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Spectrum of passive scalar carried by particles in isotropic turbulence
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We conducted numerical simulations of passive scalar carried by noninertial particles
convected by the isotropic turbulence at low to high Reynolds number up to Rλ = 550 with
infinitely large Schmidt numbers. In the numerical method, each particle has a scalar value
θp that relaxes with a relaxation time τθ independent of the turbulence and its evolution is
computed along the Lagrangian trajectory, and the scalar is mapped onto the Eulerian grid
points. In the limit of large τθ , the evolution equation for the mapped field θ converges to
that in the Batchelor regime with an infinite Schmidt number. We investigated the two point
statistics including the variance spectrum of the field θ and confirmed their consistency
with the turbulence theory, such as the Batchelor spectrum, constancy of the transfer
flux, and the Yaglom 4/3 law for the third-order structure function by parameter sweep
simulations with various values of τθ . An explanation of the present numerical method
from the view point of the turbulence physics is presented. The visualized scalar field
shows features commonly seen in passive scalar turbulence, such as plateaus, fronts, and
sheetlike structures.
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I. INTRODUCTION

Turbulent transfer of small particles plays important roles in many natural phenomena and engi-
neering applications, such as aerosols, rain drops in clouds, dust particles from volcanic eruptions,
and spraying of chemical fertilizer. The spatial distribution of various properties of particles (such
as number, mass, and temperature) can be regarded as a continuum of scalar field from macroscopic
view point which describes phenomena at scales much larger than the mean distance between
particles [1]. This continuum of the scalar shares some characteristics with those of scalar such
as temperature, concentration like salinity and chemicals in that both are convected by turbulent
flow, but the latter undergoes the molecular diffusion, while the former has almost zero molecular
diffusivity. This is because the typical radius of particles above is larger than 1 or sub micron meter
for which the estimated diffusivity in terms of the Einstein formula is much smaller than that of gases
or temperature [2]. Therefore the continuum of scalar as ensemble of very tiny particles corresponds
to the scalar with very high or infinite Schmidt number Sc = ν/κ � 1.
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Transport and mixing of passive scalar at high Schmidt number convected by turbulent flow is
one of the canonical problems in turbulence research and has long been studied since Batchelor’s
pioneering work [3]. His theory predicts that when the Reynolds number and Schmidt number are
large the variance spectrum which is defined by

〈θ2〉 =
∫ ∞

0
Eθ (k)dk (1)

has two power-law scaling ranges as

Eθ (k) =
{

COC χ̄ ε̄−1/3 k−5/3 for kL � k � kd ,

CB χ̄ (ε̄/ν)−1/2 k−1 for kd � k � kB,
(2)

where the angle brackets 〈 〉 denote the ensemble average, COC and CB are the Obukhov-Corrsin
constant [4,5] and the Batchelor constant, respectively, and kL, kd = (ε̄/ν3)1/4, and kB = Sc1/2kd

are the inverse of the integral scale, the Kolmogorov and the Batchelor wave numbers, respectively.
The ε̄ and χ̄ are the means of the kinetic energy dissipation rate and the destruction rate of the
scalar variance (hereafter we denote simply scalar dissipation rate), respectively. Many efforts have
been made for examining the predictions by experiment [6–8], theory [9–12], and direct numerical
simulation (DNS) [13–17]. The Obukhov-Corrsin constant is found to be about 0.6-0.7 at high
Reynolds number for Sc = O(1). However, the Batchelor constant is difficult to pin down compared
to the Obukhov-Corrsin constant because kB is proportional to Sc1/2 so that very high resolution
for the scalar is necessary to find the k−1 spectrum regardless of experiment [8] or DNS. DNSs
with very large number of grid points up to 81923 and Sc = 512 have been conducted, and the
Batchelor spectrum, recover of isotropy at small scales and saturation of the scaling exponents of
the structure functions of the scalar increments are reported [18,19]. Sc = 512 is large, but smaller
than those of some scalars such as salinity and so on. Since DNS for high Sc is very demanding in
the computational resources, alternative methods should be explored.

One important aspect regarding the k−1 spectrum (hereafter the Batchelor spectrum) is that when
Sc � 1 the k−1 spectrum exists for k � kd irrespective of the Reynolds number. In other words,
the scale separation between turbulent velocity and scalar fluctuations is essential and necessary.
With this understanding, a hybrid method using the dual grid system was proposed by one of the
present authors. In the method, the velocity at low to moderate Reynolds numbers on the coarse grid
is computed by the spectral method, and the passive scalar at high Schmidt numbers on the finer
grid is computed by the combined compact finite difference method [20]. The k−1 spectrum over
the finite range of wave number with CB ≈ 5.7 was found at Rλ = 42, Sc = 1000 [21], which is
consistent with the value obtained by high resolution DNSs. More sophisticated numerical methods
on the same line have been developed to compute the passive scalar at high Schmidt numbers using
GPUs, and these methods were found to be very efficient for the present purpose [22,23]. Lagaert
et al. (2014) [24] proposed the hybrid spectral-particle method which uses the spectral method for
velocity fields and the semi-Lagrangian particle method for scalar fields followed by re-meshing
and molecular diffusion, allowing the computation of the high but finite Schmidt number scalar
turbulence. Götzfried et al. [25] studied the mixing of passive scalar in both the Lagrangian and
Eulerian frames for Sc = 1–64. In the Lagrangian frame, the inertia-less particles subjected to
the Wiener process and their trajectory are tracked to compute the concentration. At early times,
the scalar variances by the both methods agree to each other, but at latter times the filaments or
sheets structure of the concentration in the Lagrangian frame are found to be noisy reflecting the
discreteness of the particles. However, even with these methods, it is still difficult to compute the two
spectral ranges with finite width at high Schmidt and high Reynolds numbers [17]. More efficient
and effective computational method is necessary to explore various statistical properties of the scalar
fluctuations in this range.

Difficulty in the Eulerian computation lies in the resolution criterion kmax > kB = Sc1/2kd � kd

and the associated condition for the time step width which are very stringent. A hint to overcome the
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barrier is to use a fully Lagrangian description of scalar carried by particle, and to map those scalar
onto the Eulerian grids. Unlike the semi-Lagrangian particle method by Ref. [24], in which the fluid
particle is tracked over short time step and the scalar on the particle is mapped onto the grids, in
the present method, the particle position and the evolution of the scalar on the particle are tracked
all the way along the particle trajectory, and the scalar amplitudes are mapped onto the surrounding
grid points, giving the Eulerian distribution. This resembles the measurement of the spectrum of
the liquid water content (LWC) in cloud. Cloud droplets which are convected by turbulent flow
with almost zero molecular diffusion carry the water mass (Lagrangian picture), however, the
measurement of the power spectrum is made by the detector mounted on the measurement tower
(Eulerian picture) with finite resolution in space and time, which corresponds to a mapping of the
scalar (water mass) onto the grid (detector) in time.

Motivated by this analogy, in the recent study, hereafter referred to as GSW21 [26], we developed
a new numerical simulation method of point particles with thermal inertia that are passively advected
by turbulence, and investigated the variance spectrum of the particle thermal energy in the wave-
number space. The spectrum showed k−5/3 and k−1 at lower and higher wave numbers, respectively,
which is consistent with the turbulence theory. However, the spectrum suffered from significant
noise at larger wave numbers due to a lack of statistical convergence (see Fig. 2 in GSW21), which
made the reliability of the result unclear, and the examination of the properties of the method in
both physical and numerical view points was not sufficient.

In the present study, we extend the GSW21 study to conduct a more careful and comprehensive
investigation of the new method with special emphasis on the relation between the numerical method
and the physics of turbulence, namely about the transfer flux of the scalar variance through the
spectral space and the scalar dissipation, removal of the shot noise, and coarse graining of the
Lagrangian information by the mapping onto the Eulerian grids. To make the points clearer, we
consider a simple idealized model, a passive scalar θp carried by the noninertial particles in isotropic
turbulence at high Reynolds and Schmidt numbers. We examine the statistical properties of the
scalar field θ as the mapped field of θp for which we refer it as the “particle field” [27]. We perform
parameter sweep simulations with a relatively moderate number of particles and grid points, and
investigate various turbulence statistics such as the variance spectrum, transfer flux, and structure
function. And we also conduct large-scale simulations with grid points up to 20483 and Reynolds
number Rλ = 550 for comparison with the Batchelor theory. The transfer flux in the wave-number
space and the dissipation are theoretically examined in both the Eulerian and Lagrangian view
points.

The remainder of this paper is organized as follows. Section II presents the governing equations.
Section III reviews the theory by GSW21. Sections IV and V provide the simulation setup and
results, respectively, for moderate-scale simulations. Section VI provides the results for large-scale
simulations. Section VII discusses the transfer flux and the scalar dissipation. Finally, Sec. VIII
gives a summary and discussion.

II. GOVERNING EQUATIONS

The velocity field for a fluid is governed by the incompressible Navier-Stokes equations:

∂u
∂t

+ u · ∇u = −∇p

ρ0
+ ν∇2u + f , (3)

∇ · u = 0, (4)

where p is the pressure; ρ0 is the constant mass density of the fluid; and f represents the external
force, which is solenoidal (∇ · f = 0). We consider Np point particles that move in the same way as
fluid particles. The evolution equation for the jth particle position, xp j , is given by

dxp j

dt
= u(xp j, t ), (5)
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where u(xp j, t ) is the fluid velocity at xp j at time t . We consider that each particle has a passive
scalar θp j (t ), the evolution equation of which is given by

dθp j

dt
= −θp j

τθ

+ fθ (xp j, t ), (6)

where τθ is a constant parameter representing the relaxation time for θp j and fθ (xp j, t ) is the value
of a certain fluid field fθ at xp j at time t . Originally, Eq. (6) comes from the evolution equation for
the temperature of a particle with thermal inertia, and τθ corresponds to the thermal relaxation time
[28,29]. However, we do not consider such a specific physical correspondence in this study. We
regard the present system as an idealized system for the study of spectrum of the particle field in
turbulence.

III. THEORY

It is important for the latter arguments to examine the physical properties of Eq. (6) in the
Eulerian framework, although its actual computation is made in the Lagrangian frame. We consider
the particle field θ (x, t ), which is defined as the spatial distribution of the scalar θp j (t ) as follows
[30–32]:

θ (x, t ) = 1

n0

Np∑
j=1

θp j (t )δ(x − xp j ), (7)

where δ() is the Dirac δ function, n0 is the mean number density of particles in the domain,

n0 = Np

V
, (8)

and V is the domain volume. Because particles are advected by a fluid in the same way as fluid
particles, and the scalar θp j is relaxed with a time constant τθ and is affected by fθ as in Eq. (6), the
evolution equation for θ (x, t ) as a scalar continuum is given by

∂θ

∂t
+ u · ∇θ = − θ

τθ

+ fθ , (9)

in the limit of n0 → ∞. Note that this equation does not have the molecular diffusion term (κ∇2θ )
in this case. When the coarse graining over some spatial domain is made, a diffusive type term
emerges as the reflection of the coarse graining [2], but for the moment we proceed as the zero
diffusivity. Effects of the finiteness of the number density will be discussed in the latter section.
Thus, if we assume fθ as the external scalar source, Eq. (9) is the equation for a passive scalar field
at Sc = ∞, which is modified by the relaxation term with τθ .

It was shown in GSW21 that the Batchelor spectrum in the viscous-convective range is modified
by the relaxation term as

Eθ (k) = CB χ̄in (ε̄/ν)−1/2 k−1(kη)−α, (10)

α = (2CB)DK , (11)

where η = k−1
d is the Kolmogorov scale,

DK = τK/τθ , (12)

and τK = (ε̄/ν)−1/2 is the Kolmogorov time. In addition, when the Reynolds number is large and
the parameter DL defined by

DL = T/τθ (13)
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is much smaller than unity, the two power-law ranges exist as

Eθ (k) =
{

COC χ̄in ε̄−1/3 k−5/3 for k � kd ,

CB χ̄in (ε̄/ν)−1/2 k−1(kη)−α for k � kd ,
(14)

where T is the large-eddy turnover time of turbulence, COC and CB are the Obukhov-Corrsin constant
and the Batchelor constant, respectively, and χ̄in is the mean scalar fluctuation injection rate. The
two ranges cross over at the wave number kd . The k−1−α is the modified Batchelor spectrum and
its derivation is explained in GSW21. The essence of the derivation is the fact that the velocity
field convecting the scalar in this range is approximated by the linear function of the coordinates
with the uniform velocity gradient in the Eulerian representation, i.e., u → A · x where A = ∇u.
Equation (10) shows that the relaxation term modifies the Batchelor spectrum and changes its
slope from −1 to −1 − α, where α = (2CB)DK . For τθ → ∞, DK → 0 and α → 0, hence the
convergence to the Batchelor spectrum.

IV. SIMULATION SETUP

We conduct numerical simulations of particles in turbulence using a DNS model developed for
the large-scale computation of particle-laden turbulent flow [33,34]. The numerical domain is a
periodic cubic box with a length Lbox per side (i.e., V = L3

box). Particles are regarded as point
particles. The fluid velocity and the external source fθ at the particle position, u(xp j ) and fθ (xp j ), are
calculated from u and fθ fields at the surrounding eight grid points by linear interpolation, respec-
tively. We numerically integrate the evolution equations (3)–(6) using the pseudospectral method
for spatial discretization and the second-order Runge-Kutta scheme for temporal discretization with
time increment �t = 1.0 × 10−3.

Because the domain length in the present simulation is Lbox, each component of the wave-number
vector k = (k1, k2, k3) (k = |k|) is defined as ki = (2π/Lbox) × (integer) (i = 1, 2, 3), which is not
an integer in general. In the following simulation and data analysis, we also use the integer wave
number defined by

k′
i = kiLbox/(2π ), (15)

where k′ = (k′
1, k′

2, k′
3) and k′ = |k′|.

The velocity forcing f satisfies

〈 f (k′, t ) f (−k′, s)〉 = P(k′)
F (k′)

4π (k′)2
δ(t − s), (16)

where P is the projection operator [Pi j = δi j − k′
ik

′
j/(k′)2], and the spectrum of the force F (k′) is

constant (= c f ) for 1 � k′ � 2 and zero otherwise [35]. Similarly, the scalar forcing fθ satisfies

〈 fθ (k′, t ) fθ (−k′, s)〉 = Fθ (k′)
4π (k′)2

δ(t − s), (17)

where Fθ (k′) is constant (=cθ ) for 1 � k′ � 2 and zero otherwise. We tune the parameters c f and
cθ so that the mean dissipation rates for the kinetic energy (ε̄) and scalar variance (χ̄) are as given
in Tables II and III, respectively.

Table I summarizes various parameters used in the present simulation. Tables II and III sum-
marize the turbulence parameters for the fluid velocity field and the particle field, respectively (see
Appendix A for definitions of turbulence parameters). We first conduct four kinds of simulations:
Runs A–D (see Table I). Runs A and B use the same number of grids cells Ngrid = 1283, but Run
B has higher resolution with the kinematic viscosity ν being twice that for Run A. Run C uses
Ngrid = 2563 and has a higher Reynolds number Rλ. For Runs A–C, we conduct simulations with
six values of τθ (from τθ = 200 to 11.1, referred to as A1–A6, B1–B6, and C1–C6) to examine
the dependence on the parameter DK . Run D is for visualization. We also conduct large-scale
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TABLE I. Parameters used in the simulations. From left to right, Ngrid is the total number of grid cells for
the fluid velocity field u and the particle field θ̃ , Np is the total number of particles, Np/Ngrid is the number of
particles per grid cell, ν is the kinematic viscosity, Lbox is the box length, �x is the grid cell length, τθ is the
relaxation time, n0 is the mean particle number density, and �xp = n−1/3

0 is the average distance of particles.

Run Ngrid Np Np/Ngrid ν Lbox �x τθ n0 �xp

A1–A6 1283 227 64 0.15 25.6 0.2 200 (A1), 100 (A2) 8000 0.050
33.3 (A3), 20.0 (A4)
14.3 (A5), 11.1 (A6)

B1–B6 1283 229 256 0.30 25.6 0.2 200 (B1), 100 (B2) 32000 0.031
50.0 (B3), 33.3 (B4)
25.0 (B5), 20.0 (B6)

C1–C6 2563 229 32 0.15 51.2 0.2 200 (C1), 100 (C2) 4000 0.063
33.3 (C3), 20.0 (C4)
14.3 (C5), 11.1 (C6)

D1 1283 230 512 0.15 25.6 0.2 100 64000 0.025
D2 1283 226 32 0.15 25.6 0.2 100 4000 0.063
D3 1283 222 2 0.15 25.6 0.2 100 250 0.16

E 10243 234 16 0.15 204.8 0.2 200 2000 0.079

F 20483 236 8 0.15 409.6 0.2 200 1000 0.10

simulations with Ngrid = 10243 and 20483 (Runs E and F), the results of which are described later
in Sec. VI.

The root-mean-square (rms) value of the particle field, θrms, is calculated by

θrms =
√〈

θ2
p

〉
p, (18)

where 〈 〉p indicates the average over particles and time (〈θ2
p〉p is calculated by the time average of∑Np

j=1 θ2
p j/Np). The dissipation rate for the particle field, χ , is calculated by

χ = 2

τθ

θ2
rms = 2

τθ

(〈
θ2

p

〉
p

)
, (19)

which is obtained from Eqs. (6), (7), and (9) [see Appendix B for the derivation of Eq. (19)]. As
we will argue later in detail in Sec. VII, the scalar fluctuation injection χin balances the dissipation

TABLE II. Turbulence parameters for statistically steady states. Values are mean ± standard deviation.
Here, Rλ is the Taylor microscale Reynolds number, urms is the root-mean-square (rms) velocity, ε̄ is the
mean energy dissipation rate per unit mass, L is the integral scale, λ is the Taylor microscale, η̄ is the mean
Kolmogorov length, kmaxη̄ is the cutoff wave number normalized by the mean Kolmogorov length, T is the
large-eddy turnover time, and τK is the Kolmogorov time.

Run Rλ urms ε̄ L λ η̄ kmaxη̄ T τK

A, D 83 ± 11 5.9 ± 0.5 18 ± 4 5.8 ± 0.4 2.1 ± 0.2 0.12 ± 0.01 1.7 ± 0.1 1.0 ± 0.1 0.093 ± 0.010
B 58 ± 7 5.9 ± 0.5 19 ± 3 6.3 ± 0.4 2.9 ± 0.2 0.20 ± 0.01 2.8 ± 0.1 1.1 ± 0.1 0.13 ± 0.01
C 136 ± 19 7.7 ± 0.6 20 ± 4 11 ± 1 2.6 ± 0.2 0.12 ± 0.01 1.6 ± 0.1 1.5 ± 0.1 0.089 ± 0.009
E 330 ± 60 12 ± 1 17 ± 4 43 ± 4 4.3 ± 0.5 0.12 ± 0.01 1.7 ± 0.1 3.7 ± 0.4 0.097 ± 0.011
F 550 ± 50 15 ± 1 16 ± 1 85 ± 5 5.5 ± 0.3 0.12 ± 0.01 1.7 ± 0.1 5.7 ± 0.2 0.096 ± 0.005
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TABLE III. Scalar parameters for statistically steady states. θrms is the rms value of θ , χ̄ is the mean
dissipation rate for the θ variance, DK is a parameter defined by Eq. (12), and δα is the slope deviation described
in Fig. 4 (see the text for details). Values are mean ± standard deviation for θrms, χ̄ , and DK . Errors in δα are
estimated by the difference in the maximum and minimum values of δα for 5 � k′

ref � 15 (see the text for the
details of k′

ref).

Run θrms χ̄ DK δα

A1 (1.99 ± 0.01) × 10−3 (3.97 ± 0.02) × 10−8 (4.7 ± 0.5) × 10−4 0
A2 (2.00 ± 0.01) × 10−3 (8.04 ± 0.09) × 10−8 (9.3 ± 1.0) × 10−4 (5.9 ± 1.7) × 10−3

A3 (2.01 ± 0.03) × 10−3 (2.43 ± 0.07) × 10−7 (2.8 ± 0.3) × 10−3 (2.7 ± 0.4) × 10−2

A4 (2.01 ± 0.04) × 10−3 (4.04 ± 0.02) × 10−7 (4.7 ± 0.5) × 10−3 (4.8 ± 0.4) × 10−2

A5 (2.01 ± 0.05) × 10−3 (5.64 ± 0.03) × 10−7 (6.5 ± 0.7) × 10−3 (6.9 ± 0.5) × 10−2

A6 (2.01 ± 0.05) × 10−3 (7.27 ± 0.04) × 10−7 (8.4 ± 0.9) × 10−3 (8.9 ± 0.6) × 10−2

B1 (2.01 ± 0.01) × 10−3 (4.03 ± 0.05) × 10−8 (6.5 ± 0.5) × 10−4 0
B2 (2.02 ± 0.02) × 10−3 (8.14 ± 0.15) × 10−8 (1.3 ± 0.1) × 10−3 (7.6 ± 0.1) × 10−3

B3 (2.02 ± 0.03) × 10−3 (1.64 ± 0.05) × 10−7 (2.6 ± 0.2) × 10−3 (2.3 ± 0.2) × 10−2

B4 (2.02 ± 0.04) × 10−3 (2.46 ± 0.11) × 10−7 (3.9 ± 0.3) × 10−3 (3.8 ± 0.2) × 10−2

B5 (2.02 ± 0.05) × 10−3 (3.27 ± 0.17) × 10−7 (5.2 ± 0.4) × 10−3 (5.2 ± 0.2) × 10−2

B6 (2.01 ± 0.04) × 10−3 (4.06 ± 0.16) × 10−7 (6.5 ± 0.5) × 10−3 (6.7 ± 0.3) × 10−2

C1 (1.99 ± 0.01) × 10−3 (3.94 ± 0.02) × 10−8 (4.4 ± 0.4) × 10−4 0
C2 (2.00 ± 0.01) × 10−3 (8.01 ± 0.07) × 10−8 (8.9 ± 0.9) × 10−4 (5.3 ± 0.6) × 10−3

C3 (2.00 ± 0.02) × 10−3 (2.40 ± 0.06) × 10−7 (2.7 ± 0.3) × 10−3 (2.6 ± 0.2) × 10−2

C4 (2.00 ± 0.04) × 10−3 (4.00 ± 0.15) × 10−7 (4.4 ± 0.4) × 10−3 (4.7 ± 0.3) × 10−2

C5 (2.00 ± 0.05) × 10−3 (5.60 ± 0.27) × 10−7 (6.2 ± 0.6) × 10−3 (6.6 ± 0.3) × 10−2

C6 (2.00 ± 0.06) × 10−3 (7.23 ± 0.42) × 10−7 (8.0 ± 0.8) × 10−3 (8.5 ± 0.5) × 10−2

E (1.94 ± 0.02) × 10−3 (3.76 ± 0.09) × 10−8 (4.9 ± 0.6) × 10−4

F (1.93 ± 0.01) × 10−3 (3.71 ± 0.03) × 10−8 (4.8 ± 0.3) × 10−4

rate χ in steady state. The balance between χin and χ is also confirmed in the present simulation as
described in Fig. 17.

All results presented in the following section are obtained after each simulation achieves a
statistically steady state. This requires a long integration time, especially for simulations with large
τθ . For simulations with τθ = 200 (Runs A1, B1, and C1), we integrated over 400 nondimensional
time units, corresponding to 40 million time steps with �t = 10−3 and to 250 large-eddy turnover
time for Run C1. After a statistically steady state is achieved for each simulation, we further conduct
time integration for 50 nondimensional time units and calculate the time average of various statistics,
such as the variance spectrum.

Runs A1–A6 use the same initial conditions for the fluid velocity field and particles, and also use
the same series of random numbers for the external forces. The only difference among Runs A1–A6
is the relaxation time τθ . Runs B1–B6 and Runs C1–C6 are conducted in the same way. This is
important for an accurate estimation of δα from the variance spectrum, as later shown in Fig. 3.

V. SIMULATION RESULTS

A. Defiltering and removal of shot noise

To calculate various turbulence statistics for the particle field, we first need to obtain the field
θ (x, t ) in Eq. (7) from particle data. This is not straightforward because Eq. (7) includes the Dirac
δ function. In the present study, we follow the method reported by Ref. [34] and simply project the
particle information onto the surrounding eight grid points of the fluid field using the linear weight
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FIG. 1. The filtering effect Ffilter [defined in Eq. (C1)] is a function of k′/k′
max, where k′

max is the cutoff wave
number (k′

max = 128 for Ngrid = 2563).

as follows:

θ̃ (x, t ) = 1

n0

Np∑
j=1

θp jS(x, xp j ), (20)

where the tilde indicates that θ̃ (x, t ) is an approximation for θ (x, t ), and the operator S(x, xp j )
projects the particle information at xp j onto x based on the linear weight [36].

The variance spectrum for θ̃ is defined by

〈θ̃2〉 =
∫ ∞

0
Eθ̃ (k)dk. (21)

The spectrum Eθ̃ (k) can be decomposed into three parts as follows [30,34,37,38]:

Eθ̃ (k) = Ffilter (k)
[
Eθ (k) + E shot

θ (k)
]
. (22)

First, Ffilter (k) is a function for the filtering effect of the projection. The projection of the particle
information onto surrounding grid points has a low-pass filtering effect because the particle position
spatial accuracy is lost for scales smaller than the grid cell length �x. Figure 1 shows Ffilter (k), where
its form was estimated by the method previously reported [34]. The fitting function for Ffilter (k) is
provided in Appendix C. Next, E shot

θ (k) arises from the discreteness of particles in the θ field and
corresponds to a spatially uncorrelated distribution. The derivation of this uncorrelated part is as
previously described [34]. E shot

θ (k) is given by

E shot
θ (k) = n−1

0

〈
θ2

p

〉
p

(4πk2)

V
, (23)

where the proportionality to k2 originates from the Fourier transform of the Dirac δ function.
Physically, this part corresponds to shot noise in electronics, which originates from the discrete
nature of electric charge. Based on this similarity, we refer to E shot

θ (k) as shot noise spectrum.
Finally, Eθ (k) describes the spatial coherency of the θ field. The spatial structure of the θ field as a
continuum scalar field is reflected in this part. From (22), we calculate Eθ (k) by

Eθ (k) = Ffilter (k)−1Eθ̃ (k) − E shot
θ (k). (24)

Figure 2 shows the various spectra described above for Run C1.
To calculate other turbulence statistics, such as the transfer flux and structure function, we simply

extend the above procedure to remove the filtering effect from the field θ̃ (k, t ), where θ̃ (k, t ) =
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FIG. 2. Variance spectrum of particle field for Run C1 in statistically steady state. Black curve: variance
spectrum calculated from raw data [Eθ̃ (k)]. Red curve: spectrum without filtering effect [Ffilter (k)−1Eθ̃ (k)].
Green curve: spectrum without effects of filtering and shot noise spectrum [Eθ (k)]. Blue curve: shot noise
[E shot

θ (k)].

F[θ̃ (x, t )] and F[ ], F−1[ ] indicate the Fourier transform and its inverse, respectively. Instead of
using θ̃ (x, t ), we use

F−1[Ffilter (k)−1/2 θ̃ (k, t )] (25)

to calculate the transfer flux and structure function.

B. Convergence to Batchelor spectrum

Figure 3(a) shows the variance spectra Eθ (k) for Runs C1, C2, C4, and C6. Here, each spectrum
is normalized using Kolmogorov-Obkhov-Corrsin (KOC) theory as

Eθ (k) = χ̄ (ε̄)−3/4ν5/4Êθ (kη̄), (26)

where Êθ indicates the normalized spectrum. The slopes of the spectra are close to −1 and shallower
for runs with smaller DK (from bottom to top in the panel). The results for Runs C2 (blue) and C1
(green) are almost indistinguishable, indicating convergence. Figure 3(b) is the same as Fig. 3(a),
but each spectrum is compensated by (kη̄)−1. The results for Runs C1 and C2 are almost horizontal
and agree well with the dashed horizontal line, which is the Batchelor constant CB = 5.9 estimated
from Fig. 6 as described later.

We note two points here. First, turbulence theory predicts that the Batchelor spectrum with a
slope of −1 will appear for kη̄ � 1. However, Fig. 3 shows that the slope is already close to −1
at least from kη̄ > 0.04. Although this seems to be a contradiction, previous studies have also
shown that the −1 slope actually appears from kη̄ < 1. GSW21 obtained results similar to those
in Fig. 3. They argued that the transition wave number k∗ between the Obukhov-Corrsin spectrum
and the Batchelor spectrum can be uniquely determined as k∗η̄ ∼ (COC/CB)3/2, where COC is the
Obukhov-Corrsin constant, and estimated that k∗η̄ = 0.038, which is much smaller than unity. A
recent laboratory experiment also reported that a slope of −1 appears for kη̄ > 0.03 [8]. Therefore,
we conclude that the result in Fig. 3 shows the Batchelor spectrum and its modification by the
relaxation term. Second, it is expected from the theory (10) that the spectrum has a constant slope
and becomes shallower as it approaches k−1 for smaller DK . However, the simulation results show
that the slope is actually not constant. The spectrum is shallower for smaller DK , but finally becomes
even shallower than k−1 for smallest DK runs (Runs C1 and C2, especially for 0.05 < kη̄ < 0.2).
This suggests the possibility that the scalar variance spectrum at the limit DK = 0 takes the form
Eθ (k) ∝ k−1+δ(k), where δ(k) is a function indicating the deviation of the slope from −1. Figure 3(b)
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FIG. 3. (a) Normalized variance spectrum of particle field for Runs C1 (green), C2 (blue), C4 (red), and C6
(black) in statistically steady state. Dashed line indicates k−1. (b) Same as (a) but each spectrum is compensated
by (kη̄)−1. The dashed horizontal line indicates the Batchelor constant CB = 5.9 estimated from Fig. 6(b).

suggests that δ(k) is positive and decreasing function of kη̄, and likely to tend to zero for even greater
kη̄. We are not sure whether δ(k) is universal, and whether it depends on other parameters such as
Reynolds number. Clarifying these characteristics is an important task, but is beyond the scope of
this work.

We next investigate the slope of the compensated spectrum, α. The simplest way is to directly
estimate α from each spectrum in Fig. 3(b). However, this causes ambiguity in the estimation of α

since the spectrum slope is not constant. To avoid this ambiguity, we use the concept of the slope
deviation �α as described below. Here, we assume that the deviation δ(k) does not depend on DK

and that the scalar variance spectrum is modified by the relaxation term in a similar manner as in
Eq. (10), namely,

Eθ (k)|DK >0

Eθ (k)|DK =0
∝ k−1+δ(k)−α

k−1+δ(k)
= k−α, (27)

when the other parameters such as Reynolds number are unchanged. The following explanation is
for Run C, but the procedure is similar for Runs A and B.

Figure 4 shows a schematic of the procedure. First, we use the spectrum with the smallest DK

(for Run C1) as a reference spectrum. Figure 4(a) compares the compensated spectra, kEθ (k), for

054601-10



SPECTRUM OF PASSIVE SCALAR CARRIED BY …

(a)

(b)

FIG. 4. Schematic of procedure to estimate slope deviation �α of scalar variance spectrum for Run C6
(black) as compared to that for Run C1 (green, reference spectrum). (a) Each spectrum is multiplied by a
constant so that its value at the reference wave number k′

ref = 10 is unity (orange dot). Then, the spectrum for
Run C6 (black) is multiplied by (k′/k′

ref )
�α (red arrow) so that the result agrees with the reference spectrum.

(b) As a result, the two spectra agree.

Runs C1 and C6, where each spectrum is multiplied by a constant so that its value at the reference
wave number k′ = k′

ref is unity (orange dot in the panel). Here, we use k′
ref = 10 (see Appendix D

for an explanation of this choice). Next, we multiply the spectrum for Run C6 by (k′/k′
ref )

�α , and
determine �α so that the result agrees with the reference spectrum. Here, we use the following
estimator to evaluate the degree of disagreement between two spectra E1(k′) and E2(k′):

J =
k′

max∑
k′=k′

ref+1

max[E1(k′), E2(k′)]
min[E1(k′), E2(k′)]

, (28)

where k′
max is the cutoff wave number (k′

max = 128 for Ngrid = 2563). We use an iteration method
(bisection method) to determine �α, which minimizes J . For Run C6, �α is determined as �α =
8.5 × 10−2. Figure 4(b) shows that, after multiplication by (k′/k′

ref )
�α , the spectrum for Run C6

agrees with the reference spectrum. Applying the same procedure, we obtain �α for Runs C2–C5
as well. We set �α = 0 for Run C1.

Table III (5th column) summarizes �α for Runs A–C, and Fig. 5(a) plots these results as a
function of DK . The results for Runs A–C seem to collapse respectively onto three linear functions
having the same slope but with slightly different intercepts on the horizontal axis.

From the theory (10) and assumption (27), α is expected to approach zero for smaller DK . Based
on this expectation, we shift the results in Fig. 5(a) so that their fitting lines cross the origin. For
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FIG. 5. (a) Slope deviation �α as function of DK for Runs A1–A6 (blue pluses, from left to right), Runs
B1–B6 (green crosses), and Runs C1–C6 (red asterisks). The spectra for Runs A1, B1, and C1 are used as the
reference spectra for Runs A, B, and C, respectively. Error bars indicate the errors in �α shown in Table III
(fifth column). (b) Same as (a) but for α (see the text for details). Dashed line is α = (2CB)DK , where CB = 5.7.
Two gray lines in the panel indicate α = (2C±

B )DK with C+
B = 6.0 and C−

B = 5.4, respectively.

example, we fit the results of Run C in Fig. 5(a) with a linear function �α = pCDK + qC , and
subtract qC from all �α values of Run C. We assume that α = �α − qC for Run C. In a similar
manner, we obtain α from �α for Runs A and B. The results are summarized in Fig. 5(b). The
dashed line in the panel shows α = (2CB)DK with CB = 5.7, onto which all results collapse very
well. Based on the errors in �α, the error in CB is estimated approximately as CB = 5.7 ± 0.3, and
two gray lines in the panel indicate α = (2C±

B )DK with C+
B = 6.0 and C−

B = 5.4, respectively. The
estimated value CB = 5.7 ± 0.3 is consistent with the Batchelor constant CB = 5.9 ± 0.3, which is
directly estimated from the scalar variance spectra shown later in Fig. 6, and is also consistent with
the estimations from the previous studies [15,17,21,39] obtained by large-scale DNSs of passive
scalar turbulence. This agreement is as predicted from the theoretical argument by GSW21.

Figure 5 demonstrates that the simulation results are consistent with the theory (10) (where (27) is
assumed to be valid) and that the present system (3), (5), and (6) converges, in the limit of DK → 0,
to the passive scalar turbulence at Sc = ∞. Figure 5(b) also indicates that α is smaller than 0.01 for
runs with the smallest DK values (Runs A1, B1, and C1), which means that the deviation of the slope
from the Batchelor spectrum due to the relaxation term is less than 1%. Therefore, we assume that
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FIG. 6. (a) Mean kinetic energy spectrum normalized by Kolmogorov units and compensated by (kη̄)−5/3.
The dashed horizontal line indicates the Kolmogorov constant CK = 1.61 [40]. The spectra for Runs A1, B1,
and C1 are shown by blue, green, and red curves, respectively. (b) Mean scalar variance spectrum normalized
based on KOC theory and compensated by (kη̄)−1. Colors are same as in panel (a). The dashed horizontal line
indicates the Batchelor constant CB = 5.9.

these runs effectively correspond to the case for α = 0, and examine various turbulence statistics
for them in the following section.

C. Turbulence statistics

Figures 6(a) and 6(b) show the compensated spectra of turbulent kinetic energy, E (k), and scalar
variance, Eθ (k), respectively. In each panel in Fig. 6, all results collapse well onto a single curve.
Because Rλ is not large enough for the present simulation, E (k) does not show a clear inertial
subrange with a slope of −5/3. The bottleneck effect is observed around kη̄ ∼ 0.1, and E (k) rapidly
decreases for higher wave numbers in the dissipation range. In contrast, Eθ (k) shows a clear viscous-
convective subrange with a slope close to −1. Run B1 (green) has smaller Rλ and higher resolution
in E (k) than Run A1 (blue), and the result for Run B1 looks as if that for Run A1 is just shifted to the
right. This indicates that the viscous-convective subrange extends further to higher wave numbers.
From Fig. 6(b), the Batchelor constant is estimated approximately as CB = 5.9 ± 0.3.
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From Eqs. (3) and (9), the transfer functions for the kinetic energy and the scalar variance are
respectively defined by (

∂

∂t
+ 2νk2

)
E (k, t ) = T (k, t ) + F (k, t ), (29)(

∂

∂t
+ 2τ−1

θ

)
Eθ (k, t ) = Tθ (k, t ) + Fθ (k, t ), (30)

where F (k, t ) and Fθ (k, t ) are the spectra for the force and scalar injection, respectively. The transfer
fluxes for the kinetic energy and the scalar variance across the wave number k are defined by

�(k) = −
∫ k

0
T (q)dq, (31)

�θ (k) = −
∫ k

0
Tθ (q)dq. (32)

Note the difference in the integration range as compared to the usual definition of the transfer
flux [i.e., �(k) = ∫ ∞

k T (q)dq], which gives the same results as ours because
∫ ∞

0 T (q)dq = 0. The
purpose of our definitions is to avoid the influence of the error due to the effects of filtering and shot
noise in the particle field. Because the error is most significant near the cutoff wave number, �θ (k)
would be contaminated throughout all wave numbers if we used the definition �θ (k) = ∫ ∞

k Tθ (q)dq.
Figure 7(a) shows the normalized �(k). The constant flux range corresponding to the inertial

subrange is not seen due to small Rλ. However, the normalized �θ (k) in Fig. 7(b) (solid curves)
demonstrates the constant flux range, which confirms the establishment of the viscous-convective
subrange in Eθ (k). Dashed curves in the panel are the scalar transfer fluxes before removing the
filtering effect. The filtering effect can be clearly seen near the cutoff wave numbers, and is reflected
as an apparent loss of fluctuation energy and a decrease of the transfer flux. Because this unphysical
decrease is almost removed and the constant flux range is restored, the procedure described in
Eq. (25) works successfully despite its simplicity.

Figure 8(a) shows the normalized third-order structure function for the velocity field,
−〈[δu(r)]3〉/(ε̄r), where δu(r) is the longitudinal velocity increment over a distance r. The dashed
horizontal line in the panel indicates the Kolmogorov 4/5 law. Each result is close to r2 for smaller
r, as expected in the dissipation range. Again, due to small Rλ, the 4/5 law is not realized even for
Run C1 with the largest Rλ value. Figure 8(b) (solid curves) shows the normalized third-order mixed
velocity-scalar structure function, −〈δu(r)[δθ (r)]2〉/(χ̄r), where δθ (r) is the scalar increment over
a distance r. The dashed horizontal line in the panel indicates the Yaglom 4/3 law. The range
close to r2 is not seen for these results, which indicates the absence of the dissipation range by the
molecular diffusion term. All results, especially those for Run C1, satisfy the 4/3 law fairly well for
smaller r/η̄. This confirms the establishment of the viscous-convective subrange in physical space.
Dashed curves in the panel are the structure functions before removing the filtering effect. Again,
the procedure described in Eq. (25) works well to remove the filtering effect.

Note that the transfer flux in Fig. 7(b) and the structure function in Fig. 8(b) do not show any sign
of the effect of shot noise despite the fact that we do not remove the shot noise contribution from
the particle field. This is because these statistics are third-order and the shot noise contributions
are canceled out without any treatment. The explanation below is for the structure function, but a
similar argument applies to the transfer flux. The third-order mixed velocity-scalar structure function
is calculated by

DLθθ (r) ≡ 〈δu(r)[δθ (r)]2〉 = 〈[u1(x + re1) − u1(x)][θ (x + re1) − θ (x)]2〉, (33)

where x = (x1, x2, x3) is the position vector, u1 is the x1 component for the velocity vector u, and
e1 is the unit vector for the x1 direction. We divide θ into correlation part and the shot noise part as
θ = θ c + θ s (for simplicity, we do not consider the filtering effect). Then we have δθ (r) = δθ c(r) +
δθ s(r), where δθ c(r) and δθ s(r) are defined in the same way as δθ (r). Equation (33) can be expanded
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FIG. 7. Normalized transfer fluxes for (a) kinetic energy and (b) scalar variance for Runs A1 (blue), B1
(green), and C1 (red). The black dashed horizontal line in each panel indicates unity. The dashed curves in
panel (b) indicate transfer fluxes including the filtering effect.

as

〈δu(r)[δθ (r)]2〉 = 〈δu(r)[δθ c(r)]2〉 + 2〈δu(r)δθ c(r)δθ s(r)〉 + 〈δu(r)[δθ s(r)]2〉. (34)

Because the shot noise part θ s originates from a spatially uncorrelated and random distribution of
particles, δθ s does not correlate with others, such as δθ c and δu. Then we have

〈δu(r)δθ c(r)δθ s(r)〉 = 〈δu(r)δθ c(r)〉〈δθ s(r)〉 = 0 (35)

because 〈δθ s(r)〉 = 0, and also

〈δu(r)[δθ s(r)]2〉 = 〈δu(r)〉〈[δθ s(r)]2〉 = 0 (36)

because 〈δu(r)〉 = 0. Therefore, the shot noise contributions are canceled out in Eq. (34), and we
have 〈δu(r)[δθ (r)]2〉 = 〈δu(r)[δθ c(r)]2〉.

It is also useful to note that �θ (k) and DLθθ (r) are related to each other as

�θ (k) = − 1

2
d
2 +1�

(
d
2

)k1+ d
2

∫ ∞

0
dr r

d
2 J d

2 +1(kr)
DLθθ (r)

r
, (37)

054601-15



SAITO, WATANABE, AND GOTOH

FIG. 8. (a) Normalized third-order structure function for velocity field. The dashed horizontal line indicates
4/5. The short dashed line labeled “2” is proportional to r2. (b) Normalized third-order mixed velocity-scalar
structure function. The dashed horizontal line indicates 4/3. Colors are for Runs A1 (blue), B1 (green), and C1
(red). The dashed curves in panel (b) indicate the structure functions including the filtering effect.

and

DLθθ (r) = −2
d
2 +1�

(
d

2

)
r2− d

2

∫ ∞

0
dk k− d

2 J d
2 +1(kr) �θ (k), (38)

where d is the space dimension, J d
2 +1(x) is the Bessel function of the order d/2 + 1, �(x) is

the � function. When d = 3 and �θ = χ , we have DLθθ (r) = −(4/3)χr and vice versa [41].
These expression is convenient because the scalar field is first computed on the grid points by the
interpolation in the present method and so is for the DLθθ (r). Then �θ (k) is directly computed in
terms of Eq. (37) without transforming the scalar field to that in the wave-number space.

Figure 9 compares the scalar transfer flux calculated from DLθθ (r) for Run C1 based on the
relationship (37) (blue curve) with the transfer flux calculated in the usual way (red curve).
The overall agreement is good, especially for the middle wave-number range 0.05 < kη̄ < 1. The
underestimate and oscillation of the blue curve near the lowest and highest wave numbers are due
to relatively slow convergence of the integral including the Bessel function.
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FIG. 9. Normalized transfer flux for scalar variance calculated from the third-order mixed velocity-scalar
structure function DLθθ (r) for Run C1 based on the relationship (37) (blue). Red curve is the transfer flux
calculated in the usual way [same as the red curve in Fig. 7(b)].

D. Visualization

We now examine the results of visualization. Figure 10 shows snapshots of 2D slices of the
particle field for Runs D1–D3 in the statistically steady state. Note that the figure shows θ̃ , which
includes the effects of filtering and shot noise. The number of particles per grid cell is 512, 32, and
2 for Runs D1, D2, and D3, respectively (Table I), and this difference in number density clearly
affects the visualization results. For Run D1 (top panel), the scalar distribution is so smooth that it is
almost indistinguishable from a continuous scalar field. The distribution also shows typical features
of passive scalar turbulence: large-scale regions with relatively large negative and positive values
(plateaus) separated by sharp fronts with an abrupt change of the scalar value [25,42,43]. For Run
D2 (middle panel), large-scale structures of the particle field are still visible but the smoothness of
the distribution is lost. Many small dots with positive and negative values exist in the background
due to shot noise. For Run D3 (bottom panel), the scalar distribution is significantly contaminated
by shot noise and we can just barely see the large-scale structure of wave number 2 that originates
from the external scalar source.

Figure 11 shows the raw results for the variance spectrum of the particle field for Runs D1–D3
[Eθ̃ (k) in Eq. (21), which includes the effects of filtering and shot noise]. As shown in Eq. (23), the
relative contribution of shot noise is inversely proportional to the mean particle number density n0.
For the spectrum of Run D1 (red curve), n0 is sufficiently large that the shot noise cannot be seen in
the spectrum, which corresponds to the smooth distribution shown in Fig. 10(a). For Run D2 (blue
curve in Fig. 11), the shot noise appears for larger wave numbers (k′ > 10), which corresponds
to the distribution with many small dots in Fig. 10(b). For Run D3 (green curve in Fig. 11), the
maximum value of the shot noise near the cutoff wave number is comparable to the amplitude of the
spectrum around k′ = 3. Accordingly, the spatial structure of the particle field is not visible except
for the largest scales affected by the external source.

Figure 12 shows snapshots of the time evolution of the flow field (cyan, isosurface of |∇ × u|2)
and the particle field (yellow, isosurface of θ̃ ) for Run D1. Here, the effect of the relaxation term in
Eq. (6) can be neglected because the elapsed time for these three panels is 0.02 and is much shorter
than the relaxation time (τθ = 100, Table I). The figure exhibits typical features of passive scalar
turbulence. From Fig. 12(a), we can see a sheetlike structure of the scalar field (pink circle) that
corresponds to the scalar front. Below this sheetlike structure, a vortex tube (marked by a thick red
arrow) extends from the front to back of the panel. This vortex tube rotates clockwise, and as time
elapses [from Figs. 12(a) to 12(c)], it rolls up the sheetlike structure.
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FIG. 10. Snapshots of particle field θ̃ for Runs D1 (top), D2 (middle), and D3 (bottom).
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FIG. 11. Mean scalar variance spectra Eθ̃ (k) [including the effects of filtering and shot noise, see (21)].
Lines are for Runs D1 (red), D2 (blue), and D3 (green).

E. On resolution of particle field

Before closing this section, we note on resolution of the particle field. In the present simulation,
particles distribute almost homogeneously and randomly in the domain. The average distance of
particles can be estimated as �xp = n−1/3

0 . Table I (the last column) summarizes �xp for the present
simulation.

In the spectral space, the scalar variance spectrum begins to be contaminated by the shot noise
at wave numbers higher than k′

p = (π/�xp) ≈ (CB/2π )V DK n0 which is obtained by equating
Eθ (k′) ∝ k′−1 to k′2 spectrum. In fact, k′

p ≈ 60 for C1 and 15 for D3, respectively, which is consistent
with the red curve in Fig. 2 and the green curve in Fig. 11 and the visualization in Fig. 10. When
k′

max < k′
p, the contamination by the shot noise does not appear. For length scales smaller than �xp,

the expected value of the particle number is less than 1, therefore, the average over large ensemble
is necessary to extract the statistics for the correlated particle distribution at scales below �xp.
This is the reason why the long time average is necessary to obtain the coherent scalar spectrum at
large wave numbers. It should be noted that the coherent spectrum is obtained after the shot noise
spectrum is subtracted, but the same procedure can not be applied to extract the spatial structure
of the particle field θ (x, t ) at instant time for the scales below �xp. By increasing the number
density, we can make �xp smaller and see the structure of θ for even smaller scales. When n0

becomes large, the computational costs increases, but the rate of increase is milder than in the case
of the conventional Eulerian computation. In this respect, the present method may be regarded as
an alternative way which replaces the huge computational resource for space by large number of
particles and long time integration with smaller grid points for the velocity.

VI. LARGE-SCALE SIMULATIONS

Given the results for the variance spectra in Fig. 6(b), the next question that naturally arises is
whether we will obtain k−5/3 (corresponding to the Obukhov-Corrsin spectrum) in the smaller wave-
number range if we further increase the Reynolds number. To answer this question, we conducted
large-scale simulations (Runs E and F), where the number of grid points and the Reynolds number
are expanded to Ngrid = 10243 and Rλ = 330 for Run E, and Ngrid = 20483 and Rλ = 550 for Run
F, while the parameters such as the resolution (kmaxη̄), τθ , and DK are similar to those for Run C1
(See Table I–III).

Figures 13(a) and 13(b) show the spectra E (k) and Eθ (k), respectively. Now, E (k) shows a clear
inertial subrange with a slope of −5/3 to the left of the bottleneck (kη̄ < 0.04). Eθ (k) also shows a
k−5/3 range in the smaller wave numbers, where the spectra agree well with the Obukhov-Corrsin
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FIG. 12. Snapshots of time evolution for Run D1. Cyan and yellow indicate the contour surfaces of
|∇ × u|2 and θ̃ , respectively. Panels (b) and (c) are 0.01 and 0.02 nondimensional time units after panel (a),
respectively. In panel (a), the pink circle indicates the position of the sheetlike structure of the particle field θ̃ ,
and the red arrow indicates the position of a vortex tube.

spectrum multiplied by kη̄ with the nondimensional constant COC = 0.68 (dashed oblique line in
the panel). The transition wave number from k−5/3 to k−1 is estimated approximately as k∗η̄ ∼
0.04, which is consistent with 0.036 reported in the DNS [26] and 0.03 reported by the laboratory
experiment [8]. Interestingly, the transition wave number k∗η̄ ∼ 0.04 seems to coincide with the
transition wave number from k−5/3 to the bottleneck in E (k) in Fig. 13(a).

Figures 14(a) and 14(b) show the transfer fluxes �(k) and �θ (k), respectively. �(k) is constant
for kη̄ < 0.04, which corresponds to the range with E (k) ∝ k−5/3 in Fig. 13(a). �θ (k) is constant
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FIG. 13. Same as Fig. 6 but for Runs E (red) and F (blue). The dashed oblique line indicates the Obkhov-
Corrsin spectrum multiplied by kη̄ with a nondimensional constant COC = 0.68.

for the entire wave-number range (except near the smallest and largest wave numbers), irrespective
of the slope of Eθ (k) in Fig. 13(b). This result is as predicted by turbulence theory. Figure 15 shows
DLθθ (r). The basic characteristics are similar to Fig. 8(b), but the structure functions in Fig. 15 agree
with the Yaglom 4/3 law for wider range.

Figure 16 shows the same comparison as Fig. 9 but for Run F. The result is qualitatively similar
to Fig. 9, but the two curves in Fig. 16 agree for wider wave-number range.

VII. SCALAR TRANSFER FLUX AND DISSIPATION

So far we have seen that the spectrum of the passive scalar Eθ (k) computed by the present method
is consistent with that for the infinite Schmidt number. But it is natural to ask how the injected
scalar fluctuations at large scales are transferred and dissipated. To answer the question, we examine
the transfer flux of the scalar variance in the wave-number space. Here, we consider the case of
large-scale simulations in the previous section, where Reynolds number is large and DL � 1 (DL is
about 0.02 and 0.03 for Runs E and F, respectively).

Integrating Eq. (30) from kL to k and using Eq. (32), we obtain

∂G(k, t )

∂t
= − 2

τθ

G(k, t ) − �θ (k, t ) + χin(t ), (39)
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FIG. 14. Same as described in the caption of Fig. 7 but for Runs E (red) and F (blue).

where G(k, t ) is defined by

G(k, t ) =
∫ k

kL

Eθ (q, t )dq, (40)

and χin is the rate of the scalar fluctuation injection

χin(t ) =
∫ k

kL

Fθ (q, t )dq. (41)

Note that the scalar injection Fθ (k, t ) spectrum has the spectral support at low wave-number band,
and this band is assumed to be included in the integration range kL � q � k. In the arguments to
follow, we tentatively assume that statistically steady state is established under the finite scalar
dissipation due to the relaxation term, and will examine later whether the obtained results are
consistent with the assumption made here.

Suppose that the scalar spectrum has two scaling ranges as in Eq. (14). Substituting the power-law
spectrum into the first term of the right-hand side of Eq. (39) and noting that the eddy turnover time
in the inertial convective range is τ (k) = ε̄−1/3k−2/3 and that τ (kL ) = T is the large-eddy turnover
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FIG. 15. Same as described in the caption of Fig. 8(b) but for Runs E (red) and F (blue).

time, we obtain for kL � k � kd

2

τθ

G(k) = 3COCχ̄in

[
1 −

(
k

kL

)−2/3
]

DL, (42)

and for kL � kd � k

2

τθ

G(k) = 3COCχ̄in

[
1 −

(
kd

kL

)−2/3
]

DL + χ̄in

[
1 −

(
k

kd

)−α
]
. (43)

We first consider the inertial convective range kL � k � kd . From Eq. (42), the term 2
τθ

G(k)
is much smaller than χ̄in since DL � 1, and is negligible in Eq. (39). Therefore in the inertial
convective range, the scalar variance injected at the rate of χ̄in by the external source is transferred
though this range without loss and thus

�θ (k) = χ̄in, (44)

which is consistent with the idea of the constant scalar transfer rate throughout this range.

FIG. 16. Normalized transfer flux for scalar variance calculated from the third-order mixed velocity-scalar
structure function DLθθ (r) for Run F based on the relationship (37) (blue). Red curve is the transfer flux
calculated in the usual way [same as the blue curve in Fig. 14(b)].
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Now consider the viscous-convective range k � kd . The first term in the right-hand side of
Eq. (43) is again negligible since DL � 1 and, from Eqs. (43) and (39), the transfer flux is

�θ (k) = χ̄in − χ̄in fp

(
k

kd

)
, fp(x) = 1 − x−α. (45)

For very small but finite α > 0, and for wave numbers k near kd (k � kd ), the factor fp(k/kd )
vanishes. Again we have

�θ (k) = χ̄in. (46)

However, at large k � kd , fp(k/kd ) tends to unity, so that the second term χ̄in fp(k/kd ) becomes
comparable to the first term χ̄in in Eq. (45) as 2

τθ
G(k) → χ̄in and thus

�θ (k) = χ̄in − 2

τθ

G(k) −→ 0. (47)

The damping due to the relaxation becomes finite and balances the transfer flux which is coming
through the viscous-convective range, and �θ (k) vanishes.

It is, however, important to understand how large wave number is necessary for fp(x) to approach
unity. In the standard numerical computation, the maximum integer in the computer is about 231 ≈
109, which means that the maximum wave number (integer) is k′

max = 109. However, k′
d is about

512 in the DNS with N = 20483 grid points, so that (k′
max/k′

d ) ≈ 106. However, α = (2CB)DK ≈
5 × 10−3 in the present DNSs, and thus fp(k/kd ) = 1 − (k′

max/k′
d )−α ≈ [1 − (106)−0.005] ≈ 0.07,

only 7% of the total flux is dissipated by this term even for DNS using (109)3 grid points. This means
that the dissipation due to the relaxation term is effectively zero in the Eulerian sense and therefore
�θ = χ̄in in the spectral space of k′ < k′

max in the present computation. In the actual computation
of the spectrum, the scalar fluctuations at scales below �x (k′ > k′

max) are distributed onto the
surrounding grid points with the linear weight, which is effectively a coarse graining, thus most
of scalar fluctuation beyond k′

max is cut off by the filter Ffilter(k) as seen in Fig. 1 and in Appendix C.
It is very essential and important to understand that in the present study the decay or growth

of the amount of scalar carried by each particle is computed in the Lagrangian frame, not in
the Eulerian frame. The scalar of each particle which is passively advected by turbulent flow is
computed according to Eq. (6), not to the Eulerian equation (9). Actually, the total dissipation due
to the relaxation is computed by Eq. (19) by summing up the square of the scalar fluctuations over
all particles, and indeed balances perfectly with the total scalar injection as χ̄in = χ̄ to establish the
statistically steady state.

It is useful to compare the above analysis with the usual case of the diffusion term 2κk2Eθ (k)
with very small diffusivity (or very high Schmidt number). As before, we assume that the scalar
spectrum Eθ (k) at high Schmidt number is, in the steady state,

Eθ (k) =
{

COC χ̄in ε̄−1/3 k−5/3 for k � kd ,

CB χ̄in(ε̄/ν)−1/2 k−1(1 + γ (k/kB)) exp (−γ (k/kB)) for k � kd ,
(48)

kB =
√

Sc kd , γ 2 = 6CB. (49)

Although there are arguments about the spectral form in the far diffusive range, whether or not
exponential or Gaussianly decaying, only the rapid decay in the diffusive range is sufficient for the
arguments to follow, and we use the exponential decay for simplicity [3,9,10,14,21]. Substituting
Eq. (48) into the accumulated dissipation integral, we obtain for kL � kd � k

Dm(k) =
∫ k

kL

2κq2Eθ (q)dq

= 3

2
COC χ̄inSc−1

[
1 −

(
kL

kd

)4/3
]

+ χ̄in

[
1 −

(
1 + γ

k

kB
+ 1

3
γ 2

(
k

kB

)2
)

e−γ (k/kB )

]
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≈ χ̄in fd

(
k

kB

)
,

fd (x) = 1 − e−γ x

(
1 + γ x + 1

3
γ 2x2

)
, (50)

since Sc � 1. A common feature of Eqs. (43) and (50) is the fact that the dissipation of the scalar
variance is achieved in the viscous-convective range. However, the difference is in the speed of
accumulation of the dissipation. The former is very slow and the convergence to χ̄in is achieved
at infinite wave number, while the latter is 2CB(k/kB)2 = 2CB(k/kd )Sc−1 for small k/kB and has
the exponential cut off at kB. It is this difference that the present method allows us to successfully
compute the scalar spectrum close to Eθ (k) ∝ k−1 for small DK . It is interesting and important to
see that the transition of the exponent from −5/3 to −1 − α occurs at around k∗η ≈ 0.04 which
is much smaller than the condition kη � 1 in the theory for the viscous-convective range. So far
we have no explanation for this observation, but the approximation of the uniform velocity gradient
for the convective term of the scalar [Tθ (k) ≈ (ε̄/ν)1/2∂Eθ (k)/∂k as used in the Batchelor theory]
is effective to some extent for the range k∗ < k < kd , in which the transition from −5/3 to −1 − α

occurs gradually. We infer that this gradual transition appears as slight increase of the compensated
spectrum kEθ (k) over the range 0.1 < kη < 1 and the horizontal curves are seen for kη > 1 where
the theory works. Search for further explanation is the future work.

VIII. SUMMARY AND DISCUSSION

In the present study, we extended the previous study by Ref. [26] and conducted a more
careful and comprehensive investigation of the simulation method which uses a fully Lagrangian
description of scalar carried by particle to study passive scalar turbulence at high Schmidt and
Reynolds numbers. We considered fluid particles with scalar properties (θp j) and examined statis-
tical properties of the particle field θ , which is the spatial distribution of θp j . The scalar θp j for
each particle is relaxed with a relaxation time τθ and is affected by the field fθ , and these processes
play the roles of dissipation and the external source for the fluctuation of the particle field θ . The
evolution equation for θ in the Eulerian frame is the advection-diffusion equation for a passive
scalar except that the molecular diffusion term (κ∇2θ ) is replaced by the relaxation term (−θ/τθ ).
The theoretical analysis in [26] predicts that, as the parameter DK in Eq. (12) decreases and the
effect of the relaxation term becomes smaller, the scalar variance spectrum Eθ (k) converges to the
Batchelor spectrum with an infinite Schmidt number.

We conducted parameter sweep simulations with a relatively moderate number of particles and
grid points (less than 2563). After carefully removing the effects of filtering and shot noise, we
investigated the variance spectrum of the particle field and showed that, with the assumption (27),
the slope of the compensated spectrum is given by α = (2CB)DK as expected from the theory,
and CB is estimated as CB = 5.7 ± 0.3. This value of CB is consistent with the Batchelor constant
CB reported in previous DNS studies [15,17,21,39], which supports the validity of the present
simulation.

Because α is estimated to be smaller than 0.01 for runs with the smallest DK (Runs A1, B1,
and C1), we assumed that the spectra modification due to the relaxation term for these runs is
negligible. We investigated turbulence statistics for these runs and confirmed their consistency with
turbulence theory, such as the constancy of the transfer flux and the Yaglom 4/3 law. For runs with
a sufficiently large particle number density, the visualized particle field is almost indistinguishable
from a continuous scalar field and shows features commonly seen in passive scalar turbulence, such
as plateaus, fronts, and sheetlike structures.

We also conducted large-scale simulations with Reynolds numbers up to Rλ = 550 and showed
that the scalar variance spectrum has the slope −1 and −5/3 for higher and lower wave numbers,
respectively. The Batchelor and Obkhov-Corrsin constants are estimated to be consistent with the
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previous DNS studies, and the transition wave number between the two slopes is found to be about
k∗η ∼ 0.04.

In addition, we theoretically discussed how the injected scalar fluctuations at large scales are
transferred and dissipated in the present simulation. It was shown that, if an Eulerian method
with the standard spectral method would be used for the scalar equation, even the largest possible
simulation with (k′

max/k′
d ) ≈ 106 could dissipate only a tiny amount of scalar fluctuation energy

in the wave-number range k′ < k′
max, contrasting the advantage of the present method where

the Lagrangian frame is used for the scalar equation and the balance between the injection and
dissipation for the scalar fluctuations is established.

One important task for future research is to investigate the scalar structure function exponent
for higher orders. Iyer et al. (2018) [44] showed by DNSs of scalar turbulence at Rλ = 650 and
Sc = 1 that the scaling exponents for the scalar structure function saturate for higher order moments
(beyond about 12). They also conjectured that this saturation may be enhanced by the weak diffusion
for Sc � 1, which was later confirmed by Ref. [19]. The present simulation can be validated
by investigating the scalar structure function exponent and checking the consistency with these
previous studies. Another important task is to examine the effects of processes such as particle
momentum inertia, gravity, and condensation-evaporation. Based on observations at the German
Alps [45,46], it has been reported that there are turbulence-induced voids inside natural clouds [47].
It is important to investigate how such phenomenon can affect the scalar variance spectrum and
other statistics.

We note that the present simulation has room for improvement. For example, we used linear
interpolation to estimate the fluid velocity at each particle position from the surrounding grid points,
but previous studies [48,49] recommended cubic splines for calculation of particle trajectories
in turbulence. Because the resolution in the present study is kmaxη̄ > 1.6 (Table II), the smallest
scales in the turbulent velocity field are resolved well, and therefore we expect that a simple
linear-interpolation scheme still works. Nevertheless, the effect of a different interpolation scheme
should be clarified in a future study.
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APPENDIX A: DEFINITIONS OF TURBULENCE PARAMETERS

The kinetic energy is defined by

1

2

〈
u2

i

〉 =
∫ ∞

0
E (k)dk, (A1)

where ui (i = 1, 2, 3) are components of velocity vector u (repeated indices are summed), E (k) is
the kinetic energy spectrum, and the angle brackets 〈· · · 〉 represent the ensemble average. (Note
that we approximated the ensemble average by spatial and temporal averages to estimate turbulence
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parameters in numerical simulations.) The mean energy dissipation rate is defined by

ε̄ = ν

2
〈(∂iu j + ∂ jui )

2〉. (A2)

The integral scale, Taylor microscale, and Kolmogorov scale are respectively defined by

L =
(

3π

4E

)∫ ∞

0
k−1E (k)dk, (A3)

λ =
√〈

u2
1

〉
/〈(∂1u1)2〉, (A4)

η̄ = (ν3/ε̄)1/4. (A5)

The large-eddy turnover time and Kolmogorov time are respectively defined by

T = L/urms, (A6)

τK = (ν/ε̄)1/2, (A7)

where urms = √
2E/3 is the rms velocity. The Taylor microscale Reynolds number is defined by

Rλ = urmsλ/ν. (A8)

APPENDIX B: DISSIPATION RATE OF SCALAR VARIANCE

Multiplying Eq. (9) by θ and using the nondivergent condition, we obtain

∂

∂t
(θ2) + ∇ · (θ2u) = − 2

τθ

θ2 + 2θ fθ , (B1)

in the Eulerian representation. Assuming that the statistics are homogeneous and isotropic and that
the scalar force fθ is Gaussian white, we take an ensemble average of the above equation and have

∂

∂t
(〈θ2〉) = − 2

τθ

〈θ2〉. (B2)

Thus, the dissipation rate χ of the scalar field θ is given by 2〈θ2〉/τθ .
To derive the scalar variance 〈θ2〉, we use a similar procedure as used for a continuous scalar

field. Namely, we first calculate the two-point correlation function 〈θ (r1, t )θ (r2, t )〉 which can be
expressed as a function of the separation r = |r1 − r2|, and then obtain the scalar variance by taking
the limit r → 0. From the definition Eq. (7), the two-point quantity θ (r1, t )θ (r2, t ) is

θ (r1, t )θ (r2, t ) = 1

n2
0

Np∑
i, j=1

θpiθp jδ(r1 − xpi )δ(r2 − xp j ). (B3)

As described in Appendix C of Ref. [34], under the assumption that the statistics are homogeneous
and isotropic, the ensemble average of the above equation is expressed as

〈θ (r1, t )θ (r2, t )〉 = 1

n0

〈
θ2

p j

〉
δ(r) + 〈θpiθp j〉 (i �= j). (B4)

Here, the first term on the right-hand side is the contribution from the shot noise part and 〈θ2
p j〉

indicates the ensemble average of the square of the particle scalar value θp j . The second term is the
contribution from the correlated part and 〈θpiθp j〉 indicates the ensemble average of the product of
the particle scalar values θpi and θp j for two particles that are separated by a distance r.

Since we need the dissipation rate for the correlated part of the scalar field θ , we should only use
the term 〈θpiθp j〉 in Eq. (B4). In the limit r → 0, we have θpi = θp j . This is because particles move
in the same way as fluid particles in incompressible flow: If two particles are in the same position at
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FIG. 17. Time-evolutions of the injection rate, χin (red), and the dissipation rate, χ (blue), of the scalar
variance for Run C1 after the statistically steady state is attained. Both are normalized by χ0 = 3.94 × 10−8

which is the time average of χ for Run C1. The abscissa is the time t normalized by the large-eddy turnover
time T for Run C.

certain time, then the trajectories of those two particles are identical and therefore scalar values for
those particles (θpi and θp j) are equal as well. Thus, we obtain 〈θ2

p j〉 for the variance of the correlated
part. In the simulation, we replace the ensemble average (〈 〉) with the average over particles and
time (〈 〉p) and calculate the dissipation rate χ as follows:

χ = 2

τθ

〈
θ2

p

〉
p, (B5)

where 〈θ2
p〉p is the time average of

∑Np

j=1 θ2
p j/Np.

Figure 17 compares the time evolutions of the injection rate, χin, and the dissipation rate, χ , of the
scalar variance for Run C1 after the statistically steady state is attained. χin fluctuates significantly
more than χ . Their means ± standard deviations are χ̄in = (3.94 ± 0.80) × 10−8 and χ̄ = (3.94 ±
0.02) × 10−8, respectively, which confirms that χ̄ balances perfectly with χ̄in at the statistically
steady state.

APPENDIX C: FITTING FUNCTION FOR FILTERING EFFECT

The fitting function for the filtering effect Ffilter is given by

Ffilter (k̂) = exp

(
10∑

i=1

cik̂
2i

)
, (C1)

where k̂ = (k′/k′
max), k′

max is the cutoff wave number, c1 = −1.4985, c2 = −3.6307, c3 = 30.1292,
c4 = −113.955, c5 = 218.357, c6 = −198.887, c7 = 51.1603, c8 = 27.2838, c9 = −1.58465, and
c10 = −8.80071.

APPENDIX D: SELECTION OF REFERENCE WAVE NUMBER k′
ref

Here, we describe why the reference wave number k′
ref = 10 was chosen in Fig. 4. As shown

in Eq. (28), wave numbers satisfying k′ > k′
ref are used to estimate the degree of disagreement

between two spectra. On the one hand, because the estimation is expected to be more accurate if we
use as many wave numbers as possible, we want to use smaller k′

ref. On the other hand, when the
wave numbers are too small, the scalar variance spectra are highly affected by the external source

054601-28



SPECTRUM OF PASSIVE SCALAR CARRIED BY …

FIG. 18. Dependence of the estimation of CB on choice of reference wave number kref (red crosses). The
solid black curve indicates the moving average for three consecutive points. Panels (a), (b), and (c) are for Runs
A, B, and C, respectively.

fθ . Because such an effect is not assumed in the theory (10), including the external source effect
degrades the estimation. Therefore, we want to use a greater k′

ref that is sufficiently far away from the
forcing wave-number range (1 � k′ � 2). Considering these two requirements, we changed k′

ref for
Runs A–C and investigated its effect on CB obtained from the fitting line in Fig. 5(a). The results are
shown in Figs. 18(a), 18(b), and 18(c) for Runs A, B, and C, respectively. Although CB fluctuates, it
can be roughly said that it first increases with k′

ref for k′
ref � 3, then the rate of increase starts to slow
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down around 10 < k′
ref < 15, after which CB fluctuates and increases slowly. From these results, we

considered that the effect of the external source is sufficiently small for k′ > 10, and therefore chose
k′

ref = 10.
Note that, even if we use different k′

ref values (for example, k′
ref = 11), the conclusions from

Fig. 5 do not change. Namely, the slope of the compensated spectrum α is proportional to DK

[α = (2CB)DK ], and CB is consistent with the Batchelor constant directly estimated from the scalar
variance spectrum in Fig. 6.
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