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Employing the discrete element method, we study the rheology of dense granular media,
varying in size, density, and frictional properties of particles, across a spectrum from
quasistatic to inertial regimes. By accounting for the volumetric contribution of each
solid phase, we find that the stress ratio, μ, and concentration, φ, scale with the inertial
number when using volume averaging to calculate mean particle density, friction, and
size. Moreover, the critical packing fraction correlates with skewness, polydispersity, and
particle friction, irrespective of the size distribution. Notably, following the work of Kim
and Kamrin Phys. Rev. Lett. 125, 088002 (2020), we introduce a rheological power-law
scaling to collapse all our monodisperse and polydisperse data, reliant on concentration, di-
mensionless granular temperature, and the inertial number. This model seamlessly merges
the μ(I )-rheology and kinetic theory, enabling the unification of all local and nonlocal
rheology data onto a single master curve.

DOI: 10.1103/PhysRevFluids.9.054303

I. BACKGROUND AND INTRODUCTION

Since granular flows are ubiquitous, understanding the flowing behavior of grains and pow-
ders has been increasingly necessary to predict hazards related to geophysical flows (e.g., snow
avalanches [1], debris flows [2], rock avalanches [3], pyroclastic density currents [4–6], etc.) to
understand processes on other planetary bodies (e.g., Mars [7] and Titan [8]), and to support
applications in multibillion U.S. dollar industries and governmental agencies throughout the world
[9] (e.g., pharmaceutical, agricultural, food industries, U.S. Departments of Energy and Defense).
Granular flows have complex rheology; depending on particle shape, stiffness, friction, and size dis-
tribution, granular flows can display, for instance, history-dependent effects, hysteresis, nonlocality,
dilatancy, and coupling with the interstitial fluid [9–11]. Numerous attempts have been made to build
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constitutive models describing granular media, such as the μ(I )-rheology that suggests a one-to-one
relationship between the inertial number defined as I ≡ γ̇ d̄/

√
P/ρs and the shear-to-normal stress

ratio defined as μ ≡ τ/P [12–14], where τ is the shear stress, P is the normal stress, d̄ is the
mean particle diameter, γ̇ is the shear rate, and ρs is the mean particle density. Most studies on
granular flows focus on (quasi) monodisperse (single-particle size) and monophasic (e.g., [15])
mixtures of grains where all grains have the same frictional properties and densities, whereas
natural mixtures can be made of particles with various densities and friction properties and are
polydisperse (e.g., [16]). It is unclear at this time whether these complexities can be captured by
a single rheological model [17]. In this work, we first investigate the rheology of granular flows
in a simple shear setup using the discrete element method (DEM), and we perform simulations
with monodisperse, polydisperse, and biphasic distributions (varying particle densities and particle-
particle friction coefficients), thus expanding on the work of Gu et al. [18]. First, we demonstrate
that the quasistatic, intermediate, and inertial-collisional regimes persist for all mixtures, wherein
the solid concentration and stress ratio scale with the inertial number when taking into account the
volumetric mean D43. Second, following the recent work by Kim and Kamrin [19], we attempt
to link the kinetic theory to the μ(I )-rheology through the dimensionless granular temperature
� ≡ ρsT/P, where T is the granular temperature. Finally, we unify the rheology of the granular
mixtures on various flow geometry using a modified power-law scaling μ(I,�, φ), demonstrating
the need to account for the concentration to collapse our data on a master curve.

II. MATERIALS AND METHODS

A. Discrete element method

To simulate the granular flows in simple shear, we used the open-source code MFIX developed
by the U.S. Department of Energy [20]. The position and momentum of particles are explicitly
described according to Newton’s laws:

dX (i)(t )

dt
= V (i)(t ), (1)

m(i) dV (i)(t )

dt
= F (i)

T (t ) = m(i)g + F (i∈k,m)
d (t ) + F (i)

c (t ), (2)

I (i) d�(t )

dt
= T (i)(t ), (3)

where X (i) is the particle position of the ith particle within the domain at time t, V (i) is the velocity,
�(t ) is the angular velocity of the ith particle, m(i) is the particle mass, and g is gravity. F (i)

c is the
net contact force, F (i)

T is the sum of the forces acting on the ith particle, and F (i∈k,m)
d is the total

(viscous and pressure) drag force acting on particle i if the mth solid phase is located within the kth
cell. T (i) is the sum of all torques acting on the ith particle, and I (i) is the moment of inertia. Particle
contacts are modeled using the soft-sphere method, which uses the spring-dashpot approach that
has been rigorously validated in a series of studies [20,21]. In this soft-sphere approach, the overlap
between particles is simulated by a series of springs and dashpots in the normal and tangential
directions. The dashpot is used to model the loss of kinetic energy during inelastic collisions, while
the spring models the rebound of a particle that is in contact with another. Both dashpot and spring
are described with dampening and stiffness coefficients in both the tangential and normal directions.
In the DEM, each solid phase is described by a distinct diameter and density. Unless specified,
particles have a density of 1050 kg/m3 and a particle-particle friction of 0.53, motivated by values
from geophysical flows. The restitution coefficient has been shown to have a negligible impact on
stresses (see Gu et al. [18]) and was set at 0.6 (inspired by the value of natural geological mixtures
[22]) between all phases. Particle assemblies are described as follows: (1) monodisperse, (1a) with
variable solid density (500, 1050, and 2500 kg/m3), (1b) with a diameter of 1.75, 2, 3, 4, and 5 mm,
(1c) with particle friction of (0.09, 0.25, 0.8), (1d) density biphasic (density pairs of 1050–2500,
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500–1050, and 500–2500 kg/m3, (1e) friction biphasic (0.09–0.53, 0.25–0.53, 0.53–0.8, and 0.25–
0.8), (2) polydisperse, (2a) bidisperse (1.75–5, 2–5, 3–5, and 4–5 mm), and (2b) tridisperse (5–3–2
and 5–4–2 mm). Each size distribution can be analyzed using the polydispersity parameter based

on their radii r: δ =
√

〈	r2〉
〈r〉 and the skewness parameter: S = 〈	r3〉

〈	r2〉 3
2

, which measures the spread

and shape of the particle size distribution (PSD), respectively [18]. In the equations, 	r = r − 〈r〉
and the moment of 	r and r and are defined as 〈	rn〉 = ∫

	rnP(r)dr and 〈rn〉 = ∫
rnP(r)dr,

respectively. The mean particle diameter chosen as the volume-mean diameter (D43) is defined as
follows:

D43 ≡
∑N

i=1 d4
i∑N

i=1 d3
i

, (4)

where N is the total number of particles and di is the diameter of particle i. In our simulations, the
particle stiffness is set at kn = 104Pd to ensure particle interactions fall in the hard contact regime
[23]. Assemblies of grains were placed in a periodic box with fixed volume and vertically bounded
by a rough bottom static plate and a moving top rough plate that imposed a confining pressure and
moved at a set velocity in one direction. Roughness is generated by fixing the relative position of
particles based in a monolayer. A second rough plate of particles was created away from the plates
to prevent slip at high top plate velocities and to ensure a constant shear rate across the bed in the
simple shear simulations [Fig. 1(a)]. Each simulation consists of an initial phase where the bed is
compacted and presheared, followed by a phase where the top plate reaches the set velocity and
that velocity is held constant. Once it reaches a steady state, the particle velocity, contact forces,
diameter, density, and friction are exported and used for postprocessing using the coarse-graining
(CG) method. For each set, 22 simulations were run at a constant confining pressure of 2 kPa and
varying top plate velocities (from 0.0001 to 32 m/s) to span the quasistatic to inertial-collisional
flow regimes. The simple shear simulations were conducted without a gravity field. In addition,
a series of simulations were performed using different particle size distributions: monodisperse
(5 mm), bidisperse (2–5 mm), and tridisperse (2–3–5 mm). These simulations were carried out on
various geometries: (a) a sloped surface with the influence of gravity, resulting in concave flows,
and (b) simple shear with gravity, resulting in an exponential-like velocity profile across the bed
[Fig. 1(b)], thereby inducing a vertical shear gradient and subsequent nonlocal behavior. Similar to
the gravity-free simple shear simulations, only steady-state data were analyzed.

B. Coarse graining

The formulation of accurate continuum models of granular flows requires the use of experimental
or numerical data (i.e., from DEM), which are by nature made of discrete entities [24–26]. To
this end, micro-macro transition methods are used to obtain continuum fields (such as density,
momentum, stress) from discrete data of individual elements (positions, velocities, orientations,
interaction forces). The coarse-graining method allows us to calculate continuum fields by applying
a local smoothing kernel, coarse-graining function, with a well-defined smoothing length, i.e.,
coarse-graining scale, that automatically generates fields satisfying the continuum equations [27].
In this study, we use the Lucy coarse-graining function:

ψ (r) = 105

16πc3

[
−3

(a

c

)4
+ 8

(a

c

)3
− 6

(a

c

)2
+ 1

]
if a = |r|

c
< 1 otherwise 0, (5)

where the cutoff lengthscale c = 2 ∗ D43 and the coarse-graining scale w = 0.75 ∗ D43. We ran the
coarse-graining analysis away from the boundaries, with an offset of 1.5 ∗ c ∗ w + 0.5 ∗ dmax. From
the coarse-graining analysis, we calculate the macroscopic stress tensor:

σ (r, t ) = σ k (r, t ) + σ c(r, t ), (6)
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FIG. 1. Planar shear geometry for local (linear velocity profile) and nonlocal (nonlinear velocity profile)
rheology tests. (a) Simple shear for tridisperse, bidisperse, and monodisperse particle size distributions (left to
right) devoid of gravity field. (b) Concave flows created using a 60◦ slope with gravity. All planar shear tests
consist of an imposed confining pressure of 2 kPa and an imposed velocity Vx of 0.0001–32 m/s.

where the kinetic tensor depends on particle velocity fluctuations and the contact tensor depends on
the contact forces. The full description of the tensors is provided by Breard et al. [28].

The granular friction coefficient is calculated from the 2D version of the stress tensor in
combination with the pressure using all three contributions, which is the more appropriate approach
for plane shear flow setups [26],

μ =
∣∣σ D

∣∣
P

, (7)

054303-4



RHEOLOGY OF GRANULAR MIXTURES WITH VARYING …

where

∣∣σ D
∣∣ =

√
0.5σ ′D

i j σ ′D
i j . (8)

All the data presented in this manuscript are for beds that are yielding (i.e., where a shear rate is
measurable). The average normal stress or solid pressure in the system is calculated as the trace of
the 3D stress tensor:

P = 1

3
tr(σ ), (9)

Tg = tr
(
σ k

)
3ρ

. (10a)

The above equation introduced by [26] gives the same results as the more intuitive approach:

Tg lammps = 2Ekin

NDOF
(10b)

with

Ekin =
N∑

i=1

1

2
mi(vi − v̄)2. (10c)

NDOF is the total number of degrees of freedom for those atoms, given by the product N*n,
where N is the number of atoms and n is the degree of freedom (=3 for 3D simulations and using
the magnitude of the particle velocity). mi is the particle mass with velocity vi. v̄ is the average
velocity of the N atoms.

We use the approach described by Eqs. (10b) and (10c) to extract the granular temperature
from our simulations. First, we decompose the domains in n vertical slices with thickness <0.1D43

that ensures scale independence. Second, we calculate the granular temperature in each vertical
slice. Finally, we either average the granular temperature vertically to obtain depth-averages or we
recalculate the granular temperature at a resolution matching that of the coarse-graining approach
(=1.5*D43) to look at height-variant granular rheology.

For all planar shear simulations, with and without gravity, the data presented in the manuscript
are obtained by spatial and temporal averaging of the CG fields across the whole bed, excluding
the cells located at a distance of three mean particle diameter from the boundaries to avoid any of
their effects. The CG postprocessing analysis provides data along the entire bed where gradients
of all properties exist. The data presented, unless explicitly specified, represent the depth-averaged
coarse-grained flow fields.

C. Empirical function fitting

Once the flows reached steady state, we exported discrete data at 10 Hz that were postprocessed
using the CG method to calculate instantaneous fields. For each simulation, the fields were space-
and time-averaged over a time-window of 2–4 s.

We show that the standard μ(I ) and a common form of φ(I ) hold in all simple shear numerical
simulations, but with the fitting parameters dependent on the particle size, density, and surface
friction dependence,

μ = μ1 + μ2 − μ1

1 + I0/I
, (11)

φ = φc − αIγ . (12)
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FIG. 2. Stress ratio μ (a) and concentration φ (b) as a function of the inertial number I for monodisperse
mixtures. Modeled stress ratio (c) and concentration (d) against numerical simulations. Dotted red lines are the
95% confidence interval for the linear fitting. The data are derived from planar simple shear simulations devoid
of a gravity field.

III. RESULTS

A. Monodisperse simulations in simple shear

1. Monodisperse simple shear, varying particle size

First we perform a series of simple shear cell simulations with constant particle size to find the
particle size dependence of the parameters μ1, μ2, I0 in Eq. (11), and φc, α, γ in Eq. (12).

The parameters were found to be independent of particle size within the size range considered
in this study, where the maximum size ratio investigated is 2.9. The fit was conducted with the
5 mm data, and the fitted model parameters were used to validate the size-independent assumption
in Fig. 2. For the friction equation, the fitted parameters are

μ1 = 0.4607, (13)

μ2 = 1.1223, (14)

I0 = 0.6253. (15)

For the volume fraction, the fits are

φc = 0.5858, (16)

α = 0.0939, (17)

γ = 0.8180. (18)

054303-6



RHEOLOGY OF GRANULAR MIXTURES WITH VARYING …

500 kg/m³
1050 kg/m³
2500 kg/m³

500 - 2500 kg/m³ (50 - 50 mix)
500 - 1050 kg/m³ (50 - 50 mix)
1050 - 2500 kg/m³ (50 - 50 mix)
1050 - 2500 kg/m3 (75 - 25 mix)

FIG. 3. Stress ratio μ (a) and concentration φ (b) as a function of the inertial number I for density mixtures.
Modeled stress ratio (c) and concentration (d) against numerical simulations. The dotted red lines are the 95%
confidence interval for the linear fitting. All data were obtained from simulations without gravity with a planar
simple shear geometry.

The collapse of stress ratio and concentration data with the inertial number is in line with the
classic μ(I )-rheology [12,29].

2. Simple shear, varying particle density

To investigate the rheology of biphasic mixtures where particles have a monodisperse grain-size
distribution but varying particle density, we perform simple shear cell numerical simulations. For
simulations with a constant particle density, or density mixtures, the μ(I ) and φ(I ) curves all fall
onto the same curve (Fig. 3), as long as the volume-weighted density is used in the inertial number
calculation.

If ε is the volume weighting of the particle phase with density ρ = ρ1 in the particle mixture,
then ρmix = ερ1 + (1 − ε)ρ2.

3. Simple shear, varying particle surface friction coefficient

Simple shear numerical simulations were performed with (a) particles of the same size and
density, but varying particle-particle friction coefficients and (b) particles of the same density but
different diameters. The particle-particle friction coefficient varied from values as low as 0.09 up to
0.8.
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FIG. 4. Stress ratio μ (a) and concentration φ (b) as a function of the inertial number I for mixtures
with varying particle-particle friction μpp. Modeled stress ratio (c) and concentration (d) against numerical
simulations. Dotted red lines are the 95% confidence interval for the linear fitting. The data come from planar
simple shear simulations devoid of a gravity field.

As expected, the stress ratio μ and φ are strongly dependent on the particle-particle friction
coefficient μpp (Fig. 4) and can be scaled with the inertial number in the following way:

μ
pp
1 = 0.4674 − 0.2199 exp(−6.1427μpp), (19)

μ
pp
2 = 1.0806, (20)

Ipp
0 = 0.7306 − 0.2701μpp, (21)

and

φpp
c = 0.5826 + 0.0457exp(−4.4828μpp), (22)

αpp = 0.0952, (23)

γ pp = 0.9249 − 0.2098μpp. (24)
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2mm - 5mm (80% - 20% number mix)
3mm - 5mm (50% - 50% number mix)
4mm - 5mm (72.5% - 27.5% number mix)
2mm - 3mm - 5mm (27% - 63% - 10% number mix)
2mm - 4mm - 5mm (68% - 17% - 15% number mix)

2mm - 5mm (85% - 15% number mix)
2mm - 5mm (50% - 50% number mix)
3mm - 5mm (80% - 20% number mix)
4mm - 5mm (80% - 20% number mix)
4mm - 5mm (50% - 50% number mix)
2mm - 3mm - 5mm (68% - 17% - 15% number mix)
2mm - 4mm - 5mm (17% - 68% - 15% number mix)
2mm - 4mm - 5mm (48% - 12% - 40% number mix)

FIG. 5. Stress ratio μ (a) and concentration φ (b) as a function of the inertial number I for polydisperse size
mixtures. Modeled stress ratio (c) and concentration (d) against numerical simulations. The dotted red lines are
the 95% confidence interval for the linear fitting. The black lines in (a) and (b) represents the μ(I ) and φ(I ) fits
from Eqs. (31)–(36), using only the first term of the RHS.

The μ(I ) coefficients for the particle mixtures were found to be volumetrically related to the
coefficients of individual populations denoted a and b. That is,

μmix
1 = (1 − ε)μb

1 + εμa
1, (25)

μmix
2 = (1 − ε)μb

2 + εμa
2, (26)

Imix
0 = (1 − ε)Ib

0 + εIa
0 . (27)

For the particle mixtures, the φ(I ) coefficient φc was found to be volumetrically related to the
individual coefficients of the two particle populations, namely a and b, but the α and γ coefficients
were not found to be a function of particle friction (Fig. 5). Instead, they are only a function of
particle diameter, as expressed in Eqs. (17) and (18). That is,

φmix
c = (1 − ε)φb

1 + εφa
1 , (28)

αmix = αb = αa, (29)

γ mix = γ b = γ a, (30)

B. Polydisperse simulations in simple shear

As demonstrated by [18], the friction and dilatancy of polydisperse granular-size mixtures are a
function of the skewness and polydispersity parameters (see the Methods section for definition). In
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TABLE I. Fitting parameters for the polydisperse mixtures.

Ci
1 Ci

2 Ci
3

i = a μ1 −0.002243 0.03100 0.003543
i = b μ2 −0.09007 0.3527 −0.7073
i = c I0 −0.1926 0.6418 −1.040

Di
1 Di

2 Di
3

i = a φc 0.0002977 0.05430 0.1195
i = b α −0.007443 0.04073 0.08477
i = c γ 0. 006517 −0.5353 −0.1435

addition, we define εS/M/L as the volume fraction of the small/medium/large phase, denoted a, b,
and c, respectively. Therefore, the friction law coefficients of Eq. (11) can be written as follows:

μmix
1 = μ1 + Ca

1 + Ca
2 δ + Ca

3 Sδ2, (31)

μmix
2 = μ2 + Cb

1 + Cb
2δ + Cb

3 Sδ2, (32)

Imix
0 = I0 + Cc

1 + Cc
2δ + Cc

3Sδ2, (33)

where Ci
1,2,3 are constants (Table I).

We calculated the MAPE (mean average percentage error) for the fitting of μ using all terms,
as well as for the μ fitting using only the first term on the right-hand side. The results were 1.1%
(all terms) and 1.9% (first term only). These values are averages over the different curves shown in
Fig. 5(a). The variation in the μ(I ) model suggests a very mild dependency of the μ parameters on
grain-size, as observed previously in Ref. [18].

Similarly, the dilatancy law [Eq. (12)] can be written following the work of Ref. [18] to account
for the particle size distribution of the granular mixture:

φmix
c = φc + Da

1 + Da
2δ + Da

3Sδ2, (34)

αmix = α + Db
1 + Db

2δ + Db
3Sδ2, (35)

γ mix = γ + Dc
1 + Dc

2δ + Dc
3Sδ2, (36)

where Da,b,c
1,2,3 are constants presented in Table I. To assess the need to include other terms in

Eqs. (34)–(36), we calculated the MAPE for the fitting of φ using all terms, as well as when
considering only the initial term on the right-hand side (RHS). The MAPE values were 0.3% for all
terms and 3.0% for the first term alone. These percentages are averaged across the various curves
shown in Fig. 5(b). As indicated by the change in MAPE values by an order of magnitude and the
black line in Fig. 5, which represents the fitting of φ using only the first term, it is evident that size
dispersity should be considered. The noise in the data cannot account for the differences we observe
between the mixtures.

IV. DISCUSSION

In the present study, we explored the biphasic mixtures of grains with different particle-particle
friction coefficients, densities, and size distributions, and we found the inertial number is indeed
capable of capturing the evolution of the stress ratio μ and dilatancy φ provided that one accounts
for the contribution of each particle phase by volume using the D43 as the characteristic particle
lengthscale in the system. Although our research is limited to particles within the hard contact
regime, it carries significant relevance for the majority of both natural and industrial granular flows.
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Monodisperse size
Density mixtures

Size mixtures

FIG. 6. Power-law scaling as defined by Kim and Kamrin [19] μ�1/6 = f (I ) for monodisperse and density
mixtures (a) and size mixtures (b).

In the past decades, the kinetic theory (KT) originally developed for gases, has been adapted to
describe the frictional regime of granular flows [30–33], but this modified KT has yet to be adapted
to describe polydisperse mixtures. Expanding on the KT that characterizes the solid pressure
in relation to the granular temperature, Kim and Kamrin [19,34] have recently implemented a
power-law scaling for the stress ratio. This scaling correlates with the inertial number and the
dimensionless granular temperature, defined as � ≡ ρsT/P. Granular temperature has proven to
be a critical parameter in the development of constitutive models for flows that exhibit both liquid-
and solidlike behaviors [35].

In light of these findings, we investigate a potential scaling μ(I,�) across all the size distri-
butions. We observe that “heating” the material (endogenous mechanical vibrations), or increasing
the granular temperature, tends to weaken (or soften) the material, and it follows that μ�p = f (I ),
where p equals 1/6 [as shown in Fig. 6(a)].

Contrary to Kim and Kamrin’s approach [19], which relied solely on the streamwise velocity
component to calculate granular temperature and the vertical component to calculate solid pressure,
we employed all three components of stress [Eqs. (9) and (10a)] in the calculation of the granular
temperature and the solid pressure. In addition, we also used the deviatoric shear rate and deviatoric
shear stress.

Our data are represented by the following polynomial expression:

ln
(
μ�1/6

) =0.0011 ln3(I ) + 0.0280 ln2(I ) + 0.5071 ln(I ) − 0.5024. (37)

While the monodisperse and density mixture data fall perfectly on the same curve, the data
from polydisperse simulations do not coincide with the monodisperse data across the spectrum of
quasistatic to inertial/collisional regimes [see Fig. 6(b)].

We explored a variety of scalings to collapse the data on a single master curve. Kim and Kamrin
[19] introduced the scaling μ(I,�), which successfully removed the rheological dependence on
φ. Notably, the successful alignment of μ = f (I ) data from monodisperse simulations across flow
geometries in studies by [19,34] allowed them to eliminate the concentration dependency in their
scaling and continuum model. However, this method is not suitable for polydisperse mixtures.
This is evident as the data for φ and μ do not align due to the polydispersity, as seen in Fig. 1
of the Supplemental Material [36]. Since this alignment is not observed in our data, we explored
ways to use the solid concentration φ to make our data collapse upon one curve. As a result, we
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Monodisperse size
Density mixtures

Size mixtures

FIG. 7. Modified power-law scaling μ�1/6

φ2 = f (I ) for monodisperse and density mixtures (a) and size
mixtures (b). The red line is the same in both plots.

derived a modified power-law scaling, μ(I,�, φ), fitted first to our monodisperse data. The ensuing
formulation is presented in Fig. 7(a):

ln
(
μ�1/6/φ2) = 0.0023 ln3(I ) + 0.0505 ln2(I ) + 0.6466 ln (I ) + 0.8356. (38)

Our fitting approach, derived from the monodisperse simple shear simulations, enables a well-
aligned collapse of polydisperse simple shear simulation data [Fig. 7(b)]. The successful collapse
of all simple shear data onto a single line indicates that the stress ratio μ can be predicted using
solely dimensionless parameters—the inertial number I , solid concentration φ, and scaled granular
temperature �. Using a sensitivity analysis, we determined that an exponent value of 2 for the φ

term provides the best fit (see Table 1 of the Supplemental Material [36]). However, the physical
rationale behind the selection of values for the two exponents remains an open question. We deduce
that the exponent p = 1

6 is a universal characteristic, independent of specific material properties and
definitions of stress, pressure, or granular temperature. Furthermore, by employing the deviatoric
shear stress and deviatoric shear rate, as well as the full trace of the kinetic stress tensor to calculate
the pressure and granular temperature (in a manner similar to [26]), our methodology diverges
from that of [19] to provide a comprehensive description of the system. We tested whether using a
single component of stress (x-direction for granular temperature and y-component in the pressure
calculation) impacted our findings. As shown in Figs. 2 and 3 of the Supplemental Material [36], the
necessity of employing the concentration to scale the stress ratio data appears to be unaffected by the
components of granular temperature or pressure used. We also investigated whether the definition
of granular temperature could be the reason for the data’s noncollapse when plotting them as in
Ref. [19]. Instead of calculating the mean velocity using the mixture velocity, we determined the
mean velocity for each phase. This approach resulted in similar trends where both monodisperse
and polydisperse data did not collapse without including the term φ2 in the scaling.

The collapse of our monodisperse and polydisperse results has major implications. Before, the
stress ratio needed to be defined based on various empirical fits to describe the size and density
mixtures. Instead, Fig. 7 suggests that a single empirical polynomial law combined with conserva-
tion of mass (to describe φ) predicts the stress ratio for all situations investigated. Consequently, the
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FIG. 8. Modified power-law scaling of the stress ratio μ(Model) predictions against numerical simulation
data μ(DEM) for all mixtures. The red and black lines indicate the 5% and 15% error, respectively.

following scaling describes the flow rheology:

μ�1/6

φ2
= f (I ). (39)

Using this approach, we predict the stress ratio of size, density, and friction of mixtures investigated
and show that it works very well for μ < 0.75 (Fig. 8). The large sensitivity at large inertial numbers
with friction that is up to 15% higher than predicted by Eq. (38) could be explored in future work
using a fitting function of higher order.

In our final analysis, we examine the rheology of both monodisperse and polydisperse grain-
size distributions within a variety of flow configurations. These configurations encompass thick
flows featuring vertical shear gradients (evidenced by an exponential velocity profile) and subject
to gravity, thin flows devoid of gravity (indicated by a linear velocity profile), and flows moving
down a slope (characterized by a concave velocity profile; see Fig. 1). We illustrate the vertical
gradients in flow properties across all three simulation setups [monodisperse, bidisperse, tridisperse,
Figs. 9(a)–9(c)]. The results show that regions of the flow with minimal shear benefit from the
diffusion of granular temperature originating from areas with significant shear. These low-shear
regions (shaded blue in Fig. 9), which have an inertial number less than 10−2, correspond to a
friction coefficient lower than the static friction coefficient μ1 of the mixture. This nonlocal behavior
is primarily driven by granular heating, which induces “fluidity” in regions that would otherwise
remain stationary. This phenomenon is observed in areas where the solid fraction surpasses the φc

value.
When considering the depth average, flows displaying nonlocal effects exhibit a friction coeffi-

cient lower than what is predicted by their simple shear analogs [Fig. 10(a)]. This indicates that the
strategy of accounting for size dispersity via a “mixture rule” in the μ(I )-rheology law, as outlined
in Eqs. (31)–(36), is not applicable when nonlocal effects become dominant. Therefore, we aim to
investigate a more generalized rheological model that takes nonlocal effects into account. Frictional
weakening is observed in low shear regions where the flow is either in the intermediate or quasistatic
regime (with I < 0.1), as clearly depicted in Figs. 9(a)– 9(c) and Fig. 10(a). In these areas, particle
vibrations (measured through scaled granular temperature �) are efficiently propagated through
the contact network resulting in an increase of the local (Fig. 9) and depth-averaged granular
temperature for a given inertial number [Fig. 10(b)]. As demonstrated by [19], � is pivotal in
understanding the reduction of the friction coefficient, a process we refer to as granular heating,
which leads to frictional weakening [Figs. 10(a)–10(c)]. Therefore, we examine if the relation
μ�p = f (I ) proposed by [19] based on monodisperse simulations can collapse our data. However,
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FIG. 9. Vertical profiles of streamwise velocity Vx, dimensionless granular temperature �, friction co-
efficient μ, inertial number I , solid concentration φ, and ratio of granular temperature T gx/T gy for one
monodisperse 5 mm simulation (a), one 2–5 mm bidisperse simulation (b), and one 2–3–5 mm simulation
setup (c). The vertical red dashed line represents μ1. The blue vertical dashed lines represent φc and the brown
dashed line represents a ratio of granular temperature of 1. The shaded blue regions highlight the portion of the
flows where the friction coefficient is lower than the μ1 value and where nonlocal rheology dominates.
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FIG. 10. Stress ratio μ (a), solid concentration (φ) (b) and granular temperature � (c) as a function of
the inertial number. Power-law scaling μ�1/6 = f (I ) (d) and modified power-law scaling μ�1/6

φ2 = f (I ) (e) for
monodisperse and polydisperse mixtures in simple shear, concave and shear with gravity flow geometries. The
red lines are the fits derived from the monodisperse simple shear simulations.

our results collected from different flow geometries and particle assembly (size dispersity) do not
align onto a singular curve [Fig. 10(d)].

Instead, we find better alignment of the nonlocal data on a master curve when using the scaling
μ(I,�, φ), fitted with Eq. (38), derived from local shear simulations [Fig. 10(e)]. Therefore, the
latter scaling effectively encapsulates the nonlocal behavior emerging from the spatial diffusion of
granular temperature in polydisperse granular mixtures, and it allows us to unite with a power-law
scaling the rheology of monodisperse and polydisperse grain-size mixtures across flow geometries.

To integrate our findings into a continuum framework, a structured methodology is recom-
mended. First, it is essential to conduct simple shear simulations to determine parameters like μ,
�, φ, and I . After determining these parameters, Eq. (38) can be fitted to the DEM data. The new
continuum model should include an equation for estimating the granular temperature and another
for φ, in addition to other conventional metrics such as pressure. Armed with these components, the
empirical power-law rheology, encapsulated by Eq. (38), can be employed to compute μ. This, in
turn, aids in defining the viscosity for the continuum model. This methodology markedly deviates
from the traditional μ(I ) model, aligning more with a modified kinetic theory approach. The
primary outcome of our work demonstrates the sole need to run DEM simulations of monodisperse
simple shear to derive the power-law scaling required for a specific set of particle properties (i.e.,
particle-particle friction). Importantly, any successful application of this rheological approach in
a continuum framework requires that the spatial resolution of the continuum model be sufficient
that grain properties are consistent throughout the averaging volume. For example, flows with large
gradients in concentration would require addressing these varying properties (for instance with a
resolved grid) while employing this rheological approach.

An alternative methodology could involve adopting the framework proposed by Ref. [37], which
characterizes nonlocal behavior through a partial differential equation that governs the granular
fluidity field, defined as g = γ̇

μ
. Intriguingly, this granular fluidity is seemingly linked to two

fundamental state variables: the granular temperature and the solid fraction, as suggested by Zhang
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et al. [23]. A comparative analysis of kinetic theory, the granular fluidity concept, and the findings
of our current study may unveil new, beneficial insights.

V. CONCLUSION

In this work, we have investigated the rheology of shear flows of dense, frictional granular media
made of monodisperse, polydisperse, and biphasic (friction and density) particles. We observed the
occurrence of well-known quasistatic, intermediate, and inertial/collisional regimes for all mixtures,
with a strong dependence of the critical volume fraction φc on the skewness and polydispersity and
the particle-particle friction of the media. We find that the inertial number scaling of the stress
ratio remains valid as long as the volumetric contribution of the size (using the volume mean
diameter D43), density, and particle friction are accounted for in its definition. In addition, we
bind the modified kinetic theory [30,32,38] to the μ(I )-rheology by proposing an updated version
of the power-law scaling introduced by Kim and Kamrin [19] to now account for polydisperse
size distributions. We have established a new scaling for the stress ratio, which incorporates the
dependence on the particle-particle friction coefficient and hinges on factors such as granular
temperature, concentration, and the inertial number. Fundamentally, it encapsulates both local and
nonlocal rheologies, which manifest as endogenous velocity fluctuations disperse spatially (through
force chains) from areas of high granular temperature towards those with lower temperatures
(granular heating). This mechanism, which dominates in the quasistatic and intermediate regime,
results in an increase in granular temperature that is noticeably larger than the granular temperature
predicted by �(I ) from simple shear. The absence of granular heating in the gaseous regime at I �
0.1 implies that nonlocality is enabled by the presence of force chains and suggests that the contact
network, granular temperature diffusion, and nonlocality are intertwined. These findings emphasize
the importance of investigating granular temperature and its diffusion, especially in contexts where
nonlocal effects (i.e., large granular temperature gradients) are significant. This would enhance
our understanding of polydisperse granular flows across various natural and industrial settings.
Moreover, as natural granular media often exhibit rapid spatial changes in response to topographical
shifts, further studies focusing on the transient behavior of granular media could provide a more
holistic description of their rheology.
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