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We carry out a numerical study of swept shock wave/turbulent boundary layer interac-
tion in the hypersonic regime. Starting from a numerical/experimental benchmark case of a
nearly adiabatic two-dimensional hypersonic interaction, a crossflow velocity component
is added to the incoming flow to mimic three-dimensional interactions with cylindrical
symmetry. We observe, for a fixed streamwise Mach number, monotonic increase of
the extent of the interaction region for the swept cases. An attempt at extending the
free-interaction theory to hypersonic swept interactions is made, which is found to apply
only to the initial part of the interaction region. The spatiotemporal dynamics of wall
pressure on mean separation line features large-scale pressure corrugations, which are
advected at a phase speed which is a fraction of the mean crossflow velocity, if present.
The characteristic wavelength of the corrugation is found to be a multiple of the separation
bubble size. The numerically estimated peak frequencies well conform with the previously
introduced formula for swept supersonic interactions [Ceci et al., J. Fluid Mech. 956, R1
(2023)]. Proper orthogonal decomposition is applied to investigate the spatial structure
of the corrugation at the separation point and educe phase relations between the flow
structure and pressure oscillations at the reattachment point. The present analysis leads
us to conclude that the same phenomenology found in swept supersonic interactions also
holds in the hypersonic case.
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I. INTRODUCTION

Recent years have been characterized by renewed interest in the design of hypersonic vehicles.
The realization of a high-speed aircraft is associated, however, with enormous aerothermodynamic,
propulsive, and structural challenges, which have hindered their operation [1]. However, the interest
from commercial aircraft companies in drastically reducing the travel time in intercontinental
flights, the continuous work operated by military organizations in introducing new aircraft concepts,
and the deployment of new space activities have motivated additional effort on this topic by
industries and researchers. Technical issues, developments, and perspectives on hypersonic flight
were discussed in several review works over the past two decades [2–5].

As emphasized by Holden [6], accurate prediction of surface heating, wall pressure, and fric-
tion distributions is paramount for effective design of hypersonic vehicles. In this respect, shock
wave/boundary layer interactions (SBLIs) can constitute a serious threat for the integrity of aircraft
structures and have been the subject of intense research in the aerospace community [7–10]. Strong
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adverse pressure gradients generated by a shock wave impinging on a boundary layer can be
responsible for extensive flow separation associated with low-frequency pressure loads, mainly
localized at the mean separation line. In addition, hypersonic SBLIs are characterized by intense
wall heat transfer near reattachment, whose intensity depends on the shock strength [11–13]. Both
phenomena pose serious concerns to high-speed vehicle design, as they can be responsible for
structural and thermal fatigue.

The research on low-frequency pressure oscillations have mainly focused on “two-dimensional”
interactions, in which the boundary layer direction is directed orthogonal to the shock impingement
line. The analysis of two-dimensional configurations has revealed that “breathing” of the separation
region [14] can be responsible for unsteadiness if strong separation is present. For mild separation,
unsteadiness is ascribed to the alternation of high- or low-velocity streaky structures embedded in
the approaching boundary layer [15].

Previous experimental, numerical, and theoretical studies have demonstrated the existence of
those mechanisms in supersonic/hypersonic interactions and provided means for the development
of physical models [14,16–18]. Modal decomposition techniques and mean flow-based stability
analyses have been also applied to identify the main coherent structures in the interaction region for
oblique shock reflections [19–21] and compression ramps [22–24]. Those approaches have allowed
the identification of large-scale spanwise rippling of the separation line, which is coupled with
corrugations and oscillatory motions of the reflected shock. For strong flow separation the typical
frequency of those structures can be one order of magnitude less than those associated with the
mixing layer and the turbulent motions, which also have smaller length scales.

However, in practical configurations the shock impingement line is rarely orthogonal to the
flow main direction. In those cases, the separation/reattachment lines can be parallel as in two-
dimensional cases (cylindrical symmetry) or departing from a virtual conical origin (conical
symmetry). As observed by Settles et al. [25] and Erengil and Dolling [26], the type of interaction
depends on the shock strength and the sweep angle. As widely discussed by the review article
of Sabnis and Babinsky [27], canonical cases of three-dimensional SBLIs comprise flows over
swept compression ramps [25,26,28–31], around single sharp fins [32–34], double fins [35,36], and
oblique impinging shocks [37,38]. Most of the aforementioned studies do observe low-frequency
oscillation of the pressure field around the separation shock foot, with characteristic frequencies
generally higher than in two-dimensional interactions [10]. In fact, it is noteworthy that some studies
[30] reported that the presence of large sweep inhibits low-frequency oscillations completely.

Most of the cited studies are based on experiments, with the only exception of the swept com-
pression ramp simulations by Adler and Gaitonde [29,30] and Zhang et al. [31], and the large-eddy
simulation (LES) of double-fin flow by Adler and Gaitonde [35]. Simulations of SBLI has been
generally limited to simple cases, whose computational cost is affordable. A compromise solution
to study three-dimensional interactions using high-fidelity simulations at moderate computational
cost was considered by Gross and Fasel [39], Di Renzo et al. [40], Larsson et al. [41], Ceci et al.
[42], and Bergier et al. [43]. In those works, a crossflow velocity is added to the incoming flow to
emulate genuine three-dimensional effects. Their numerical setup allowed detection of changes in
the mean flow topology and characterization of low-frequency oscillations as a function of the sweep
angle. All those studies showed an increasing trend of the streamwise length of the mean separation
region with the sweep angle. In addition, Ceci et al. [42] found evidence of spanwise ripples at
mean separation, traveling along the interaction line at a fraction of the crossflow velocity. Those
authors also found monotonic increase of the characteristic frequency of the pressure oscillations at
the mean separation line with the sweep angle, as confirmed by Bergier et al. [43] via LES at higher
Reynolds number.

The work by Ceci et al. [42] introduced a simple mechanistic model to explain and predict
the changes in the low-frequency wall pressure spectrum, but this model was tested only at Mach
2.28. We think it is essential to test this (or indeed any) model at more than just a single Mach
number. Given this background, extending current numerical results on supersonic swept SBLIs to
the hypersonic regime would be of great importance. This study presents a data set of hypersonic
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FIG. 1. Schematic of SSBLI: γ0 is the incoming flow sweep angle; δ0 is the incoming boundary layer
thickness; β is the shock angle, θ the deflection angle, and ximp the nominal location of the shock impingement.

impinging SBLI simulations with sweep, a flow condition that is not currently available in the
literature to the best of our knowledge. Furthermore, the possibility of performing high-fidelity
numerical simulations in hypersonic flow would also be attractive to gather information about the
influence of sweep on heat transfer, which has been explored, to the authors’ knowledge, by only one
work in the supersonic regime [44]. Hence, we leverage the numerical data to analyze the effect of
the sweep angle on the time-averaged flow properties, heat transfer, and low-frequency oscillations.

II. NUMERICAL METHODOLOGY

The analysis of the flow field generated by the unswept and swept interactions between an oblique
shock and a turbulent boundary layer is carried out using the high-fidelity code STREAmS [45].
The working fluid is assumed to be an ideal gas, of heat capacity ratio γg = 1.4 and Newtonian law
for viscous stresses. The dynamic viscosity of the mixture is evaluated using the power law μ =
μ0(T/T0)0.76, whereas the thermal conductivity λg is computed using a constant Prandtl number
Pr = 0.72.

The convective fluxes are discretized by means of a hybrid scheme which combines the energy-
preserving properties of a sixth-order skew-symmetric central difference scheme [46] with the
shock-capturing properties of a fifth-order weighted essentially nonoscillatory (WENO) scheme.
The switch between the two methods is controlled by a modified Ducros sensor

� = −∇ · u√
(∇ · u)2 + (∇ × u)2 + (u0/δ0)2

, (1)

which is activated when � > 0.25 for any of the points belonging to the WENO stencil. The
diffusive fluxes, expanded to Laplacian form, are discretized with sixth-order central formulas,
and the time advancement is carried out with a third-order Runge-Kutta scheme [47]. The main
elements of the numerical setup are sketched in Fig. 1. A turbulent boundary layer with thickness δ0

is injected at the left boundary of the computational domain (x/δ0 = 0), being swept by an angle γ0

with respect to the positive x direction. The instantaneous velocity at the inflow is obtained as the
sum of an inverse Van Driest transform of Musker family incompressible mean turbulent profiles and
fluctuations obtained using recycling-rescaling with spanwise shift [48]. The temperature fluctuation
field is in turn obtained from the streamwise velocity one using the strong Reynolds analogy. The
flat plate is assumed to be isothermal and slightly cooled, with the wall-to-recovery temperature
ratio set to Tw/Tr = 0.8. An oblique shock impinges the flat plate orthogonal to the x direction,
at ximp = 64δ0. The shock is introduced into the numerical domain by hard enforcement of the
Rankine-Hugoniot jump relations on the top boundary. Periodicity of the flow is assumed in
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the z direction, and nonreflecting boundary conditions are instead imposed at the top and outlet
boundaries.

The discretization of the computational domain is based an on uniform grid spacing along the
x and z directions. A stretching transformation, proposed by Ceci and Pirozzoli [49], is used in
the y direction, which accounts for the local distribution of the Kolmogorov length scale η in
compressible wall-bounded flows. A maximum resolution threshold of 	y/η ≈ 2.5 for all cases and
a minimum spacing of 	y+

w = 	yw/δν = 0.5 at the wall are considered to define the wall-normal
grid distribution, with the only exception of the finest grid simulation (case G00_T14F), used for
grid independence purposes.

The set of numerical simulations is summarized in Table I. Three different values of the
sweep angle γ0 are considered, namely, γ0 = {0, 15, 30}◦. The unswept case will be denoted as
“baseline.” The same projected Mach number along the streamwise direction (M0,x = 5) is used in
all computations, thereby obtaining different values of M0 for the swept cases. All computations
roughly share the same value of Reδ2 at a reference location of xr = 45δ0, just upstream of the
interaction region. The shock deflection angle is kept constant to θ = 14◦ for all computations. The
chosen Mach number, wall temperature ratio, and shock deflection angle of the unswept case are
chosen to match that of the strongest shock case investigated by Schülein [50] using experimental
techniques, and more recently through numerical simulations by Volpiani et al. [11] and Yu et al.
[13].

The numerical domain is constituted by a box whose dimensions Lx × Ly × Lz = 100δ0 ×
10δ0 × 50δ0. The numerical grid is composed of 3200 × 480 × 1600 grid points along the x,
y, and z directions. The corresponding wall spacings, evaluated at the reference position, are
	x+ = 	z+ = 6.9.

The combined effect of grid resolution and domain width of mean flow properties, as the
wall friction coefficient and heat transfer, is assessed for the baseline case by two additional
computations. A simulation with the same grid spacing as the baseline (case G00_T14N) is used
to investigate the effect of the spanwise domain width on the resulting flow properties. A finer grid
simulation (case G00_T14F), whose spanwise domain extension is sharply reduced to Lz = 5δ0,
whereas the node density in the x and z direction is doubled, is used to infer dependence from mesh
spacing. It must be expected, based on previous analysis in the supersonic case [42], that negligible
dependence of the mean flow properties on the domain spanwise width is obtained by changing Lz

at constant grid resolution.
The turbulence statistics are evaluated by averaging over a 2200 δ0/u0 time window for all

cases, with exception of the most refined case, whose averages are evaluated over a time span of
1100 δ0/u0. Spanwise averaging is also performed as after flow homogeneity. The accumulation
of the statistics is started after a statistically steady state condition is reached, as estimated by
monitoring the spanwise-averaged location of the separation point. Snapshots of wall pressure are
collected at a constant sampling rate 	tsu0,x/δ0 = 0.237 and used for spectral analysis and modal
decomposition. The computed spectra are obtained by applying the Welch method to the pressure
signal, using three segments with 50% overlap and Hamming windowing. The same samples are
used also for the proper orthogonal decomposition (POD) analysis, which we carry out following
the original approach of Sirovich [51].

The validity of the present setup is assessed by comparing the time-averaged flow properties
of the unswept cases (G00_T14 and its variants G00_T14F and G00_T14N of Table I) against
previous literature results, and by carrying out domain/mesh independence studies. In this respect,
experimental measurements by Schülein [50] and numerical data by Volpiani et al. [11] serve as
concurrent validation data sets.

Figure 2 reports the streamwise evolution of the mean wall pressure scaled by the freestream
value and the local friction coefficient (c f = 2τw/(ρ0u2

0)). For all data sets, the x axis is scaled
using the conventional boundary layer thickness at the inviscid shock location (δimp).

Overall, we find fairly good agreement between the present numerical setup and previous simula-
tions. The extent of the interaction region is in line with what was found by Volpiani et al. [11], both
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FIG. 2. Numerical validation: streamwise distributions of time-averaged wall pressure (a) and friction
coefficient (b). Solid lines denote the results of the present numerical simulations (red line: case G00_T14F;
purple line: case G00_T14; black line: case G00_T14N), orange symbols denote numerical data [11], and dark
green symbols denote experimental data [50].

being smaller than the experimental one. It must be noted that Schülein [50] reported experimental
uncertainties in the skin friction ranging between 4% and 10%, the latter being detected for the
peak of shear stress near the reattachment point. Hence, the discrepancy between experimental and
numerical results cannot be attributed to measurement errors, whereas three-dimensional effects in
the experimental setup can play a major role in that regard. In addition, the finest simulations predict
similar distributions of the friction coefficient past reattachment, although much smaller than the
experimental one. In this case, differences between numerical and experimental data are likely due
to insufficient mesh resolution in the relaxation region, due to the sharp drop of the viscous length
scale (δv = μw/

√
ρwτw) in the region after reattachment, since both ρw and τw increase.

This hypothesis can be easily tested by inspecting the c f behavior between the coarser grid
and the finest one of the present set of simulations. We thus expect the friction coefficient in the
relaxation region to further rise as the grid resolution is improved. The behavior of the inner-scaled
mesh size along the streamwise direction for the present set of simulations is reported in Fig. 3.
In this context, it can be stated that the current work features a DNS-level resolution before the
interaction region and transitions to a resolution similar to LES after the impingement location.
It is clear that carrying out a full DNS-based parametric study of hypersonic SBLI including the
relaxation zones would require an enormous amount of computer resources, and it will be the subject
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FIG. 3. Streamwise distribution of the inner-scaled mesh sizes for the baseline simulation in narrow domain
G00_T14N (black lines) and for the finer one G00_T14F (red lines): 	x+ = 	z+ (a), 	y+

w (b).
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FIG. 4. Numerical validation: streamwise profiles of the nondimensional wall pressure r.m.s. [
√

p′
w p′

w/p0,
(a)] and Stanton number [ch = qw/[ρ0u0cp(Tw − Tr )], (b)]. Solid lines denote the results of the present
numerical simulations (red line: case G00_T14F; purple line: case G00_T14; black line: case G00_T14N),
the orange symbols denote numerical data [11], and the dark green symbols denote experimental data [50].

of future research. However, the baseline and finer grid results for the time-averaged wall pressure,
friction coefficient, wall pressure fluctuations, and heat transfer coefficient (Figs. 2 and 4) collapse
all the way up to 2.5 δimp past reattachment. We therefore deem the results from the baseline grid
fully reliable in that region.

Figure 4 shows the streamwise profiles of the pressure fluctuations intensity and of the Stanton
number, defined as

ch = qw

ρ0u0cp(Tw − Tr )
, (2)

where qw is the local heat flux. It is worth noting that the velocity scale in this definition is
u0 = u0,x/ cos(γ0), in compliance with the definition of the recovery temperature. The analysis of
the pressure fluctuation distributions yields similar conclusion as the previous ones. The fine grid
simulation well conforms with the previous numerical simulations, whereas a spurious overshoot is
found on the coarsest mesh. Different conclusions hold for the Stanton number, namely, the present
results are in good agreement with the experimental data, at least up to the reattachment point.
Abnormally high values of the Stanton number are instead retrieved in the numerical simulations
of Volpiani et al. [11], also in the incoming boundary layer. In this case, Schülein [50] reported
repeatability errors of ±5% for heat flux measurements, which makes the prediction of the present
fine grid simulation quite reliable.

It is noteworthy that the effect of increasing the domain width at a fixed mesh resolution is
negligible, as expected by previous simulations in the supersonic regime [42]. Finally, we show the
achievement of a fully developed turbulence state upstream of the interaction region by inspecting
the Van Driest transformed mean velocity, defined as

uV D =
∫ u

0

√
ρ+du, (3)

and the Reynolds stresses profiles. Figure 5(a) depicts the inner-scaled mean velocity profiles from
different sources [11,50,52]. Good agreement is obtained with respect to the reference incompress-
ible distribution throughout the wall layer. Small effects of insufficient grid spacing are found when
comparing the profiles of cases G00_T14 and G00_T14F, with differences which, however, do
not exceed 2% in the logarithmic region. Figure 5(b) instead shows close agreement between the
distributions of the Reynolds stresses from the finest G00_T14F simulation, and the data set of
Volpiani et al. [11], and largest differences between the baseline and fine grid stresses of about 3%,
for the peak streamwise velocity variance.
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FIG. 5. Wall-normal profiles of Van Driest transformed, Favre-averaged streamwise velocity profiles ũ+
V D

(left) and density-scaled stresses ũiu j
∗ = ρu′′

i u′′
j /τw (right) for different data sets at xr = 45δ0: baseline

G00_T14 (purple solid line), finer mesh G00_T14F (red solid line), Volpiani et al. [11] (orange squares),
Schlatter and Örlü [52] (cyan diamonds), and experiments of Schülein [50] (dark green circles).

III. MEAN FLOW PROPERTIES

A. Incoming boundary layer

A first step in the assessment of the flow conditions in the incoming boundary layer includes
checking the distribution of the inner-scaled velocity at the upstream reference station. Figure 6(a)
compares the Favre-averaged velocity profiles in the swept direction ũs = √

ũ2 + w̃2, obtained from
the G00_T14, G15_T14, and G30_T30 flow cases. Under the Van Driest transformation all curves
collapse, which is not surprising as Reδ,2 = 1250 is held the same for all simulations.

It is important to note that when crossflow is added to the main stream, the effective Mach number
increases as M0 = M0,x/ cos(γ0), hence the recovery temperature increases as well, giving rise to
different density and temperature distributions across the boundary layer. In Fig. 7 we show the

FIG. 6. Wall-normal profiles of Van Driest transformed, Favre-averaged velocity profiles ũ+
s,V D (a) and

density-scaled stresses ũi,sui,s
∗ = ρu′′

i,su
′′
i,s/τw (b) for different sweep angle, at the reference position xr = 45δ0.

Unswept case (purple line), swept case with γ0 = 15◦ (green line); swept case with γ0 = 30◦ (cyan line). The
subscript s denotes quantities along the freestream direction.
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FIG. 7. Temperature-velocity relation for the unswept interaction (solid purple line), swept case with γ0 =
15◦ (solid green line), and swept case with γ0 = 30◦ (solid blue line) at xr = 45δ0. The hollow circles denote
the relation proposed by Duan et al. [53].

velocity-temperature relation for the three cases under scrutiny. Excellent prediction of the profiles
is obtained by applying the relation of Duan et al. [53].

B. Interaction region

Figure 8(a) shows the distribution of the mean wall pressure across the interaction zone. Earlier
upstream influence is observed in the swept cases, with the largest interaction region exhibiting a
narrow pressure plateau from −5 � (x − ximp)/δimp � −2. This well conforms with the distribution
of the mean streamwise-projected friction coefficient, shown in Fig. 8(b), which displays earlier
separation and retarded reattachment for cases with crossflow. The effect of the sweep angle on
the separation length is clearly nonlinear. Sharp increase of the wall friction is observed past
reattachment, leading to very small value of the viscous length scale. The locations of the mean
separation xsep and reattachment points xrea, as well as the separation length Lsep = xrea − xsep are
listed in Table II for all three cases.

Figure 9 depicts the distributions of the wall pressure r.m.s. and of the Stanton number. A similar
pattern of the pressure fluctuations is retrieved in all cases, with peaks within the separation zone
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FIG. 8. Streamwise distribution of mean wall pressure (a) and x-projected friction coefficient (c f ,x =
2μw (du/dy)|w/(ρ0u2

0 ), (b)). Unswept case (purple line), swept case with γ0 = 15◦ (green line), and swept
case with γ0 = 30◦ (blue line).

054603-9



CECI, PALUMBO, LARSSON, AND PIROZZOLI

TABLE II. Location of mean separation and reattachment points and mean separation length for the swept
and unswept SBLIs.

Label γ0(◦) (xsep − ximp)/δimp (xrea − ximp)/δimp Lsep/δimp

G00_T14 0 −6.15 −0.15 6.0
G15_T14 15 −6.71 −0.01 6.7
G30_T14 30 −8.37 0.28 8.6

and past reattachment, and flattening at the highest crossflow angle. A double-peak structure is
also found in the Stanton number, which shows large values in the interaction region and past
reattachment. The fact that the peak heat flux is lower in swept cases for fixed pressure ratio is
a nontrivial result, which cannot be predicted from standard correlations for two-dimensional SBLI
[11,13].

Figure 10 illustrates contour plots of the mean streamwise velocity in the x-y plane, for γ0 =
0◦, 15◦, 30◦. It is evident that the size of the separation bubble increases as γ0 increases, which
results in upstream shift of the virtual origin of the reflected shock. The whole system of impinging,
reflected, and reattachment shocks is clearly visible in all cases under scrutiny, with the mean
reflected and reattachment shocks, which are significantly bent in the outer potential flow region
and eventually coalesce into a single shock.

Visualisations of streamlines and friction lines are given in Fig. 11, in which the dividing
streamline is determined by integrating ∂ψ/∂y = ρu in the wall-normal direction. As the flow
is three-dimensional, the maps in Fig. 11 are obtained by projecting the velocity vectors onto
the dividing streamline. As expected, all stream traces are aligned along the nominal free-stream
direction upstream of the interaction zone. The flow pattern in the separated region is more complex
in swept interactions, in which the flow becomes basically aligned along the spanwise direction in
regions where wall friction is negative but very close to zero. In the relaxation region, the flow tends
to follow the direction of the postshock inviscid state, with spanwise velocity being unchanged,
and reduced streamwise velocity. The strongest deviations occur within the interaction zone, in
which the stream traces are deflected upwards and decelerated along the streamwise direction, while
keeping the same spanwise velocity. Hence, the flow is still pointing along the positive-x direction,
but the streamlines are more skewed than the approaching boundary layer.

FIG. 9. Streamwise distribution of time-averaged of wall pressure root-mean square
√

p′
w p′

w/p0 and
Stanton number ch. Unswept case (purple line), swept case with γ0 = 15◦ (green line), and swept case with
γ0 = 30◦ (cyan line).
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(a)

(b)

(c)

FIG. 10. Mean streamwise velocity field (u) at various crossflow angles, for Tw/Tr = 0.8. Contour levels
are shown in the range 0 < u/u0,x < 1; (a) γ0 = 0◦, (b) γ0 = 15◦, and (c) γ0 = 30◦. A mean dilatation isoline
(in black) is used to highlight the shock system.

The mean flow distortion due to the reflected-impinging shock system is quantified in terms of
the mean flow direction angles, namely,

γw = tan−1

(
τxz

τxy

)
, γs = tan−1

(
w̃

ũ

)
, (4)

respectively at the wall and for a generic streamline, whose distributions are reported in Fig. 12.
Consistent with previous results reported in Fig. 11 and with previous studies in supersonic condi-
tions [40,43], we find γw > 90◦ within the interaction region, which corresponds to time-averaged
reversed motion with respect to the x direction. The strength of the reverse flow and flow distortion
along the dividing streamline are seen to reduce as the sweep angle is increased. In all cases the
values of γw and γs in the relaxation region slowly approach the inviscid value. Close inspection of
Figs. 11 and 12, reveals that the mean flow behavior of the fluid particles sufficiently far from the
wall consists of uplift and downlift, respectively, at the onset and the end of the separation region,
accompanied by spanwise displacement. Likewise, a particle close to the wall travels from the
reattachment line in a reversed direction, with a crossflow velocity much larger than the streamwise.
The angle between the mean velocity vector and the spanwise direction appears to be equal and
opposite for particles traveling near the wall and along the dividing streamline towards the edges of
the separation bubble, whereas the behavior in the central part is largely different.

C. Scrutiny of free-interaction theory

The observation that the interacting flow upstream of the separation bubble depends neither on
the source of separation nor on the downstream geometry led Chapman et al. [54] to propose that
supersonic flow separation is a local self-induced, free-interaction process between the boundary
layer and the outer inviscid stream [8,54–56]. The starting point is the mean momentum balance at
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(a)

(b)

(c)

FIG. 11. Mean friction lines at the wall (left) and mean streamlines along the dividing streamline (right), for
(a) γ0 = 0◦, (b) γ0 = 15◦, and (c) γ0 = 30◦. The mean separation lines are shown in red, the shock impingement
lines in green, and the reattachment lines in blue.

the wall, which yields

0 = −dp

dx

∣∣∣
w

+ ∂τ

∂y

∣∣∣
w
. (5)

Integration of this equation from the origin of the interaction (xi) to a generic x location yields

p(s) − p0

q0
= c f ,i

L∗

δ∗
i

∫ s

0

∂τw/τw,i

∂y/δ∗
i

∣∣∣
w

ds = c f ,i
L∗

δ∗
i

f1(s), (6)
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(a)

(b)

(c)

FIG. 12. Numerical schlieren visualization based on the streamwise density gradient (top), and streamwise
evolution of flow angles (bottom), for (a) γ0 = 0◦, (b) γ0 = 15◦, and (c) γ0 = 30◦. The magenta dashed lines
refer to the shape of the dividing streamline, and the magenta solid lines refer to the corresponding flow angle
in the wall plane, the black dashed lines refer to the wall surface, and the black solid line to the wall-parallel
friction lines. Dashed red, green, and blue lines denote the mean separation, impingement and reattachment
positions, respectively.
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where s = (x − xi )/L∗, with L∗ a suitable interaction length scale, and where

c f ,i = τw,i

q0
, q0 = 1

2
ρ0u2

0, (7)

are evaluated on the control point xi, located just upstream of the interaction. Hereafter, the subscript
(·)i denotes boundary layer properties taken at this position, while inviscid quantities as Mach
number, pressure, and dynamic pressure at xi are assumed to be identical to the inflow state, denoted
by the subscript (·)0. In Eq. (6) we assume that the pressure rise follows a similarity law, defined as
f1(s), in terms of the streamwise coordinate s.

Another equation is needed to connect the boundary layer thickening and pressure variations
in the outer inviscid flow. As reported in previous studies of two-dimensional SBLIs [8,54,57], a
link between the flow deflection ϕ and the pressure variation 	p = p − p0 is obtained from the
assumption of linearized simple-wave flow√

M2
0 − 1

γgM2
0

	p

p0
− 	ϕ = 0, (8)

where 	ϕ = ϕ − ϕi = ϕ denotes the difference in the local flow deflection angle from its upstream
value ϕi, which can reasonably be neglected as xi is located upstream of the interaction region. It is
worth mentioning that Eq. (8) governs the evolution of an isentropic flow under small compression
and expansion. The flow deflection is determined from the boundary layer displacement thickness,

ϕ = tan−1

(
dδ∗

dx

)
≈ dδ∗

dx
. (9)

By introducing scaled quantities, the above equation becomes

ϕ = δ∗
i

L∗
dδ∗/δ∗

i

ds
= δ∗

i

L
f2(s), (10)

where f2(s) is a universal function, and Eq. (8) becomes

p(s) − p0

q0
= 2√

M2
0 − 1

δ∗
i

L
f2(s). (11)

Taking the product of Eq. (6) and Eq. (11), the pressure rise across the interaction zone is obtained
as

p(s) − p0

q0
= F (s)

√
2c f ,i(

M2
0 − 1

)1/2 , (12)

where

F (s) =
√

f1(s) f2(s). (13)

It is noteworthy that in Eq. (12), the origin of the interaction and its characteristic length scales
are not specified. We then use simulation data to determine which choice of the two parameters
yields the greatest degree of universality. The distributions of the similarity function determined
from Eq. (12) are shown in Fig. 13, in which we take the origin of the free-interaction zone to
be, respectively, the mean separation point (xsep) and the point where the wall pressure gradient
is maximum (xp). In each panel we also consider different reference length scales, namely, the
incoming boundary layer thickness (δi) and the distance between the location where F = 4.22
(xm) and the origin [57,58]. The latter choice is frequently used in experiments as a surrogate for
the separation point location. Inspection of our simulation data has instead shown (not reported)
that such a value is attained close to the virtual origin of the separation bubble [41]. The data are
presented along with results for supersonic swept interactions [42]. Figures 13(a) and 13(b) show
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FIG. 13. Similarity function F (s), as defined in Eq. (12), plotted by setting the origin (xi) at the mean
separation point (xsep, panels a, b), and at the location of maximum pressure gradient (xp, panels c, d). The
reference length is taken to be either L∗ = δi (a, c), or as the distance of the point where F = 4.22 (xm) from
the origin (b), (d).

that, if the separation point is used as the origin, F (0) ≈ 1 for hypersonic cases, and F (0) ≈ 1.6 for
the supersonic cases, in agreement with the results of Volpiani et al. [11] and Matheis and Hickel
[57]. More generally, good collapse is observed, separately for supersonic and hypersonic cases,
up to Fs = 4.22. The various curves tend to show much larger scatter further downstream, and a
genuine plateau is only observed for M0 = 2, γ0 = 45◦, with value of F ≈ 6, in agreement with
reference experimental data [59]. This is consistent with the established notion that the formation
of a plateau requires extensive separation.

When the maximum pressure gradient location is used instead (panels c, d), universality between
supersonic and hypersonic cases improves significantly, with F ≈ 1.6 at the separation point, for
all cases. Furthermore, all distributions virtually collapse in the initial part of the interaction when
L∗ = δi, which indicates that the incoming boundary layer state is important in the early stages of
the boundary layer separation process. Farther downstream, large scatter is still observed, although
the choice L∗ = xm − xi yields greater universality of the distributions.

IV. LOW-FREQUENCY DYNAMICS

A spectral analysis is herein carried out to characterize unsteady processes in the interaction zone.
For reference, in Table III we report the minimum resolved frequency and the peak frequency for all
the flow cases. Preliminary examination of the spectra for the G00_T14 flow case was carried out,
by applying the Welch method with three, five, or seven segments. The results displayed in Fig. 14
show that the signal-to-noise ratio is greatly reduced when three segments are used instead of a
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TABLE III. Minimum resolved and peak frequency of the large scale unsteadiness expressed in term of StL .

Label StL,min StL,peak

G00_T14 0.00763 0.0534
G15_T14 0.0114 0.114
G30_T14 0.0153 0.275

single segment, while still maintaining sufficient frequency resolution to resolve the low-frequency
dynamics.

Maps of the normalized power spectral density (PSD) of wall pressure Êp( f ) =
Ep( f )/

∫
Ep( f ) d f , are shown in Fig. 15, in premultiplied form, for two-dimensional and swept

interactions. Consistent with previous scaling laws [14,16], the unswept case in Fig. 15(a) shows
the occurrence of low-frequency dynamics at 10−2 � StL,0 � 10−1 (StL = f Lsep/u0,x is the Strouhal
number based on the separation length and StL,0 its baseline value), with the peak occurring
at StL,0 = 0.0534, in a narrow region around the mean separation point. Numerical results of
swept cases show instead substantial increase of the peak frequency, with 10−1 � StL � 100. More
precisely, the peaks occur at StL = 0.114 and StL = 0.275, for cases G15_T14 and G30_T14,
respectively.

The spanwise PSD of pressure fluctuations at the mean separation line, Êp(κz ) =
Ep(κz )/

∫
Ep(κz ) dκz, is shown in Fig. 16 to quantitatively characterize the rippling of the separation

line. Good collapse of all PSD distributions in the high-wavelength end is achieved if the length
of the separation bubble is used for normalization. In all cases, two spectral peaks are present, one
at small wavelength (λz ≈ 0.1Lsep), which would probably correspond to the small-scale rippling
noticed in previous numerical simulations of nonswept SBLI [19]. However, the most prominent
peak is found to reside at much longer wavelengths (λz ≈ 2Lsep), which is linked to the presence
of large-scale corrugations. As a consequence, observation of such peak requires use of wider
domains than typically used in DNS, and accurate resolution of the peak wavenumber would require
extremely large domains.

The previous results provide solid evidence that the same phenomena found in supersonic
swept interaction also persist in hypersonic cases. In fact, large-scale rippling is still apparent
near the separation point, with characteristic wavelength 2Lsep, irrespective of the sweep angle.
Wave-number–frequency spectra at the separation line are then considered in Fig. 17 to characterize
the advection velocity of those pressure disturbances. This quantity is evaluated following Choi and
Moin [60]: for the ith time segment, the fluctuating wall pressure signal along the separation line

10−2 10−1 100 101
0

0.1

0.2

0.3

0.4

StL

f
Ê

p
(f

)

1 window

3 windows

5 windows

7 windows

FIG. 14. Premultiplied, normalized PSD of wall pressure for the baseline flow case G00_T14, determined
from use of the Welch method with one, three, five, and seven Hamming windows with 50% overlap.
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(a) (b)

(c)

FIG. 15. Premultiplied, normalized PSD of wall pressure fluctuations for flow cases G00_T14 (a),
G15_T14 (b), and G30_T14 (c). The red line denotes the mean separation location, the green line the nominal
shock impingement location, and the cyan line the mean reattachment location. Red crosses mark the position
of the low-frequency peaks near the separation line.

p′
w(xsep, z, t ) is Fourier transformed in the spanwise direction and in time as

p̂i(κz, ω) =
∫ Tw

0

∫ Lz

0
p′

w(xsep, z, t )wH (t )e−i(κzz−ωt ) dz dt, (14)

where Tw is the time duration of each segment and wH (t ) the Hamming window. The wave-number-
frequency spectrum is then obtained by averaging the power-spectral densities

Spp(κz, ω) = 1

M

M∑
i=1

p̂i(κz, ω) p̂∗
i (κz, ω) (15)

10−2 10−1 100 101
0

0.1

0.2

0.3

0.4

λz/Lsep

κ
z
Ê

p
(κ

z
)

G00 T14

G15 T14

G30 T14

FIG. 16. Premultiplied, spanwise PSD of wall pressure fluctuations at the mean separation line, for various
sweep angles. The spanwise wavelength λz is scaled by the separation length. κz = 2π/λz is the spanwise wave
number. The dashed line marks λz = 2Lsep.
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(a) (b)

(c)

FIG. 17. Contour plots of frequency/wave number spectra of the wall pressure at the mean separation
location. Dashed lines denote the linear relationship for the circular frequency ω = κzwc, with convection
velocity wc = 0.7u0,x tan γ0. (a) γ0 = 0◦; (b) γ0 = 15◦; (c) γ0 = 30◦. The cyan crosses mark the position of the
low-frequency peaks.

where (·)∗ indicates complex conjugate and M the number of segments. In practice, this quantity
is obtained by the discrete data set of instantaneous wall pressure by evaluating the window
average of the pressure PSDs in each segment, which in turn are calculated using spatiotemporal
fast Fourier transform. The Spp distribution is then suitably normalized to be consistent with the
spanwise-averaged spectra in Fig. 18. Whereas no clear organization is observed in nonswept SBLI
[Fig. 17(a)], distinct linear clustering of the PSD is found in swept interactions, which becomes
more evident at high sweep angles, and which is a clear indication of the presence of disturbances

10−2 10−1 100 101
0

0.1

0.2

0.3

0.4

0.5

0.6

StL

f
Ê

p
(f

)

(a)

G00 T14

G15 T14

G30 T14

0 10 20 30 40 50
0

0.1

0.2

0.3
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γ0(deg)

S
t L

(b)

FIG. 18. (a) Premultiplied, normalized frequency spectra of wall pressure fluctuations at the mean separa-
tion line, for various sweep angles. Peaks are marked with crosses. (b) Peak frequency as a function of sweep
angle: the solid and dashed lines denote the prediction of Eq. (16). Numerical values are marked with triangles.
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traveling at a definite phase speed wc, without any obvious dispersion. In particular, data fitting
yields the same convection velocity found by Ceci et al. [42], i.e., wc ≈ 0.7u0,z = 0.7u0,x tan γ0.

The typical frequencies of the spanwise traveling pressure perturbations described above are
gathered by Fig. 18(a), which reports the premultiplied, normalized pressure PSD at mean separation
line. All distributions exhibit a bump at high frequency, which is associated with the boundary layer
turbulence dynamics. In addition, they show prominent peaks at much lower frequency, which shift
to the right and increase in magnitude as the sweep angle increases. Quantitative comparison of the
computed peak frequencies with the formula

StL =
∣∣∣∣StL,0 ± kη tan γ0

α

∣∣∣∣ , (16)

obtained by Ceci et al. [42] for supersonic interactions, is presented in Fig. 18(b). The prediction is
quite good by using the same fitting parameters (kη = 0.7, α = 2) as we found for the supersonic
case.

The presence of large-scale unsteadiness in the interaction region can be further elucidated by
applying the POD technique, to extract a set of characteristic spatial functions w j (x, z) which
optimally describe the wall pressure fluctuations. In particular, the goal of the analysis is to obtain
the spatial shape of the dominant structures in the neighborhood of the mean separation location. In
this framework, the unsteady pressure field is expanded as

p′(x, z, t ) =
∞∑
j=1

a j (t )w j (x, z). (17)

Here a j (t ) = 〈p′(x, z, t ),w j (x, z)〉 is the jth temporal coefficient (with 〈·, ·〉 a suitable scalar product
in a Hilbert space). As customary in many applications of POD to fluid flows, we follow the snapshot
method [51], whereby the data at a given time t j are arranged into a column vector q j , j = 1, . . . , M,
with M the number of snapshots, and the snapshot matrix is defined as Q = [q1, q2, . . . , qM]. The
discrete temporal coefficients ψ j are then obtained by solving the discrete eigenvalue problem

QT WQψ j = λ jψ j . (18)

The corresponding POD modes are then recovered as

φ j = F−1Qψ j
1√
λ j

, (19)

where W is a positive-definite Hermitian matrix defining the spatial weights and W = FT F is its
Cholesky decomposition. In this specific flow case, solving Eq. (18) with an unitary weight matrix,
which is appropriate for a single thermodynamic variable discretized on an uniform grid, results
in a multitude of high-frequency leading modes, with large-scale unsteadiness confined to high-
order modes. This finding is consistent with the sharp rise of pressure loads in the rear part of the
interaction region as observed in Figs. 2(a) and 4(a).

In order to isolate the low-energy, low-frequency dynamics occurring in the vicinity of the mean
separation point, we consider a nonunitary weight matrix, defined as

W = diag
(
p2

0/p2
w,i

)
, i = 1, . . . , Nx × Nz, (20)

which penalizes pressure fluctuations downstream of the mean pressure plateau. Figure 19 depicts
the shapes of the leading POD modes for γ0 = 0◦ and γ0 = 30◦, along with the PSD of the
associated temporal coefficients. Large-scale corrugations clearly emerge in the mean separation
region, whose characteristic wavelength and frequency conform with those found through the
spectral analysis. At reattachment pressure corrugations appear, which feature the same spanwise
wavelength as at the separation point. In the unswept case, perfect phase opposition between
those corrugations can be observed, which can be interpreted as the signature of two-dimensional
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(a)

(b)

FIG. 19. Leading POD mode φ1(x, z) (left panel) and premultiplied PSD of associated temporal coefficient
ψ1(t ) (right panel) of wall pressure in the interaction region. (a) Case G00_T14, (b) case G30_T14.

breathing. In the swept case, wave peaks and troughs upstream of the reattachment point appear to
be aligned at an angle γ ≈ 50◦, in agreement with Fig. 12(c). This observation is consistent with the
occurrence of spanwise drift of pressure perturbations within separation zone in swept interaction
cases. The POD modes also detect additional coherent pressure oscillations past reattachment, with
spanwise much smaller wavelength than that typical of the large-scale unsteadiness, which could be
related to the low-frequency end of disturbances from the mixing layers surrounding the separation
bubble. In the swept case, those disturbances are inclined with respect to the streamwise axis,
following the mean flow direction shown in Fig. 11.

V. CONCLUSIONS

We have carried out high-fidelity simulations of hypersonic shock/boundary layer interactions
of impinging type, and focused on the effect of an imposed crossflow. The analysis of the mean
fields supports the notion that the extent of the separation bubble increases in the presence of
crossflow, in agreement with previous supersonic studies [40,41]. Inspection of the flow angle
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following the dividing streamline reveals uplift and subsequent downlift of fluid particles far from
the wall, accompanied by a spanwise shift. On the other hand, near-wall particles are found to
travel backwards from the reattachment to the separation line, at a crossflow velocity which is much
higher than the streamwise one. This effect is noticed for instance in the friction lines for the largest
crossflow angle (see Fig. 11), showing that the flow midway of the bubble is essentially aligned with
the spanwise direction.

The numerical data allow to draw some conclusions regarding assumptions and validity of the
free-interaction theory [54]. In particular, we find that the most appropriate definition of the starting
location of the interaction is based on the maximum wall pressure gradient, which yields more
universal distributions than use of the zero crossing of the friction coefficient. As for the relevant
length scale to be used for normalization, not surprisingly we find that choosing a typical upstream
boundary layer thickness yields good universality up to the mean separation point position, whereas
use of the separation length yields improved collapse of the distributions further downstream. The
analysis further corroborates the notion that the commonly quoted plateau value of the similarity
function (F = 6) is attained only in flow cases featuring very strong interactions, and none of the
hypersonic cases herein considered qualify for that.

Analysis of the wall pressure signal has been carried out in terms of the frequency/wave number
spectra and proper orthogonal decomposition, and has led to full characterization of the low-
frequency unsteadiness observed in the interaction region. We find that the typical low-frequency
disturbances correspond to spanwise perturbations with typical wavelength of about two times the
size of the reversed flow region. In the case of swept interactions disturbances in this region travel
at about 70% of the crossstream velocity, resulting in apparent shift to higher frequencies, which we
found to be very well predicted by the model developed by Ceci et al. [42].

Interestingly, POD is capable of detecting additional structures in the rear part of the separation
bubble, whose motion appears to be correlated with rippling of the separation line. This observation,
linked with the observed streamlines/friction lines patterns opens the possibility of extending
physical analysis developed for two-dimensional breathing to the three-dimensional interactions
with cylindrical symmetry.

Further ramification of this work might include considering cases with strong wall cooling and/or
chemical nonequilibrium typical of hypersonic flight, and establish the influence of those physical
effects on large-scale unsteadiness.
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