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Experimental collisions of varying roughness wetted particles in the pendular
regime compared to numerical simulations
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In this work rectilinear collisions of spheres coated in a thin viscous liquid film are
considered, where the surface roughness of the spheres was varied. Experiments were
performed using a Newton’s cradle apparatus and the collision dynamics was measured
using particle tracking velocimetry. The experiments showed that the dry and wet co-
efficient of restitution decreases as the roughness increases. Experimental collisions are
compared with numerical simulations to examine criteria that limit the viscous force.
We show that a model in which the liquid undergoes a glass transition is in excellent
agreement with experimental measurements for smooth spheres, i.e., when the roughness
of the spheres is less than the glass transition length. For rough particles, a constant
minimum separation distance is more accurate than the glass transition model, which
is consistent with the idea that contact occurs on the roughness elements. Furthermore,
smoothed particle hydrodynamics (SPH) simulations were used to examine the viscous
flow in detail. The SPH simulations accurately predicted the collision outcome for smooth
spheres and showed that the maximum pressure was greater than the glass transition
pressure used for the discrete element method simulations, supporting the feasibility of
the glass transition model. The SPH simulations of rough particles indicate that during a
collision the interstitial liquid flows through microchannels between roughness elements
as a mechanism to alleviate pressure buildup, and reduce the viscous force consistent with
the experimental observations.

DOI: 10.1103/PhysRevFluids.9.054302

I. INTRODUCTION

Granular flows can be challenging to simulate due to irregular particle shape, size, and roughness
[1,2], dissipative contact between particles [3], and nonlocal phenomena [4]. Recent studies have
had success simulating dry granular flows using the discrete element method (DEM) [5,6]. However,
many granular flows are not exclusively dry. The presence of small amounts of liquid in a granular
flow has been found to greatly change the rheology of the flow [7,8]. Furthermore, agreement
between DEM simulations and experiments of wet granular flows is poorer than for similar dry
cases [9]. A possible limitation of wet granular flow studies is that they are not accounting for the
surface roughness of particles correctly. This study examines the effect of surface roughness on the
dynamics of wet particle collisions.
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When small amounts of liquid are present in a granular flow, the liquid forms bridges between
particles; this is commonly referred to as the pendular regime [10]. As particles contact the liquid,
they experience cohesive forces. These cohesive forces are comprised of capillary forces and viscous
forces [11]. The capillary forces attract the particles to one another [12], while the displacement
of the interstitial liquid generates a viscous force which slows the approaching particle [13]. The
ratio of viscous forces to capillary forces, for contacting spherical particles, is given by a modified
capillary number

Ca = 3μvi j,0ri j

σhi j,0
. (1)

Here, μ is the viscosity of the interstitial liquid, vi j,0 is the precollisional relative velocity, ri j is the
reduced radius, ri j = (r1r2)/(r1 + r2), σ is the surface tension of the interstitial liquid, and hi j,0 is
the initial liquid film thickness. Capillary forces are considered negligible if Ca > 3000 [14].

Granular flows are typically comprised of small, rough, and inelastic materials [15]. Previous
research has found particle roughness to affect many particle properties, such as the dry coefficient
of restitution, Young’s modulus, and Poisson ratio [16]. Further, when modeling dry granular flows
it is common to account for surface roughness through the inclusion of a coefficient of friction
term, and scaling laws have been proposed to account for the roughness [17]. A small change in
the coefficient of friction often results in significant change in the macroscopic flow [18]. Yet, it
is uncommon to account for particle roughness when modeling wet granular flows. Several studies
assume that the particle-particle friction coefficient should be 0 when modeling wet granular flows
as the surfaces of the particles do not contact due to the thin liquid layers [8]. On the other
hand, a recent study showed that a small particle-particle coefficient of friction term was critical
in describing postcollisional rotation for oblique collisions of smooth wetted particles [19].

It is challenging to investigate single-particle collisions within a larger macroscopic system due to
the chaotic nature of the system. One previous study uses atomic force microscopy with a shear cell
to measure the particle-particle forces [20]. However, due to the precise nature of the experiment,
the results were affected by the interstitial liquid layer. Several groups have conducted studies using
high-speed cameras to track collisions between a dry sphere and a wetted wall [21–24], a dry sphere
and a wet sphere [14,19,25–28], or a sphere fully immersed in a liquid and a wall [29–32]. In these
studies, the collisions are characterized using two dimensionless parameters: the Stokes number St,
a ratio of inertial forces to viscous forces, and the coefficient of restitution e, a ratio of outgoing
kinetic energy to incoming kinetic energy

St =mi jvi j,0

6πμr2
i j

, (2)

ei j =vi j, f

vi j,0
. (3)

Here, mi j is the reduced mass of the particles mi j = (mimj )/(mi + mj ). These studies on binary
collisions suggest that it is imperative that numerical models are able to accurately predict the
outcome of a two-particle binary collision if they are to accurately model many-body macroscopic
flows.

As two spheres approach each other, viscous forces arise from the displacement of the interstitial
liquid [13]. The viscous forces decrease the relative velocity between the spheres. The spheres are
slowed down until either some form of contact occurs, at which point the spheres’ momentum starts
to be reversed, and they begin to separate, or the viscous forces dissipate the momentum sufficiently
such that the spheres remain agglomerated. Several authors have suggested that if the surfaces of
the spheres are rough, less momentum is required for solid-solid contact to occur [25,33]. It is
proposed that this is due to contacting roughness elements protruding further through the liquid
film. However, there has been no work conducted on how these roughness elements may influence
collisions between two particles, or affect the flow of the liquid as it is displaced. Previous work has
been conducted on smooth particles contacting a roughened planar plate and found that roughness
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affects the coefficient of restitution; however, the trends are not consistent. One study found that as
the plate roughness is increased, particles rebound from the plate with more momentum [34], while
another study finds that they rebound with less momentum depending on the Stokes number [35].

For numerical simulations of wet particles, the viscous force is derived from a modified version of
Reynolds lubrication theory [36]. The viscous force is a function of thickness of the interstitial liquid
between the particles. Thus, as the separation between particles tends towards zero, the viscous force
tends towards infinity. The viscous force can reach unrealistically large values if the separation
distance is allowed to reach very small values. For numerical models of wet granular flows, it is
common to implement some minimum separation distance to ensure numerical stability [37,38].
However, it is not clear how the collision should proceed when the separation distance reaches
the minimum separation; one model allows for the collision to continue but uses the minimum
separation distance to calculate the viscous force [39], while another model instantly reverses the
particle momentum when this minimum separation distance is reached [33].

The implementation of the minimum separation distance for numerical simulations is also not
trivial. Most studies suggest that the minimum separation distance should be equal to the surface
roughness of the spheres [37]. However, often this minimum separation distance is orders of
magnitude greater than the real surface roughness of the particles. Typical granular materials have
roughness ≈100 µm [40]. Yet, most studies use smooth particles which have a roughness �1
µm. Despite this, the minimum separation distance employed in numerical simulations is on the
order of 10 µm [37], i.e., much greater than the roughness. One study proposes the idea that at
very small separation distances, the liquid increases in viscosity, due to a pressure dependence
[41]. This increase in viscosity may cause the interstitial liquid to undergo a glass transition and
initiate a solidlike contact between the particles [42]. Recent studies have found significantly
better agreement between binary rectilinear collision experiments and numerical models which
use a minimum separation derived from the glass transition theory [27,33]. However, electrical
conductivity measurements recently showed that the surface of particles does contact each other
during a wet collision [28]. Hence, there is still significant confusion around the dynamics of wet
particle collisions and the validity of the glass transition model.

To investigate the validity of the glass transition model there must be direct comparison with
experimental measurements of collisions of smooth and significant roughness wet spheres. One
particular study [30] provides significant experimental measurements of fully immersed rough
spheres contacting a smooth wall. However, it is challenging to use the experiments in this study to
investigate the validity of the glass transition model as the viscosity used in the work is very low and
so the length scale associated with a glass transition is very small and exceeded by the roughness for
all cases. Thus, there is a need for more rough wet particle experiments and specifically those for
which at low relative velocity the roughness should dominate the collision dynamics and for high
relative velocity, the glass transition should dominate the collision dynamics.

Another numerical technique sometimes used to model liquid-solid interaction is smoothed par-
ticle hydrodynamics (SPH). SPH is a mesh-free Lagrangian method which solves the Navier-Stokes
equations at discrete integral points over the domain [43,44]. An advantage of SPH over traditional
mesh-based computational fluid dynamics (CFD) methods is that there is no remeshing required for
a deforming domain. For traditional CFD methods, remeshing can be extremely computationally
expensive if the boundary is continuously deforming around a complex body. Recently, SPH has
had success modeling fluid flow around complex geometries [45]. Furthermore, SPH is most suitable
for modeling liquid-solid interaction when the solid body is rigid [46], which is common for wet
granular flows. Some SPH studies simulating wet granular flows have found good agreement with
experimental results [47]; however, these studies are uncommon due to the computational cost of
SPH.

Here, the rectilinear collisions of two smooth or rough spheres coated in thin viscous films are
studied. The collisions are conducted using a traditional Newton’s cradle apparatus, but where the
stationary particle is dipped in viscous silicone oil prior to contact. The effect of particle roughness
on the collision dynamics is considered by comparing measurements of smooth spheres and spheres
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with an induced surface roughness between 14 and 57 µm. The Stokes number for the collisions
is between 0 < St < 16. The experimental results are compared to numerical simulations using
the discrete element method with a viscous force model that uses either a minimum separation
distance derived from the glass transition pressure of the interstitial liquid, or a constant minimum
separation distance based on the surface roughness of the particles. Finally, select collisions are also
simulated using smoothed particle hydrodynamics to investigate the flow of interstitial liquid during
a collision.

II. THEORY

An overview of the theory used to describe a rectilinear collision of wetted spherical particles
is provided here. Further, the implementation of this theory into a DEM framework is given. The
Navier-Stokes equations and their implementation into an SPH framework are also provided.

A. Discrete element modeling

DEM is used to numerically model particle motion. Here, a soft-sphere implementation using
LIGGGHTSTM was used [48]. For a rectilinear collision, tangential forces are negligible and, hence,
the translational motion of a dry particle i contacting a wet particle j, is described by

mi
dvi

dt
=

∑
j

(
F n

i j + F n
cap,i j + F n

visc,i j

)
, (4)

where vi is the translational velocity of the ith particle. We now drop the superscript n for clarity,
as all forces act in the normal direction. The forces during a collision are represented by the solid
contact force Fi j , capillary force Fcap,i j , and the viscous force Fvisc,i j . Here, Fcap,i j is considered
negligible due to a high value of Ca. A solid-solid contact model is used in DEM when the solid
surfaces intersect. For this study we use the normal component of the Hertz-Mindlin contact model
which is

Fi j = kδi j − γ vi j . (5)

Here, k is the elastic constant, δ is the overlap distance of two particles, and γ is the viscoelas-
tic damping. Further description of the Hertz-Mindlin model is available in the LIGGGHTSTM

documentation [48].

B. Viscous force modeling

A schematic of a collinear collision of two spheres, where the stationary sphere is coated in a
thin viscous film, is given in Fig. 1. The separation distance between the spheres hi j is defined as
the distance between the centroids of the two spheres (xi and x j), minus the radii of each sphere,
i.e., hi j = x j − xi − (ri + r j ). When the striking sphere first contacts the liquid film of the stationary
sphere, we have hi j = δ j and this is referred to as hi j,0,

The viscous force model for two approaching spheres is derived from Reynolds lubrication theory
[36]. Here, we consider a viscous force model proposed in [12] which includes the curvature of the
spheres and the deformation of the interstitial liquid during the collision. The viscous force is given
by

Fvisc = 6πμr2
i jvi j

hi j

(
1 − hi j

2hi j,0 − hi j

)2

. (6)

Here, hi j,0 is the sum of the film thickness on both spheres at t = 0 s.
Numerical viscous force models require the implementation of a minimum separation distance

to ensure numerical stability. This minimum separation distance is referred to as hmin. It was first
proposed in [49] that there must be some governing rebound criteria which can describe whether a
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FIG. 1. Schematic of a collinear collision between dry striking particle i and wetted stationary particle j.

sphere will rebound from a given surface which has been wetted with a thin layer of viscous fluid.
Here we consider two forms of hmin: a constant hmin which is given by the roughness of the spheres
and hmin = hRa ≈ Ra, where Ra is the average roughness of a sphere, or hmin which is based on the
glass transition pressure of the interstitial liquid and is given by

hmin = hgt =
√

3μri jvi j

Pgt
, (7)

where Pgt is the glass transition pressure of the interstitial liquid. It is assumed that if hRa > hgt, the
surface roughness will be the dominant contact mechanism and the collision should not be able to
be described by Eq. (7). To approximate the hard-sphere collision in [12,49], the viscous force is set
to 0 when hmin > hi j . This method has seen success in previous studies [19,27].

C. Smoothed particle hydrodynamic modeling

Smoothed particle hydrodynamics (SPH) is a numerical modeling technique to model continuum
media as a set of discretization points called particles [43,44]. Using these particles, SPH solves the
Navier-Stokes (NS) equations to resolve fluid flow. Unlike traditional computational fluid dynamics
(CFD) methods (e.g., the finite-volume method), where the domain is discretized into a mesh, SPH
is an entirely mesh-free Lagrangian method. This makes it advantageous in a problem like the
collision of two spheres with an interstitial liquid, as the domain is constantly evolving, which may
be computationally expensive to track using traditional CFD methods.

Two approximations are made for SPH: the kernel approximation to represent a function and its
derivatives in an integral form, and the particle approximation, which describes the discretization
using moving points [50,51]. First, we introduce an identity

A(x) =
∫

x′∈�

A(x′)δ(x − x′)d�, (8)

where A(x) is a function which needs to be approximated, x is a position in space, and � is the
complete domain. The Dirac delta distribution is applied

δ(x − x′) =
{∞, for x = x′

0, else. (9)
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Delta distributions δ(x − x′) are replaced by a kernel function (or smoothing function) W (x − x′, h),
where h is the smoothing length. We then get

A(x) ≈ 〈A(x)〉 =
∫

A(x′)W (x − x′, h)d�. (10)

The kernel W (x − x′, h) can be selected by the user, but must obey the unity condition, Dirac
property, and the compact support condition [52]. For the approximation of the continuum, the
integral is replaced with the weighted sum of the contributions at discrete points, the so-called
particles, leading to the particle approximation

〈A(x)〉 =
∑

b

mb

ρb
AbW (x − xb, h). (11)

Instead of considering all particles in the domain, the sum runs only over the neighboring particles
b as the kernel function W vanishes for most particle pairings due to its compact support. Further, m
is the particle’s mass, and ρ is the density at the particle position. The term mb

ρb
= d�b corresponds

to a certain volume assigned to a particle b. In general, SPH can be applied to approximate arbitrary
partial differential equations. Here we want to solve the fluid flow domain. To do this, we must
introduce the Navier-Stokes equation, continuity equation, kinematics equation, and the equation of
state.

The Navier-Stokes equations are the basis for all flows and they are extremely general. The NS
equations are derived from the balance of linear momentum for an infinitesimal volume element
with many different forces considered. They read as follows:

ρ
dv
dt

= ρ

(
∂v
∂t

+ (v · ∇)v
)

= ρg − ∇P + μ∇2v, (12)

where v is velocity, t is time, g is gravity, and P is pressure [53]. The NS equations are comple-
mented by the continuity equation

dρ

dt
= −ρ ÷ v, (13)

and the relation between position n and velocity v from a kinematics equation

dn
dt

= v. (14)

Here, n is a position with coordinates in (x, y, z). Finally, the equation of state is needed to ensure
that we have the same number of equations and unknowns, eight equations for ρ, v, P, n. For SPH,
the Tait equation is commonly used as the equation of state [54], relating density and particle
pressure; this is given by

P = C2
0 ρo

ζ

[(
ρ

ρo

)ζ

− 1

]
, (15)

where C0 is the speed of sound, ρo is a reference density, and ζ is the polytropic index. This
equation of state is quite stiff, requiring small step sizes during the numerical integration. Therefore,
an artificial fluid with a lower speed of sound is usually used instead of the modeled fluid’s physical
properties. Thereby, small density fluctuations of around 1% are allowed by choosing the speed
of sound as 10 times the maximum fluid velocity [55]. This approach is commonly referred to as
weakly compressible SPH formulation.

For SPH, Eqs. (12) and (13) need to be solved at discrete particle positions. Thus, the equa-
tions must be altered for the SPH environment. To improve the readability, the kernel function
W (xa − xb, h) is abbreviated in the following as Wab and ∇a refers to the partial derivative with
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FIG. 2. Schematic of the Newton’s cradle setup.

respect to the position evaluated at particle a. The equations are as follows: the NS equation in SPH
form is

dv
dt

∣∣∣
a

= g −
∑

b

mb

[(
Pa

ρ2
a

+ Pb

ρ2
b

)

− 1

ρaρb

(μa + μb)vab · nab

||nab||2 + 0.01h2

]
∇aWab, (16)

and the continuity equation in SPH form

dρ

dt

∣∣∣
a

= ρa

∑
b

mb

ρb
(va − vb) · ∇aWab. (17)

Further details about the SPH method are provided in the literature [50,51].

III. METHODS

A. Newton’s cradle setup

Here we use a Newton’s cradle setup to investigate the particle contact dynamics. This ap-
paratus has been used successfully in several previous studies for wet particle contact dynamics
[14,19,27,28]. Figure 2 shows a schematic of the setup. In this modified apparatus, the strings
suspending the particles are sufficiently long such that during the imaged time frame it can be
assumed the usual restoring force associated with a pendulum is negligible. Thus, only translational
motion in the x direction is considered. Here, we use a string length of 1 m. For a given collision,
all particles are made of the same material and the spheres are 1 in in diameter, prior to inducing
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a roughness. The material of the particles is either 316 stainless steel, AISI 52100 chrome-plated
carbon steel, or alumina.

Prior to collision, the dry suspended particle is dipped in silicone oil; the striking particle is not
coated in oil. The metal particles are dipped in silicone oil with a viscosity of μ = 3 Pa s and the
alumina particles are dipped in silicone oil with a viscosity of μ = 1 Pa s. For these viscosities,
the range of Stokes numbers investigated in this study are 0 < St < 16, which is similar to those
measured in wet spouted beds [56]. After removing the suspended particle from the oil, the oil is
allowed to drain for a predetermined period of time. This period of time is 180 s for the metal
spheres, and 120 s for the alumina spheres. The striking particle is then released from the drop gate
and contacts the stationary particle. The particles are imaged at 5000 frames per second using a
Photron SA-5 camera with a 75-mm lens at 1024×1024 resolution and the Photron Fast Viewer 4
software. The setup requires an LED backlight to image at such high frame rate which produces
high-contrast images improving particle tracking.

The particle position is tracked in GOM Correlate® through the suspension hole at the top of the
particles. The contrast between the white back light shining through the hole, and the silhouetted
edge of the hole allows for accurate positional tracking. Particle position is exported from GOM
and the velocities are resolved using MATLAB. The position of the particles at any instance in time
can only be resolved to ∼50 µm accuracy due to the resolution of the camera. To resolve this
positional inaccuracy, a Holoborodko smoothing differentiator [57] with a filter length of 5 is used
to determine the current velocity of the particles, from the two previous positional measurements
and the two future positional measurements. This smoothing differentiator is given by

vi = 2(xi+1 − xi−1) + xi+2 − xi−2

8
t
, (18)

where vi is the current velocity of the particle in the x direction, xi is the position of the particle at
time step i, and 
t is the time step between frames. The velocities of the particles are then used to
determine the Stokes number and the wet coefficient of restitution. Images where the particles are
rotating postcollision were discarded. The Stokes number is calculated from the relative velocity
between the stationary particle and the striking particle prior to contact; this is averaged over at
least 50 time steps prior to collision. Thus, the error associated with St is low, and is in the range of
3.5%–5%.

B. Particle surface roughness characterization

It is hypothesized that if the particle roughness is greater than the minimum separation distance
associated with the glass transition, then the particle roughness will be the minimum separation
distance [12,33]. Figure 3 shows how hgt changes as a function of St. From Fig. 3 we can ascertain
that for the roughness to dominate the collisions, the particle roughness should be greater than 15
µm for the chrome steel spheres and 5 µm for the alumina spheres. In this study we also consider
stainless steel spheres, which differ from hgt for the chrome steel spheres by approximately 2.5%.

To apply the microspheres to the metal particles, a thin layer of cyanoacrylate glue was applied
to the entire surface of the metal particles and they were dunked in a crucible filled with the glass
microspheres. The metal spheres were sandblasted using mesh 30–60 garnet prior to application
of the glue and microspheres. It was found that the dry coefficient of restitution decreased for the
metal particles after applying the microspheres. It was considered that this may be due to some
inelasticity caused by the thin glue layer, however, previous authors have also reported a decrease in
dry coefficient of restitution due to increased surface roughness [35,58]. A different approach was
taken with the alumina spheres to ensure there was no interference from the cyanoacrylate glue on
the dry coefficient of restitution. Instead, the alumina spheres were sintered with an alumina bonding
coating to adhere the powder. The alumina spheres could not be sandblasted prior to sintering of the
alumina powder due to the hardness of alumina. Instead, the ceramic spheres were thermally etched
using the following procedure: ramped up at 15 ◦C/min until 1300 ◦C, and kept at 1300 ◦C for

054302-8



EXPERIMENTAL COLLISIONS OF VARYING ROUGHNESS …

FIG. 3. The glass transition pressure associated length scale as a function of St for chrome steel spheres
( ) and alumina spheres ( ). The chrome steel case uses μ = 3 Pa s while the alumina case uses μ = 1
Pa s, as these viscosities correspond to the viscosity used in the collision experiments. The maximum velocities
correspond to a value of St = 20, as that is the maximum achievable experimentally. The glass transition
pressure corresponds to Pgt = 4 × 108 Pa.

25 min in flowing air (100 mL/min). The system was then cooled down at 15 ◦C/min. The thermal
etching was conducted using a Mettler TG1 Thermobalance. The alumina spheres were then coated
in a thin layer of Resbond 989 and dipped into the alumina powder to adhere the alumina powder.
The spheres were then placed in the aforementioned oven with a 2 ◦C/min ramp until 90 ◦C for
which they were kept for 2 h. The temperature of the oven was then ramped up by 2 ◦C/min to
120 ◦C, for which the spheres were kept for 1 h. Finally, the oven temperature was increased by
2 ◦C/min until 250 ◦C, which was held for 1 h.

In all cases, the surface roughness of the overall particle was taken to be equivalent to the median
radius of the applied microspheres and powder. The microspheres and powder were chosen such
that the difference in particle radius was significant and, therefore, the difference in induced rough-
ness would be significant. The microsphere-powder median diameter was measured using laser
diffraction spectrometry using the Mie method [59]. Figure 4 shows the particle size distribution
of the samples. All samples except the median diameter 28.6-µm sample have some peak volume
percent of 15%–17%. This high-volume percentage indicates that the spread of particle diameters
is tight and sieving would likely have negligible effect. The sample with median diameter 28.6
µm was sieved using a sieve shaker stacked with 63-, 45-, and 38-µm sieves, but it was found to
have insignificant effect (only postsieved results are presented in Fig. 4). The median radius of the
samples presented in Fig. 4 are greater than all values of hgt presented in Fig. 3, except for the
median radius 14-µm sample which is slightly less than hgt for chrome steel spheres at the highest
St.

Detailed images of the surface of the particles were obtained through scanning electron mi-
croscopy (SEM) using the backscattered-electron detection method (BED). The spheres were
imaged under low vacuum conditions (70 Pa). The images obtained from SEM imaging of the
surface of the spheres are shown in Fig. 5 for both the smooth and rough spheres. Only stainless steel
spheres and alumina spheres were imaged. Chrome steel particles have been assumed to have the
same topography as the stainless steel particles. The surfaces of all the spheres are quite different.
There are a wider range of particle sizes in Fig. 5(c) than in Figs. 5(d)–5(f) which is in agreement
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FIG. 4. Volume percent of the microspheres and powders applied to the spheres. The median diameters
for the microspheres are 28.6 µm ( ) and 65.6 µm ( ), while the median diameters for the powders are
87 µm ( ) and 114 µm ( ).

with the particle size distribution shown in Fig. 4. There are also fibers present in Fig. 5(c) which are
not part of the microspheres. The origin and makeup of these fibers is unknown, but it is likely they
are dust particles collected during the sieving process. The amount of void space on the surface of the
particles was not quantitatively measured. However, it can be seen that the void space is minimal.
The surfaces of particles shown in Fig. 5 appear to be uniform and closely resemble monolayer
coverage. Thus, we can say that the surface of the particles has an induced roughness characterized
by the median radius of the applied microspheres and powders. From here on, we will refer to the
roughness of the spheres by the median radius of the microspheres and powders.

An additional set of roughened particles were obtained by sandblasting smooth stainless steel
particles with garnet of mesh size 30–60. The surface roughness induced by the sandblasting
was estimated using measurement of a tip-based profilometer on a stainless steel plate which had
undergone the same sandblasting treatment. The measurement of the surface of the stainless steel
plate indicated that the height of surface deviates up to 10 µm in some areas. Thus, here it is assumed
that the roughness of the sandblasted spheres is Ra ≈ 10 µm.

C. Film thickness measurement

The thickness of the silicone oil film coating the suspended particles must be determined to
ensure that the collision is correctly characterized and reproducible. To determine the oil film
thickness, a single particle was dipped in silicone oil (μ = 1 Pa s for the alumina spheres, and
μ = 3 Pa s for the steel spheres) and imaged at 3-s intervals. A 10.2-megapixel Nikon D80 camera
with a 135-mm zoom lens was used to image the stainless steel and chrome steel particles while
a 62.0-megapixel Sony α7RIV camera with a 135-mm zoom lens was used to image the alumina
particles. An example snapshot is shown in Fig. 6. The images are analyzed in MATLAB. The images
are binarized using the inbuilt function imbinarize. The binarization threshold is set such that the
edge of the particle is well defined. The widely known Otsu threshold selection method [60] was
used to ensure that the particle edge was well defined. Once the images are in their binarized form,
the particle centroid is located using the inbuilt function bwdist. The function bwdist calculates the
Euclidean distance separation of a white pixel from a black pixel in a given binarized image. For
a circle, like in our system, this function has a maximum at the centroid, and is analogous to the
radius of the particle plus the thickness of the oil coating. The known particle radius can then be
subtracted from this maximum, to return the thickness of the oil film. This method has been used
successfully in previous studies [14,19,27].
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FIG. 5. SEM images via backscatter electron detection for stainless steel (left) and alumina particles (right).
(a), (b) The smooth spheres (Ra < 1 µm) for this study, while (c)–(f) are the rough sphere surfaces. The
roughness for the rough cases are (c) 14 µm, (d) 32.5 µm, (e) 44 µm, and (f) 57 µm.

For the roughened metal particle case, the interface where the oil layer begins is dependent on
the diameter of the spherical roughness elements on the particle. It is unlikely that two colliding
particles will collide such that the vertex of the roughness elements on the striking particle contact
the vertex of the roughness elements on the stationary particle. Thus, if the oil thickness is taken
as everything other than the radius of the particle and the diameter of the applied microspheres and
powder, it will be underestimated. The position where the roughness elements contact could occur,
r, is bound, 0 � r � Rm, where Rm is the median radius of the microspheres and powders. In this
study, the oil layer has been chosen to begin at the average height of collision of two colliding
microspheres H . Thus, the true radius of the particle RT is taken as RT = R + Rm + H . The average
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FIG. 6. Example snapshot of an alumina smooth particle coated in 1 Pa s silicone oil. The dripping process
is exclusively gravity driven.

height of the microspheres is taken from the average height of a hemisphere and given by

H = 1

πR2
m

∫ Rm

0

(
R2

m − r2
)1/2

2πr dr. (19)

Equation (19) elegantly reduces to H = 2Rm/3. It should be noted that there has been no attempt
to quantify the thickness of the cyanoacrylate glue layer and it has been assumed to be negligibly
thin. For the alumina particles, this method was not used as the roughness elements are larger and
aspherical. Instead, the diameter of the sphere was precisely measured by imaging the dry sphere
and resolving the diameter through a pixel to mm conversion. This measurement was verified using
a micrometer and the two values were found to be within ±0.01 mm of each other.

Previous studies have concluded that the collision outcome is strongly dependent on the oil film
thickness [14,33]. It is important to ensure that the oil film thickness is consistent throughout all
experiments so that any differences in collision outcome cannot be attributed to a difference in oil
film thickness. Figure 7 shows the thickness of the oil film over time. For the metal sphere collisions
we use a drip time of 180 s, and for the alumina collisions we use a drip time of 120 s. At these drip

FIG. 7. Oil film thickness over time for (a) stainless steel and (b) alumina particles. The markers correspond
to different roughness particles: smooth ( ), sandblasted ( ), 14 µm ( ), 32.5 µm ( ), 44 µm ( ), and 57 µm
( ).
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TABLE I. Material properties of the particles and liquid used in the DEM simulations.

Symbol Stainless steel Chrome steel Alumina Unit

Radius r 12.7 12.7 12.7 mm
Density ρs 7960 7800 3900 kg m−3

Young’s modulus E 200 200 380 GPa
Poisson ratio ν 0.265 0.27 0.22
Smooth dry coefficient of restitution edry 0.90 0.95 0.99
Sandblasted dry coefficient of restitution edry 0.82
14-µm rough dry coefficient of restitution edry 0.72 0.66
32.5-µm rough dry coefficient of restitution edry 0.65 0.53
44-µm rough dry coefficient of restitution edry 0.22
57-µm rough dry coefficient of restitution edry 0.22
Viscosity μ 3 3 1 Pa s

times, the further change in film thickness is minimal and the oil film thickness was reproducible
for each experiment. From Fig. 7 it can be seen that the oil film thickness at 180 s for the smooth,
sandblasted, 14- and 32.5-µm cases are 168, 181, 200, and 220 µm, respectively. If the additional
thicknesses of the microspheres are ignored the oil film thickness at 180 s for the 14- and 32.5-µm
cases are 230 and 275 µm, respectively. The metal sphere results presented in Fig. 7 are for stainless
steel spheres; it is assumed that the film thickness on the chrome steel spheres is equal to that for
stainless steel spheres. The film thickness for the alumina spheres was measured to be hi j,0 = 100
µm at 120 s, regardless of roughness.

D. DEM and SPH simulation setup

DEM simulations are conducted using the open-source framework LIGGGHTSTM. The DEM
simulation parameter values are shown in Table I. Here we use a half-time-step velocity Verlet
scheme to integrate Eq. (4) with a time step of 1 × 10−8 s [61]. The particle position, velocity, and
force data in the x, y, and z directions are output every 1000 time steps. The simulations were run for
a maximum run time of 0.2 s. This value of 0.2 s was chosen as it was the time prior to gravity forces
significantly slowing the spheres due to the pendulum motion for the experiments. The spheres are
considered separated if Fx = 0. The postcollisional velocities of the particles are taken as the first
instance where Fx = 0. If Fx does not reach zero during a simulation, the particles are considered
agglomerated and the coefficient of restitution is resolved using the velocities from the final time
step (t = 0.2 s).

The SPH simulations are conducted using the software framework PASIMODO [62], developed at
the Institute of Engineering and Computational Mechanics at the University of Stuttgart. The SPH
simulations are set up to mimic a single smooth stainless steel sphere collision at an initial striking
velocity of vi j,0 = 0.205 m s−1 (St = 3) and a coefficient of restitution of e = 0.41. The simulation
parameters are shown in Table II.

A snapshot, prior to collision, of the simulation setup is shown in Fig. 8. The simulation consists
of three parts: the solid DEM spheres, the liquid SPH particles, and the SPH boundary particles.
The solid DEM spheres have the same material properties as the stainless steel spheres used in the
experiments. The liquid SPH particles are used to model the viscous silicone oil film that coats the
spheres. The SPH boundary particles model a nonslip boundary condition [63] in the interaction
with the liquid SPH particles. The SPH boundary particles impose all forces acting on them onto
the DEM spheres. However, the mass and inertia of the SPH boundary particles are not considered
for the DEM spheres. It would be computationally expensive to model the entire sphere coated in a
thin viscous film using SPH. Thus, here we only consider the region where the pressure in fluid is
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TABLE II. SPH simulation parameters.

Property Symbol Value Unit

Sphere radius r 12.7 mm
Sphere density ρs 7960 kg m−3

Young’s modulus E 2e11 Pa
Poisson ratio ν 0.35
Initial striking velocity vi j,0 0.205 m s−1

Dry coefficient of restitution, smooth edry 0.90

Roughness size rm 32.5 µm
Roughness distance 3 × rm 97.5 µm

Fluid density ρ f 970 kg m−3

Fluid viscosity μ 3.0 Pa s
Film thickness hi j,0 168 µ

expected to be P > 0 at some instance during the collision. This region of interest was calculated
from [12] and has a 2-mm radius.

For the interaction of the two solid DEM spheres, the Hertzian-based Kuwabara-Kono contact
model was applied [64]. The contact stiffness is calculated from Young’s modulus, and a dissipation
constant is fitted from dry simulations to match the coefficient of restitution to the dry experimen-
tally measured coefficient of restitution (edry = 0.90, in case of smooth spheres, and edry = 0.65 for
the rough spheres). Interaction between the surfaces of the two DEM spheres only occurs when all
the liquid is displaced from the contact zone and the spheres come directly in contact.

For boundary and liquid SPH particles, a kernel gradient correction [65] is applied to enforce
the exact interpolation of linear gradients in areas where the kernel support is not filled, e.g., at
the domain borders. The stiff behavior of the equation of state used to evaluate the pressure causes
spurious density and pressure fluctuations leading to inaccurate flow field prediction. Therefore, an
additional density correction is applied by adding a diffusion term to the momentum equation. This
approach is called δ-SPH and was first proposed in [66].

For the simulation of rough spheres, solid 65-µm (rm = 32.5 µm) DEM spheres are embedded
within the larger DEM spheres to act as roughness elements. The centroid of the 65-µm spheres
is placed on the surface of the larger DEM sphere to form a hemispherical roughness element. The
65-µm spheres are arranged in a square grid pattern and spheres are separated by a distance of 3 × rm

to allow fluid flow through the roughness element channels. The liquid is placed on the surface of

FIG. 8. Snapshot depicting the different domains during an SPH simulation of a smooth dry sphere striking
a wetted sphere.
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FIG. 9. Snapshot depicting the roughness elements and liquid for a rough SPH simulation: (a) side view
with the roughness spheres colored red for an increased contrast, without the fluid displayed, (b) frontal view
onto one of the spheres, and (c) view onto the fluid phase, cut in the collision plane, colored blue.

larger DEM spheres such that the roughness elements are fully submerged in the liquid prior to
collision. Figure 9 shows an example of the described rough sphere used.

IV. RESULTS

A. Dry coefficient of restitution

The dry coefficient of restitution edry was measured by contacting a single stationary dry particle
with a dry striking particle. Experiments were repeated for a range of velocities for the three material
cases, SS, CS, and alumina, and the corresponding roughnesses (<1 µm, 14 µm, and 32.5 µm for
the SS and CS spheres, and <1 µm, 44 µm, and 57 µm for the alumina spheres). An additional set
of sandblasted stainless steel spheres (Ra ≈ 10 µm) was also measured. It is important to correctly
define edry as any changes in edry will also affect the wet coefficient of restitution e. Figure 10 shows
the effect of increasing initial velocity on edry. The results shown in Figs. 10(a)–10(c) indicate that
edry is constant over the range of investigated velocities. It has been stated that the dry coefficient of
restitution is inversely proportional to the striking velocity [67]. However, this inversely proportional
relationship is only observed for a high range of velocities (>3 m s−1) and can thus be considered
negligible here. The dry coefficient of restitution for each particle was determined from the mean
of the measurements of edry across all striking velocities which is shown in Fig. 10(d). The error
was taken as the standard deviation across each data set. From Fig. 10(d) it is seen that as the
particle roughness increases, edry decreases. The difference in edry across particle roughness is
attributed to the change in particle roughness. Previous studies have found that as particle roughness
increases, the normal dry coefficient of restitution decreases due to asymmetric force distribution
during contact due to contacting roughness elements [35,58]. The difference in edry between the
smooth spheres and the roughened spheres for all materials is significant. It is particularly significant
for the alumina spheres, presumably due to the larger variation in size and shape of the alumina
micropowder.

B. Experimental collision of rough wet spheres

Here, we consider collisions between a dry striking sphere and a stationary wetted sphere. The
spheres are contacted by a dry sphere of the same roughness and material type. Figure 11 shows
the effect of particle roughness on e for a range of St. All roughness cases have some critical St;
when exceeded the spheres separate and a nonzero wet coefficient of restitution is observed. The
critical Stokes number for the smooth SS and CS spheres is St ≈ 2.5 and St ≈ 4 for the roughened
cases. A similar trend is seen for the alumina spheres; the smooth spheres have a critical Stokes
number of St ≈ 4, while the roughened alumina spheres have a critical Stokes number of St ≈ 5.
The difference in critical Stokes number between smooth and rough collisions is most likely due
to the difference in dry coefficient of restitution. A notable feature of the plot of e versus St, for a
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FIG. 10. A comparison of edry for a range of velocities for (a) stainless steel spheres, (b) chrome steel
spheres, and (c) alumina spheres. The mean edry of all the data points for a given roughness and material is
given in (d) with the error bars corresponding to the standard deviation for the data set. For a given material in
(d), the roughness increases from left to right. The roughnesses considered correspond to <1 µm ( ), 10 µm
( ) 14 µm ( ), 32.5 µm ( ), 44 µm ( ), and 57 µm( ).

two-body collision, is that the gradient is steepest at the critical Stokes number and then decreases
with increasing St. Previous studies have predicted that if hmin is constant, then the gradient will
decrease with increasing hmin [33]. From Figs. 11(a)–11(c) it can be seen that as the roughness
increases, the gradient at the critical Stokes number decreases. However, it should be noted that
this lesser gradient may be an artifact of a lower dry coefficient of restitution. A lower gradient
at the critical St indicates that there is more viscous dissipation. Interestingly, there is negligible
difference between e versus St for the sandblasted spheres and smooth spheres in Fig. 11(d), despite
the difference in dry coefficient of restitution. This idea is consistent with the idea suggested in
[12,14,33] that the contact mechanism is dominated by the largest hmin value. For the sandblasted
case, the roughness is larger than for the smooth spheres, but still smaller than hgt and so the
minimum separation distance derived via the glass transition pressure may still be the dominant
contact mechanism.

C. Numerical simulation of rough wet collisions using DEM

Here we use DEM to simulate a moving dry sphere contacting a stationary wet sphere. These
simulations are set up to mimic the parameters used to conduct the experiments. The only parameters
which can be varied are either the glass transition pressure or the minimum separation distance; all
other parameters are determined from the material properties of the spheres or interstitial liquid. The
dry coefficient of restitution was changed for the rough and smooth cases to match the dry coefficient
of restitution for each case shown in Fig. 10(d). There has been no attempt to implement a physical
roughness on the particles within DEM. A coefficient of friction is also not considered. The viscous
force model given in Eq. (6) is implemented in DEM and used with either the glass transition
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FIG. 11. Stokes number St versus the wet coefficient of restitution e for a two-body collision of (a) stainless
steel, (b) chrome steel, (c) alumina, and (d) sandblasted stainless steel spheres. The markers correspond to
roughnesses of <1 µm ( ), 10 µm ( ), 14 µm ( ), 32.5 µm ( ), 45 µm ( ), and 57 µm ( ). The SS and CS
collisions are conducted using 3 Pa s silicone oil with hi j,0 = 168 µm for the smooth collisions, hi j,0 = 200
µm for the 14-µm roughness collisions, and hi j,0 = 220 µm for the 32.5-µm roughness collisions. The alumina
collisions are conducted using 1 Pa s silicone oil with hi j,0 = 100 µm. Chosen experiments at high St have error
bars shown to provide an indication of the error in the measurements; the error bars have been removed from
the other points for clarity.

minimum separation distance or the constant minimum separation distance associated with particle
roughness. Figure 12 shows a comparison of the smooth and rough experimental collision data to a
DEM model with the viscous force implementation using either hgt or hRa.

The smooth sphere stainless steel, chrome steel, and alumina experimental data have good
agreement with the viscous force model when using a minimum separation distance derived from a
best-fit glass transition pressure. The glass transition model is able to capture the critical St where
rebound is initiated and replicates the contact dynamics over a range of St after the critical St is
reached. Further, the smooth experimental data have poor agreement when the viscous force uses
a best-fit constant minimum separation distance. To obtain a match with the first nonzero e value,
using the best-fit constant minimum separation distance, a value which is significantly larger than
the surface roughness for the smooth spheres must be used.

For the rough sphere cases, the situation is different. As the roughness increases, the constant
minimum separation distance approach provides a better match to experimental results than the
glass transition approach. The DEM simulations have fair agreement with experimental data for the
spheres with a roughness of 14 µm. The agreement of 14-µm roughness spheres with DEM using a
glass transition approach is poorest when St < 10, but improves as St increases. Recall Fig. 3, where
hgt ≈ 10 at St = 10, it is possible that the dominant mechanism to induce rebound has changed
due to the increase in St. The glass transition model significantly overestimates the coefficient of
restitution for spheres with a roughness of 32.5 µm. The glass transition model underestimates the
viscous force which results in a value for e which is greater than measured experimentally. Both
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FIG. 12. Comparison of DEM viscous force model to experiments for collisions of two wetted stainless
steel spheres (a), (b) chrome steel spheres (c), (d), and alumina spheres (e), (f). Experiments are given by
markers and simulations by lines. The data for the metal spheres correspond to smooth spheres ( )( ),
14-µm roughness spheres ( )( ), and 32.5-µm roughness spheres ( )( ). The data for the alumina spheres
correspond to smooth spheres ( )( ), 44-µm roughness spheres ( )( ), and 57-µm roughness spheres
( )( ). The left figures (a), (c), (e) use a minimum separation distance which is derived from the glass
transition pressure [Eq. (7)], while the right figures (b), (d), (f) use a minimum separation distance which is
constant.

rough alumina cases have good agreement with the DEM using the glass transition model, however,
due to the minimal increase of e with increasing St, it is difficult to determine the significance of this
observation. We also note that the best-fit glass transition pressure is lower for the rough alumina
collisions than for the smooth alumina collisions, opposite of what is observed for the steel spheres.
We attribute this difference to the complex surface of the alumina particles. Further discussions
will concentrate on the steel results. The differences between smooth and rough spheres suggest
that the viscous force experienced by smooth and rough spheres is not the same, and different
methods of modeling the minimum separation distance should be used depending on the surface
roughness of the particles. A surprising result from Fig. 12 is that for cases where the glass transition
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FIG. 13. The effect of SPH particle size and C0 on the coefficient of restitution e for a smooth sphere wet
particle collision.

model has poor agreement with experimental data, the constant hRa model has good agreement with
experimental data and vice versa. Previous authors have suggested that the dominant mechanism for
inducing rebound is dependent on whether hRa or hgt is largest [12,14,33]. The results here indicate
that this theory is sensible. It should be noted that the best-fit hmin did not vary significantly based on
roughness of the particles. We hypothesize that the contact point may be dominated by the largest
roughness elements, which the particle size distribution measurements in Figs. 4 and 5 show are
similar for the microparticles used here, despite the difference in median particle diameter.

There is a clear difference between the wet particle contact dynamics for the smooth and rough
spheres. Yet, the glass transition model does well to match experimental results for most cases. As
the particle roughness increases, we require a higher glass transition pressure to match experimental
data. Thus, the viscous forces are greater for the rough sphere collisions compared to the smooth
sphere collisions. The increased viscous forces dissipate more kinetic energy from the rough system
and the collision is less elastic than in the smooth cases. However, direct comparison between
the smooth and rough particle collision data is challenging due to a number of reasons. First, the
dry coefficient of restitution decreases as the particle roughness increases, which is likely due to
asymmetric contacts between roughness elements [58]. Second, the film thickness is not consistent
between different roughness collisions, and increases with particle roughness. Thus, we now attempt
to model the smooth and rough particle collisions using smoothed particle hydrodynamics to better
understand the difference in viscous force for smooth and rough particles.

D. SPH simulation of wet particle collisions

Smoothed particle hydrodynamics (SPH) is used to investigate the fluid flow between two
spheres during a collision. First, we consider a case where the surface of the spheres is smooth.
The smooth sphere SPH simulation uses the same conditions for one particular setting investigated
experimentally for smooth stainless steel collisions.

The maximum flow velocity in the fluid domain was initially unknown. Therefore, the artificial
speed of sound C0 was initially set to C0 = 10vi j,0. However, the low artificial speed of sound and,
consequently, smaller pressure reaction of the fluid in the contact area did not prevent the liquid SPH
particles from penetrating the boundary particles. This resulted in no viscous slowing down of the
DEM spheres, and the coefficient of restitution was the same as for the dry case. As a consequence
of this nonphysical behavior, the artificial speed of sound was increased until no penetration occurs.
Figure 13 shows the effect of C0 and SPH particle size on e for a smooth particle collision.

As the SPH liquid particle size is decreased, the coefficient of restitution resolved from the SPH
simulations approaches the coefficient of restitution resolved experimentally. However, as the liquid
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FIG. 14. Pressure distribution for a collision of smooth wetted spheres at vi j,0 = 0.205 m s−1, artificial
speed of sound C0 = 600vi j,0, and SPH particle sizes of 
 = 30 µm (top) and 
 = 15 µm (bottom). Collision
progresses from left to right, and the same time points are presented for both simulations. The SPH boundary
particles are colored gray, while the DEM spheres are not shown for clarity.

SPH particle size is decreased, the artificial speed of sound must be increased to ensure the liquid
SPH particles do not penetrate the boundary particles. Above some minimum C0, further slight
change in the artificial speed of sound had negligible effect on the coefficient of restitution. However,
when C0 was significantly larger than the minimum artificial speed of sound required to stop particle
penetration, the coefficient of restitution increased. This can be attributed to the increasing stiffness
of the liquid phase, which allows less dissipation during the collision. Linear regression performed
on the coefficient of restitution for the SPH simulations suggests that as the liquid SPH particle
size approaches zero, the coefficient of restitution will approach e = 0.39. This value of e is similar
to our experimentally measured value of e = 0.41. Thus, SPH can be used to capture the viscous
slowing down effects caused in pendular regime particle collisions for smooth particles.

Figure 14 shows the pressure distribution and the fluid flow during the collision for two different
SPH particles sizes, 30 and 15 µm. Here, both SPH simulations have an artificial speed of sound of
C0 = 600vi j,0.

As the striking sphere penetrates the liquid layer of the stationary sphere, the liquid is displaced
to the sides, and the fluid pressure in the contact region rises. As penetration continues, the fluid
is further compressed until the separation between spheres is one SPH particle diameter while the
DEM spheres come in contact. After the solid-solid contact, as the spheres begin to separate, the
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growing void in the contact region fills with fluid represented by SPH particles. This is similar to
what is observed experimentally, where the liquid fills the void between separating spheres and a
liquid bridge is elongated between the two separating spheres. However, in the SPH simulations,
many liquid SPH particles also have a high pressure in this liquid bridge region, and the pressure
is inconsistent across the radius of the bridge. It is expected that the highest pressure will be
through the central axis of the bridge, yet the pressure distribution throughout the liquid SPH
particles appears dependent on the preseparation position of each liquid SPH particle. Consequently,
the SPH model for smooth wetted spheres shows good agreement with the experimental results
during the impact phase and estimation of the coefficient of restitution. However, it requires further
improvement for the analysis of postcollision phenomena.

Figure 14 shows that the pressure in the interstitial liquid region increases as the SPH particle
size decreases. The maximum pressure in the SPH simulations is P ≈ 4 × 107 Pa (40 MPa) for
an SPH particle size of 
 = 15 µm. This is significantly less than the glass transition pressure of
silicone oil (Pgt = 400 MPa) [68], but significantly more than than the glass transition pressure used
to match experimental results for the DEM simulations (Pgt = 9 MPa) in Fig. 12. Previous authors
have found that the Davis viscous force model [Eq. (6)] slightly over predicts the viscous force
between two spheres [28]. The SPH results indicate a higher pressure is reached in the interstitial
liquid than what is used as the minimum glass transition pressure for the DEM simulations, which
corroborates the idea that the viscous forces are being overestimated.

The SPH method is now extended onto rough spheres. First we simulate a stainless steel sphere
with a roughness of 32.5 µm. These simulations are analogous to the experiments conducted earlier
in this study for which stainless steel spheres were coated with 65-µm diameter microspheres to
induce a roughness. A single experimental case is considered, for which the initial conditions are
vi j,0 = 0.288 m s−1, hi j,0 = 220 µm, edry = 0.66. These initial conditions are implemented in SPH
in an attempt to replicate the experimentally measured wet coefficient of restitution e = 0.161. The
SEM images of the rough sphere surfaces used in the experiments show that the microspheres are
randomly distributed (see Fig. 5). Thus, the roughness modeling is simplified as presented earlier
in Fig. 9 (Sec. III D). Here we consider two alignments of roughness elements for the contacting
spheres: (1) the roughness elements are aligned such that the zenith of a hemispherical roughness
element will contact the zenith of another hemispherical roughness element, and (2) an alignment
such that the contacting roughness hemisphere will contact in the trough between two hemispherical
roughness elements on the stationary sphere. These alignments are referred to as a central collision
(i.e. contact at the zenith of roughness elements), and an interlocking collision (i.e. contact at the
trough between roughness elements). Real world collisions between wetted particles will likely be
somewhere between an interlocking collision and a central collision. Figure 15 shows how the wet
coefficient of restitution changes for a 32.5-µm roughness collision as this alignment changes and
the SPH particle size is decreased.

The interlocking collision has a lower e than the central collision. As the roughness elements
interlock, there is a smaller volume for the fluid to occupy and so the pressure is higher. The increase
in pressure results in more viscous dissipation and so the coefficient of restitution is lower. However,
the slight difference between the two methods indicates that this is likely of negligible importance to
consider in the future. Interesting to note is that decreasing the SPH particle size does not decrease
the coefficient of restitution for the rough collisions. This may be due to the fluid phase being well
resolved at higher SPH particle sizes; however, a more likely explanation is that the flow through
fine channels between roughness elements is limited due to a relatively large SPH particle size. SPH
simulations using SPH particle sizes 
 < 15 µm were unable to be investigated due to the high
wall-clock time required.

Figure 16 shows the evolution of the fluid pressure during the collision for stainless steel spheres
with a roughness of 32.5 µm. The collision is presented using a 2D view, for ease of visualizing the
pressure distribution, and thus the roughness elements look slightly different than in Fig. 9.

As the striking sphere contacts the liquid film, the interstitial liquid is squeezed and increases in
pressure. It can be seen that the pressure increase is high near the zenith of roughness elements, but
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FIG. 15. The effect of SPH particle size on the coefficient of restitution e for a 32.5-µm roughness sphere
wet particle collision. The initial conditions are vi j,0 = 0.288 m s−1, hi j,0 = 220 µm, and edry = 0.66.

remains low in the troughs between roughness elements. The pressure also increases faster for the
striking sphere than the stationary sphere. A pressure gradient between the two spheres develops
with its minimum in the gaps between the roughness spheres, thus causing a secondary flow into
the gaps. This additional flow reduces the viscous dissipation on the striking particle and results
in a higher coefficient of restitution. The pressure gradient from the contacting roughness elements
radiates outwards towards the outer of the liquid film, with the maximum pressure at the center of
the contacting roughness elements. The pressure gradient is coincident with the primary flow of the
displaced liquid to the outer region. During the separation of the spheres, i.e., stretching of the liquid
bridge, the pressure decreases in the contact zone with increasing distance of the two spheres. The
displaced fluid, on the other hand, remains outside of the contact zone.

The pressure for the SPH simulations of the rough spheres is P ≈ 2 × 107 Pa (20 MPa) for
the central collision, and P ≈ 5 × 107 Pa (50 MPa) for the interlocking collision, both for an SPH
particle size of 
 = 15 µm. The pressure difference between the two setups can be explained by
the higher compression of the liquid by the interlocking roughness spheres until the roughness
spheres create a solid-solid contact, while for the central collision the fluid in the gaps between
the roughness spheres is not compressed as much as the spheres create a solid-solid contact earlier.

FIG. 16. Pressure distribution for a collision of 32.5-µm roughness wetted spheres at vi j,0 = 0.288 m s−1,
artificial speed of sound C0 = 600vi j,0, and SPH particle sizes of 
 = 15 µm. Collision progresses from left
to right. The SPH boundary particles are colored gray, while the DEM spheres are not shown for clarity. Left:
the pressure evolution at the start of the contact on the initial contact of dry sphere onto the wetted sphere is
shown. Middle: the pressure gradient between the two spheres, and from the contact zone to the outer region
at a later time point before the solid contact occurs, can be seen. Right: the pressure gradient during the solid
contact point of the surface roughness, which are visualized here for clarity in contrast to the other images.

054302-22



EXPERIMENTAL COLLISIONS OF VARYING ROUGHNESS …

Surprisingly, this large difference in maximum pressure causes a very small difference in coefficient
of restitution. This indicates that it is entirely plausible that the interstitial liquid reaches pressures
which can induce a glass transition, even for relatively low velocities. Of further interest is that
the maximum pressures for rough collisions are similar to those observed in SPH simulations for
smooth spheres, P ≈ 42 MPa for 
 = 15 µm and P ≈ 26 MPa for 
 = 30 µm. Yet, for the smooth
case the increase in maximum pressure correlates to a large decrease in coefficient of restitution.

The SPH simulation results give new insight into the fluid pressure and fluid flow during the
collision of smooth and rough wetted spheres. For smooth spheres, the experimentally measured
coefficient of restitution can be accurately predicted by SPH as the SPH particle size decreases,
and the maximum pressure was found to be significantly larger than the pressure associated with
a best-fit minimum separation distance based on the glass transition pressure. The difference in
pressure between the DEM and SPH simulations suggests that the viscous force model implemented
in DEM overestimates the viscous force and thus must use a lower glass transition pressure to
compensate. For the rough spheres, the SPH method can not accurately predict the experimentally
measured coefficient of restitution. The reason for this divergent behavior still needs to be clarified
and more work should be conducted on this topic in the future. Nonetheless, the rough SPH
simulations showed that the fluid can flow through microchannels between roughness elements
to dissipate pressure which reduces the viscous slowing of the striking particle and increases the
coefficient of restitution. This phenomenon is expected to still be present for more accurate rough
SPH simulations.

V. CONCLUSION

In this work we investigated rectilinear collisions between wetted spheres of varying surface
roughness. As the surface roughness of the spheres increased, more kinetic energy was dissipated
from the system and the coefficient of restitution decreased. The Davis viscous force model was
compared to smooth and rough experiments to verify the hypothesis that the contact is dependent on
the longer length scale associated with either the roughness or the glass transition pressure. DEM
simulations which use the glass transition length scale had the best agreement with experimental
wet collisions of particles with a roughness smaller than the length scale associated with the glass
transition pressure. Comparatively, DEM simulations which use a constant minimum separation
distance had the best agreement with experimental wet collisions of particles with a roughness
which exceeded the length scale associated with the glass transition pressure. Thus, we strongly
suggest that the Davis viscous force model be used when the roughness of the particles is less than
the length scale associated with the glass transition pressure and vice versa. Many real systems will
have a roughness which is greater than the glass transition length, and so we expect that a constant
hmin model is likely to be the most suitable model. However, this needs to be explored further for
many particulate systems.

Select collisions were also modeled using SPH. The SPH method was found to accurately model
smooth sphere collisions, if the SPH particle size was small enough. Furthermore, the maximum
SPH pressure was larger than the best-fit glass transition pressure, which suggests that the Davis
viscous force equation overestimates the viscous forces. Although the rough SPH simulations could
not accurately predict the experimentally measured coefficient of restitution, SPH was able to show
that the penetrating sphere displaces the interstitial liquid on impact, causing higher pressure near
the striking sphere, and creating flow into low pressure regions between roughness elements. The
flow in-between roughness elements is hypothesized to be critical to reducing the viscous force
experienced by particles.
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