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We present a numerical study of a thin elastic sheet with small extensibility freely
sedimenting in a viscous fluid. Two scenarios are investigated: sedimentation in free space
and near an infinite wall, where the wall may be vertical or tilted. Elastic sheets with
a rest shape of a square are modeled with a finite-element-based continuum model that
accounts for in-plane stretching and out-of-plane bending. The fluid motion is computed
by the method of regularized Stokeslets in free space and regularized Blakelets near a
wall. During sedimentation, the interplay between gravity and the elastic response of
sheets gives rise to complex deformation and reorientation dynamics, measured by a
dimensionless elastogravitational number (EG). In free space, sheets attain a stable ori-
entation by aligning perpendicular to gravity. Sheets with larger deformability adopt more
compact conformations and experience smaller hydrodynamic drag, thereby sedimenting
faster. A sheet with a random initial orientation reorients to align perpendicular to gravity,
accompanied by lateral drift due to the symmetry-breaking in conformations. We identified
two reorientation mechanisms depending on flexibility. When a sheet is placed near an
infinite wall, sedimentation is hindered compared to that in free space due to wall-induced
hydrodynamic drag. Near a vertical wall, sheets exhibit asymmetric conformations that
cause the sheet to drift, with the drifting dynamics determined by EG. The difference in
flexibility leads to a nonmonotonic trend in the evolution of wall-normal distance. Near a
tilted wall, sheets show qualitatively different dynamics when the wall angle is large: they
either deposit on or slide along the wall with a fixed wall-normal distance.
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I. INTRODUCTION

The sedimentation dynamics of particles in a viscous fluid under gravitational or centrifugal
forces have been receiving significant interest for their ubiquity in many industrial applications and
biological systems [1–13]. Extensive research has been performed to explore sedimentation dynam-
ics for various particle configurations, such as filaments [14–20], rings [4,21], cylinders [22–26],
and spheroids [27–29]. However, one important geometry has rarely been investigated: thin elastic
sheets. Sedimentation of elastic sheets is prevalent in the synthesis and processing of polymer films,
nanosheets, and quantum dots [1,3,5,10–13]. For example, graphene flakes obtained by liquid-phase
exfoliation are separated via centrifugation [1,5,11,12]. Therefore, the knowledge of sheetlike
particle sedimentation is crucial to predict sheet conformations obtained from centrifugation. In
this paper, we aim to provide a fundamental understanding of thin sheets sedimenting in a viscous
fluid. Sedimentation dynamics are affected by many factors, including particle stiffness [15,18],
aspect ratio [16], and fluid properties [30,31]. In this work, we focus on particle bending stiffness
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and wall effects. Below, we review some related works of other particle configurations to provide
insights for understanding elastic sheets.

It is known that simple rigid particles, like spheroids and rods, sedimenting in an unbounded
environment maintain their initial orientation due to Stokes flow reversibility [32]. A tilted initial
orientation can induce continuous drift of the particle in the lateral direction whereby the particle
sediments with a fixed angle determined by initial orientation. In contrast, deformability allows
particles to adjust their orientation and introduces more complex sedimentation dynamics. For
instance, sedimenting flexible slender fibers and filaments form varied shapes in free space and
have a unique and stable orientation with the end-to-end vector perpendicular to gravity, as a result
of nonlocal hydrodynamic interactions [17]. In a computational study, Li et al. found that a non-
Brownian weakly flexible filament with random initial conditions reorients to a unique orientation
and conformation, where the reorientation trajectories are restricted to a cloud with envelope size
determined by flexibility [18]. Cunha et al. studied non-Brownian sedimenting flexible filaments
modeled with a bead-spring system and characterized the final shapes of filaments varying from
almost horizontal to horseshoelike based on flexibility [15]. Moreover, they identified three different
reorientation dynamics with decreasing resistance to gravity-induced deformation: rotating, bend-
ing, and snaking. Gruziel and coworkers examined a knotted deformable closed chain with a rest
shape of ring sedimenting in a viscous fluid. In both experiments and simulations, they observed the
knots often attained a toroidal structure with oscillating intertwined loops during sedimentation [4].
In a later study, Gruziel et al. also gave a detailed investigation of loop flexibility and found
rich sedimentation dynamics [21]. For more complex geometries, Peltomaki and Gompper did a
numerical study of deformable red blood cell sedimentation using multi-particle collision dynamics.
They characterized and presented a phase diagram of three gravity-induced shapes depending on
elasticity: parachutes, teardrops, and fin-tailed spheres [29]. Matsunaga et al. extended the study by
considering red blood cells with different ratios of internal and external fluid viscosity to investigate
the reorientation dynamics during sedimentation [27]. Finally, returning to the rigid-particle case
but considering complex shape, Miara et al. experimentally showed that during sedimentation a
rigid disk bent into a U-shape can display a rich variety of trajectories and orientation dynamics
depending on the initial orientation [33].

The studies of single-particle sedimenting in free space benefit the understanding of more
complex scenarios. When multiple particles sediment together, the deformation and collective
sedimentation dynamics of particles are affected by interparticle hydrodynamic interactions. Recent
experiments and simulations have reported interesting hydrodynamic repulsion and attraction, as
well as shape deformations [14,19,20,22]. We will not elaborate on this topic, as the present work
focuses on single-particle dynamics.

In contrast to sedimenting in free space, the sedimenting dynamics can be strongly modified with
the presence of boundaries. It is known that particles next to a wall sediment slower compared to
free space, because the wall-induced drag hinders sedimentation. Rigid nonspherical particles such
as a tilted rod close to a wall no longer maintain the orientation. Instead, they can rotate and migrate
away from the wall. Russel et al. first reported characteristic glancing or reversing dynamics of a rod
sedimenting near a vertical wall, determined by the initial angle of the rod approaching the wall [34].
Mitchell and Spagnolie later extended the study to a rigid spheroidal particle with an arbitrary aspect
ratio next to a tilted wall [28] at zero Reynolds number. They developed analytical solutions based on
the method of images for randomly oriented prolate and oblate spheroids and found 3D dynamics
like glancing, reversing, and wobbling based on the symmetry of initial orientations. In addition,
they identified a stable sliding trajectory when the wall is slightly tilted.

Besides sedimentation in stationary fluid, recent works have explored the dynamics of elastic
sheets in fundamental linear flows and their dependence on sheet elasticity. In shear flow, Xu
and Green performed Brownian dynamics simulation and observed a cyclic crumple-stretch mo-
tion in a square sheet [35]. Silmore and coworkers addressed the influence of bending rigidity
and initial orientation on the dynamics of a non-Brownian flexible sheet [36]. Recently, Perrin
and coworkers experimentally identified a decrease in the buckling threshold when two parallel
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rectangles tumbled in a shear cell due to hydrodynamic interactions between sheets [37]. In
extensional flow, Yu and Graham numerically investigated the coil-stretch-like transition for soft
elastic sheets that show conformational hysteresis as a result of the interplay between flow strength
and sheet elasticity [38,39].

The aforementioned studies provide good insights into flexible particle sedimentation, and the
similarity between elastic sheets and elastic filaments implies that rich dynamics can be found for a
sedimenting 2D sheet in a viscous fluid. In this work, we present a numerical study to systematically
investigate the sedimentation dynamics of an almost inextensible elastic sheet by addressing the
influence of sheet bending elasticity and wall effects. The structure of this work is as follows. In
Sec. II, we present the model and numerical methods to simulate an almost inextensible sheet. We
introduce two different flow solvers to account for the sedimentation in free-space and near-wall
sedimentation, separately. In Sec. III, we introduce simulation results by first discussing the free-
space sedimentation, which is purely determined by the effect of sheet flexibility. Next, we place an
elastic sheet next to an infinite solid wall to examine the wall effects, where the wall can be tilted.
We conclude in Sec. IV.

II. MODEL DEVELOPMENT

A. Model setup

We consider an elastic thin sheet with a square rest shape that sediments in a stationary viscous
fluid. The fluid is Newtonian with viscosity η and density ρ f . The square sheet has edge 2a and
thickness h such that h � a. Thus, the sheet has a traction-free edge, along which fluid exerts
no forces. The weight of the sheet can be described as 4ρsga2h, where ρs is density and g is the
gravitational constant. The gravity, or the relative centrifugal force in the case of centrifugation,
acts along the positive x axis with y and z marked as lateral directions. In this work, we investigate
two scenarios: the sheet sediments (1) in an unbounded fluid, and (2) next to an infinite and
solid wall, where the wall can be vertical or tilted. The initial condition of the sheet is described
by an orientation angle φ, which is defined as the angle between the normal vector n of the
sheet and the positive y axis (i.e., φ = 90◦ indicates a sheet oriented perpendicular to gravity and
φ = 0◦ when the sheet sediments parallel to gravity). In the near-wall scenario, the wall can be
tilted with an angle α. If the wall is vertical (α = 0◦), then it aligns with the plane y = 0, such
that y becomes the wall-normal direction. The initial distance between the center of mass of the
sheet and the wall surface is measured by the wall-normal distance dwall,0. Figure 1 illustrates
the setup by placing a sheet with φ = 90◦ next to a wall tilted by α = 30◦. In simulations, we
model the tilted wall by modifying the gravity direction rather than the wall angle. For instance,
the case in Fig. 1 is simulated by tilting gravity with 30◦ toward a vertical wall, and the initial
orientation of the sheet is adjusted to maintain perpendicular to the modified gravity direction. For
visualization purposes, the results presented for the titled wall scenario will follow the setup in
Fig. 1.

We model the sheet as a continuum with a no-slip surface, so material points on the surface move
with the same velocity as the local fluid. The no-slip boundary condition also implies that the sheet
is impermeable—if the sheet moves with the local fluid velocity, then no fluid is passing through the
sheet. The sheet surface is discretized into triangular elements with a node at each corner. Detailed
numerical methods will be introduced in the following section.

The total strain energy of the elastic sheet can be written as the sum of in-plane strain energy Es

and out-of-plane bending energy Eb:

E = Es + Eb. (1)

Here, the in-plane strain energy is evaluated by integrating the strain energy density W over the sheet
surface. We choose a nonlinear neo-Hookean model (NH), as it is often used to model rubberlike
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FIG. 1. Illustration of a square sheet sedimenting next to a tilted wall. The case shows the sheet with initial
wall-normal distance dwall,0 = 1.5 is oriented φ = 90◦ and the titled wall angle is α = 30◦.

polymer structures, with the form

WNH = G

2
(I1 − 3). (2)

The two-dimensional shear modulus G scales with the equilibrium thickness h. The term I1 is
the first invariant of the right Cauchy-Green deformation tensor, and depends on the local principal
stretch ratios λi along the tangential direction of the sheet surface:

I1 = λ2
1 + λ2

2 + 1

λ2
1λ

2
2

. (3)

The last term denotes λ3, as the stretch ratio along the thickness direction, is obtained by incom-
pressibility of the material (λ1λ2λ3 = 1).

For the bending energy Eb, we assume the strain associated with bending, which scales as the
product of edge curvature and sheet thickness, is small, and apply a simple bending model that sums
the energy due to dihedral angles θαβ between neighboring elements [40,41]:

Eb =
∑

adj α,β

kb(1 − cos(θαβ − θ0)), (4)

where kb is the bending constant and the angle θ0 is zero as we assume a flat equilibrium state. We
also denote the sum of deflections on the sheet as a wrinkling parameter B:

B =
∑

adj α,β

(1 − cos(θαβ − θ0)), (5)

which simply represents the extent of wrinkling on the sheet surface and is related to the total
bending energy by the bending constant: Eb = kbB. The bending constant kb is calculated from
sheet bending stiffness KB [40,41], by comparing Eb with the energy of a square bending into
part of a cylinder with known curvature: kb = 1.03KB. That is, we first assign the square sheet a
small curvature by fitting the sheet to the cross-section profile of a cylinder, where we calculate the
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total bending energy based on Canham-Helfrich energy. We numerically evaluate the total bending
energy based on Eq. (4). The comparison between two bending energies gives an estimation of
bending constant kb.

For a sedimenting particle, the body force due to gravity acting on the sheet is described by a
potential U :

U = 4	ρga2h0	x, (6)

where h0 refers to the sheet thickness at its equilibrium state. We also include a truncated Lennard-
Jones (LJ) repulsive potential to prevent the sheet from self-intersecting. Numerically, the potential
acts between all the nodes, except for the nodes that are located within 3-ring neighbors of the
targeted node at the equilibrium state. The potential has the form:

ELJ =
{

4ϕ0
((

σ
r

)12 − (
σ
r

)6)
, if r < σ,

0, otherwise,
(7)

where r is a instant distance between nodes, σ scales the range of the potential, and ϕ0 measures is
the strength of the potential. Here, we choose σ = 0.06a and ϕ0 = 4 × 10−6. With these parameters,
the only case where the repulsive force is active is when the sheet edge would otherwise cut through
the surface, which only occurs for sheets with very small bending stiffness. In addition, we also
apply a similar truncated LJ potential to prevent sheets from entering a distance dlim from the wall,
and the potential only acts along the wall-normal direction in the range d < dlim. It is worth noting
that, this interaction only acts when the sheet fully deposits on the wall and has no other effect on
near-wall dynamics.

We introduce two nondimensional parameters to describe the aforementioned mechanical prop-
erties. The capillary number Ca = 	ρgah0/G compares gravity and the in-plane elastic response
of the sheet. Larger Ca indicates that the sheet is more deformable. In this study, we mainly focus
on an almost inextensible sheet, such that the in-plane deformation is strongly constrained with a
small capillary number Ca = 0.01. We have verified that a further decrease in Ca (by 10 times)
results in no qualitative change in sedimentation conformations. The comparison between bending
and gravity is measured by elastogravitational number EG = 	ρga3h0/KB: larger EG indicates
that the sheet is more flexible. In this study, we mainly focus on the influence of EG. Those
two dimensionless parameters can be evaluated based on the material properties of the sheet and
the physical operating conditions of experiments. Considering the thin Mylar sheets used in the
experiments of Perrin et al. [37] as an example, a piece of square Mylar sheet (half size a = 0.02 m,
thickness h0 ∼ 10 µm, Young’s modulus E ∼ 4 GPa, density ρMylar ∼ 1.4 × 103 kg/m3, bending
modulus KB ∼ 5 × 10−7 J) sedimenting in water (density ρwater = 1 × 103 kg/m3) achieves EG ∼ 1.
If the sheet is undergoing centrifugal rather than gravitational sedimentation, then the estimated EG

may be much larger depending on operating conditions.

B. Numerical methods

The numerical method for the elasticity problem is adapted from Charrier et al. [42]. We simu-
late the sheet by keeping track of nodes that move as material points on the sheet surface. From the
elastic energies, we obtain the summed nodal elastic force (Fe,i = Fs,i + Fb,i) exerted on each node
from the first variation of the total energy with respect to the nodal displacements. Each discretized
element of the sheet is assumed to have homogenous deformation, so the element edges always
remain linear. The deformed element is compared to its equilibrium shape under a local coordinate
transformation via a rigid body rotation, and the displacement for any point inside the element is
obtained by linear interpolation from the nodal positions. The detailed implementation can be found
in references [38–41]. The total nodal force Fe,i is evaluated by summing the elastic force (Fe,i ) j

due to the deformation of each surrounding element j shared by the node i: Fe,i = ∑
j (Fe,i ) j , where

the sum is over all elements meeting at the node.
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Besides the elastic force, we also need to consider the external body force Fg. The body force
acting on the sheet has been assigned to each node based on the Voronoi area around the node at the
equilibrium state. In this work, an almost inextensible sheet (Ca � 1) leads to a negligible change
in the Voronoi area assigned to the node. Due to conservation of mass, the nodal body force Fg,i

remains constant in the simulation acting along the x direction, where êx is a unit directional vector:

Fg,i = AVoronoi,i	ρh0gêx. (8)

C. Fluid solver

In the present work, we consider a small, thin square sedimenting at low Reynolds number. Under
these assumptions, the inertia of the fluid at the particle scale is negligible, and the fluid is governed
by the Stokes equation. For each node on the sheet surface, the elastic force Fe,i exerted by the sheet
on the fluid, the external body force Fg,i acting on the sheet are balanced with hydrodynamic force
Fh,i from the fluid:

Fe,i + Fg,i + Fh,i = 0. (9)

To account for the fact that the forces are not completely localized to the nodal positions, we use
the method of regularized Stokeslets to solve for the fluid motion [43]: the force Fi = −Fh,i exerted
by node i on the fluid corresponds to a regularized force density fκ

i = Fiδκ (x − Xi ), where Xi is the
position of node i and δκ (x) is a regularized delta function with regularization parameter κ . Thus,
the governing equations are the Stokes equation with regularized nodal forces and the continuity
equation:

−∇p + η∇2v +
∑

i

Fiδκ (x − Xi ) = 0, ∇ · v = 0. (10)

1. Free-space sedimentation

In an unbounded fluid, the velocity field generated due to a regularized point force f = Fδκ (x −
Xi ) can be represented using a regularized Stokeslet Gκ [32,38,39]:

vκ (x) = Gκ (x − Xi ) · F. (11)

As 1/κ → 0, Gκ reduces to the usual Stokeslet operator G(x − Xi ) = 1/8πηr(I + (x − Xi )(x −
Xi )/r2), where r = ||x − Xi||. There are many ways to regularize a delta function δκ (x); we choose
a regularization function for which the difference between G and Gκ decays exponentially as κr →
∞ [32]:

δκ (r) = κ3

√
π

3 exp(−κ2r2)

(
5

2
− κ2r2

)
. (12)

With this choice,

Gκ (x − Xi ) = erf (κr)

8πηr

(
I + (x − Xi )(x − Xi )

r2

)
+ κe−κ2r2

4π3/2η

(
I − (x − Xi )(x − Xi )

r2

)
. (13)

In the simulations, κ must be chosen to scale with the minimum node-to-node distance lmin. We
take κlmin = 2.1842, which is obtained from a validation case of a disk in biaxial extensional flow
discussed in [38]. We represent the total velocity at a point x as

v(x) = v∞(x) + vp(x) = v∞(x) +
∑

i

Gκ (x − Xi ) · Fi. (14)

2. Near-wall sedimentation

The presence of an infinite wall complicates the problem as we require an extra boundary
condition for the fluid: the velocity needs to vanish on the no-slip wall [v(y = 0) = 0 assuming
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a vertical wall] [44]. Therefore, the velocity field generated to a regularized point force is now
accounted for by the regularized Blakelet to satisfy this boundary condition [45,46]. The regularized
Blakelet consists of a regularized Stokeslet and an image system across the wall which contains
a combination of multipolar expansion terms from the Stokes equation that together cancel the
induced velocity on the wall to enforce no-slip condition. Compared to singular solution derived
by Blake, we need two extra rotlets to account for residual terms due to regularization. Following
Ainley et al. [45], we apply two types of regularized delta functions: δκ (x) and δd

κ (x) to regularize
different terms in the image system. Here, δκ (r) is from Eq. (12), and δd

κ (r) has the form

δd
κ (x) = κ3

√
π

3 exp(−κ2r2). (15)

The two functions satisfy the relation

δκ (x) = 1

2

(
r
∂δd

κ (x)

∂r
+ 5δd

κ (x)

)
. (16)

We define two vectors r = x − Xi and R = x − XI
i , where x is the position to evaluate velocity, Xi

is the the position of the node i and XI
i is the corresponding image point. Therefore, the regularized

Blakelet Bκ , corresponding to a regularized point force exerted at Xi = (x0, y0, z0) with a distance
y0 above the wall, can be expressed as in index notation:

Bκ,i j (r) = Gκ,i j (r) − Gκ,i j (R) − 2y0(δ jl − 2δ j2δ2l )

(
Dκ,i2l (R) − y0

2η
Pd

κ,il (R)

)

+ 2y0
(
Rκ,il (R) − Rd

κ,il (R)
)
ε jl2, (17)

where the regularized Stokeslet Gκ (r), the image regularized Stokeslet Gκ (R), the regularized
Stokes doublet Dκ (R), and the rotlet Rκ (R) are regularized by function δκ (x). The regularized
potential dipole Pκ (R) and the second rotlet Rd

κ (R) are regularized by the alternative function δd
κ (x),

and εilm is the Levi-Civita symbol. Note that if 1/κ → 0, the solution recovers the singular Blakelet
as two rotlets cancel each other [45,46].

Gκ,i j (r) = 1

8πη

((
erf (κr)

r
+ 2κe−κ2r

√
π

)
δi j +

(
erf (κr)

r
− 2κe−κ2r

√
π

)
rir j

r2

)
, (18)

Gκ,i j (R) = 1

8πη

((
erf (κR)

R
+ 2κe−κ2R

√
π

)
δi j +

(
erf (κR)

R
− 2κe−κ2R

√
π

)
RiRj

R2

)
, (19)

Dκ,i2l (R) = 1

8πη

(
1

R2

(
erf (κR)

R
− 2κe−κ2R2

√
π

)(
δ2lRi − δi2Rl + R2

(
δil − 3

RiRl

R2

))

− 2κ2 2κe−κ2R2

√
π

(
δi2Rl − R2

RiRl

R2

))
, (20)

Pd
κ,il (R) = − 1

4π

(
1

R2

(
erf (κR)

R
− 2κ (2κ2R2 + 1)e−κ2R2

√
π

)(
δil − 3RiRl

R2

)
+ 4κe−k2R2

√
πR2

RiRl

R2

)
,

(21)

Rκ,il (R) =
(

erf (κR)

4πR3
+ κ

(
κ2R2 − 1

)
e−κ2R2

2π
3
2 R2

)
εilmRm, (22)

Rd
κ,il (R) =

(
erf (κR)

4πR3
− κe−κ2R2

2π
3
2 R2

)
εilmRm. (23)
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Therefore, the total velocity at a point x as

v(x) = v∞(x) + vp(x) = v∞(x) +
∑

i

Bκ (x − Xi ) · Fi. (24)

At each time step for either the free-space or the near-wall case, after updating the force balance,
we update the nodal positions by applying the condition that they move with the local fluid velocity
in Eqs. (14) or (24), thereby satisfying the no-slip and no-penetration conditions:

dXi

dt
= v(Xi ). (25)

This equation is solved with a forward-Euler method. We have verified the solution with other
numerical methods such as the fourth-order Runge-Kutta method, and find that the higher-order
method shows negligible effects on the results based on the timestep used.

In this study, we nondimensionalize the distance by the sheet half-length a, time with η/	ρgh0,
and mechanical properties of the sheet by EG. For the results shown, we discretize the square sheet
with 1152 elements and 625 nodes. We have verified that further increases in mesh resolution lead to
only very small quantitative changes in the results and no qualitative changes. A mesh-dependence
study of settling velocity (at φ = 90◦) for selected cases indicates the deviation between the current
result and result from extrapolating to zero mesh size is less than 1%. For a rigid disk with radius
a, the friction coefficient is 16ηa [47]; with a simulation at mesh resolution comparable to that for
the square, we find a value of 15.6ηa. For numerical stability, the timestep applied follows 	t =
0.1Calmin, and we enforce an upper limit of 5 × 10−4 strain unit per time step. In all simulations, we
initially assign the sheet a random perturbation with a small magnitude (10−4) to trigger potential
deformations.

The computational approach we use does not resolve the fine details of the flow around the edge,
as our infinitesimally thin sheet is of course an idealization. In this ideal case, there is certainly
a stress singularity at the edge of the sheet, which we do not fully resolve. Nevertheless, it is
weak (integrable), and as noted above, we have checked that our results for particle shape, velocity,
and dynamics are converged. We can gain insight into the issues associated with the thin sheet
approximation by considering the case of an infinitely thin disk as a limiting case of an oblate
spheroid, where analytical results are available [47,48]. The stress singularity is limited to the
normal stress and is regularized as soon as the spheroid has a finite thickness. In any case, it
has a very small overall effect on the drag force—increasing the thickness of a spheroid to 10%
of its diameter only increases the drag coefficient by 0.4% [47]. Remarkably, for a circular disk,
not only is there no singularity in the shear stress on the surface, but this quantity is identically
zero, indicating that the shear stress distribution on a sheet is unlikely to play much role in its
deformation.

III. RESULTS AND DISCUSSION

A. Free-space sedimentation

We first consider a sheet sedimenting in free space. The initial orientation of the sheet aligns
perpendicular to gravity (φ = 90◦). In Fig. 2, we show four distinct examples with increasing
EG to address the effect of sheet flexibility. For the stiff sheet shown in Fig. 2(a), sheet stiffness
dominates over gravity. The sheet settles with an almost flat orientation, with negligible deforma-
tion. With increasing EG, sheet deformability becomes more pronounced. Due to hydrodynamic
interactions between different parts of the sheet surface, the center part of the sheet initially
sediments fastest, which drives the four corners to symmetrically lift upward. This intermediate
state soon becomes unstable and two edges fold inward while the other two edges relax to form
a taco shape. Based on EG, we observed two types of tacos. A less flexible sheet [Fig. 2(b)]
indicates a convex taco, where the slightly folded edges form a V shape, and the relaxed edges
are convex. A more flexible sheet [Fig. 2(c)] ends up with a concave taco, where the folded edges
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FIG. 2. Snapshots of a square sheet sedimenting in free space with φ = 90◦. (a) Flat (EG = 1). (b) Convex
taco (EG = 8). (c) Concave taco (EG = 40). (d) Complex (EG = 198). A–D represent the final steady conforma-
tion. Snapshots only show the conformation evolution without actual sedimenting distance. See Supplemental
Material at Ref. [49] for animated movies.

become a U shape, and the relaxed edges are concave. For very flexible sheets as Fig. 2(d), very
small resistance to bending leads to a complex crumpled geometry that is not considered in this
study.

We characterize the sedimentation dynamics by examining the folding of the sheet and the
sedimentation velocity of the final steady conformations. In Fig. 3(a), we show the extent of
folding by calculating the wrinkling parameter B defined earlier (the sum of deflection between
all neighboring elements) for sheets over a range of EG. In Fig. 3(b), we quantify the sedimentation
dynamics by measuring a terminal velocity vsed as shown in Fig. 3(b). In both plots, we observe
four different regimes, corresponding to the four examples (A–D) given in Fig. 2. Sheets in regime
A show negligible deformation and maintain an almost flat conformation, which leads to larger
drag and slower sedimentation. With increasing EG, the evolution of relaxed edges in Fig. 3(c)
demonstrates a smooth transition from a relatively unfolded state (regime B) to a compact folded
state (regime C). Elastic sheet conformations are more complex than fiber. With the transition
of folded edges, sheets also show a transition of the relaxed edges from convex to concave, to
accommodate a less wrinkled state. Finally, regime D represents a fully wrinkled shape and compact
conformation sediments faster in free space. Overall, the evolution of B and vsed show a similar
trend except for the transition from regime A to regime B. As a reminder, parameter B defined in
Eq. (5) estimates the degree of folding rather than the overall dimension of the particle, which is
what determines hydrodynamic drag [32]. From region A to B, the wrinkling parameter changes
from nearly zero (flat) to O(1) (somewhat folded). Accordingly, the change in overall dimension
and thus hydrodynamic drag is modest [see conformations of Figs. 2(a) and 2(b)] thus a negligible
change in terminal velocity. Relatedly, the abrupt change from region C to D corresponds to a
folded sheet further folding in on itself as illustrated in Fig. 2, lower right. This further folding
leads to a sharp increase in B but only a modest decrease in the overall dimension of the sheet,
and accordingly a modest change, about 30%, in sedimentation velocity. Typically, the transitions
of shape conformations resemble flexible filament sedimentation with increasing flexibility [15,18].
The almost flat sheet and taco sheet are comparable to the almost undeformed filament and V-shape
filament in Ref. [15], respectively. The folded edge view of the transition from concave to convex
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FIG. 3. Characterization of sedimentation dynamics. A-D are steady conformations shown in Fig. 2
representing four distinct regimes. (a) Evolution of wrinkling parameter B on the sheet vs EG. (b) Terminal
velocity vsed vs EG. (c) The transition of conformations between regime B and regime C is shown as the
evolution of folded and relaxed edges. For visualization purposes, the sheets are oriented to fold along the same
direction. In simulations, the symmetric square sheet can fold along either y or z axis with equal probability.

taco in Fig. 3(c) matches the observation of a U-like to a horseshoelike filament with increasing
flexibility. In summary, sheets with increasing EG show more evident folding behavior and the
conformations become more compact. The more compact conformations experience smaller drag
and sediment faster.

The conformations in Fig. 2 represent the final shapes for flexible sheets with random initial
orientations (i.e., the conformation is independent of φ.). The only exception is when a flat sheet
is initially aligned perfectly with gravity, in which case it reaches a flat state that is unstable
to small perturbations. Here, we illustrate the independence of initial orientation φ on the final
conformation by examining case B of Fig. 2 (EG = 8). Figure 4(a) shows the evolution of the
wrinkling parameter B for various initial orientation angles, indicating that all φ reach the same
final conformation shown in Fig. 2. Though arriving at the same conformation, different initial
conditions exhibit significantly different transient reorientation dynamics, shown via the evolution
of lateral drift distance d in Fig. 4(b). There is no drift observed in the case φ = 90◦, which
implies a stable orientation. In addition, the plateau in the evolution of B when t < 100 cor-
responds to a four-fold state previously shown in Fig. 2(b), which is an unstable state arising
due to the symmetric initial orientation and only appeared when φ = 90◦. The drift distance
d increases with a decrease of φ and the maximum drift happens when the sheet is initially
parallel to the gravity (φ = 0◦). Therefore, by the symmetry of free space, all possible sedimenting
trajectories of the sheet are restricted to a cloud. This observation agrees with observations in
flexible filaments [18]. We denote the maximum lateral drift distance (which occurs when φ = 0◦)
as dmax.

We summarize dmax for sheets with different EG in Fig. 4(c). The drift due to reorientation
is strongly influenced by EG, as more flexible sheets show smaller dmax. After carefully ex-
amining the dynamics, we introduce two categories of different reorientation dynamics, which
we denote rotating and bending, with examples illustrated in Fig. 4(d). Here, all sheets ini-
tially stay parallel to gravity subject to small random perturbations. For stiff sheets with
EG � 6, perturbation induces small deformation on the sheet while the sheet stays almost flat.
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FIG. 4. Influence of initial orientation φ and EG on sheet reorientation dynamics: (a) Transient evolution
of wrinkling on the sheet for EG = 8 with different initial orientation φ. (b) Transient evolution of lateral
drift distance d on the sheet for EG = 8 with different initial orientation φ. The maximum drift distance is
denoted dmax. (c) Maximum lateral distance dmax for sheets with different EG. (d) Illustration of two types
of reorientation dynamics: rotating (EG = 4) and bending (EG = 13) from selected cases in panel (c). The
sheet is initially oriented at φ = 0◦ subject to small and random perturbations. See Supplemental Material at
Ref. [49] for animated movies.

However, the small deformability induces the orientation of the sheet to slowly align perpen-
dicular to gravity. During reorientation, the sheet rotates around the sheet center while the
asymmetric and tilted conformation induces drift along the lateral direction resulting in evident
translation.

Unlike the stiff sheets, the flexible sheets with EG � 6 bend during reorientation. Here, the upper
and lower part of the sheet shows relatively independent deformation as illustrated in Fig. 4(d); the
upper part bends slightly, and the lower part of the sheet folds and rotates relatively to the sheet
center to form a taco shape. Bending sheets exhibit smaller lateral drift compared to rotating ones.
For larger EG, the flexibility ensures a quick folding reorientation and the drift becomes negligible.
We summarized the evolution of maximum drift distance dmax with EG in Fig. 4(c). The slope
decreases with increasing EG, as a more flexible sheet leads to smaller drift. The two reorientation
dynamics can be recognized by the change in slope around EG = 6, which matches the dynamics
observed in simulations. Similar orientation dynamics were also reported in reorientation dynamics
of flexible filaments [17,18].
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FIG. 5. (a) Snapshots of dynamics near a vertical wall with initial orientation φ = 90◦ and dwall,0 = 1.5.
Case A: EG = 8. Case B: EG = 28. Case C: EG = 40. The transient migration distance away from the wall
is denoted dwall. Each case has its steady free-space conformation for comparison. See Supplemental Material
at Ref. [49] for animated movies. (b) Transient evolution of migration distance dwall for three sheets in panel
(a). (c) Temporal evolution of migration distance dwall for sheets with different EG, with labels indicating cases
shown in panel (a). See Supplemental Material at Ref. [49] for animated movies.

B. Sedimentation next to a vertical wall

In this section, we place the sheet next to an infinite wall, which can be adjusted with an angle
α. We first illustrate the dynamics next to a vertical wall (α = 0◦) and apply the initial orientation
φ = 90◦, which is the stable orientation in free space. The initial wall normal distance dwall,0 is set
to be 1.5. That is, the center of the sheet is located 1.5 sheet half-lengths a away from the wall.
We have confirmed that different initial orientation of the sheet leads to no qualitative change in the
dynamics.

The presence of the wall breaks spatial symmetry, resulting in an asymmetric sheet conformation
in contrast to a symmetric conformation in free space. In Fig. 5(a), we show the dynamics of
three cases with increasing EG, where free-space evolutions of the sheets are symmetric tacos. The
asymmetric sheet, due to anisotropic drag, exhibits drift of the sheet along the wall-normal (lateral)
direction while sedimenting. This leads to the migration of the sheet away from the wall where the
migration dynamics are strongly determined by EG.

In the short term, the relatively stiff sheet [case A EG = 8 in Fig. 5(a)] directly migrates away
from the wall. In contrast, the other two flexible sheets [cases B and C in Fig. 5(a)] initially migrate
toward the wall. The noticeable difference in dynamics arises from the sheet conformations. In case
A, small EG leads to a slightly folded sheet where elasticity dominates and the overall orientation of
the asymmetric taco tilts away from the wall due to the unbalanced side edges. The resultant shape
induces the sheet to drift away from the boundary. In cases B and C, the sheets are more flexible
and the conformations are more compact, with two side edges getting close to each other. Here, the
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folded side closer to the wall experiences stronger drag than the side away from the wall, leading to
a tilted conformation that drifts toward the wall as it sediments.

In the long term, the stiff sheet [case A in Fig. 5(a)] continues migrating away, while flexible
sheets [cases B and C in Fig. 5(a)] reorient near the wall and take on a shape that eases migration.
That is, the stronger wall-induced asymmetry near the wall triggers the outer side edge of the flexible
sheet to turn inside out with a flip. Here, a sufficiently flexible sheet (case C) forms a taco with an
overall orientation now tilting away from the wall, and the new orientation causes the sheet to drift
away, as indicated in the snapshots of case C in Fig. 5(a). Interestingly, we notice a small regime
of intermediate EG (case B), where the sheet becomes trapped near the wall. More specifically,
the folded sheet sediments next to the wall with an almost constant wall-normal distance, while
the conformation shows weak oscillations as the conformation manages to reorient. The oscillation
in conformation is very small in the snapshots of case B shown in Fig. 5(a). Overall, the sheet is
“sliding” next to the wall at a nearly fixed distance. It is worth noting that the sliding sheet is a
result of both initial orientation and EG. If the sheet is initially oriented away from the wall, then it
immediately triggers the migration and the sheet escapes away from the wall.

The above examples illustrate three distinct responses of a sheet next to a vertical wall, deter-
mined by EG. To characterize the migration, we show in Fig. 5(b) the evolution of wall-normal
distance dwall. The flexible sheet (case C) migrates slower compared to the stiffer sheet (case A) as
it first drifts toward the wall and reorients to migrate away, indicating a nonmonotonic increase in
the wall-normal distance. The intermediate case B becomes trapped near the wall.

To elaborate on the migration dynamics, we examine the evolution of dwall in the parameter
space of EG in Fig. 5(c). At short times (t < 100), migration distance decreases with EG and very
flexible sheets begin to drift toward the wall. When t = 300, flexible sheets reorient near the wall
and migrate away, while sheets with intermediate EG become trapped around the wall, resulting in
a nonmonotonic trend in dwall. Here, we identified two transition regimes of EG: EG ∼ 23 shows the
threshold when the sheet immediately migrates away from the wall, and 23 < EG < 28 marks the
onset where the sheet can successfully reorient and escape. In addition, we examined the influence
of initial distance by placing the sheet away from the wall with dwall,0 = 3 and the results are in
qualitative agreement with the near wall condition. Since the wall effect is long-ranged, flexible
sheets initially drift toward the wall such as case B and C in Fig. 5(a) follows the same dynamics
even when the sheet is initially further away.

Finally, we consider the migration with a simple analysis. When considering the multipole
expansion of a particle sedimenting near a vertical wall, the total force is vertical (downward).
Here, the Stokeslet contribution to the particle velocity coming from the Blakelet is also vertical
(but upward), and leads to no wall-normal migration. Thus, the leading order contribution of the
Stokeslet image to the particle migration must be dipolar, scaling as 1/d2

wall. Therefore, the migration
velocity along the wall-normal direction v = ddwall/dt ∼ 1/d2

wall when the sheet is relatively away
from the wall. Integrating the equation with the initial condition dwall(t = 0) = dwall,0, we obtain a
simple relation between the wall-normal distance dwall,, time t , and a fitted constant k:

dwall = (3kt + d3
wall,0)1/3. (26)

To test the scaling, we take case A in Fig. 5(a) and use the evolution of dwall to fit Eq. (26). The
comparison in Fig. 6 shows that the simple scaling gives a good power-law fit when the sheet is
further away from the wall (t > 100). The deviation from the fitting curve for t < 100 has two
contributions. The first is near-wall hydrodynamics, and the other is the change in conformation as
the sheet deforms from a flat state to adopt a taco conformation.

C. Sedimentation next to a tilted wall

Compared to the vertical wall, the tilted wall with α > 0◦ introduces more complex sedimenting
dynamics. We initially set α = 30◦ and illustrate the effects of EG on sedimentation dynamics
in Fig. 7. In summary, we find three types of dynamics, depending on EG, which we denote
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FIG. 6. Comparison of wall-normal distance evolution for case A (EG = 8) in Fig. 5(a) by a fitting
equation dwall = (3kt + dwall,0

3)1/3 with k = 0.085 and dwall,0 = 1.5. We consider the dynamics for t < 100
to be governed by near-wall effects.

“depositing” (case A), “sliding” (case B), and “rolling” (case C). When the wall is tilted, gravity
pulls the sheet toward the wall. Relatively stiff sheets [EG = 1 Case A in Fig. 7(a)] simply deposit
on the wall. In simulations, we apply a repulsive potential to prevent direct contact between the sheet
and wall surface, such that the relaxed sheet becomes flat and sediments with a small fixed distance
matching with the repulsive potential range. This is indicated in the evolution of the wall-normal
distance dwall in Fig. 7(c) for case A.

For intermediate EG, flexible sheets remain folded as they approach the tilted wall. There are two
competing effects. The wall-induced asymmetric conformation drives the sheet to migrate away
from the boundary as in the vertical wall case. Meanwhile, gravity pulls the sheet toward the wall.
When these two effects are balanced, sufficiently flexible sheets may reach a steady conformation
while sedimenting at a fixed distance away from the tilted wall, which we call sliding. The evolution
of wall-normal distance reaches a fixed distance in Fig. 7(c). We want to address the difference
between sliding and depositing. Depositing is a result of added repulsive potential as we do not
account for the contact between wall and sheets. In reality, the sheet will deposit on the wall
without sedimenting. The sliding dynamics, however, result from the interplay between near-wall
hydrodynamics, gravity, sheet elasticity, and wall angle. Removal of the repulsive potential does
not affect sliding at all. The observation is analogous to the sliding dynamics reported for a rigid
spheroid particle near a tilted wall observed by Mitchell et al. [28], where the spheroid sediments
next to a tilted wall with a fixed orientation angle and keeps a fixed wall-normal distance. We
illustrate several sliding conformations with increasing EG in Fig. 7(b). To accommodate different
hydrodynamic stress, the equilibrium sliding sheets adopt different conformations and wall-normal
distances based on EG. In general, stiffer sheets show less asymmetric conformation and stay a
relatively large distance away from the wall. Flexible sheets show an inverse “J” shape, with folding
mainly located around the lower part of the sheet and staying relatively close to the wall.

In certain parameter regimes, sliding dynamics may be influenced by the initial distance from
the wall. When α = 30◦, we identified a small regime of EG where sheets show an interesting
rolling motion when initially far from the wall. Case C in Fig. 7(a) with EG = 40 reveals an
interesting rolling motion. The large wall initial distance (dwall,0 = 3) allows the sheet to deform
while approaching the wall and fully fold into a compact S shape near the wall. The folded sheet
then tumbles next to the wall resulting in an oscillatory trajectory as shown in Fig. 7(c). It is worth
noting that a rigid cylinder rolling next to a tilted wall will maintain its initial wall-normal distance
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FIG. 7. (a) Snapshots of dynamics near a tilted wall (α = 30◦) with initial orientation φ = 90◦: Case A.
EG = 1: the sheet deposits on the wall. Case B. EG = 40: the sheet initially close to the wall (dwall,0 = 1.5)
reaches a steady conformation and slides along the wall. Case C. EG = 40: the sheet initially far from the
wall (dwall,0 = 3) folds and rolls along the wall. See Supplemental Material at Ref. [49] for animated movies.
(b) Shape evolution of steady sliding sheets with increasing EG. (c) Transient evolution of wall-normal distance
dwall for cases shown in panel (a). (d) Steady wall-normal distance dwall,s for sheets next to a tilted wall with
α = 30◦.

due to Stokes flow reversibility. In contrast, a near-wall initial condition (dwall,0 = 1.5) lacks space
to fully fold on itself and ends up sliding, which indicates the sliding here is a result of hindered
transient reorientation dynamics.

We summarize the different dynamics observed for α = 30◦ by plotting the steady wall-normal
distance dwall,s for the equilibrium dynamics in Fig. 7(d). When EG < 8, sheets deposit on the wall as
maintaining a small distance within the repulsive potential range. Sheets with EG > 8 reach a steady
conformation and slide along the wall, while the steady wall-normal distance dwall,s decreases with
EG. Rolling only occurs in a small parameter regime when the sheet is initially away from the wall.

To systematically illustrate the influence of flexibility EG and wall angle α, a phase diagram of
long-term dynamics is shown in Fig. 8(a). For every case, we tested two different dwall,0 to rule out
dynamics due to the transient rolling state. Typically, when the wall is vertical (α = 0◦), sheets
escape the wall except for a small parameter regime [the sliding cases for α = 0◦ in Fig. 8(a)
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FIG. 8. (a) Phase diagram for EG vs α. Symbols represent the sheet dynamics. (b) Steady wall-normal
distance dwall,s for sliding sheets with different EG and α.

correspond to case B in Fig. 5(a)] where sheets are trapped due to reorientation. When the wall
is tilted, a very small α gives qualitatively similar dynamics as the vertical case. With a relatively
large α, sheets either become trapped near the wall region or deposited on the boundary. The specific
transition α is not determined. For α � 15◦, we determined a transition EG to distinguish between
sheets deposited on the wall and sheets trapped near the wall (marked as the boundary between
sliding and depositing). One observation is that the threshold EG to deposit increases with α.
Interestingly, under a small wall angle (α = 15◦), the sheet deposits at large EG. Here, very flexible
sheets initially formed a compact shape may unravel and become flat when next to a slightly tilted
wall. In addition, in Fig. 8(b) we plot the steady wall-normal distance dwall,s for the sliding sheets
for different EG and α. For all α, dwall,s decreases with EG. The phase diagram provides a potential
strategy to separate sheetlike particles. For example, to separate particles with different EG, we
may choose a wall angle such that the transition EG of specific α lies in between EG of particles.
Consequently, stiffer particles deposit on the wall while more flexible particles slide and can be
collected downstream.

IV. CONCLUSION

In this work, we perform numerical simulations to systematically explore the sedimentation of
an almost inextensible but flexible square sheet in a viscous fluid. An elastogravitational number EG

is used to measure the ratio between gravity and bending elasticity. We addressed two scenarios:
sedimenting in free space or beside an infinite planar wall, where the wall can be tilted.

In free space, the sheet takes on a stable orientation perpendicular to gravity, with a unique steady
conformation that is independent of initial orientations. Sheets adopt more compact shapes with
increasing EG, varying from almost flat to tacolike buckled shapes, and more folded shapes sediment
faster as they experience smaller hydrodynamic drag. The randomly oriented sheets reorient toward
the stable orientation, which induces lateral drift. The maximum drift happens when the sheet
is initially aligned with gravity. We identified two different reorientation dynamics, and the drift
distance due to reorientation increases with EG.

The presence of a wall introduces asymmetry to the sheet conformation, and the sedimentation
dynamics are determined by both EG and the wall-tilt angle α. When next to a vertical wall,
asymmetry in sheet conformation leads to the migration of the sheet away from the wall. We
found three different drifting dynamics determined by EG, and observed a nonmonotonic trend
of migration distance evolution due to the different responses in complex buckled shapes. When
the wall is tilted, wall-induced migration competes with gravity-induced deformation, leading to
the observation of three types of dynamics: depositing, sliding, and rolling. We developed a phase
diagram to show the dependence of dynamics on α and EG, and determined the transition EG

between depositing and sliding for different α.

054104-16



FREE-SPACE AND NEAR-WALL DYNAMICS …

This study deepens our understanding of the sedimentation dynamics of sheetlike particles and
provides several strategies for particle separation. Based on EG, we may separate particles via
different settling velocities, or different migration distances if next to a vertical wall. Typically,
a more robust separation method is to adjust the wall tilted angle. Since we know the transition EG,
an appropriate wall angle can make the relatively stiff sheets deposit on the wall while the more
flexible particles keep sliding.
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