
PHYSICAL REVIEW FLUIDS 9, 054105 (2024)

Polydisperse particle-driven gravity currents propagating into a stratified
ambient in containers of general cross sections

T. Zemach *

Department of Computer Science, Tel-Hai College, Tel-Hai, Israel

(Received 23 September 2023; accepted 8 May 2024; published 28 May 2024)

We investigate the behavior of a high-Reynolds-number polydisperse gravity current
propagating along a channel of general cross-section form given by a width function
f (z) into a linearly stratified ambient fluid of density ρa(z). The current of density ρc is
formed by n types of particles of various densities and settling velocities suspended in
an interstitial fluid of density ρi. We formulate shallow-water equations of motion and
then solve the partial differential equation system of hyperbolic type by the Lax-Wendroff
two-step finite-difference method. We present typical profiles for height (h) and velocity
(u) of the current and mass concentration (�) of the particles. We show that initially
the front of the current propagates with an almost constant speed. During the next stage
the height and the speed of the nose decrease, which leads to the pseudosimilar final
stage of propagation. The solutions are illustrated for flow in typical power-law geometry.
The problem introduces two dimensionless parameters: (1) the stratification parameter S
(0 � S � 1), which represents the magnitude of the stratification in the ambient fluid, and
(2) the particle buoyancy parameter � (� � 0). We show that increasing S decreases the
velocity of the propagation of the current. The effect of � is the opposite: as � increases,
the current propagates faster. For a specific dependence between S and �, an equilibrium
is reached for a significant time and the system behaves like a system without particles
propagating into the ambient of constant density.

DOI: 10.1103/PhysRevFluids.9.054105

I. INTRODUCTION

Polydisperse particle-driven gravity currents are formed when suspension, created by mixing
of particles with different densities and settling velocities with an interstitial fluid, propagates
into an ambient fluid due to inherent density differences. During propagation, particles leave the
current and settle. Examples of such flows are deep-sea gravity currents, also called turbidity
currents. Often, these flows might be responsible for damage of communication cables lying on the
bottom of the ocean. An instance of such harm was documented in Taiwan following the Pingtung
earthquakes, wherein local fishermen observed disruptions in the waters. Within a few hours, the
majority of cables experienced at least one breakage, leading to significant failures in international
telecommunications [1].

On the one hand, most of the theoretical and experimental works deal with monodisperse suspen-
sion for which the particles forming the current have a uniform settling velocity [2], while in most
real situations the particles have different densities, size, and settling velocities. On the other hand, it
also has been assumed that the ambient fluid has a constant density, while in many natural situations,
especially in the ocean, the ambient is stratified [3]. For example, in shelf seas a themocline may
form in <50 m water depth and simultaneously be located close to the seafloor; yet here surface
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winds and tides may have leading-order control on flow dynamics. However, in deep-water systems
(i.e., the Abyssal plain at 4000+ m depth), the pycnocline may be constrained to the top 300 m of
the water column, below which density stratification is negligible. Ambient stratification also plays
an important role along coastlines, where it influences the occurrence of coastal upwelling events,
which bring nutrient-rich deep waters to the surface, fueling productivity in marine ecosystems. The
presence of a strong thermocline can inhibit vertical mixing and suppress upwelling, while weaker
stratification enhances the likelihood of upwelling. Understanding the interplay among ambient
stratification, coastal geography, and wind patterns is essential for predicting the timing and intensity
of upwelling events and their ecological impacts.

We also want to point out that the internal stratification of gravity currents might be an
important effect. However, it can be effectively ignored due to the dominance of other factors
such as topography, sediment volume, or flow dynamics inherent to specific geological or en-
vironmental conditions. For example, avalanches, which involve the rapid downhill movement
of snow, ice, and debris, often exhibit gravity-current-like behavior. In the case of dry snow
avalanches, internal stratification may be limited, with the flow primarily governed by factors
such as slope angle, snowpack stability, and the presence of obstacles. While some stratification
may occur due to differences in snow density or temperature, it is often secondary to other flow
dynamics.

Usually, the behavior of such flows is investigated both experimentally and theoretically in
horizontal rectangular containers. Thus, He et al. [4] consider monodisperse particle-laden gravity
current (GC) propagating into a stratified ambient fluid. The authors develop two- and three-
dimensional models and show that the particles may cause a particle-laden current to quickly
lose momentum so that the near-constant front velocity of the particle-laden current cannot be
maintained if no more particles are resuspended. The works of Mériaux and Kutz-Besson [5,6]
present experiments and a simple box model for the bidisperse GC propagating into a constant-
density ambient fluid. Additional experiments for the bidisperse GC were presented by Gladstone
et al. [7]. Harris et al. [8] presented a theoretical work for the polydisperse GC spreading into a
nonstratified ambient and again this work is limited to containers of rectangular cross section (CS).
The problem with such a restriction is that the GCs that spread in a nonrectangular cross-section area
such as a triangle, trapezoid, or circle occur more frequently in nature (e.g., rivers) and constructed
environments (tunnels, reservoirs, canals).

Additional theoretical work was done by Nasr-Azadani et al. [9] and it presents the results
of simulations obtained for the mono- and polydisperse GCs interacting with complex bottom
topology.

Containers of general CS were also discussed in the literature. A shallow-water (SW) theory
for the monodisperse currents is discussed by Zemach [10], who also [11] expands this theory for
the polydisperse currents. However, these works were limited to the nonstratified ambients. The
work of Zemach et al. [12] concentrates on the effect of particles on monodisperse lock-released
GCs in stratified and nonstratified ambients in containers of circular and semicircular CSs. This
work is based on a previous model of Zemach [10] to formulate the equations of motion for a
quite general CS propagating into a linearly stratified ambient. One of the important parameters
of the problem is the height ratio of ambient to lock parameter, H . The comparison with the
experimental data shows that for the full-depth containers (with the initial depth of the current
in the lock being equal to the depth of the ambient fluid) a good match is achieved. However,
for the partial-depth case, an adjustment coefficient multiplying the Froude number boundary
condition of the speed of the front is needed for a better agreement between the theory and the
experiments.

The purpose of the present work is to combine three interesting effects—the polydispersity, strat-
ification, and the general CS geometries—and to investigate the propagation of the finite-volume
polydisperse current into a linearly stratified ambient in containers of general CS.

The paper is organized as follows. The SW model is formulated in Sec. II. Section III is
dedicated to the finite-difference-method solutions and typical results: the pseudoslumping stage
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of propagation is discussed as well as the cases for which the similarity solutions can be derived.
An additional simplified box model is formulated and solved in Sec. IV. Finally, in Sec. V we
summarize the work and give some conclusions.

II. FORMULATION

We start the formulation with the assumption that a gravity current is a dilute suspen-
sion formed by n kinds of small heavy particles of density ρ

( j)
p , radius a( j)

p ( j = 1, ..., n),
and volume fraction κ ( j)(x, z, t ) [initially κ

( j)
0 (x, z)], well mixed with the interstitial fluid of

density ρi, kinematic viscosity ν, and concentration (1 − �n
j=1κ

( j)). The total concentration
of fluid is 1. We start with the dimensional variables. We introduce useful density ratio
parameters:

εb = ρb − ρo

ρo
, ε ( j)

p = ρ
( j)
p − ρi

ρi
,

εi = ρi − ρo

ρo
, j = 1, . . . , n. (2.1)

From the above, the density of the current can be expressed by

ρc = �n
j=1κ

( j)ρ ( j)
p + (

1 − �n
j=1κ

( j)
)
ρi = ρi

[
1 + �n

j=1κ
( j)ε ( j)

p

]
. (2.2)

The ambient fluid is assumed to be linearly stratified from the density ρb at the bottom of the
container at z = 0 to the density ρo at its top at z = H (we assume that 0 � z � H) and to have the
density

ρa(z) = (ρo − ρb)
z

H
+ ρb, (2.3)

where the density of the interstitial fluid is larger than or equal to the density of the ambient at the
bottom: ρi � ρb. For an ambient stratified fluid, we define a buoyancy frequency by

N 2 = − g

ρo

dρa

dz
. (2.4)

We employ Cartesian coordinates {x, y, z} with corresponding {u, v,w} velocity components.
Initially, a suspension of height h0 and length x0 is located at rest (u = v = w = 0) in a horizontal
container of height H (see Fig. 1). The sidewalls of the reservoir are uniform in the x direction,
where the CS is described by the functions y = − f1(z) and y = f2(z), which define the width of
the reservoir to be f (z) = f1(z) + f2(z) [13]. At t = 0 a fixed volume of denser-than-ambient fluid
is instantaneously released into the ambient fluid. For the ambient fluid we assume that ua = va =
wa = 0 during all stages of the current’s propagation. We neglect the effects of viscosity, turbulence,
and entrainment and assume that the domain of the current and of the ambient are separated by a
sharp and flat interface in the y direction. We also note that the channel of arbitrary cross section
has some inherent stratification within it that is of similar scale to the depth of the gravity current.
All these simplifications do not affect the correctness of the results in many practical situations; this
is true even for more simplified models (see Ref. [14], where a box model favorably compares with
the experiments).

Additional notations and assumptions are as follows: (1) h(x, t ) is the thickness of the current,
initially h = h0; (2) the current is shallow with h0/x0 � 1; (3) u(x, t ) is the velocity of the current,
averaged over the area of the current, initially u = 0; (4) the variable κ (x, t ) is also averaged over
the area of the current; (5) we assume a Boussinesq approximation ( ρi

ρo
≈ 1); and (6) the Reynolds

number gives an indication of the ratio of two effects: inertial and viscous effects. Here we assume
that the current is in the inviscid or inertial regime and the Reynolds number is large and is defined by
Re = hN uN/ν. (7) Turbulent remixing is assumed: all the fluid of the initial current remains as part
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FIG. 1. Schematic description of the current released from a lock of length x0 and height h0 in the channel
of height H with nonrectangular cross section: (a) Side view. (b) Cross section of channel. Here f (z) = f1(z) +
f2(z) is the width of the channel. In the analysis Aa denotes the area occupied by the ambient fluid, Ac is the
area occupied by the current, and AT = Ac + Aa is the total area.

of the current in the domain 0 � z � h(x, t ). The dispersed particles settle out from the current only
at the bottom, with constant velocity calculated from the Stokes formula. The remaining nonsettled
particles are remixed vertically in the current so that the volume fraction is homogeneous over the
cross section. At the interface z = h(x, t ), there is no relative motion between the current and the
particles.

Next, we use the subscripts c and a to denote the current and the ambient domains and define
the CS of the current as Ac = A(h) = ∫ h

0 f (z)dz and the total CS of the channel as AT = ∫ H
0

f (z)dz.
Now we develop the expressions for the pressures in both the ambient and the current domains,

under the assumption that the pressures satisfy the hydrostatic balance and the continuity condition

054105-4



POLYDISPERSE PARTICLE-DRIVEN GRAVITY CURRENTS …

pc = pa = const at the interface z = h(x, t ). Thus,

pa(x, z, t ) = −gρoz
[
1 + εb

(
1 − z

2H

)]
, (2.5)

pc(x, z, t ) = gρi
[
1 + �n

j=1κ
( j)ε ( j)

p

]
(h − z) + pa(h), (2.6)

and so the pressure gradient in the current can be expressed by

∂ pc

∂x
= gρi

[(
h
(
1 + �n

j=1κ
( j)ε ( j)

p

))
x
− z

(
�n

j=1κ
( j)ε ( j)

p

)
x
− ∂h

∂x

(
1 + εb

[
1 − h

H

])]
. (2.7)

We introduce

� = �n
j=1κ

( j)ε ( j)
p , (2.8)

�0 = �n
j=1κ

( j)
0 ε ( j)

p , (2.9)

the dimensionless stratification parameter

S = εb

εi
= ρb − ρo

ρi − ρo
, (2.10)

and the dimensionless particle buoyancy parameter

� = �0

εi
= �N

j=1κ
( j)
0

ε
( j)
p

εi
, (2.11)

which compares the effect of particles’ presence in the current to the stratification of the ambient
fluid and is assumed to be positive. We note that for hyperpycnal flows � is strictly positive, since
ρp > ρi and ρi > ρo. But for lofting flows this may not be the case.

Now we move to the dimensionless variables defined as follows (here the dimensional variables
are denoted by an asterisk):

{x∗, z∗, h∗, H∗, t∗, u∗, p∗} = {x0x, h0z, h0h, h0H, T t,Uu, ρoU
2 p}, (2.12)

where U = (gεih0)1/2 and T = x0/U . In addition, we employ the scaled mass fraction variables
(here j = 1, . . . , n),

φ( j) = κ ( j)ε
( j)
p

�n
m=1κ

(m)
0 ε

(m)
p

, (2.13)

which are in the range [0, 1]. Initially, φ( j)(x, 0) = φ
( j)
0 , where �n

j=1φ
( j)
0 = 1.

The settling speed of a particle, which is assumed to be small, can be calculated from the Stokes
formula by

W ( j)
s = 2

9
ε ( j)

p

(
a( j)

p
)2

ν
g. (2.14)

Additional dimensionless parameters are β ( j) � 1 ( j = 1, . . . , n), which are defined by the ratio
between the propagation time of the current for a distance x0 to the particle settling time for a
height h0:

β ( j) = W ( j)
s

U

x0

h0
. (2.15)

A. The governing equations

The system of n + 2 governing equations of motion can be written in the region of the current in
terms of h, u, φ( j) ( j = 1, ..., n) or, alternatively, in conservation forms in terms of A(h), uA(h), and
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φ( j)A(h). However, the following transformation (see Ref. [11] and Appendix for details),

φ( j)(x, t ) = φ
( j)
0 eβ ( j)G(x,t ), (2.16)

[initially G(x, 0) = 0] reduces this system of n + 2 equations to a system of three equations only,
written in conservation form in terms of A(h), uA(h), and GA(h):

∂A

∂t
+ ∂ (Au)

∂x
= 0,

∂ (Au)

∂t
+ ∂ (Au2)

∂x
+ ∂A

∂x

A

f (h)

[
�� + 1 − S

(
1 − h

H

)]
+ �

∂�

∂x
A�(h) = 0,

∂ (AG)

∂t
+ ∂ (AGu)

∂x
= − fM, (2.17)

where

�(h) = h −
∫ h

0 z f (z)dz∫ h
0 f (z)dz

, (2.18)

fM (h) = max ( f (h), f (0)), (2.19)

and

� = �(x, t ) = �n
j=1φ

( j)(x, t ) = �n
j=1φ

( j)
0 eβ( j)G(x,t ), with �(x, 0) = 1. (2.20)

The equations can also be rewritten in the characteristic form:⎛
⎝h

u
G

⎞
⎠

t

+
⎛
⎝ u A

f (h) 0
 u ��∗(h)
0 0 u

⎞
⎠

⎛
⎝h

u
G

⎞
⎠

x

=
⎛
⎝ 0

0
− fM (h)

A(h)

⎞
⎠, (2.21)

where

�∗ = ��n
j=1φ

( j)
0 β ( j)eβ ( j)G(x,t ) (2.22)

and

 = �� + 1 − S

(
1 − h

H

)
. (2.23)

System (2.21) is hyperbolic and it provides the following relationships on the characteristics:

dh ±
√

A

f (h)

1


du + ��∗


dG = −��∗



fM (h)

A(h)
dt on

dx

dt
= u ±

√


A(h)

f (h)
(2.24)

and

dG = − fM (h)

A(h)
dt on

dx

dt
= u. (2.25)

B. Initial and boundary conditions

Initially, in the domain of the current (0 � x � 1), u = 0, h = 1, G = 0, and � = 1. An addi-
tional boundary condition is u = 0 at x = 0.

The presence of the stratification and the particles is expected to reduce the speed of the propa-
gation, uN [2,15]. Here the subscript N denotes values associated with the “nose” of the current.
Indeed, at early times the particle-driven currents are the same as the equivalent homogeneous
currents because very few particles have settled out of the suspension. At later times, the lengths
of the particle-driven currents are less than their homogeneous counterparts because the loss of
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particles reduces the buoyancy driving force at the nose. During the propagation, the stratification
also reduces the effective driving force and, hence, the inertial effects.

Unfortunately, a rigorous extension of the formula of uN for these effects is not avail-
able. Therefore, we follow here the approximate method used for stratified currents in general
geometries [16].

At the nose x = xN , the boundary condition for uN in dimensional form can be approximated by

uN = (gεi)
1/2ϒ1/2h1/2

N Fr(a). (2.26)

In dimensionless form it becomes

uN = ϒ1/2h1/2
N Fr(a), (2.27)

where a = hN/H and Fr(a) is a Froude number function [11,17]:

Fr(a) = Fr(ϕ) =
[

2(1 − ϕ)2

1 + ϕ
(1 + Q)

]1/2

, (2.28)

where

ϕ = A

AT
and Q =

∫ h
0 z f (z)dz

h[AT − A]
. (2.29)

The slow-down coefficient ϒ is the ratio of the pressure force over the nose in the presence of
the stratification and the particles to the pressure force when no particles and no stratification are
present (S = 0,� = 0):

ϒ =
∫ hN

0 (pc − pa)(S,�) f (z)dz∫ hN

0 (pc − pa)(S=0,�=0) f (z)dz
. (2.30)

Substitution of the pressures in Eqs. (2.5) and (2.6) provides a more explicit form of the
coefficient ϒ :

ϒ = 1 + �� − S

[
1 − 1

2

hN

H
(1 + γ )

]
, (2.31)

where

γ =
∫ hN

0 z/hN (hN − z) f (z)dz∫ hN

0 (hN − z) f (z)dz
. (2.32)

We also mention that the dimensionless speed of the fastest mode internal wave in the ambient
fluid is (see Ref. [15]) uW = (SH )1/2

π
. A current is defined as supercritical when uN > uW and

subcritical when uN < uW . Theory and experiments show that both supercritical and subcritical
currents are feasible. Coupling the front speed and the internal waves in order to understand the
effects of the interaction requires a more sophisticated model than the simple one used here. Indeed,
a major deficiency of the one-layer SW model is that the internal gravity waves in the stratified
ambient are discarded. When the propagation is with subcritical speed, a wave-nose interaction
appears after some propagation. These interactions can lead to the slowing down of the current,
potentially compromising the accuracy of subsequent predictions made by the SW model. While
a thorough discussion of these complex interactions is not within the scope of the present paper,
interested readers are directed to further explore the topic in Ungarish’s work [15] and the related
literature therein.

C. Preliminary model validation

It is essential to verify the model using various simpler cases before implementing the current
approach.
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(1) For general f (z), β (1) �= 0, β ( j) = 0, j = 2, . . . , n, and S �= 0, the model reduces to the
formulation of monodisperse particle-driven gravity currents propagating in a stratified ambient.
The equations and the boundary conditions for this case were formulated by Zemach et al. [12]
and validated experimentally in containers of circular and semicircular CSs [ f (z) = 2

√
2Rz − z2,

where R is the radius of the container]. Zemach et al.’s results show good agreement between the SW
results and the experimental data for the full-depth (H = 1) cases for various values of S. However,
for the partial-depth cases (H > 1), they suggest using a Froude correction coefficient χ < 1 (in
most experiments χ ∈ [0.7, 0.8]) to reproduce a better comparison with the numerical results.

(2) For � = 0 (or β ( j) = 0, j = 1, . . . , n) and for a given general CS function f (z), the model
becomes identical to the theory of homogeneous gravity currents propagating in the stratified
ambient [16].

(3) For S → 0, the formulation can be reduced to the propagation of a polydisperse GC in
homogeneous ambient, discussed by Zemach [11] for � 	 1. The reason is as follows: as S → 0, it
can be concluded from Eqs. (2.27)–(2.31) that, for a significant propagation of the current, � should
be large. Thus, the present formulation convergences to the previous theory [11]. The qualitative
and quantitative behavior of the polydisperse current obtained from the theory was supported by the
results provided by previous experiments [5,6].

III. RESULTS FOR GENERAL f (z)

To solve the system of equations (2.21) with corresponding initial and boundary conditions
(2.27)–(2.29), we employ a two-step Lax-Wendroff finite-difference numerical method. We first
transfer the original x coordinate to η = x/xN (t ), so the domain of the solution remains constant
(0 � η � 1). Next, we run the code using 200 grid points in the [0, xN ] interval with a time step
of 1 × 10−3 for different sets of free parameters (H , f (z), β ( j) ( j = 1, . . . , n); φ

( j)
0 ( j = 1, . . . , n);

� and S) to obtain the height, velocity, and distance of propagation of the current as well as the
concentrations of the particles.

A. Pseudoslumping stage

The classical initial slumping stage of propagation is characterized by a constant height hN and
speed uN of the nose. We note that the balances of the characteristics (2.24) obtained by analytical
methods are complicated by the time-dependent term, and the boundary condition (2.27) at x = xN is
also time dependent. Therefore, a simple analytical solution for the slumping stage is not available.
To understand the nature of this stage, we employ the finite-difference solution.

Figure 2 shows typical solutions for the height of the nose, hN , the speed of the nose, uN , and
the distance of propagation, xN , as function of t in containers of parabolic form [ f (z) = z2] for
H = 2, S = 0.5, and various values of � = 0, 0.5, 1.0. The polydisperse phase is bidisperse and it
consists of two types of particles with β (1) = 0.0025, φ(1) = 0.8; β (2) = β (1)/7 = 0.00036, φ(2) =
0.2, correspondingly.

Initially, the nose propagates with constant height hN . The differences between the slumping
height hN are not significant for various values of �. After the slumping period, the nose height
hN decreases and the slumping distance x(s)

N becomes shorter as � increases. Thus, for � = 0,
the slumping finishes at t ≈ 12.5, while for � = 1, the slumping is over much earlier, at about
t ≈ 8. The velocity of the nose during the slumping phase depends on �: it increases with � and
approaches its minimum for � = 0. But the interesting thing is that the speed of the nose is not
exactly constant during this period. Indeed, as we can see, for � = 0, the speed uN is constant
during the entire slumping stage (uN ≈ 0.8). However, for � > 0, the speed of the nose slightly
decreases during the entire slumping stage (which should be called now the pseudoslumping stage).
The decrease of uN is about 5%. Such behavior, observed for the polydisperse system, was also
noted for the monodisperse currents propagating in nonstratified [18] and stratified ambient [4]. In
particular, we could anticipate that a particle-driven current loses particles (i.e., driving force) during
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FIG. 2. Pseudoslumping stage in container of parabolic CS with f (z) = z2 and H = 2. Here S =
0.5 and � = 0, 0.5, 1.0. The current is bidisperse with β (1) = 0.0025, φ (1) = 0.8; β (2) = β (1)/7 = 0.00036,

φ (2) = 0.2.
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the motion so that a constant front velocity of the particle-driven current cannot be maintained.
Mathematically, such behavior can be explained by the analysis of the balances of the characteristics
in Eqs. (2.24). Indeed, Eqs. (2.24) depend on time t (the term multiplied by dt), which means that
velocity of the current u and its h are not expected to be constant also during the initial stages of
propagation. On the other hand, since the settling is slow, the decrease of uN is mild.

Additional results are shown for fixed value of � = 0.5 and various values of S =
0.01, 0.5, 0.75, 1.0 in Fig. 3. Other parameters of the problem are identical to those described above
for Fig. 2. As we can see, as S increases, the slumping height hN increases and the slumping becomes
longer. The speed of the nose, uN , decreases slightly during this stage. As S increases, uN becomes
smaller.

Figure 4 shows additional results obtained for a parabolic container of different height H = 20
and quadridisperse phase, which consists of four types of particles with β (1) = 0.0175, φ(1) =
0.2; β (2) = 0.0025, φ(2) = 0.3; β (3) = 0.00036, φ(3) = 0.3; β (4) = 0.0000514; φ(4) = 0.2. Here
� = 0.5, S = 0.01, 0.5, 1.0. The effects of S and � in this system are similar to those discussed
above in the context of bidisperse systems.

B. The time-dependent flow

The typical behavior of the current propagating into the stratified ambient fluid is shown as
an example of bidisperse current spreading in a channel of parabolic CS [ f (z) = z2] with H = 2
into a stratified ambient. The profiles are shown in Fig. 5. Here β (1) = 2.5 × 10−3 and φ(1) = 0.8,
β (1)/β (2) = 7, φ(2) = 0.2, and S = � = 0.5.

The initial stage of propagation is the pseudoslumping stage. The next stage is characterized by
the decreasing height of the nose and the speed. This stage is a transition to the last pseudosimilarity
stage. The transition is smooth and it is therefore not possible to give a clear-cut statement regarding
when this intermediary phase ends. The long-time profiles display a tendency to pseudo-self-similar
behavior, which can be identified by a “tail-down–nose-up” form of height h.

Figures 2 and 3 show the distance of propagation, xN , as a function of time t for various
combinations of S and �. For a fixed value of �, xN decreases when S increases. Such behavior was
also obtained for the homogeneous currents (see Ref. [18]) and is expected according to Eqs. (2.27)
and (2.31). Indeed, as S increases, ϒ decreases and so does uN . The effect of � is the opposite: xN

increases as � increases. This again can be explained using the front conditions (2.27) and (2.31).
From the graphs and the analysis of the equations we can see that the effects of both the

stratification of the ambient and the presence of the particles in the current are actually independent
when S > 0 and 0 � � � 1 and can be analyzed separately. The effect of the stratification vanishes
when � 	 1. Indeed, for quite large values of � (say, � > 5), according to Eqs. (2.23) and (2.31),
the term (1 + ��) becomes dominant and so the stratification almost does not effect the system. In
such cases, the system becomes (almost) identical to one with a nonstratified ambient. For � → 0,
only the effect of stratification is important and the current becomes homogeneous.

We recall that the nose boundary condition is given by Eqs. (2.27)–(2.31). For � = 0 and S = 0,
ϒ = 1 and boundary condition (2.27) becomes the classical boundary condition for the nonparticles,
nonstratified ambient case. Above we mentioned that, on the one hand, the increasing values of the
parameter of particles, �, increase the velocity of propagation of the current. However, on the
other hand, increasing of the stratification parameter S decreases the speed of the current. Thus,
if � ≈ 1

S (1 − 1
2H ), then ϒ ≈ 1 and the particle-driven current is also expected to behave like a

homogeneous GC in a nonstratified ambient. Indeed, this condition shows a particular case for which
the presence of the particles in the current is counteracted by the presence of the stratification in the
ambient. In this case the current behaves for a significant time period like one without particles and
without the stratification in the ambient. Figure 6 compares between the homogeneous GC spreading
in the nonstratified ambient with polydisperse GC (β1 = 0.0025 and φ1 = 0.8; β2 = 0.00036 and
φ2 = 0.2) propagating into an ambient fluid with S = 0.8. Here H = 20 and we chose the value of
� to be equal to � ≈ 1

S (1 − 1
2H ) ≈ 1.219. As we can see, the agreement is good with discrepancy
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FIG. 3. Pseudoslumping stage in container of parabolic CS with f (z) = z2 and H = 2. Here � = 0.5;
S = 0.01, 0.5, 0.75, 1.0. The current is bidisperse with β (1) = 0.0025, φ (1) = 0.8; β (2) = β (1)/7 = 0.00036,

φ (2) = 0.2.
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FIG. 4. Pseudoslumping stage in container of parabolic CS with f (z) = z2 and H = 20. Here � = 0.5; S =
0.01, 0.5, 1.0. The current is quadridisperse with β (1) = 0.0175, φ (1) = 0.2; β (2) = 0.0025, φ (2) = 0.3; β (3) =
0.00036, φ (3) = 0.3; β (4) = 0.0000514; φ (4) = 0.2.
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FIG. 5. Profiles for parabolic CS f (z) = z2. S = 0.5, � = 0.5. Bidisperse with β (1) = 0.0025, φ (1) =
0.8; β (2) = β (1)/7 = 0.0036, φ (2) = 0.2. H = 2.
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FIG. 6. Bidisperse GC (solid line) with S = 0.8 and � ≈ 1
S (1 − 1

2H ) ≈ 1.219 vs GC with no particles and
nonstratified ambient (dashed line). Here f (z) = zα with α = 0, 0.5, 2 and H = 20.

of less than 10% even for quite progressive times for all the examined values α = 0, 0.5, 2. The
comparison between the profiles of h and u (not shown here) provides a similar agreement.

1. Monodisperse current of average settling velocity

The suspended particles in natural and environmental particle-driven GCs do not have equal
settling velocities. However, it may be convenient to approximate such polydisperse systems by a
monodisperse system with one type of particle of average settling velocity β, defined by

β = �n
j=1β

( j)φ
( j)
0 . (3.1)

In the case of nonstratified ambients [8,11] it was found that a polydisperse current behaves like a
monodisperse current of average settling velocity when

�n
j=1

(
β ( j)

β
− 1

)2

φ
( j)
0 � 1, (3.2)

which means that the distribution of the polydisperse system is very narrow.
A comparison between the polydisperse and corresponding monodisperse systems with stratified

ambient leads to a similar conclusion. In particular, for various values of S = 0.001, 0.5 and � =
0.5, 1 we compared (1) the bidisperse cases described above (β (1) = 0.0025, φ(1) = 0.8; β (2) =
0.00036, φ(2) = 0.2) with the monodisperse case (β = 0.0021) and (2) the quadridisperse cases

(β (1) = 0.0175, φ(1) = 0.2; β (2) = 0.0025, φ(2) = 0.3;

β (3) = 0.00036, φ(3) = 0.3; β (4) = 0.0000514; φ(4) = 0.2.

with the monodisperse case (β = 0.00437) and found that the solutions of xN (t ) differ very slightly
for small values of β ( j).
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C. Similarity solution

In general, no similarity solution can be obtained for the systems discussed. In particular,
no solutions are known even for the monodisperse GC propagating in the rectangular container.
Some works suggest approximate similarity solutions for the monodisperse particle-driven currents
propagating into the nonstratified ambient in containers of rectangular CS [19] and of power-law
CSs [20]. No similarity solutions are also known for the homogeneous GC propagating into the
stratified fluid, except for one particular case with S = 1,� = 0. Such a special case was discussed
by Ungarish [16] and was restricted for the containers of rectangular or power-law CSs only. The
main reason why the similarity solution is not available for the present configuration is the special
structure of boundary condition (2.27), which involves parameters that are not given to separation as
multiplied factors and therefore the usual assumption regarding the form of the similarity solution
cannot be made.

IV. BOX MODEL

In this section we provide a major generalization of the box model for polydisperse currents
propagating in channels of rectangular or power-law CSs.

We must keep in mind that in spite of its formal simplicity, the box model does not reproduce
the inner behavior of the currents and so using the SW approach is much more accurate. The main
advantage of the box model is that it has been used for quick estimates of the global behavior of
the gravity currents (see Ref. [15]). Additional advantages and deficiencies were discussed widely
concerning homogeneous (β = 0) [13], monodisperse [10,21], and polydisperse currents [8].

The motion is governed by the total mass conservation and a Froude front condition. The current
is assumed to be a “box” of uniform area A(h(t )) [evidently, h = hN (t )] and length xN (t ) whose
total volume V is constant:

V = A(h)xN . (4.1)

The nose condition (2.27) is

dxN

dt
= ϒ1/2h1/2Fr, (4.2)

where ϒ is given by Eq. (2.31). Using Eq. (4.1), we eliminate xN = V
A(h) to obtain

dxN

dt
= −V

f (h)

A(h)2

dh

dt
. (4.3)

Substitution of Eq. (4.3) into boundary condition (4.2) yields

dh

dt
= − 1

V

A2

f
Fr(h)h1/2ϒ1/2. (4.4)

In the spirit of the box-model simplifications, we also assume that the distribution of the particles
depends only on t and not on x. This implies G = G(t ) and the use of the last of Eqs. (2.21) gives

dG

dt
= − fM

A
. (4.5)

The combination of Eqs. (4.4) and (4.5) provides the system of nonlinear ordinary differential
equations (4.4) and (4.5), which can be integrated by a standard numerical method under the initial
conditions h(0) = 1, G(0) = 0 to provide h(t ) and G(t ). Then substitution of h(t ) into Eq. (4.1)
provides xN (t ).

The analytical calculation of xN (t ) is straightforward only for power-law containers with f (z) =
zα with specific stratification S = 1 only and no particles (� = 0). Such a case was discussed by
Ungarish [16]. Figure 7 shows a comparison between the SW and box-model (BM) solutions for
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FIG. 7. Comparison between SW (solid) and BM (dashed) solutions in containers of parabolic CS,
f (z) = z2. S = 0.01, 0.5, 1; � = 0.5. The GC is bidisperse with β (1) = 0.025, φ (1) = 0.8; β (2) = β (1)/7 =
0.0036, φ (2) = 0.2.

the H = 20 case in containers of parabolic form [ f (z) = z2] and bidisperse current with β (1) =
0.025, φ(1) = 0.8, β (2) = 0.0036, φ(2) = 0.2. Here � = 0.5 and various values of S are used: S =
0.01, 0.5, 1.0. Comparison between the BM and SW shows that the SW predicts a faster propagation
of the current. Thus, for small values of S, for progressive times the BM solution differs from
the SW by 10%. As S grows, the deviation increases. For S = 0.5 the difference is about 12% at
t = 20. However, as S approaches a value of 1, we can see that the differences between the solutions
approach about 30% at t = 20.

V. SUMMARY AND CONCLUSIONS

In this study we have developed a theoretical model for gravity current flows driven by a
polydisperse suspension of particles into a linearly stratified ambient in channels of general CSs. The
SW equations of motion were formulated from first principles for three variables only: the height
of the current, h, the area-averaged current velocity, u, and the modified function of concentration
mass fraction, G. The importance of the particles in the current is expressed by the parameter �

(� � 0), while the parameter S (0 � S � 1) indicates the importance of the stratification of the
ambient. Additional parameters of the problem are the initial concentrations and settling velocities
of the particles; the height of the ambient, H , and the geometry of the container, f (z). We wish
to emphasize the generality of the approach: it covers various CSs (power law, circular, and
trapezoidal), various combinations of particles and interstitial fluid, and various stratifications of
the ambient.

To solve the SW problem, we employed a simple Lax-Wendroff two-step finite-difference
method, which provides the numerical solutions within an insignificant computational effort on
a simple laptop computer.

Three main stages of propagation were determined. The first pseudoslumping stage is character-
ized by an almost constant speed of propagation uN for � > 0. However, no real slumping (with
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constant uN ) was observed, since for � > 0, when the particles settle out from the current, the
velocity of the nose, uN , decreases constantly during the initial stage. Next comes the transitional
stage and then, only for � = 0 and S = 0, 1, a similarity solution can be obtained.

Additional effects of the governing parameters of the problem are as follows:
(1) For the homogeneous currents, the stratification (S > 0) decreases the velocity of the propa-

gation of the current.
(2) The effect of the parameter � is opposite: as � increases, the current propagates faster. For

� 	 1, the effect of stratification becomes insignificant as compared with the driving force of the
particles.

(3) For the currents propagating into a nonstratified ambient, for any degree of the polydispersity,
the current propagates faster than the equivalent monodisperse current with an average settling
velocity, but the discrepancy between them is insignificant.

(4) For � ≈ 1
S (1 − 1

2H ), the current is expected to behave like a homogeneous current spreading
in a nonstratified ambient.

An additional simplified box model was developed for the containers of general CSs. We solved
this model numerically and compared with the results of the SW model. In general, the box model
underestimates the distance of propagation of the current, xN , by 10–20 %.

Overall, this work provides a major extension and generalization of the theory of monodisperse
currents propagating into a stratified ambient in containers of general forms to polydisperse currents
in the same environment (see Ref. [15]). The current becomes homogeneous for � = 0 and the
ambient becomes nonstratified for S → 0 or � 	 1.

More investigation is still needed to further assess the accuracy of the entrainment and drag clo-
sures needed in the extended SW model. This requires careful comparisons with more experimental
data. An additional interesting direction is the study by Navier-Stokes simulation, which might point
out details of the motion and must be left for future work.
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APPENDIX: REDUCING OF GOVERNING EQUATIONS TO SYSTEM
OF THREE EQUATIONS ONLY

In this section we follow the approach presented by Zemach [11]. We start with the equations of
motion: the first two equations are the conservation and momentum equations; the last n equations
are the mass concentration equations written for each kind of the particle:

∂A

∂t
+ ∂ (Au)

∂x
= 0,

∂ (Au)

∂t
+ ∂ (Au2)

∂x
+ ∂A

∂x

A

f (h)

[
�� + 1 − S

(
1 − h

H

)]
+ �

∂�

∂x
A�(h) = 0,

∂ (Aφ( j) )

∂t
+ ∂ (Auφ( j) )

∂x
= −β ( j)φ( j) fM, for j = 1, 2, . . . , n. (A1)

The last n equations of system (A1) can be rewritten in the following form:

dφ( j)

dt
= −β ( j)φ( j)h

fM (h)

A(h)
, j = 1, 2, . . . , n. (A2)
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A closer look at these n equations provides a conclusion that, once the model is solved for some
virtual φ(0)(x, t ) with φ

(0)
0 and β (0), the other φ( j) will follow simply for any j = 1, 2, . . . , n:

φ( j)(x, t ) = φ
( j)
0

[
φ(0)(x, t )

φ
(0)
0

] β( j)

β(0)

. (A3)

This suggests the following substitution:

φ( j)(x, t ) = φ
( j)
0 eβ ( j)G(x,t ), (A4)

initially G(x, 0) = 0. The substitution of Eq. (A4) into the last n equations of Eqs. (A1) reduces
these n equation to the same equation for G(x, t ):

∂ (AG)

∂t
+ ∂ (AGu)

∂x
= − fM . (A5)
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