
PHYSICAL REVIEW FLUIDS 9, 054103 (2024)
Editors’ Suggestion
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While predicting the flow behavior for a well-defined particulate microstructure is fairly
tractable, systematic tailoring of the particle properties to yield desired flows remains
illusive. For example, we still do not know how to precisely control rheological response
by tuning particle types and properties or how to tailor porous media for filtration ap-
plications. Here we show that the recent advances in automatic differentiation provide a
platform for methodologically addressing such questions. We optimize the packing of a
polydisperse system of periodically arranged circular rods to maximize flow rate in the
direction of applied pressure gradient. We show that the optimum topology of the struc-
tured porous medium depends on the solid volume fraction and approaches a staggered
square with the particles’ diameter ratio of

√
2 − 1 as the solid volume fraction reaches

π/4[1 + (
√

2 − 1)2]. Regardless of the porous medium topology, the divergence exponent
of the pressure gradient is universal and is equal to 5/2, as one finds from lubrication theory
for a simple square lattice. These results are independent of the flow’s Reynolds number
and can provide a foundation to study inverse problems for suspension systems.

DOI: 10.1103/PhysRevFluids.9.054103

I. INTRODUCTION

Flow in porous media is important in various fields, including the design of heat exchangers,
filtration systems, and fixed-bed reactors. Throughout the past century, substantial progress has
been made in understanding the flow fields generated in these scenarios, aiding in the development
of predictive models for dispersion and heat transfer under specific conditions. While a considerable
number of theoretical and numerical studies have been dedicated to predicting the flow within
porous media with a given topology at different Reynolds numbers for different fluids with different
rheological behavior [1–7], limited attempts have been made to systematically tune the topology
of the porous media to target a particular flow behavior [8,9]. In this paper we leverage automatic
differentiation to optimize the packing configuration of a bidisperse system comprising periodically
arranged circular rods, a classical porous media setup, to maximize the flow rate in the direction
of applied pressure gradient. With automatic differentiation, it is possible to directly differentiate
through direct numerical simulations of fully resolved flows, allowing for gradient-based optimiza-
tion of post geometry and arrangement for given Reynolds number flows. Automatic differentiation
is extensively used by the machine learning community in deep learning [10] due to its efficiency in
computing gradients of complex loss functions with respect to millions of parameters. With the
recent development of open-source packages such as JAX and PYTORCH [11,12] that streamline
the implementation of automatic differentiation for differentiable computer codes, attempts have
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FIG. 1. Problem setup. (a) Porous medium configuration. (b) Flowchart of the optimization algorithm using
a differentiable Navier-Stokes equation solver. Here F , g, and h are the loss function and the equality and
inequality constraints, respectively.

been made to tackle challenging inverse problems in various scientific fields. For example, Alves
et al. [13] developed an inverse mapping of transient reaction systems. Kochkov et al. [14] used
automatic differentiation to develop a fast yet accurate weather forecasting model by replacing
empirical components of a standard general circulation model with neural network models trained
on weather data. Another example includes a demonstration of controlling the kinetics of colloidal
particle self-assembly [15].

By differentiating over a fully resolved flow around posts in a periodic porous medium, we show
that the optimum topology of a structured porous medium depends on the solid packing fraction and
approaches a staggered square with a particle diameter ratio of

√
2 − 1 as the solid volume fraction

reaches a critical value of π/4[1 + (
√

2 − 1)2]. Interestingly, increasing the number of degrees of
freedom, by considering a polydisperse system, does not significantly improve the performance.
The pressure drop divergence follows a universal scaling, obtainable through lubrication analysis
between two pores indicating that complete blockage for a homogeneous porous medium is always
driven by a single pore closure along the main flow path. We also find that the optimum topology is
independent of the flow’s Reynolds number despite the different flow behavior when inertia becomes
important [16]. These results offer insights into the rheology of suspension systems for which the
solid particles are assumed to be stationary and the study can be easily extended to consider three-
dimensional porous media.

II. PROBLEM SETUP

To shed light on the underlying principles that determine the optimum flow path networks in
porous media, we consider a pressure-driven flow of an incompressible Newtonian fluid through a
periodic structure of a bidisperse assembly of circular cylinders, as depicted in Fig. 1(a). In addition
to controlling the bidispersity, i.e., the dissimilar cylinders’ radius ratio λ, we optimize the unit-cell
aspect ratio ξ . By allowing adjustments of the interior cylinder’s position, we enable exploring
symmetry breaking, expanding the search space of the optimum configuration. The relative position
of the interior cylinder is characterized by its distance r from the origin point of the unit cell and its
position vector’s angle θ as shown in Fig. 1(a).

With this setup of the problem, the optimization process explores various Bravais lattices,
including hexagonal, square, triangular, and others. A simple square array is obtained when λ = 0
and ξ = 1, while a hexagonal array is generated when λ = 1, ξ = 1/

√
3, r = Ly, and θ = 60◦, etc.

The Reynolds number in this problem is defined as ReM = 〈U 〉DM/ν. Here 〈U 〉 is the average fluid
velocity along the unit cell’s x axis. For a fixed solid fraction φ, the monodisperse particle diameter
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is given by DM = Ly

√
2ξφ

π
. Finally, ν is the kinematic viscosity. The choice of the monodisperse

particle diameter to fix the Reynolds number across the different cases does not have an impact on
the solution.

III. METHOD

To solve the periodic velocity field past the array, we used JAX-CFD [17], which is a differentiable
solver of the unsteady Navier-Stokes equations written in JAX [11]. We modified the solver by
incorporating a drag term following the Brinkman penalty method [18,19] to account for the
presence of solid obstacles and a forcing term to account for the macroscopic pressure gradient �P
over the periodic unit cell [20]. For optimizing the array parameters, we used an interior-point-based
nonlinear programming solver IPOPT [21]. The Jacobian of the loss function and the constraints
which include particle nonoverlapping conditions and fixed average velocity over the unit cell were
evaluated using the backward mode of automatic differentiation when the number of degrees of
freedom was lower than the number of constraints, while the forward mode was used when the
number of constraints was higher. Figure 1(b) gives a flowchart of the backward differentiation
optimization algorithm.

Mathematically, the problem is formulated as follows. We aim to minimize the loss function F ,

F = �P, (1)

subject to the constraint that the fluid velocity satisfies the momentum balance and the continuity
equations such that

ρ

(
∂ ũi

∂t
+ ∂

∂xi
ũiũ j

)
= − ∂ p

∂xi
+ μ

∂2ũi

∂x2
j

+ �P − βũi

N∑
k

H
((

xi − X k
i

)2 − Rk), (2)

∂ ũi

∂xi
= 0, (3)

along with the initial and periodic boundary conditions, which are given by ũi(xi, 0) = 0 and
ũi(xi, t ) = ũi(xi + Li, t ). Here ũ1 is the periodic velocity profile in the flow direction; X k

i and Rk are
the coordinates of the centers and radii of particles k; ρ and μ are the fluid’s density and viscosity,
respectively; H (x) is the Heaviside function; and N is the number of particles in the unit cell. The
parameter β controls the permeability of the solid obstacles where β = μ/Kp, and as Kp → 0,
one retrieves impermeable solid obstacles. The last term in Eq. (2) enforces the no-slip boundary
condition at the surface of the obstacles.

Further constraints in the problem include fixing the Reynolds number. That is done by imposing
a constraint to keep the average velocity 〈U 〉 through the porous medium constant throughout the
optimization iterations

g = 〈U 〉 − 1

L2
xξ

∫
�

dA ũ1(xi, T ) = 0. (4)

Here T is the final time and it is set large enough for the velocity profile to reach steady state, Lx

is the unit-cell dimension along the x axis, and ξ is the unit-cell aspect ratio. Moreover, we demand
that the particles defining the porous medium do not overlap by enforcing the following constraints:

hkm = ∥∥X k
i − X m

i

∥∥ − (Rk + Rm) � 0. (5)

This setup is a classical constrained nonlinear optimal control problem where the trajectory of
the fluid velocity is optimized. Equation (1) is the loss function, which is equal to the pressure drop
across the unit cell, �P. Equation (4) is an equality constraint that fixes the flow’s Reynolds number.
Equation (5) is an inequality constraint that ensures no overlap between particles k and m, where
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FIG. 2. Permeability of a periodic square lattice, i.e., ξ = 1, for different solid packing fractions. The
squares represent results obtained by Edwards et al. [5] for Re = 0 while the circles are results obtained

from the differentiable solver for Rep/
√

φ = 6.4×10−2, where Rep = ρL3
x �P
μ2 . The orange line is an empirical

formula generated by fitting the data of Edwards et al. To generate the simulation results, β was set to 2×105

and w = 1.5×10−5.

‖ · ‖ is the Euclidean norm. To ensure stability of the numerical solver, we replace the Heaviside
function with a logistic function of the form f (x) = 1

1+exp(−x) , where x = [(xi − X k
i )2 − Rk]/w. The

value of w controls the width of the transition region and it can be interpreted physically as half the
thickness of a porous shell around the obstacle.

We validate the model by comparing the scaled permeability, i.e., 〈U 〉μξ 2/�PL2
x , for a square

lattice with results obtained by Edwards et al. [5] as shown in Fig. 2. Since the fluid velocity is not

known a priori, calculations were carried out for Rep/
√

φ = 6.4×10−2, where Rep = ρL3
x �P
μ2 is the

Reynolds number based on the applied pressure gradient over the unit cell. For all values of φ, the
Reynolds number based on the particle diameter is much smaller than 1, ensuring that the flow is
in the Stokes regime. In such simulations, the values of β and w were set to 2×105 and 1.5×10−5,
respectively. These values ensure a sharp logistic function that approaches a Heaviside function and
ensures enforcement of the no-slip boundary conditions at the surface of the particles. We found
that a time step of 4×10−6 is needed for numerical stability. The time at which the mean velocity
was calculated is equal to 1.92, at which steady state is reached.

We found that values of w = 0.0015 and β = 2×104 are needed to obtain a smooth gradient of
the loss function; beyond such values the gradient explodes. Under such conditions, the effective
particle diameter is slightly increased as the logistic function becomes smooth. Moreover, the time
at which the loss function was evaluated was set to T = 0.8, at which the steady-state conditions
begins. To ensure that such approximations do not affect the optimum solutions, we conducted
a thorough comparison of the loss function landscape. Specifically, we examined the landscape
in relation to the particle diameter ratio for a bidisperse staggered square lattice with ξ = 1 and
φ = 0.76. This involved using the approximations and comparing the outcomes with those obtained
using parameters chosen to replicate data from [5]. Figure 3 shows a comparison between the
loss function landscape for the case where the periodic porous medium is a bidisperse staggered
square for different values of particle diameter ratio for the case for different values of the tunable
parameters β and w. As shown in the figure, there is a slight shift in the location of the optimum
value of λ that minimizes the loss function. This gave us the confidence that the obtained optimum
results are close to what would be found with alternative methods that enforce the no-slip boundary
conditions in an exact way. Finally, we note that our use of the logistic function for smoothing
effectively increases the value of the particle radius to R + 2w, which was used as an effective
diameter in later theoretical calculations, as will be discussed in the following section.
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FIG. 3. Loss function for different particle diameter ratio λ for the case where the periodic porous medium
forms a staggered square. The blue line represents the case of the tuning parameters of the logistic function
and the final time at which the loss function is evaluated. The orange line was generated using the tunable
parameters used to reproduce the permeability of a square lattice that was compared with the data of Edwards
et al. in Fig. 2.

IV. RESULTS

The green triangles in Fig. 4(a) show the minimum pressure drop (for ReM = 10×10−4 in the
Stokes flow regime) of the described lattice for different solid volume fractions. To elucidate the
effects of the packing fraction on the emergence of a distinct optimum arrangement of posts, the
figure also includes the minimum pressure drop for special cases where fourfold symmetry is
preserved and/or the unit-cell aspect ratio is fixed. Figure 4(b) shows the optimum value of the
lattice parameters λ∗, ξ ∗, r∗, and θ∗ as a function of solid volume fraction. The results demonstrate
four distinct array topologies for different packing regimes. (I) For extremely dilute porous media,
i.e., φ < 0.1, the pressure drop is a function of the solid volume fraction and is independent of the
arrangement of the cylinders. This is evident by the convergence of the pressure drop of the optimum
topology (green triangles) and the pressure drop curve of a simple square array (red dash-dotted
curve) and is consistent with the analysis of Sangani and Acrivos [6]. (II) In the low-packing regime
0.1 � φ � 0.2, forming channels of tightly packed monodisperse particles, i.e., a rectangular array,
yields the minimum pressure drop. (III) As the solid volume fraction exceeds 0.2, the optimum struc-
ture maintains the formation of a straight channel but with an interior restriction by positioning the
interior cylinder in between the corner cylinders as shown in Fig. 4(b). (IV) As the value of φ is fur-
ther increased, the topology of the optimum array asymptotically approaches a bidisperse staggered
square with a particle-size ratio of

√
2 − 1. This configuration corresponds to the maximum packing

of π/4[1 + (
√

2 − 1)2].
Beyond the extremely dilute limit, the pressure drop across the unit cell is affected by the

tortuosity of the flow path line as well as the width of the thin gap between the corner cylinders
of the unit cell. For regime II (0.1 � φ � 0.2), the optimal configuration forms a straight channel
by placing the interior cylinder at angle θ = 0 with respect to the lattice’s x direction. This
configuration in fact corresponds to a rectangular lattice. The channel’s width in this case is given

by Ly(1 − 2
√

φξ

π (1+λ2 ) ). The constraint of nonoverlapping particles imposes a condition that the

sum of the particles’ diameters is smaller than or equal to the unit cell’s width Lx. This leads to

the inequality constraint where ξ � 2(1 + λ)
√

φξ

π (1+λ2 ) . Considering these restrictions, the optimum

lattice parameters that maximize the gap thickness are ξ ∗ = 8φ/π for λ∗ = 1 and ξ ∗ = 4φ/π for
λ∗ = 0. Both solutions correspond to a rectangular lattice array with the same gap thickness of
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(i) (ii) (iii) (iv) (v) (vi)

FIG. 4. Optimum structured periodic porous media. (a) Minimum pressure drop for different porous media.
The red dash-dotted curve corresponds to a square lattice, i.e., {λ = 0, ξ = 1}; the golden dashed curve
corresponds to a centered square lattice, i.e., {λ = λ∗(φ), ξ = 1, r = √

2Ly, θ = 45◦}; the dark blue dashed
curve corresponds to an off-centered staggered square lattice, i.e., {λ = λ∗(φ), ξ = 1, r = r∗(φ), θ = θ∗(φ)},
the cyan dash–double-dotted curve represents a rectangular lattice, i.e., {λ = 0, ξ = ξ ∗(φ)}; the purple solid
curve corresponds to a centered rectangular lattice, i.e., {λ = λ∗(φ), ξ = ξ ∗(φ), r =

√
1 + ξ ∗(φ)2Ly, θ =

sin−1[1/ξ ∗(φ)]}; and the green solid line with triangles corresponds to the off-centered rectangular lattice
where {λ = λ∗(φ), ξ = ξ ∗(φ), r = r∗(φ), θ = θ∗(φ)}. (b) Optimized lattice parameters for the off-centered
rectangular case. The optimum porous medium structure is visualized for φ = 0.08 (regime I), φ = 0.18
(regime II), φ = 0.59 (regime III), and φ = 0.88 (regime IV). (c) Visualization of the different optimization
cases: (i) square, (ii) rectangular, (iii) centered square, (iv) off-centered square, (v) centered rectangular, and
(vi) off-centered rectangular. In all cases, the solid volume fraction is equal to 0.72.

Ly(1 − 4φ/π ). The black dash-dotted line in Fig. 4(b) shows a comparison between the optimum
unit-cell aspect ratio and the theoretical prediction in the second regime.

As the solid volume fraction increases further, i.e., φ > 0.2, maintaining a straight channel
significantly reduces its width and consequently increases the pressure drop as shown by the
divergence of the cyan dash–double-dotted curve in Fig. 4(a), which corresponds to the minimum
pressure drop for a rectangular lattice. To counteract this effect and increase the channel width, we
must position the interior cylinder at an angle relative to the reference particle. This introduces a flow
restriction in the middle of the channel. Thus, the optimum particle-size ratio requires optimizing
the pressure drop through both restrictions. By observation, the optimum position of the interior

cylinder is found to be given by r∗ = Ly(1 + λ∗)
√

φξ∗
π (1+λ∗2 )

and θ∗ = tan−1(
√

r∗2−ξ∗2

ξ∗ ) in which the

interior cylinder is positioned in between the corner cylinders, which ensures a minimum interior
flow restriction for a given particle-size ratio and unit-cell aspect ratio.

As the solid volume fraction approaches the maximum packing fraction, the minimum number
of flow restrictions (pores) is achieved when the interior cylinder is positioned between two
horizontally aligned corner cylinders. Increasing the particle-size ratio decreases the gap thickness
between the corner cylinders while wider pores are formed between the interior cylinder and the
corner cylinders. Thus, the optimum value of the particle-size ratio ensures a minimum total pressure
drop through all gaps. To quantify this, we assume lubrication theory holds within the formed pores
and the interior cylinder’s diameter is much smaller than that of the corner cylinders. Symmetry
then implies that the total pressure drop across a unit cell is approximated by �Pξ/〈U 〉μ ∼ l1/h3

1 +
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(i) (ii) (iii) (iv)

FIG. 5. Minimum pressure drop of optimized bidisperse porous media for different number density ratios.
The green up-pointing triangles, red down-pointing triangles, black diamonds, and blue stars correspond to
n1/n2 = 1, 2, 3, and 4, respectively. The optimum porous medium is visualized at φ = 0.84 for (i) n1/n2 = 1,
(ii) n1/n2 = 2, (iii) n2/n1 = 3, and (iv) n2/n1 = 4.

2l2/h3
2, where h1 = Ly/2 − R, l1 = √

2h1R, h2 =
√

[Ly −
√

R2(1 + λ)2 − ξ 2]2 + L2
yξ

2 − R(1 + λ),

and l2 = √
2h2R(1 + λ). Here R = Ly

√
ξφ/π (1 + λ2) and the nonoverlapping constraint demands

that h2 > 0. Thus the optimum values of the particle-size ratio λ∗ and the unit-cell aspect ratio
ξ ∗ are obtained by solving an optimization problem to minimize the approximated total pressure
drop across the unit cell. The black dash-dotted curves in Fig. 4(b) show a comparison between
the theory and the numerical results obtained from the optimization of the full flow problem. As
the solid volume fraction is increased, the particle radius ratio, optimum unit-cell ratio, particle’s
relative position distance, and angle approach

√
2 − 1, 1,

√
2, and π/4, respectively. Interestingly,

the optimum solution is independent of the flow Reynolds number ReM for moderate Reynolds
numbers, indicating that flow recirculation which appears as the fluid inertia becomes important
has no effect on determining the optimum flow channel topology. Figure S2 in the Supplemental
Material [22] shows a comparison of the optimum lattice parameters for ReM/

√
φ = 43.0 and the

results obtained in Stokes flow regime.
We further extended the problem to consider a variable number density ratio between the interior

cylinders and the corner cylinders [dark blue and light blue cylinders in Fig. 1(a), respectively].
Using automatic differentiation, this is a straightforward modification that does not increase the
computational cost. Here the optimum radius of the interior cylinders is equal to R(1 + λ∗), where
R = Ly

√
ξ ∗φ/π (1 + λ∗2) and their relative positions are different and are given by r∗

i and θi for
cylinder i. Figure 5 shows the minimum pressure drop for various number density ratios n1/n2,
where n1 and n2 are the number densities of the interior cylinders and the corner cylinders,
respectively. Interestingly, we find that having two or three interior particles performs worse than
a single-particle system at high packing fraction with the three-particle system performing better
than the two-particle one. Recall that the optimum solution depends on how best to place the
interior particles such that the effects of flow restrictions formed by all particles on the macroscopic
pressure drop are minimized. Since we are constraining the interior cylinders to have identical
diameters, increasing the number of particles does not always translate to having better flexibility in
decreasing the pressure drop. Having two interior particles maximizing the gap thickness between
the light blue particles by reducing the particle diameter ratio, the flow restriction between the
interior particles increases, causing a high-pressure drop as shown in Fig. 5(ii). Such limitations do
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(i) (ii) (iii)

FIG. 6. Minimum pressure drop of the optimized polydisperse porous medium for different total numbers
of distinct cylinders. The green up-pointing triangles, black squares, blue left-pointing triangles, and purple
stars correspond to the cases where N = 2, 3, 4, and 5, respectively. The optimum porous medium is visualized
at φ = 0.72 for (i) N = 2, (ii) N = 3, and (iii) N = 4.

not exist for the case of one interior particle allowing for a lower-pressure drop when compared with
the two-interior-particle system. The same argument can be built on the four-particle system which
had the lowest-pressure drop. Inspecting the geometry of the cluster formed in this case, we see the
four particles form a square region positioned at the center of the unit cell, indicating that using a
single cylinder with a square cross-sectional area with rounded edges could perform better than a
circular cross-sectional cylinder.

By allowing the radius of interior cylinders to be independent, that is, the optimum radius of

cylinder i is given by Rλi, where R = Ly

√
ξφ/π (1 + ∑N−1

i=1 λ2
i ) and N is the total number of distinct

cylinders, we optimized the topology of a polydisperse periodic array of cylinders. Figure 6 shows
the minimum pressure drop across the unit cell for different values of N . The figure shows that an

FIG. 7. Universal divergence of the pressure drop curve of the different optimized topologies. The slope of
the black line is equal to 5/2.
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optimized polydisperse system performs similarly to the bidisperse system with an equal particle
number density, indicating that the increase in the number of control parameters has no effect on
the performance of the porous media. Finally, we note that all optimized topologies obey the same
universal scaling for the divergence of the pressure drop that, as shown in Fig. 7, we would obtain
from lubrication theory for a simple square array where �P ∼ (

√
φc − √

φ)5/2, indicating that full
blockage of the flow occurs when the gap thickness between the corner cylinders approaches zero.
Here φc is the critical solid packing fraction beyond which there exists no flow path. This result
also implies that the divergence of the fluid’s viscosity of a dense suspension is independent of the
suspension system’s polydispersity or the microstructure.

V. CONCLUSION

The employment of deep learning for understanding complex physical processes has led to a
proliferation of inverse design studies that revolve around generating a surrogate model for a specific
system. This model was trained on high-fidelity simulations and subsequently used in optimization
calculations [23–25]. In this study we challenge the conventional wisdom that leans towards surro-
gate models, showcasing the efficacy of a more streamlined approach empowered by platforms like
JAX and PYTORCH. We showed that automatic differentiation, which is the key algorithm enabling
the development of advanced surrogate models, can be directly used to efficiently compute the
derivative of solution trajectories of partial differential equations with respect to control parameters.

In this paper we demonstrated the power of the method by solving a canonical problem that
is complex enough to test the scalability of the technique to solve high-dimensional optimization
problems and is amenable to theoretical treatment. Through this method, we showcased the sim-
plicity of expanding the search space by increasing the number of design parameters without the
need to develop a new solver, as necessitated by adjoint-based methods, or create a new surrogate
model. A key advantage of our approach is the minimal impact on the computational cost of
computing Jacobian elements when increasing the number of design parameters or the introduction
of additional constraints. This feature facilitates the exploration of different setups, allowing for
the discovery of practical solutions or the identification of new physical phenomena. Figure S1 in
[22] presents computational costs for various scenarios, where the number of Jacobian elements
approaches 1000. Notably, the computational cost of the derivative remains within the same order
of magnitude as the computational cost of a forward simulation. This underscores the efficiency and
practicality of our method in handling complex optimization tasks.

By studying the optimum configuration of a periodic array of cylindrical posts for various
packing fractions, we found that the bidisperse system with equal particle number density provides
an optimum configuration. Importantly, increasing polydispersity does not significantly minimize
the pressure drop, and the optimum configuration remains independent of the Reynolds number.
This implies that a simpler design with only two particle sizes may be just as effective in minimizing
the pressure drop as more complex configurations. This insight can lead to more efficient and
cost-effective designs in various engineering applications. Moreover, the universality of the pressure
drop divergence holds true regardless of the porous medium configuration.

While our present study has focused on two-dimensional flow, the versatility of our method
allows for seamless extension to three-dimensional systems. Possible future directions include con-
trolling oscillating flows, the implementation of control strategies for flows in random porous media,
and the optimization of mixing and dispersion within porous structures. Additionally, controlling
multiphase flow in porous media holds promise for gaining a deeper understanding of intricate
phenomena like viscous fingering.
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