displays the PDFs of the density field at various selected times for
different simulations with distinct initial density ratio s. The PDFs initially manifest as a symmetric
double peak, corresponding to two initially pure fluids connected by a transition region. As the
fluids begin to mix during the simulation, the PDFs become asymmetrical. A progressive stretching
of the bell curve towards the left is evident, indicating a positive asymmetry. This implies that
the denser fluid component mixes more rapidly than the less dense component. This behavior
is also observed in turbulence simulations driven by buoyancy effects conducted by Livescu and
Ristorcelli [1].

It is also noteworthy that the differences between the various density ratios s are minimal,
especially concerning the asymmetry, which does not intensify with the increasing in s. This
asymmetry is substantiated by the skewness coefficient of the density fluctuations

Sρ = 〈(ρ − ρ̄ )3〉�
〈(ρ − ρ̄ )2〉3/2

�

, (19)
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FIG. 3. Evolution of the volumetric total kinetic energy, isotropy degree [33] (calculation detailed in
Appendix B), microscale Reynolds number Reλ, density field standard deviation in space σ (ρ ), velocity
longitudinal-derivative skewness S, and eddy turnover time T during simulation run 256-4. Vertical lines
delimit a time interval 	 of two eddy turnover times, where turbulent parameters do not fluctuate much and
where mass diffusion effects are still significant. Re = 1000, s = 4, Sc = 1, N = 256.
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FIG. 4. Density field PDF evolution during DNSs of variable-density HIT. Simulation parameters for
variable-density HIT DNSs are listed in Table I.

which remains positive throughout the simulation as depicted in Fig. 5. The evolution of Sρ reveals
that the asymmetry diminishes as mixing progresses. However, towards the end of the simulation, it
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FIG. 5. Density field moments evolution during DNSs of variable-density HIT: (left) skewness defined in
Eq. (19); (right) flatness defined in Eq. (20). Simulation parameters for variable-density HIT DNSs are listed
in Table I.

appears to reach a plateau, with a skewness coefficient of approximately 1, which remains far from
a Gaussian behavior, characterized by a zero coefficient.

The evolution of the flatness coefficient of the density fluctuations,

Fρ = 〈(ρ − ρ̄ )4〉�
〈(ρ − ρ̄)2〉2

�

, (20)

also presented in Fig. 5, demonstrates a gradual convergence towards Gaussian behavior (F = 3) as
mixing proceeds.

The mixing can also be characterized by the PDFs of the gradient of the density field. Figures 6
and 7 illustrate the PDFs of the longitudinal ∂ρ

∂x and transversal ∂ρ

∂y derivatives of the density field.
Initially, the inhomogeneous density field comprises regions of pure fluids where the directional
density derivatives are zero, except for the transition zone between the two regions. This results in a
PDF where values close to zero have the highest frequency, while the high-amplitude values occur
with low frequency.

During the initial moments of the simulation, the PDF broadens due to the emergence of
multiple smaller-scale mixing zones. This widening suggests that variable-density effects are rapidly
transported to smaller scales during mixing. Subsequently, over time, the PDFs narrow as gradients
gradually dissipate due to diffusion.

It is important to note that the distribution of gradients is symmetrical. This fully isotropic
dynamics contrast with that observed by Livescu and Ristorcelli [1], where the PDFs of derivatives
in the buoyancy direction exhibit asymmetry. It is also important to highlight that the density ratio s
does not influence the distribution of gradients, except for the production of more intense gradients.

C. Statistical analysis

Small-scale turbulence intermittency requires that the PDFs exhibit flared-out tails [14]. In
particular, Jiménez et al. [10], Gotoh et al. [34] and Ishihara et al. [13] demonstrate that in
constant-density flows, the PDFs of the velocity gradients ∂u

∂x , ∂v
∂x and of the vorticity components

ωx and ωy become increasingly non-Gaussian and feature wide tails as the turbulent Reynolds
number Reλ increases. In the variable-density flows, the inhomogeneity of the density field has
a direct influence onto the turbulence scales and dynamics as reported in Fig. 8, where the temporal
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FIG. 6. ∂ρ

∂x PDF evolution during DNSs of variable-density HIT. Simulation parameters for variable-density
HIT DNSs are listed in Table I.

evolutions of Reλ are displayed for various initial density ratios. The figure shows that for all flow
cases, Reλ reaches a nearly constant value for 2 < t < 6, which corresponds to a time interval of two
to three eddy turnover times. We also observe that the microscale Reynolds number is decreasing
with s.
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FIG. 7. ∂ρ

∂y PDF evolution during DNSs of variable-density HIT. Simulation parameters for variable-density
HIT DNSs are listed in Table I.

Figure 9 shows PDFs of the longitudinal velocity-derivative ∂u
∂x , the transversal velocity-

derivative ∂v
∂x , vorticity components ωx and ωy, and Lagrangian acceleration component Ax ≡ ( ∂

∂t +
(u · ∇))u for the different values of s that are considered in this study. Following the discussion
in Sec. III A, quantities are averaged over the 500 time steps corresponding to the time interval 	.
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FIG. 8. Time evolution of the turbulent Reynolds number Reλ = (λ/L)Re during variable-density simu-
lations. DNS parameters are listed in Table I. For comparison, dashed line depicts the evolution throughout
constant-density simulation 256-1 for t ∈ [40, 50]. Vertical lines delimit the study time interval 	, which is
considered for the statistical computations.

In Figs. 9(a) and 9(b) the PDFs of ∂u
∂x are depicted with and without normalization by the standard

deviation, respectively. In Fig. 9(b) we observe that the PDFs for variable-density flows have wide
tails that become wider for larger s values. This suggests that as s increases energy is transferred to
smaller-scale eddies with high-velocity gradients. In Fig. 9(a) the normalized PDFs do not exhibit
increasingly flare-out tails for s � 4. In this case, the observed differences for the smallest scales,
i.e., high-velocity gradients, should be mainly attributed to a Reynolds number effect. For s = 8, the
PDF becomes symmetrical and presents a flare-out tail. Hence, it seems to indicate that small-case
intermittency remains unaffected by mass diffusion effects until a threshold value of s between 4
and 8, given our control parameters. Beyond this threshold, the widening of the PDFs describes
an increase in ∂u

∂x small-case intermittency. Intermittency of the transverse velocity-derivative and
vorticity components remains unchanged regardless of the density ratio as shown in Figs. 9(c) to
9(e).

As mentioned by Ishihara et al. [13], turbulence intermittency occurs not only in space but also
in time. Therefore, it is observed not only in velocity gradients but also in the time derivatives
of turbulent velocities. In Fig. 9(f) a similar behavior to that of ∂u

∂x is seen in the PDF of the Ax

component of the Lagrangian acceleration: for s � 4, the PDF do not exhibit increasing flare-out
tails, and for s = 8, the PDF becomes wider and more symmetrical. Thus, both the space and time
intermittency remains unaffected by variable-density effects until a specific threshold value of the
density ratio. Beyond this limit, an increase in intermittency is observed.

The non-Gaussian statistics of the velocity increments may also be characterized quantitatively
by the third- and fourth-order moments of the longitudinal velocity derivative, the skewness S and
flatness F factors, respectively, defined as

S = 〈(∂u/∂x)3〉
〈(∂u/∂x)2〉 3

2

(21)

and

F = 〈(∂u/∂x)4〉
〈(∂u/∂x)2

〉2 . (22)
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FIG. 9. ζ PDFs for (a), (b) ζ = ∂u
∂x , (c) ζ = ∂v

∂x , (d) ζ = ωx , (e) ζ = ωy, (f) ζ = Ax (Lagrangian accel-
eration), averaged over the study time interval 	 of variable-density simulations, and compared with the
constant-density initial condition (dashed). DNS parameters are listed in Table I. σ is the standard deviation of
ζ in each PDF. 〈Reλ〉 represents the averaged turbulent Reynolds number over time interval 	. In (b) the PDF
has not been normalized by σ .
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FIG. 10. Skewness (S) and flatness (F ) coefficients from variable-density HIT DNSs compared with
constant-density HIT scaling laws (dashed), Eqs. (23) and (24), proposed by Ishihara et al. [13].

For constant-density flows, Ishihara et al. [13] and Gylfason et al. [35] show that S remains constant
for Reλ < 200 and decreases slowly for larger Reλ. The authors propose the scaling law

−S ≈ (0.32 ∓ 0.02)Re0.11±0.01
λ . (23)

Table I presents the skewness factor averaged over the statistic study interval 	 for different s
values. Notably, the skewness factor converges toward different values depending on s, even if the
microscale Reynolds number remains below 200 for all cases examined. For instance, for s = 2,
an averaged skewness factor of S = −0.43 is obtained while for s = 4, the skewness factor has
increased up to S = −0.30. Thus, the assumption of a constant skewness factor for Reλ < 200 does
not hold for variable-density flows. Moreover, we note that an increase in s tends also to increase
the skewness factor. This suggests that PDFs would become progressively more symmetrical as the
density ratio is increasing. This characteristic is even more obvious in Fig. 9(a), where the PDF of
∂u
∂x appears more symmetrical for s = 8 compared to smaller values of s. Finally, the scaling law
provided by Eq. (23) tends to overestimate the absolute value of the skewness factor in the case of
variable-density flows, as can be observed in Fig. 10.

Prior investigations on constant-density flows have demonstrated that the flatness factor exhibits
an increasing trend as the microscale Reynolds number increases for 100 < Reλ < 1000. Ishihara
et al. [13] propose the scaling law

F ≈ (1.14 ± 0.19)Re0.34±0.03
λ . (24)

While our findings align with an increasing trend of F with respect to Reλ, (see Fig. 10) our data
set is not large enough to draw definitive conclusions.

D. Spectral analysis

From previous statistical investigations, the modification of energy distributions over the different
scales has been clearly illustrated as variable-density effects increase. In an effort to explain this
behavior, this section is devoted to give some physical insights from a structural point of view using
Fourier spectral analysis and flow-field visualization.

The first difference is highlighted in Fig. 11, where cross sections of vorticity norm isosur-
faces for both constant- and variable-density flows (referenced 256-1 and 256-4, respectively)
are depicted. It shows that the variable-density flow exhibits smaller coherent structures than
constant-density flows.

Let us now further examine the mechanisms behind the generation of these motions. For that
purpose, the spectral density of energy is represented in Fig. 12 for the variable-density simulations
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FIG. 11. xz cross-section plot of the vorticity norm for both (a) and (b) the constant-density initial condition
and (c) and (d) the variable-density simulation 256-4 (at time t = 4). Re = 1000, s = 4, Sc = 1, N = 256.

and its constant-density counterpart. From the figure, it is obvious that the Kolmogorov slope
remains unchanged in the larger scales; however, there is a discernible alternation in energy levels
within the range of the smallest scales. An analogous pattern can also be observed when calculating
the spectrum based on the kinetic energy per unit of volume (i.e., ρu). Indeed, Fig. 13 presents
comparison between spectra calculated traditionally using the energy per unit of mass and spectra
calculated using energy per unit of volume (dotted lines). Both spectra exhibit the Kolmogorov
cascade, and a noticeable increase in energy can be observed towards the end of the inertial
range. It then suggests an additional mechanism associated with the emergence of these smallest
scales.

In summary, the spectra of the variable-density HIT exhibit an energy bump in the smaller scales
of the inertial range that is absent in the constant density spectra. This modification confirms the
presence of additional dynamics introduced by mass effects, which become dominant beyond a
certain structure size. This observation completes the analysis of the velocity PDFs, which reveals
a greater distribution of energetic structures in the variable-density flow compared to the constant-
density flow. The spectral analysis indicates that this increase in energy distribution is associated
with an energy gain within the smallest structures of the flow. It appears that in a variable-density
HIT flow, the final scale of the inertial range, which in the constant-density case is related to viscous
diffusion, exhibits an energy transfer dynamic induced by mass variations.

As a result, viscous dissipation emerges as the predominant process at smaller scales compared
to the constant-density case. This outcome is also illustrated by the reduction of the Taylor and
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FIG. 12. Spectra averaged over the study time interval 	 of variable-density simulations, and compared
with the constant-density initial condition (dashed). Simulation parameters for variable-density HIT DNSs are
listed in Table I.

Kolmogorov scales as a function of the density ratio s, as shown in Table I and Fig. 14. In this
figure, the vertical line representing the Taylor scales of the variable-density simulation gradually
moves away from the constant-density lines as s increases. For s < 1, the Taylor scale increases, and
the viscous cutoff appears earlier in the spectrum; in constant-density DNS of HIT, the reduction
in scales and the shifting of the viscous cutoff to smaller scales are the consequence of an increase
in the Reynolds number. Therefore, increasing s leads to a phenomenon similar to increasing the
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FIG. 13. Spectra averaged over the study time interval 	 of variable-density simulations, and compared
with the constant-density initial condition (dashed). Dotted lines correspond to spectra Eρ computed with
kinetic energy per unit of volume ρu. Simulation parameters for variable-density HIT DNSs are listed in
Table I.

FIG. 14. Spectra averaged over the study time interval 	 of variable-density simulations and compared
with the constant-density initial condition (dashed). The vertical lines represent the integral and Taylor scales
associated with the equations defined in Eqs. (16) and (17). Simulation parameters for variable-density HIT
DNSs are listed in Table I.
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FIG. 15. xz cross-section plot of the Rayleigh-Taylor instability criterion (R) at time t = 4 of simulation
256-4. Re = 1000, s = 4, Sc = 1, N = 256.

Reynolds number Re. This observation aligns with the results of the PDF analysis, where an increase
in s results in broadening, which is generally associated with an increase in Re.

This behavior can be deducted from the momentum Eq. (1a), where the viscous dissipation term
is transformed, upon introducing the variable-density field, from Re−1∇2u to

(ρRe)−1∇2u ≈
(

s − 1

2
Re

)−1

∇2u ≡ Re′−1∇2u, (25)

where 1
2 (s − 1) represents the mean value of the density field. Thus, for s > 1, the introduction of the

variable-density field leads to an increase in the equivalent Reynolds number Re′ and, consequently,
a decrease in the viscous length scale. Conversely, for s < 1, Re′ decreases, resulting in an increase
in the viscous length scale. This increase in the viscous length scale explains the observed behavior
in the simulation with s < 1.

It is important to recall that the introduction of a density field where the lighter fluid is confined
within the sphere for the initial condition has little influence on turbulence dynamics. This is
reflected in velocity field PDFs that are less spread out than those of the constant-density simulation,
as well as spectra exhibiting a viscous cutoff at larger scales. Consequently, in this configuration, the
viscous cutoff occurs before the range of scale where variable-density introduce the energy peak.
Therefore, it has a limited impact on turbulent dynamics. It is essential to note that the flow does not
exhibit s → s−1 symmetry since the mean values of ρ are not equal, resulting in different equivalent
Re numbers and, consequently, different dynamics.

It is widely recognized that density variations can give rise to various phenomena, with the
Rayleigh-Taylor instability (RTI) being one of the most prominent examples [36–39]. Now we
will investigate whether the emergence of higher energy structures within the lower region of the
spectrum is a result of vortical structures developing under the influence of the Rayleigh-Taylor
instability. Recently, Jacques et al. [40] proved that R < 0, with

R = local acceleration × local mass variation = [(u · ∇)u] · ∇ρ, (26)

is a sufficient condition for RTI in rotating flows. Figure 15 displays a cross section of the RTI
criterion, presenting both unfiltered and filtered flow fields. When comparing it with cross-sectional
view of the vorticity depicted in Fig. 11(d), it becomes evident that the RTI criterion is satisfied for
similar flow structures. Finally, Fig. 16 illustrates a comparison between the spectra and the RTI
criterion (27) spectral density of energy

ESD R = |FR|2. (27)
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FIG. 16. Spectra averaged over the study time interval 	 of variable-density simulations, and compared
with the spectral density of the Rayleigh-Taylor instability criterion R (dotted). DNS parameters are listed in
Table I.

Notably, the region where the criterion exhibits the highest energy aligns with the range of modes
where we observe the alterations in energy levels.

This study supports that differences observed in PDFs could be attributed to the generation of
smallest scales structures under the effect of Rayleigh-Taylor-like mechanism.

IV. CONCLUSIONS

In this paper, we investigate the effects of density variations on statistically stationary forced
isotropic turbulence. Simulations are carried out by introducing a density field in the shape of a
sphere into a homogeneous isotropic turbulent state obtained from a preliminary constant-density
simulation. The preservation of the turbulent kinetic energy is achieved with the linear forcing
method proposed by Lundgren, extended here to the incompressible variable-density equations.
We explore density ratios ranging from s = 0.5 to s = 8, while maintaining a Reynolds number
of 1000 and a Schmidt number of 1. Initially, it is noted that the microscale Reynolds number
Reλ reaches different values depending on s. For a better understanding of variable-density effects,
statistical analyses are conducted within a time interval of approximately two eddy turnover times.
In this interval, Reλ and the skewness factor remain nearly constant, while the effects of mass
diffusion stay significant. In order to mitigate the occurrence of transient effects resulting from the
abrupt introduction of the inhomogeneous density field into the turbulent initial condition, a filter is
applied during the first 100 iterations of the simulation. Additionally, the statistical analysis interval
commences two eddy turnover times later than the start of the simulation.

Special attention is paid to the PDFs of velocity gradients and Lagrangian acceleration. DNS
data show that PDFs for variable-density flows exhibit wide tails, which become even wider as
s increases. As a result, a noticeable increase in space and time intermittency is observed once
a threshold s value is exceeded. As quantitative measurements of the deviation from Gaussian
distributions, we study the skewness S and flatness factors F of the longitudinal velocity derivative
for various s values. Our findings indicate that the skewness factor increases with the density ratio,
even for Reλ < 200. Consequently, the PDFs gradually become more symmetrical as the value of
s increases. Additionally, the flatness factor shows an increasing trend with respect to Reλ. These
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results are consistent with trends observed in constant-density scenarios. However, the Reλ power
laws found in the literature for homogeneous density fields tend to overestimate both S and F values.

Flow visualization reveals that variable-density flows exhibit smaller coherent structures com-
pared to constant-density flows. Fourier analyses show there is a significant modification in energy
levels within the smallest scales of the inertial range. In particular, the region where the energy levels
are altered matches area where the Rayleigh-Taylor instability criterion peaks. It suggests that the
introduction of variable-density effects into isotropic turbulence results in the generation of smaller
eddy structures through Rayleigh-Taylor-like instability.

As a perspective, the logical continuation of this study should be devoted to the analysis of
variable-density jets that undergo a transition from laminar to turbulent flow. In particular, density
variations are known to shift the jet dynamics though subtle mechanisms. In that respect, the work
of Di Pierro and Abid [41], Di Pierro and Abid [37], Ravier et al. [42], and Jacques et al. [40]
dealing with inhomogeneous jets can be mentioned. Hence, it would be interesting to evaluate if
statistics obtained within the framework of homogeneous isotropic turbulence can be compared
to those computed from variable-density turbulent jet simulations. Specifically, one may wonder
whether the alteration of energy levels in the small scales observed in the present study—which
could be associated to RTI—is observed.
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APPENDIX A: RELATION BETWEEN MEAN-MASS AND MEAN-VOLUME VELOCITY FIELDS

The incompressible formulation serves as an efficient and self-contained tool for describing
the physics of low-Mach number flows, whether they exhibit constant or variable density. This
formulation is based on the assumption that velocity field is solenoidal. However, in a mixing flow,
there are multiple possible representations of the velocity field. Each species k has a velocity vk ,
defined as the Eulerian-averaged velocity of the k species molecule. In a DNS approach aimed
at resolving the entire flow within the study domain �, the goal is to work with an ensemble
velocity that encompasses the behavior of all these species. For modeling the ensemble velocity,
two approaches are conceivable:

(1) The mean-mass velocity ū, averaged over the total mass of the mixture and weighted by the
partial mass ρkVk of each species

ū(r, t ) =
∑N

k=1 ρk (t )Vk (t )vk (r, t )∫
�

ρ(r, t ) dV
, (A1)

where ρk and Vk represent the mass density and partial volume of species k, respectively. In the case
of a binary A-B mixture, this velocity is expressed as follows:

ū(r, t ) = [ρA(t )VA(t )]vA(r, t ) + [ρB(t )VB(t )]vB(r, t )∫
�

ρ(r, t ) dV
. (A2)

In simpler terms, this ensemble velocity field can be referred to as the “barycentric velocity.” This
baricentric representation is employed for the momentum balances and consequently appears in the
Navier-Stokes equations.

(2) The mean-volume velocity u, averaged over the total volume of the mixture V and weighted
by the volume fraction of each species

u(r, t ) =
∑N

k=1 Vk (t )vk (r, t )

V
=

N∑
k=1

φk (t )vk (r, t ), (A3)
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where φk represent the volumetric fraction of each species. In the case of a binary A-B mixture, this
velocity is expressed as follows:

u(r, t ) = VA(t )vA(r, t ) + VB(t )vB(r, t )

V
. (A4)

In more common terms, this ensemble velocity field can be referred to as “kinematic velocity.”
By definition, a flow is considered incompressible if the elemental volume of a given fluid particle

remains constant over time. Mathematically, this is expressed as follows:

lim
V →0

1

V

dV

dt
= 0. (A5)

In a variable-density context, the change in the elemental volume V is equal to the sum of the
changes in the partial volumes of each species. Using a transport equation for Vk with vk within the
elemental domain � of the particle, it can be expressed as follows:

dV

dt
=

N∑
k=1

dVk

dt
=

N∑
k=1

∫
�

(
∂φk

∂t
+ ∇ · (φkvk )

)
dV =

∫
�

∇ · u dV. (A6)

The constraint of incompressibility in the case of a mixing flow is thus expressed as follows:

lim
V →0

1

V

dV

dt
= ∇ · u = 0, (A7)

which states that the mean-volume velocity u must have zero divergence. It is important to note
that mean-mass velocity ū is not necessarily solenoidal in the case of a variable-density flow. This
particularity arises because this representation of the velocity field depends on the mass variation
within the elemental volumes associated with each particle. However, these two representations are
not independent and can be connected through the mass diffusive flux Jk here expressed by Fick’s
law:

ū = u −
N∑

k=1

φk (vk − ū) = u −
N∑

k=1

φk

ρk
Jk = u + ρ

N∑
k=1

N∑
i=1
i �=k

Dki
φk

ρk
∇wk, (A8)

where wk (r, t ) = mk (r, t )/M represents the local mass fraction of species k with respect to the total
mixture mass M at a given position r and time t . In the case of a binary mixture with equal diffusion
coefficient, the relation simplifies to

ū = u + ρD∇
(

φA

ρA
wA + φB

ρB
wB

)
= u + ρD∇

(
1

ρA
+ 1

ρB

)
= u − D

ρ
∇ρ, (A9)

where D represents the common diffusion coefficient for both species.
The incompressible formulation of the equations of motion of the mixing is derived by combining

the Navier-Stokes equations with the incompressibility constraint developed above [Eq. (A7)]. The
Navier-Stokes equations are obtained by applying Newton’s second law to fluid motion and thus use
the baricentric velocity ū. By employing Fick’s law from Eq. (A9) to relate the two representations
of the velocity field, the equations are rewritten using only the mean-mass velocity. This approach,
notably detailed by Guillén-González et al. [28], leads to the system (1) used in this study.

APPENDIX B: ISOTROPY DEGREE CALCULATION

The HIT modeling requires a condition of statistical isotropy within the considered flow. This
implies that the statistical properties of turbulent fluctuations exhibit uniformity in all spatial
directions. Departure from isotropy can be quantified through the trace-deviator splitting of the
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real part of the spectral tensor R̂i j (k, t ):

Re
(
R̂i j (k, t )

) = E (k, t )

4πk2
Pi j (k)︸ ︷︷ ︸

isotropic part

+
(
E (k, t ) − E (k, t )

4πk2

)
Pi j (k)︸ ︷︷ ︸

directional anisotropy

+ Re
(

R̂
(pol)
i j (k, t )

)
︸ ︷︷ ︸
polarization anisotropy

,

Pi j (k) = δi j − kik j

k2

in terms of isotropic, directional, and polarization parts [43–45], where E (k, t ) is the energy spectra
that depends only on the wave-number modulus k and no longer on the orientation of the vector k.

1. Polarization anisotropy

Polarization anisotropy is measured by computing the degree of isotropy of the velocity field
after each temporal integration using a measurement inspired from the methodology introduced by
Curry et al. [33]. The measurement is notably depicted in Fig. 3 for simulation 256-4.

This approach involves constructing a vector basis composed of a unit vector ez of the Cartesian
coordinates in physical space, and two spectral unit vectors

e1(k) = ez × k
‖ez × k‖ , e2(k) = e1 × k

‖e1 × k‖ .

In the absence of carrier effects along the ez direction, nonlinear effects along with mixing lead
to an equal distribution of energy of û(k) along the e1(k) and e2(k) axes [33]. A measure of isotropy
is thus provided by comparing the contributions ψ1 and ψ2 of the kinetic energy per unit mass 1

2 u
in the spectral space:

ψ1 = 〈‖e1 · û(k)‖2〉, ψ2 = 〈‖e2 · û(k)‖2〉,
where the angular brackets 〈·〉 represent an average over the entire periodic volume, or in other
words, a summation over all available wave numbers. For a fully isotropic flow, ψ1 = ψ2; thus, an
approximate measure of deviation from isotropy is given by

I2 = ψ1/ψ2.

A flow is considered close to a fully isotropic state when 0.95 � I � 1.05.

FIG. 17. Evolution of the relative difference between E (k) and E (k, t )/4πk2 during simulation run 256-8.
The difference between these two terms measures directional anisotropy. Here a difference of a few percent is
observed, indicating that the flow is isotropic. A similar behavior is obtained in all simulation runs.
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FIG. 18. Evolution of the volumetric total kinetic energy, isotropy degree [33] (calculation detailed in
Appendix B), microscale Reynolds number Reλ, density field standard deviation in space σ (ρ ), velocity
longitudinal-derivative skewness S, and eddy turnover time T during simulation run 256-2. Vertical lines
delimit the statistical analysis time interval 	. Simulation parameters for variable-density HIT DNSs are listed
in Table I.
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FIG. 19. Evolution of the volumetric total kinetic energy, isotropy degree [33] (calculation detailed in
Appendix B), microscale Reynolds number Reλ, density field standard deviation in space σ (ρ ), velocity
longitudinal-derivative skewness S, and eddy turnover time T during simulation run 256-6. Vertical lines
delimit the statistical analysis time interval 	. Simulation parameters for variable-density HIT DNSs are listed
in Table I.
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FIG. 20. Evolution of the volumetric total kinetic energy, isotropy degree [33] (calculation detailed in
Appendix B), microscale Reynolds number Reλ, density field standard deviation in space σ (ρ ), velocity
longitudinal-derivative skewness S, and eddy turnover time T during simulation run 256-8. Vertical lines
delimit the statistical analysis time interval 	. Simulation parameters for variable-density HIT DNSs are listed
in Table I.
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FIG. 21. Evolution of the volumetric total kinetic energy, isotropy degree [33] (calculation detailed in
Appendix B), microscale Reynolds number Reλ, density field standard deviation in space σ (ρ ), velocity
longitudinal-derivative skewness S, and eddy turnover time T during simulation run 256-0.5. Vertical lines
delimit the statistical analysis time interval 	. Simulation parameters for variable-density HIT DNSs are listed
in Table I.
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It is crucial to note that when a nonisotropic forcing method is implemented to maintain the HIT,
the modes associated with energy injection should not be considered in the isotropy measurement.
In this study, simulations are initialized similarly to the method of [8], which excites the first modes
in each direction [see Eq. (12)]. This initial condition is not isotropic. To eliminate a signature in
the isotropy measurement, the first and last modes of each direction are not counted. The exclusion
of these modes does not pose an issue concerning the HIT modeling constraint since it requires
isotropy of fluctuations. The first modes are associated with the large flow structures, while the
fluctuations at other scales are independent of the behavior of the large vortices, in accordance with
Kolmogorov’s theory [7].

2. Directional anisotropy

Directional anisotropy can be measured by computing the angular distribution of E − E/(4πk2).
By using the spherical polar coordinate system {e1, e2, ez} in k-space defined earlier, the spectral
Reynolds tensor and E (k, t ) simplifies [43] as

[R̂i j] =
⎡
⎣φ11 φ12 0

φ∗
12 φ22 0
0 0 0

⎤
⎦, E (k, t ) = 1

2
R̂ii = 1

2
(φ11 + φ22).

From this, one can compute the angular distribution E − E/(4πk2) in order to verify that this
directional anisotropy term is indeed nearly zero. Figure 17 shows the evolution of the maximum
relative difference between E and E/4πk2 during simulation run 256-8. Here, too, the modes
associated with energy injection from forcing are excluded. It is observed that the relative difference
ranges between 0.1% and 5%, which confirms that the departure form isotropy due to directional
anisotropy is negligible. Similar results are observed for all other simulations runs, with a maximum
relative difference ranging from 5% to 6%.

APPENDIX C: EVOLUTION OF TURBULENCE CHARACTERISTICS

Figures 18–21 present the time evolution of various turbulence characteristic during the variable
density HIT DNSs. Simulation parameters for variable-density HIT DNSs are listed in Table I. Time
evolutions for run 256-4 are presented in Fig. 3.
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