
PHYSICAL REVIEW FLUIDS 9, 054301 (2024)

Particle-resolved multiphase Rayleigh-Bénard convection
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Numerical simulations of Rayleigh-Bénard convection with suspended particles are
described. The Rayleigh number is 107 and the Prandtl number unity. The particles have a
finite size and are individually resolved by the PHYSALIS method which combines a regular
Cartesian grid with a local spectral method around each particle. Two cells are considered,
a cubic one with up to 3000 particles and a quasi-two-dimensional one with aspect ratio
2 with up to 1000 particles. In both cases the maximum volume fraction is about 20%.
Emphasis is placed on the key role played by particle “dunes” in the resuspension of
particles after they have fallen to the ground. Dunes are structures formed on the bottom of
the cell by the nearly horizontal fluid velocity field which pushes particles from the foot of
the descending plume to that of the ascending one. Without this mechanism which, by its
very nature, cannot be captured by point-particle models, very few particles, if any, would
be resuspended. Bigger dunes, formed by more or heavier particles, are more effective
than smaller ones in causing particle resuspension provided the total number and mass of
particles is not too large. A small number of particles produces a modest improvement on
the Nusselt number, but the effectiveness of particles as heat carriers is soon overshadowed
by the weight they add to the mixture which slows down the circulation. The efficiency
with which particles extract gravitational energy from the fluid reaches 20%, far higher
than previous estimates in the literature which place it below 1%.
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I. INTRODUCTION

Rayleigh-Bénard convection—the gravity-driven naturally occurring flow between two hori-
zontal plates, the lower one hotter than the upper one—is one of the standard problems in fluid
mechanics with a history that goes back over a century and a very voluminous literature. Much
less copious is the literature on the two-phase version of the problem, in which solid particles
are suspended in the fluid. Flows of this type occur in the transport of particles by oceanic or
atmospheric currents (see, e.g., Refs. [1,2]), in magma chambers (see, e.g., Ref. [3]), and in the
air circulation in rooms and other built spaces (see, e.g., Refs. [4–6]), to name a few examples.

Most of the existing studies are based on Lagrangian-Eulerian point-particle models which, by
their very nature, can simulate particle settling but not their resuspension. For this reason authors
have been forced to study either the transient version of the problem (see, e.g., Ref. [7]) or to
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maintain a statistically steady situation by artificially reinjecting the particles once they reached
the bottom plate. The authors of Refs. [8,9] did so by reinjecting the particles at the top plate,
while those of Ref. [10] reinjected them in the bottom 10% of the cell. Neither procedure is very
satisfactory as they artificially add energy to the system preventing the study of the pure effect of
particles on the fluid circulation. The procedure of Ref. [10] minimizes this artifact but reliance on
the fluid convection to resuspend particles reinjected near the bottom plate has the consequence that
only very light particles, with a terminal velocity about 1% of the convection free-fall velocity [see
Eq. (2.6) below for a definition] could remain in suspension, while heavier ones kept circulating near
the bottom of the cell. Other authors, who studied the so-called vertical natural convection, in which
the circulation is established between two vertical plates maintained at different temperatures, faced
the same problem and handled it in similar ways, allowing the particles to settle (see, e.g., Ref. [11])
or artificially reinjecting them (see, e.g., Ref. [12]).

It appears that the only way in which the difficulties encountered in these studies can be
satisfactorily addressed is by simulations which account for the finite size of the particles. Not many
studies of this type can be found in the literature. Notable examples are papers by Kajishima and his
group [13–15], who considered neutrally buoyant particles with such a high thermal conductivity
that heat transfer on particle collision was an important process.

In the present paper we describe particle-resolved simulations in which the particle-fluid ex-
change of momentum and heat is accounted for by the combination of a uniform finite-difference
grid and a spectral method in the neighborhood of each particle (see Sec. IV for a brief description).
We consider a Rayleigh number of 107, a unity Prandtl number and two cells, one cubic and one
quasi-two-dimensional with aspect ratio 2 (according to the long horizontal dimension). The particle
numbers are up to 3000 in the cubic cell and up to 1000 in the other one; in both cases, the maximum
volume fraction is close to 20%. This volume fraction is large enough that, in the cubic cell, the
results show the beginning of a transition toward a porous-medium behavior.

A major focus of the paper is the role played by bottom “dunes” in the resuspension of particles
fallen to the ground. This mechanism was first identified experimentally in Ref. [16] but it does not
seem to have been considered further in the literature. The efficient particle resuspension rendered
possible by dunes greatly increases the conversion efficiency of gravitational energy from fluid to
particles. We find an efficiency of about 20%, far exceeding the estimates of less than 1% given in
Ref. [17].

II. MATHEMATICAL FORMULATION

The fluid satisfies the standard Boussinesq model (see, e.g., Ref. [18]) with a temperature-
dependent density given by

ρ(T ) = ρ0[1 − β(T − T0)], (2.1)

in which T0 = 1
2 (Th + Tc) is the reference temperature and ρ0 the fluid density at T = T0; β is the

(constant) thermal expansion coefficient, and Th and Tc < Th the fixed temperatures of the bottom
and top no-slip boundaries, respectively. The continuity, momentum, and energy equations are given
by

∇ · u = 0, (2.2)

∂t u + u · ∇u = − 1

ρ0
∇p + ν f ∇2u + [1 − β(T − T0)]g, (2.3)

∂t T + u · ∇T = D f ∇2T . (2.4)

Here u, p, and T are the velocity, pressure, and temperature fields; g is the acceleration of
gravity; and ν f and D f are the (constant) kinematic viscosity and thermal diffusivity, respectively.
Nondimensionalization of (2.2), (2.3), and (2.4) leads to the well-known dimensionless Rayleigh
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and Prandtl numbers, Ra and Pr, defined by

Ra = β(Th − Tc)gH3

ν f D f
and Pr = ν f

D f
, (2.5)

with g =‖ g ‖. A characteristic velocity of the problem is the free-fall velocity Uf defined by

Uf =
√

gβ(Th − Tc)H . (2.6)

The particles translate with velocity Up according to Newton’s law,

mp
dUp

dt
= mpg + fhd

tot + fcoll, (2.7)

in which mp = ρpvp = π
6 d3

pρp, with ρp the (constant) particle density and vp the particle volume,
is the particle mass, equal for all the particles, and fcoll is the collision force with other particles or
with the boundaries of the domain (see Ref. [19]). The total hydrodynamic force fhd

tot is given by

fhd
tot =

∮
sp

σ · npdsp, (2.8)

with the integration of the fluid stress σ over the particle surface sp; np is the unit normal directed
out of the particle. This expression accounts for the effects of the entire fluid stress on the particle,
including flow effects and buoyancy, but it is useful to explicitly identify the latter by writing
identically

fhd
tot =

∮
sp

[σ · np + ρ(Tp)(g · x)np]dsp −
∮

sp

ρ(Tp)(g · x)npdsp, (2.9)

in which x is the position vector of the integration point. The second integral can be evaluated
explicitly with the result ρ(Tp)vpg. With the definition

fhd =
∮

sp

[σ · np + ρ(Tp)(g · x)np]dsp, (2.10)

we can therefore rewrite (2.7) as

mp
dUp

dt
= [ρp − ρ(Tp)]vpg + fhd + fcoll, (2.11)

which clearly separates the buoyancy force from the force fhd purely due to flow. The particle
rotation is governed by

Ip
d�p

dt
= lhd + lcoll, (2.12)

with Ip = 1
10 mpd2

p the moment of inertia, �p the angular velocity of rotation, and lcoll the couple due
to collisions (see Ref. [19]). The hydrodynamic couple lhd is given by

lhd =
∮

sp

anp × (σ · np)dsp, (2.13)

with a = 1
2 dp the particle radius. For the particle temperature we use the lumped-capacitance

approximation according to which

cppmp
dTp

dt
= −

∮
sp

q · npdsp ≡ −Q, (2.14)

with cpp the constant-pressure specific heat, Tp the particle temperature, and q · np the net heat flux
out of the particle at the particle surface. Conditions for the validity of this approximation will be
addressed below after (2.17).
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TABLE I. Some particle-density dependent parameter values used in the present simulations. The other
parameters were held fixed: Ra = 107, Pr = 1, Th − Tc = 4, and β = 0.1.

ρp/ρ0 Rep Nup St Stth Stth Uterm/Uf ρp/ρ(Tc ) ρp/ρ(Th )
cpp/cp f = 1 cpp/cp f = 5

1.1 10.0 3.89 0.28 0.37 1.85 0.063 0.917 1.38
1.2 16.9 4.47 0.26 0.35 1.75 0.11 1.00 1.50
1.4 28.0 5.17 0.25 0.36 1.80 0.18 1.17 1.75

The particle mechanical relaxation time is obtained from a simplified version of the particle mo-
mentum equation with the same form as (2.11) except that fcoll = 0 and fhd = −3πdpρ0ν f f (Rep)Up

with f (Rep) = 1 + 0.15 Re0.687
p the well-known correction to the Stokes law of the Schiller-

Naumann correlation (see, e.g., Ref. [20]). By considering the vertical component of this
equation and setting the left-hand side to zero we have an implicit equation from which the terminal
velocity of individual particles can be determined

Uterm = (ρp − ρ0)gd2
p

18ρ0ν f
[
1 + 0.15 Re0.687

p

] . (2.15)

After this step we can define the mechanical particle relaxation time as

τp = mp

3πdpρ0ν f f (Rep)
, (2.16)

with Rep calculated in correspondence of Uterm as a representative particle-fluid relative velocity.
The particle thermal relaxation time τp,th is defined by a similar procedure starting from a sim-
plified form of the particle energy equation (2.14) in which the right-hand side is replaced by
πd2

php(T − Tp) with the heat transfer coefficient hp = (k f /dp) Nup expressed in terms of the fluid
thermal conductivity k f and a particle Nusselt number Nup = 2 + 0.6Pr1/3Re1/2

p with Rep again
calculated in correspondence of the terminal velocity (see, e.g., Refs. [20–22]). The result is

τp,th = d2
pρpcpp

6k f Nup
. (2.17)

The lumped-capacitance approximation is justified provided the diffusion length in the particle,
of order

√
(kp/ρpcpp) τp,th, with kp the thermal conductivity of the particle material, is sufficiently

greater than the particle radius 1
2 dp, which requires kp/k f > 3

2 Nup. With Nup � 5 (see Table I) the
limit on the magnitude of kp/k f is not so stringent as to make the particle-particle heat transfer
on collision a significant process in the thermofluid dynamics of the system. The neglect of
direct particle-particle heat transfer on contact is a good approximation because the area of the
particle surface through which transfer takes place on contact is much smaller than that through
which the particle-fluid heat transfer occurs. Since the present mathematical model solves the
energy equation in the fluid accounting for conduction and convection, the heat transfer mediated
by the interstitial fluid is dominant and is properly taken into account. This argument could be
unsatisfactory if the particle thermal conductivity kp was orders of magnitude greater than that of the
fluid, as in Refs. [13–15] or if contacting particles could have very different temperatures. Validity of
the lumped capacitance approximation does not require such extreme values of the ratio kp/k f and in
weakly turbulent Rayleigh-Bénard convection in a fluid with Pr ∼ O(1), as considered here, large
temperature gradients cannot develop. Particles that come into contact have been surrounded by the
fluid throughout their motion and therefore, provided their thermal properties are not very different
from those of the fluid, their temperatures cannot be very different either (and, in any case, maximum
temperature differences are bounded by Th − Tc). Direct particle-particle heat transfer would also
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be hindered by the contact resistance. These considerations justify omission of this effect. The
fluid timescale is estimated as τ f = H/Uf from which the particle mechanical and thermal Stokes
numbers, St and Stth, follow as

St = Uf τp

H
, Stth = Uf τp,th

H
. (2.18)

III. BALANCE RELATIONS

In the theory of single-phase Rayleigh-Bénard convection there are two exact relations that
embody two different aspects of the principle of conservation of energy. The first one establishes
the fact that, in a time-averaged sense, the gravitational potential energy acquired per unit time by
the fluid is entirely dissipated by viscosity

E f ≡ −βρ0g ·
∫

V
(T − T0)udV = 1

2μ f

∫
V

τ : τdV, (3.1)

where μ f = ρ0ν f is the fluid viscosity parameter, τ is the viscous stress tensor, the overline denotes
the time average, and the integrals are extended to the entire cell volume. The second one states that,
again in a time-average sense, the nondimensional thermal energy imparted to the cell base, i.e., the
Nusselt number Nu, in part is conducted through the cell and in part is dissipated by viscosity,

Nu = 1 + 1

2μ f ρ0βgD f (Th − Tc)S

∫
V

τ : τdV. (3.2)

Here S is the common area of the cell base and top and

Nu = H

k f (Th − Tc)S

∫
St

qz,t dSt = H

k f (Th − Tc)S

∫
Sb

qz,bdSb, (3.3)

with the subscripts t and b denoting the top and bottom plates. The equality between the time-
averaged bottom and top Nusselt numbers is a consequence of the fluid energy equation (2.4)
integrated over the volume. By (3.1), (3.2) can be cast into the alternative form,

Nu = 1 + 1

D f (Th − Tc)S

∫
V

(T − T0)uzdV = 1 + E f

βρ0gD f (Th − Tc)S
. (3.4)

These relations are modified by the presence of finite-size particles. The analog of (3.1) is
obtained from the balance equation for the fluid kinetic energy 1

2ρ0u · u after integrating over the
fluid volume Vf and averaging over time,

−βρ0g ·
∫

Vf

(T − T0)udVf = 1

2μ f

∫
Vf

τ : τdVf −
Np∑

α=1

(
Uα · fcoll

α + �α · lcoll
α

)
, (3.5)

with fcoll
α and lcoll

α the collisional contributions to the force and couple acting on the α particle.
To generalize the second relation (3.4) we calculate the time derivative of the fluid gravitational

potential energy density −ρ(T )g · x, integrate over the fluid volume Vf , and average over time to
find

Nu = 1 + E f + Ep

βρ0gD f (Th − Tc)S
+ 1

k f (Th − Tc)S

Np∑
α=1

∮
sα

zq · nαdsα, (3.6)

in which nα is the unit normal on the surface of the α particle directed into the fluid and

Ep = −vpg ·
Np∑

α=1

[
ρp − ρ

(
T α

p

)]
Uα = −vpρ0βg ·

Np∑
α=1

(
T α

p − T0
)
Uα (3.7)
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is, similarly to E f , the average gravitational potential energy of the particles and the last step follows
from the fact g · ∑

α Uα = 0. The last term in (3.6) would vanish if the particles were to transfer an
equal amount of heat to the fluid above and below the cell midplane z = 0. This point is addressed
in connection with Fig. 8. The actual calculation of this term is facilitated by writing it identically
as

∮
sα

zq · nαdsα = zα

∮
sα

q · nαdsα +
∮

sα

(z − zα )q · nαdsα, (3.8)

with zα the vertical coordinate of the center of the αth particle. Explicit expressions for the two
integrals in this relation are given in (4.3) and (4.4) below.

The analog of another well-known single-phase relation can also be proven in a similar way. We
multiply the fluid energy equation by T , integrate over the fluid volume, and take the time average
to find

Nu = H

(Th − Tc)2S

∫
Vf

|∇T |2dVf , (3.9)

which has the same form as in single-phase flow except that the integral is extended only to Vf , the
portion of the computational cell occupied by the fluid.

In order to establish a balance relation for the particle energy we take the scalar product of (2.11)
with Up, of (2.12) with �p and add to find

d

dt

(
1

2
mpU

2
p + 1

2
Ip


2
p

)
− [ρp − ρ(Tp)]vpg · Up = fhd · Up + lhd · �p + fcoll · Up + lcoll · �p.

(3.10)
Written in this form, the equation identifies the rate of change of the particle kinetic and gravitational
potential energies. We define W hd

p , the average work per unit time performed by the hydrodynamic
forces and couples on the particles, and W coll

p , the average work per unit time performed by the
forces and couples arising from particle collisions, by

W hd
p =

Np∑
α=1

(
fhd
α · Uα + lhd

α · �α

)
, W coll

p =
Np∑

α=1

(
fcoll
α · Uα + lcoll

α · �α

)
. (3.11)

With these definitions, after taking a time average are recalling the definition (3.7) of Ep, (3.10)
becomes

Ep = W hd
p + W coll

p , (3.12)

stating that the average rate of change of the particle gravitational potential energy is balanced by
the work per unit time performed by the flow and interparticle forces, as expected. The relation
(3.12) affords us the possibility of an accuracy check on our simulations. The error, defined by

error =
∣∣Ep − (

W hd
p + W coll

p

)∣∣
Ep

, (3.13)

is shown in Tables III and V and is seen to be about 1.2% in one case and less than 1% in all the
other ones.

It may also be noted that, with the previous definitions, (3.5) may be written

E f = � − W coll
p , (3.14)
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with

� = 1

2μ f

∫
Vf

τ : τdVf , (3.15)

the average viscous energy dissipated by the fluid flow in the fluid volume per unit time. Equa-
tion (3.14) states that the average gravitational potential energy gained by the fluid per unit time,
in the left-hand side, is dissipated by viscosity and by interparticle collision processes as could
have been anticipated. In principle, the relation (3.14) could also provide an accuracy test for
the simulations. However, obtaining � requires the calculation of the fluid velocity gradient in
the geometrically very complex domain constituted by the computational domain with a spherical
“hole” corresponding to each particle. Since one of the favorable features of the present numerical
method is the relatively small number of cells per particle, the accurate calculation of this quantity
presents a computational challenge that we did not think worth pursuing. (The calculation of the
hydrodynamic force and couple on the particles does not require the explicit evaluation of τ.)
Substituting the numbers presented below in Tables III and V into (3.14) one finds differences
between 1% and 5% reaching, in one case, nearly 9%.

IV. NUMERICAL METHOD

The mathematical problem for the fluid is solved numerically by the PHYSALIS method, which has
been thoroughly described in several earlier publications (see, e.g., Refs. [19,23]). The method relies
on the use of analytic general solutions for momentum and energy to replace boundary conditions
on the particle surfaces by equivalent conditions on the neighboring nodes of a regular Cartesian
grid.

Consider for example the convection-diffusion energy equation in the neighborhood of a generic
particle in the particle rest frame. Because of the no-slip condition at the particle surface, in this
frame the fluid velocity is very small and convection can be neglected. Furthermore, it can be
assumed that the fluid temperature at the grid nodes closest to the particle surface tracks the particle
temperature with a negligible time lag. With these approximations, which are fully justified in
Ref. [23], the convection-diffusion equation can be approximated locally by ∇2T = 0. The most
general solution of this equation around a spherical particle of radius a with a given temperature Tp,
determined from (2.14), can be written as a series involving a superposition of spherical harmonics
multiplied by known functions of the distance from the particle center,

T (x, t ) = Tp(t ) +
∞∑

�=0

[( r

a

)�

−
(a

r

)�+1
] �∑

m=−�

T�m(t )Y m
� (θ, φ). (4.1)

Here (r = |x|, θ, φ) are a system of spherical coordinates centered at the particle center. In
particular, the first few coefficients T�m(t ) are related to quantities appearing in (2.14) and (3.6)
as the radial heat flux at the particle surface is given by

−q · np = k f [rT ]r=a = k f

∞∑
�=0

2� + 1

a

�∑
m=−�

T�mY m
� . (4.2)

From the well-known orthogonality properties of the spherical harmonic functions we have

−
∮

sp

q · npdsp = 2
√

πak f T00(t ). (4.3)

Similarly, we find ∮
sp

(z − zp)q · npdsp = −
√

12π a2k f T10. (4.4)

If the coefficients T�m(t ) are known, then a suitable truncation of the series can be used to assign
the temperature on the grid nodes closest to the particle surface and this information can be used
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FIG. 1. Snapshots of simulations with 500 (left) and 2000 (right) particles with volume fractions 3.27%
and 13.1%, respectively; for both the density ratio is ρp/ρ0 = 1.1 and the ratio of specific heats cpp/cp f = 1.
A few streamlines, colored according to the local vertical velocity, are drawn in the left figure but omitted for
the right one as the large number of particles would block the view. The particles are colored according to their
normalized temperature. The Rayleigh number is 107 and the Prandtl number is 1. Movies of these simulations
are available as Supplemental Material [27].

to solve the (complete) convection-diffusion equation (2.4) throughout the fluid domain. Since the
coefficients are unknown, the calculation proceeds by iteration, starting with guessed values. The
procedure is similar for the momentum equation for which reliance can be made on a general
solution of the momentum equation in the rest frame of each particle derived by Lamb (see, e.g.,
Ref. [24]). In this case, similarly to (4.3) and (4.4), the expansion coefficients provide directly the
hydrodynamic force, couple, and higher-order multipoles. Particle-particle and particle-boundary
collisions are handled by a soft-particle contact-force model summarized in Ref. [19]. The model,
which provides the forces and the couples on the colliding particles, is based on work of Refs. [25]
and [26] and the only adjustable parameter that it contains, other than the values determined by the
previous investigators which we have left unchanged, is the dimensionless Young’s modulus of the
particle material defined by Y = ν2

f Yd/[ρ0(1 − σ 2)g2d4
p] with Yd the dimensional modulus and σ

Poisson’s ratio. In the present calculation we take Y = 106.
Given the limited Reynolds number of the fluid-particle motion that we encounter in the present

paper (see Table I), on the basis of earlier grid convergence studies, for the present simulations we
have used uniform Cartesian grids with eight nodes per particle radius. Again on the basis of past
experience, the summations in the general solution for the energy have been truncated to � = 3,
i.e., to the first 16 terms. The same truncation has been used for all three families of coefficients
necessary for the fluid momentum.

The use of periodicity conditions in the horizontal directions does not prevent the development
of a horizontal drift of the particles and of the fluid bulk (the no-slip condition anchors in place the
fluid layers near the horizontal boundaries). We have monitored this effect finding a slow drift with a
mean velocity of a fraction of a percentage of the free-fall velocity. This artifact could be alleviated
by a controller in the form of a small time-dependent horizontal pressure gradient but the drift was
so small that such a measure did not seem necessary.

V. CUBIC CELL

Figure 1 shows snapshots from two simulations, one with 500 particles, on the left, the
other with 2000 particles suspended in a Rayleigh-Bénard flow with Ra = 107 and Pr = 1 in
a cell with aspect ratio 1. The particles are colored according to their normalized temperature
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FIG. 2. The total number of bottom particles (in red in the left panel and in green in the right panel) and the
number of particles in the largest bottom cluster (in black both panels); left and right panels for the simulations
with 500 and 2000 particles, respectively.

(Tp − T0)/(Th − Tc). The color on the streamlines in the left panel is according to the local fluid
vertical velocity normalized by the free-fall velocity and gives an idea of the ascending and descend-
ing plumes in the cell. A better visualization is afforded by two movies available as Supplemental
Material [27]. The length of each side of the cell is 20 particle diameters dp so that, with dp = 2.5
in dimensionless units, the range of all coordinates is [−25, 25].

Periodicity and no-slip boundary conditions are applied on the vertical and horizontal faces of
the cell, respectively. The time scale is (dp/2.5)2/ν f and the velocity scale is 2.5 ν f /dp, in terms of
which the free-fall velocity has the value Uf = √

4000 � 63.25. The temperature at the cell base
is fixed at Th = +2 and at the cell top at Tc = −2, the thermal expansion coefficient is β = 0.1
and the gravity parameter g = 200. While in single-phase Rayleigh-Bénard convection the flow is
entirely determined by the Rayleigh and Prandtl numbers and the cell aspect ratio, the addition
of particles introduces several additional dimensionless groups which are connected to each other
by the appearance of the same dimensional quantities in more than one of them. This circumstance
renders necessary the specification of more quantities than would be necessary for single-phase flow.
These additional dimensionless parameters characterizing the simulations are shown in Table I.

The simulation is started by arranging the particles randomly in the cell and freezing their
position until they are released at the time t = 0 at which the fluid has reached a regime of
statistically steady convection. Though fixed, the particles exchange heat with the fluid from the
start of the simulation until the time t = 0 at which they are released.

In the course of the simulations there always is a significant number of particles on the bottom
forming one or more heaps or clusters to which, following Ref. [16], we refer as “dunes.” The left
panel of Fig. 2 shows a graph of the total number of bottom particles (in red) and of the number of
particles in the largest bottom cluster (in black) for the simulation with 500 particles. The right panel
is similar for Np = 2000 with the total number of bottom particles in green and that of those in the
largest dune in black. The fluctuations of the numbers show that the dunes are dynamic structures,
although the number of particles associated with the largest dune closely tracks the total number of
bottom particles signaling that the largest number of clustered particles always belong to a single
dune. The mean number of suspended particles and related information is shown in Table II.

Clusters are identified by a variant of the “union-find” algorithm [28] which, given a set of points
(in this case the position of the particle centers) identifies “islands,” or clusters of particles. In the
present implementation a particle is declared to belong to a cluster when the distance of its surface
from that of another particle in the cluster is less than εdp, with ε a small parameter (unrelated
to the particle collision model). A cluster containing at least one bottom particle, i.e., a particle
the surface of which is closer to the cell bottom than ε dp, is declared a bottom cluster. All other
particles, isolated or clustered, are declared suspended. An example of the clusters identified in this
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TABLE II. Some results for the cubic domain: Total number of particles Np, total volume fraction φ,
number of suspended particles Np,s, volume fraction of suspended particles φs, and Nusselt number Nu.

Np φ Np,s φs Nu

500 3.27% 390 ± 18 (2.55 ± 0.12)% 17.4
2000 13.1% 1506 ± 100 (9.85 ± 0.65)% 17.2
3000 19.6% 1782 ± 180 (11.7 ± 1.2)% 17.1

way is shown in Fig. 3 which is a snapshot from the simulation with 2000 particles. The centers
of bottom or bottom-clustered particles are in black and centers of particles belonging to the same
cluster are connected by red lines, while the centers of suspended particles are in blue. We have
experimented with different values of ε, between 0.1 and 0.025, finding very small differences,
comparable to the differences between the black and green lines in Fig. 2(b). A somewhat greater
difference, comparable to that between the black and red lines of Fig. 2(a), is found by taking
ε = 0. In general, while the larger-scale trend of the curves does not change much, reducing ε has
the effect of superimposing high-frequency fluctuations on the slower oscillations of the bottom-
particles number. To avoid this fairly insignificant feature, the results shown here have been obtained
with ε = 0.1.

The dunes form because of the nature of the fluid flow near the cell bottom which is approxi-
mately horizontal and, by continuity, directed from regions under the descending plume to regions
under the ascending one [29]. Bottom particles exposed to this flow are dragged toward the base of
the ascending plume and gradually accumulate building up the dune. On the sides of the dune, the

FIG. 3. Illustration of the performance of the union-find algorithm used to identify particles on the bottom
or attached to particles on the bottom (black dots). The centers of particles belonging to the same cluster are
connected by red lines. The centers of suspended particles are blue. One notices small clusters that appear
attached to a vertical wall but, because of the use of periodicity conditions, are in fact attached to a bottom
cluster cut through by the opposite wall.
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FIG. 4. Illustration of the phenomenon of dune buildup, eruption, and dissipation for particles with
cpp/cp f = 1 for Np = 500; see Fig. 2(a) for the number of particles in the dune at the times indicated. The
incipient dune on the front left in (a) (time 27.9) accumulates an increasing number of particles [image (b),
time 42.0] until the convection is so strong that the particles are lifted and the dune “erupts” [image (c), time
49.4], after which the dune is depleted [image (d), time 54.4] and particle accumulation begins anew.

velocity of the ascending fluid acquires a vertical component which is able to drag particles up the
dune slope gradually building it up. At the same time, the heat flux at the cell bottom causes the
temperature of the dune particles to increase, which strengthens the ascending plume. At some point,
the plume becomes so strong that a large number of the dune particles is lifted and “erupts” from the
top of the dune. The process goes on to repeat itself cyclically, although not periodically given the
large number of degrees of freedom involved in the formation of the dune. This sequence of events,
which is demonstrated in Fig. 4 and is clearly visible in the movie available in the Supplemental
Material [27], explains the large oscillations of the number of dune particles visible in Fig. 2.

Figure 5 reveals some interesting changes occurring in the distribution of particles between
bottom clusters and unattached particle clouds transported by convection as the particle number
is increased. Figure 5(a) is the pdf of the time particles spend belonging to a bottom cluster (or
directly on the cell bottom) while Fig. 5(b) is the pdf of the time particles spend suspended in
the flow. The red, green, and black lines are for Np = 500, 2000, and 3000, respectively. It can be
seen in Fig. 5(a) that, as Np increases, belonging to a cluster attached to the cell bottom becomes
more probable although the attachment time decreases. Figure 5(b) shows that, for Np = 500, the
probability for a particle to be “in flight” has a single broad peak around Uf �ts/H ∼ 10. The green
line, for Np = 2000 particles, exhibits two peaks, a broad one centered around Uf �ts/H ∼ 10 and
a sharper one centered around a considerably shorter duration Uf �ts/H ∼ 1. The presence of two
peaks signals the transition between two regimes, the second one of which becomes clear from the
black line for Np = 3000. It is seen here that the broader peak around Uf �ts/H ∼ 10 has completely
disappeared while the peak around Uf �ts/H ∼ 1 has grown considerably in height and decreased in
width. Furthermore, the probability of particles spending a sizable amount of time on the bottom, for
example, Uf �tb/H = 20, is seen to decrease as Np increases. Thus, for Np = 3000, particles rapidly
alternate between connection to, and disconnection from, bottom-connected groups. Since, as the
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FIG. 5. (a) Probability density function of the time �tb particles spend belonging to a bottom cluster
(or directly on the cell bottom). (b) Probability density function of the time �ts particles spend suspended
in the flow. Red lines, Np = 500; green lines, Np = 2000; black lines Np = 3000. For all these simulations
cpp/cp f = 1.

particle volume fraction increases, eventually the system must become a porous medium, what we
see here is the beginning of this transition, something akin to the first steps toward percolation.

The previous results are not significantly dependent on the particle specific heat, which was
the same as that of the fluid for the simulations of Fig. 5. Figure 6 shows the pdf’s of the time
Np = 500 particles spend in suspension and on the cell base for cpp/cp f = 1 and cpp/cp f = 5.
The average time �ts spent in suspension does not depend significantly on the ratio of specific
heats being Uf �ts/H = 21.3 and 21.9, respectively, which implies that these flying particles are
essentially passively carried by the flow without their different thermal interaction with the fluid
being a significant factor in their behavior. This time is also considerably longer than the mean fluid
circulation time Uf tc/H ∼ 2. Thus, even accounting for the fact that Uf represents an overestimation
of the fluid velocity (see the color scale in Fig. 1 and Fig. 9), particles follow several fluid
circulations before sedimenting. Their eventual falling to the cell bottom is a low-probability event
consequence of the mildly chaotic nature of the present flow with Ra = 107 and of the relatively
small difference between the particle and fluid densities.

The heat capacity is somewhat more consequential for the average time �tb particles spend
on the cell bottom, either in isolation or in the dune, which is Uf �tb/H = 7.26 and 8.67 for the
smaller and larger heat capacities, respectively. Larger-heat-capacity particles require a longer time
to absorb heat, and it is only when they are hot enough that they can reinforce the plume sufficiently
to lift them. Another interesting aspect of Fig. 6 is the difference between the long tail of the lifetime

FIG. 6. Probability density function of the time particles spend on the cell bottom (solid) and suspended in
the convective circulation (dashed) for Np = 500, cpp/cp f = 1 (red), and cpp/cp f = 5 (blue).
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FIG. 7. (a) Probability density function for the particle temperature for different ratios of the particle-
to-fluid specific heats. (b) Probability density function for the heat transferred to the fluid by the suspended
particles; Q > 0, with Q defined in (2.14), indicates particles releasing heat to the fluid. The red lines are for
cpp/cp f = 1 and the blue lines for cpp/cp f = 5 and Np = 500.

pdf of the flying particles compared with the much shorter one of the bottom particles. It is evident
that there is a vigorous resuspension mechanism at work which prevents particles to remain in a
settled state too long. The time on the bottom is also shorter than the time between two successive
“particle eruptions” from the dune which can be seen in Fig. 2(b). This implies that, between one
eruption and the next, there is a large number of individual particle lift-up events for this rather small
number of particles. The cpp/cp f -related differences that we have just described cannot be expected
to have much influence in the transition with increasing Np that we have seen in Fig. 5 because the
long tail corresponding to settled particles tends to decrease with particle number.

Figure 7(a) is the probability density function of the particle temperature over the entire length
of the simulations for cpp/cp f = 1 and cpp/cp f = 5 with Np = 500. For both specific heats there
are higher peaks slightly to the right of the reference temperature T0 = 0, which is also close to
the fluid temperature in the central region of the cell. These positive peaks are due to the fact that
particles have a tendency to carry their thermal energy upward from the heated cell base. The higher-
cpp particles are slightly warmer than those with cpp/cp f = 1 because they are able to retain their
temperature longer due to their higher thermal Stokes number (Table I). Both types of particles
also exhibit a smaller and broader peak centered around (Tp − T0)/(Th − Tc) ∼ 0.3–0.4. This peak
is produced by particles which are heated at the cell bottom. In this case it is the particles with
cpp/cp f = 1 which are warmer, as their temperature rises more quickly than that of the higher-cpp

ones. Figure 7(b) is a similar probability density function for the energy exchange between the fluid
and the suspended particles and positive when the particles heat the fluid. In keeping with the results
in Fig. 7(a), for particles with cpp/cp f = 5 the maximum of the pdf corresponds to a slightly greater
heat flow rate. A greater difference between the two results concerns the wings of the distributions.
Particles with the smaller cpp cool off quickly and their contribution to the larger positive values of
Q is much smaller than that of the particles with cpp/cp f = 5. The difference is not as marked when
the particles are heated by the fluid (Q < 0) and Q is moderate. However, the number of the smaller
cpp particles contributing to large negative values of Q is very small since these particles quickly
adjust their temperature to that of the surrounding fluid, which reduces the temperature difference
and, with it, the amount of heat transferred.

The joint pdf of the particle position and the heat transferred to the fluid [first term in the right-
hand side of of Eq. (3.8)] is shown in Fig. 8 for cpp/cp f = 5 (left) and 1. The heat transferred to the
bottom particles [Q < 0, with Q defined in Eq. (2.14)] is greater the larger their heat capacity. As
particles are transported upward the maximum of the pdf is slightly positive for the same reason as
in Fig. 7(a). Particles with a larger heat capacity are able to maintain a temperature difference with
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FIG. 8. Joint probability density function of the particle position, on the vertical axis, and of the heat they
transfer to the fluid for cpp/cp f = 5 (left) and 1; Q is defined in (2.14).

the fluid for a longer time and, accordingly, their joint pdf is less peaked and more diffuse than for
those with cpp/cp f = 1.

It is well known that the free-fall velocity (2.6) overestimates the magnitude of the actual velocity
in the cell. This shortcoming has motivated the introduction of the “wind velocity,” which can de
defined in different ways (see, e.g., Refs. [18,30,31]). Here we define it as the modulus of the
mixture vertical velocity averaged over the midplane of the cell. This quantity is shown in Fig. 9 for
the single-phase situation (dashed) and for increasing number of particles in the order red, green,
and black. It is seen here that, for Np = 500 (red line), the wind velocity is essentially the same as
for the single-phase case (dashed), the only difference being a somewhat greater amplitude of the
oscillations around a mean value of 0.12, nearly six times smaller than the free-fall velocity. With
this result we can estimate the Reynolds number of the flow circulation in the cell as Re � 550. The
corresponding thickness δ of the viscous boundary layer on the cell base can then be estimated as
δ = √

ν f H/Uwind � 2.1, which is slightly smaller than the particle diameter dp, dp/δ = 1.2. It can
deduced that the top of the particles is exposed to the circulating velocity of the fluid so that the
particles can easily be pushed toward the base of the ascending plume. As the number of particles
is increased to 2000 (green) and then to 3000 (black) the wind velocity progressively decreases as
expected.

The running average of the present results for the bottom and top Nusselt numbers defined in (3.3)
with ρp/ρ0 = 1.1 and cpp/cp f = 1 is shown in Fig. 10(a) by the solid and dashed lines, respectively.
The horizontal short-dashed line is the value of the single-phase Nusselt number computed for
our situation, 16.9. With Ra = 107 and Pr = 1, the standard correlation Nu = 0.069 Ra1/3Pr0.074

FIG. 9. Normalized wind velocity Uwind/Uf , defined as the cross-sectional average of the absolute value of
the vertical mixture velocity at the cell midlevel, for the simulations in the cubic domain.
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FIG. 10. (a) Running averages of the bottom (solid lines) and top (dashed lines) Nusselt numbers vs
normalized time for the cubic domain with cpp/cp f = 1 in (a) and cpp/cp f = 5 in (b). In (a) the red lines
are for Np = 500, the green lines for Np = 2000, and the black lines for Np = 3000. For (b) Np = 500. In both
panels the horizontal dashed line is the computed single-phase value.

applicable to small aspect ratio (see, e.g., Ref. [32]) gives Nu = 14.9. The pairs of lines for Np =
500 and 2000 converge quite well, but those for 3000 particles are still fairly distant from each other
and it appears that substantially longer simulations would be needed for them to converge. While it is
not possible draw firm conclusions about the 3000-particle case, the results for Np = 500 and 2000
are both slightly higher than the single-phase case in spite of the very close physical properties of the
particles and the fluid. A likely explanation is that a particle maintains its integrity and is therefore
able to carry its thermal energy all the way to the top of the cell while a fluid parcel tends to be
deformed and broken up by the surrounding fluid in its ascent. This interpretation is strengthened
by Fig. 10(b) in which the effect of the particle heat capacity on the Nusselt number is compared
for Np = 500. It is seen here that particles with a larger cpp provide a modest increase in the total
amount of heat transported through the cell. The small improvement of the Nusselt number seems
rather fragile as the number of particles is increased since it is essentially gone for Np = 2000. It
appears that the increased load that the particles impose on the fluid circulation slows it down and
ends up hurting the overall heat transport in spite of the greater effectiveness of the particles as heat
carriers.

Particles gain gravitational potential energy by being suspended by the buoyancy-induced fluid
flow. Following Ref. [17] one can define a conversion efficiency from fluid to particles gravitational
energy by

ε = Ep

E f
, (5.1)

with E f and Ep the rates of change of the gravitational potential energies of fluid and particles
defined in (3.1) and (3.7), respectively. The results for E f , Ep, and ε from the three-dimensional
simulations described in this section are shown in Table III. The efficiency tracks fairly closely the
particle volume fraction and is substantially greater than the estimate 0.6–0.9% given in Ref. [17]
for reasons that will be discussed in Sec. VII. Table III also shows W hd

p , the hydrodynamic work
done by the fluid on the particles, and W coll

p , the collision work, both defined in (3.11). It can be
seen that all the particle quantities are approximately proportional to the number of particles, with
those for Np = 2000 and 3000 approximately four and six times those for Np = 500, respectively.
The fluid energy E f decreases as Np increases. Even with 3000 particles and a volume fraction of
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TABLE III. Global averaged quantities characterizing the fluid and particle behavior as computed in the
present simulations for the cubic domain. The fluid and particle potential energies Ef and Ep are defined in (3.1)
and (3.7); �, defined in (3.15), is the energy dissipated by viscosity; W hd, defined with W coll in (3.11), is the
hydrodynamic work rate of the fluid on the particles; W coll is the rate of energy dissipation by particle-particle
collisions; “error” is an estimate of the numerical error of the simulations defined in (3.13).

Np φ Ep Ef Ep/Ef � W hd
p W coll

p Error

500 3.27% 0.857 × 105 3.17 × 106 2.76% 3.07 × 106 1.48 × 105 −0.613×105 0.74%
2000 13.1% 3.04 × 105 2.85 × 106 10.7% 2.51 × 106 5.66 × 105 −2.62×105 0.018%
3000 19.6% 4.85 × 105 2.63 × 106 18.4% 2.11 × 106 8.77 × 105 −3.94×105 0.39%

nearly 20%, the particle quantities are always about one order of magnitude smaller than the fluid
energy E f .

VI. QUASI-TWO-DIMENSIONAL CELL

Some aspects of the problem at hand can be investigated by means of less demanding compu-
tational simulations carried out in a smaller quasi-two-dimensional domain having the same height
as the cubic domain of the previous section but with a footprint of dimensions 20 dp × 3 dp. We
enlarge the long horizontal dimension to twice that used for the cubic domain in order to put into
evidence two counter-rotating circulating streams with stagnation regions on the base and on the top
of the domain (Fig. 11).

The importance of these streams in promoting the resuspension of the particles is illustrated
by the snapshots shown in Fig. 11 in which the four panels are for Np = 150, 300, 500, and
1000 particles (volume fraction φ = 3.27%, 6.54%, 10.9%, and 21.8%, respectively). The lines
are instantaneous streamlines colored according to the vertical component of the fluid velocity. In
all cases, around the small stagnation region where the countercirculating streams meet, a dune
forms the size of which increases with the number of particles. The importance of this structure in
promoting the resuspension of the particles is evident and will be further illustrated below.

The wind velocity for the quasi-two-dimensional simulations is shown in Fig. 12. The single-
phase result is significantly greater than that for the cubic cell due to a more pronounced separation

FIG. 11. Snapshots of flow in the quasi-two-dimensional cell with Np = 150 particles in (a), Np = 300
particles in (b), Np = 500 particles in (c), and Np = 1000 particles in (d). The streamlines are colored according
to the value of the vertical fluid velocity.
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FIG. 12. Normalized wind velocity Uwind/Uf , defined as the cross-sectional average of the absolute value
of the vertical mixture velocity at the cell midlevel, for the simulations in the quasi-two-dimensional domain.

between ascending and descending streams. As expected, the wind velocity decreases with increas-
ing particle number. For the largest particle volume fraction, 21.8%, the slowing down is much
stronger than the corresponding result for φ = 19.6% for the cubic cell. A possible explanation is
that, in the cubic cell, for large volume fractions the particles tend to form columnar structures which
frequently form and breakup but are nevertheless effective in providing some form of support. As
is made evident by Fig. 11, the situation is quite different in two dimensions as the particles can
only be suspended when they are carried by the flow. Related information concerns the velocity
distribution in the cell. Without particles the position of the ascending plume wanders and it is
necessary to calculate the maximum upward flow velocity by calculating the maximum velocity at
each instant and then averaging over time. By this procedure we find a value of 30.6 velocity units.
With particles the maximum velocity is always above the dune which remains stable around the
midpoint of the domain. We find 30.0 for 150 particles, 27.8 for 300, 25.0 for 500, and 18.6 for
1000.

Figure 13(a), showing the pdf of the time intervals during which particles remain suspended for
ρp/ρ0 = 1.1 and cpp/cp f = 1, is the analog, for the quasi-two-dimensional case, of Fig. 5(b) for the
cubic domain, but it looks very much different as the series of peaks suggests harmonics of a process
occurring on a fundamental timescale. A Fourier analysis of the data in Fig. 13(b), with the time
dependence of the number of particles forming the dunes for ρp/ρ0 = 1.1 and 1.2 and Np = 150

FIG. 13. (a) Probability density function for the dimensionless duration Uf �ts/H of uninterrupted suspen-
sion for the quasi-two-dimensional simulations for Np = 150 (red), 300 (blue), 500 (green), and 1000 (black).
(b) Number of particles on the bottom of the computational domain vs time. Red lines are for Np = 150 and blue
lines for Np = 300; solid lines are for ρp/ρ0 = 1.1 and dashed lines for ρp/ρ0 = 1.2; in all cases cpp/cp f = 1.
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FIG. 14. Number of suspended particles Np,s normalized by the total number of particles Np vs the
volume fraction φ; the vertical bars indicate the standard deviation. The dashed lines are cubic and quadratic
interpolations for ρp/ρ0 = 1.1 and 1.2, respectively, to guide the eye.

and 300, is very noisy and hardly shows any distinctive peak. Analysis of the results demonstrates
that the peak around Uf t/H ∼ 8 in Fig. 13(a) corresponds to a mean circulation time of particles
carried by the fluid stream. We can support this conclusion by assuming that the average trajectory is
roughly circular with a diameter D so that the circulation time, normalized as in the horizontal scale
of Fig. 13(a), is (πD/Uwind )Uf /H . With, from Fig. 12, Uwind � 15, for this to equal Uf t/H ∼ 8 it
is necessary that D ∼ 30 which is not an unreasonable estimate of an average trajectory circulating
inside a square with side 50. The smaller peak around Uf t/H ∼ 16 corresponds to particles which
are carried around twice before falling to the bottom of the cell, and so on. An observation that
supports this interpretation is that the position of the peaks shifts slightly to the right as the number
of particles increases due to the decrease of the circulation velocity that can be seen in Fig. 12. These
results illustrate a fundamental difference between the three-dimensional simulations and the quasi-
two-dimensional ones which can be traced back to the much greater number of degrees of freedom
of dune shape and size in the larger simulations. Nevertheless, in spite of their limitations, the
two-dimensional simulations are instrumental in understanding and proving the essential importance
of dunes for particle resuspension as we further illustrate below. Another feature worth noting in
Fig. 13(a) is that, while the height of the peak around Uf t/H = 8 does not differ very much among
the results for Np = 150, 300, and 500, it becomes much smaller for Np = 1000, indicating a much
less orderly particle circulation. A similar strong effect of particle number increase from 500 to
1000 can be seen on the wind velocity in Fig. 12.

The average number of suspended particles Np,s normalized by Np is shown vs the volume
fraction φ in graphical form in Fig. 14 for ρp/ρ0 = 1.1 and 1.2; the lines are interpolating
polynomials intended mostly as a guide to the eye. The same information is presented in tabular
form in Table IV. In all cases the data suggest the presence of a maximum which is reached at a

TABLE IV. Quasi-two-dimensional simulations: Total number of particles Np, total volume fraction φ,
number of suspended particles Np,s, volume fraction of suspended particles φs, and Nusselt number Nu.

Np φ Np,s φs Nu

150 3.27% 84 ± 2 (1.84 ± 0.05)% 16.5
300 6.54% 189 ± 9 (4.12 ± 0.19)% 16.4
500 10.9% 344 ± 15 (7.50 ± 0.34)% 16.3
1000 21.8% 638 ± 40 (13.9 ± 0.87)% 15.2

054301-18



PARTICLE-RESOLVED MULTIPHASE RAYLEIGH- …

FIG. 15. Snapshots of the performance of artificial dunes (in red) for particle suspension. As can be seen
in (c), which shows the number of suspended particles as a function of time, the smaller dune [in (a)] is less
effective than the larger one [in (b)] in causing particle resuspension. In both cases the number of mobile
particles is 300, their density ρp/ρ0 = 1.1, and cpp/cp f = 1.

significantly smaller volume fraction for ρp/ρ0 = 1.2 than 1.1. As long as Np is not too large, the
number of suspended particles increases more than proportionally to the total number of particles.
The mechanism responsible for this behavior is the increase of the dune size with particle number
as larger dunes are better “launching pads” for particle suspension.

To support this statement we carried out simulations with small and large artificial dunes
constructed with particles held fixed (in red) as in Figs. 15(a) and 15(b). The particles on the ground
or connected to particles on the ground (in the manner described in the previous section) are blue
and suspended particles are gray. In both these examples the total number of free particles is the
same, Np = 300, but it can be seen that the number of particles suspended by the larger dune (right
panel) is greater than that suspended by the smaller dune, and that the “queue” of particles “waiting”
to be suspended is significantly longer for the small dune. The number of suspended particles is
shown as a function of time in Fig. 15(c) starting from the instant t = 0 at which the particles are
released. In the dune-free cell the circulation is fully developed at t = 0 and therefore, while some
particles initially slump, they recover fairly quickly. Dunes, however, take a longer time to warm up
and, accordingly, the circulation in the cell takes a longer time to develop. With little upward flow to
suspend them, when the particles are released they slump to a lower value than in the dune-free case.
Later, however, the ordering is reversed with the larger dune able to suspend the largest number of
particles. Another interesting and related observation is that the ascending plume is thinner for the
smaller dune so that particles have to crowd into it to get suspended.

Figure 16 shows running averages of the bottom (solid lines) and top (dashed lines) Nusselt
numbers for the four particle numbers of these simulations. The bottom and top lines show an
acceptable degree of convergence as the simulation time increases except for Np = 1000 for which
they are still quite distant from each other. As in the three-dimensional case, we find a modest
improvement in the heat transfer for Np = 150, which quickly deteriorates as Np is increased.
Although not converged, the results for Np = 1000 suggest a significant decrease of the Nusselt
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FIG. 16. Running averages of the bottom (solid lines) and top (dashed lines) Nusselt numbers vs normal-
ized time for the quasi-two-dimensional simulations; Np = 150 (red), Np = 300 (blue), Np = 500 (green), and
Np = 1000 (black). The dashed horizontal line is the computed single-phase value.

number for this case likely due to the slowing circulation velocity caused by the increased viscous
dissipation and mixture weight.

Table V shows for the quasi-two-dimensional simulations the same calculated parameters shown
in Table III for the three-dimensional case. The volume of the cubic cell is about 3.33 times as large
as that of the other one. For the smallest volume fraction, about 3.27% for both, the ratio of the
corresponding fluid energies E f is quite close to this ratio indicating a similar energy density but,
for the largest volume fraction, around 20%, the energy of the two-dimensional cell is about 4 times
smaller than that of the cubic cell implying a stronger sensitivity to specifics of the geometry. Due
to the smaller energy, all the particle quantities of the two-dimensional cell are smaller than those
of the cubic cell, but the conversion efficiency of potential energy from fluid to particles is about the
same.

VII. CONCLUSIONS

In the present paper we have demonstrated by means of particle-resolved numerical simula-
tions the key role played by bottom-forming dunes in particle resuspension in Rayleigh-Bénard
convecting systems with a Rayleigh number of 107 and a unity Prandtl number. Our results
confirm the experimental observations reported in Ref. [16], where the dune-suspension mech-
anism was first discovered, seemingly without much further consideration in the literature. The
simulations were conducted in two cells, one a cube with aspect ratio 1, the other a quasi-
two-dimensional cell with the same height and aspect ratio 2, but a thickness (in the horizontal

TABLE V. Global averaged quantities characterizing the fluid and particle behavior as computed in the
present simulations for the quasi-two-dimensional domain. See the caption to Table III for a definition of the
quantities shown.

Np φ Ep Ef Ep/Ef � W hd
p W coll

p Error

150 3.27% 1.45 × 104 9.00 × 105 1.61% 8.68 × 105 3.71 × 104 −2.25 × 104 1.24%
300 6.54% 4.85 × 104 8.68 × 105 5.59% 7.78 × 105 11.5 × 104 −6.56 × 104 0.82%
500 10.9% 7.78 × 104 8.28 × 105 9.40% 7.06 × 105 16.2 × 104 −8.32 × 104 0.79%
1000 21.8% 12.1 × 104 6.94 × 105 17.4% 5.29 × 105 22.4 × 104 −10.4 × 104 0.15%
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direction) of only three particle diameters. In both cases the maximum particle volume fraction was
around 20%.

Dunes form because the fluid flow near the cell bottom is nearly horizontal and directed from
the base of the descending plumes toward that of the rising ones. Particles captured in this flow
therefore collect around the base of the ascending plumes, form a dune and are pushed toward the
top of it thereby acquiring a vertical velocity component which facilitates their entrainment into the
rising fluid. It is evident from this description that dune formation will be prevalent when the particle
diameter dp is not too small compared with the thickness δ of the viscous boundary layer as in our
paper, in which dp/δ � 1. When dp 	 δ one may expect that suspension would be caused mainly
by large velocity fluctuations in the flow associated with turbulent bursts (see, e.g., Ref. [33]). This
process is distinct from particle transport along the bottom, which occurs also in laminar flow (see,
e.g., Ref. [34]), although both processes are often parametrized in terms of the Shields number
τw/[(ρp − ρ)gdp], with τw the bottom stress. Viscous bottom transport underlies the interpretation
of Solomatov and Stevenson (1993) who based their study on an analogy of the particulate system
with a system consisting of two superposed layers of miscible fluids with different densities [35].
This analogy led them to estimate the efficiency of conversion of the fluid energy into particulate
potential energy to be 0.6–0.9%, far smaller than our results in which the calculated efficiency can
approach 20%. When the particles are not too deeply immersed in the viscous boundary layer at the
cell bottom, therefore, resuspension by dunes appears to be much more efficient than resuspension
by shear. As a point of interest it may be mentioned that dune formation is also observed in sediment
transport in laminar flow, where they seem to be only a consequence of the destabilization of the
initial flat bed and are not observed to lead to particle suspension [36].

We have found that larger dunes are more effective than smaller ones in causing resuspension
and that, up to a point, dune size increases with particle number and weight in both three and quasi
two dimensions. Dunes are not static structures: The number of particles forming them depends
on time, much more strongly in three than in two dimensions. In fact, in three dimensions one
observes what may be called “breathing” of dunes, recurring episodes in which nearly half of the
dune-forming particles are erupted upward over a short period of time [Fig. 2(b)]. The dune then
builds up again over times of the order of tens of cell circulation times, erupts and so forth in
a repeatable, although not periodic, series of similar events. In two dimensions the variability is
much more limited [Fig. 13(b)] and the particles follow in a more predictable fashion the fluid
circulation going around the loop one, two or more times before falling to the ground and then
being resuspended. The fluid energy density is comparable in the two cells that we have studied but,
since the cubic cell has a volume about three times as large as the other one, the energy content of
the latter is smaller and, correspondingly, all the particle quantities (energy, hydrodynamic work,
collision work) are also smaller. On the other hand, the energy conversion efficiency from fluid to
particles at a comparable volume fraction is quite similar between the two cases.

For the largest volume fraction (about 20%) there were clear indications from the three-
dimensional simulation of an approach toward a porous-medium behavior with a very frequent
formation and disintegration of long particle chains. In two dimensions, instead, the particles
formed a long-lived layer on the cell bottom which occasionally was seen to break up leading to
particle resuspension. In both cells a small amount of light particles (up to a few percentages, with
ρp/ρ0 = 1.1) has a beneficial effect on the Nusselt number, but larger volume fractions slow down
the circulation by increasing the mean mixture density and end up decreasing the Nusselt number.

The addition of particles greatly increases the number of dimensionless parameters necessary
to characterize the flow. Together with the duration of typical simulations (from a few weeks to
two months and more) this feature has limited our exploration of parameter space and has confined
us to a relatively small Rayleigh number, 107. It would be very interesting to increase this value,
explore the effect of the fluid Prandtl number, increase and decrease the particle diameter, study the
effect of the particle thermal properties, investigate the role played by their mechanical and thermal
Stokes numbers, and so forth. The availability of particle-resolved numerical methods renders now
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possible the study of physical aspects of particulate Rayleigh-Bénard convection which could not
be investigated on the basis of point-particle models.
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