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The transverse flow-induced vibration (FIV) of an elastically supported elliptical
cylinder-plate assembly is investigated numerically for a laminar flow at a Reynolds num-
ber of 100. The aspect ratio (AR) of the elliptical cylinder is varied over a range of values
(namely, AR = 0.5, 0.67, 0.75, 1, 1.5, and 2). In addition, two normalized splitter-plate
lengths, LSP/D = 0.75 and 2.5, are investigated (where LSP is the splitter-plate length, and
D is the equivalent diameter of the elliptical cylinder). A low mass ratio of 10 and zero
structural damping are used in the numerical simulations to induce larger oscillations in
the assembly. The numerical results show that all cases investigated exhibit a FIV over
an unlimited range of reduced velocity. An increase in the AR promotes the vibrations of
the assembly through a reduction in the reduced velocity associated with the onset of FIV
and a concomitant increase in the vibration amplitude. In addition, a larger AR facilitates
the transition from a pure galloping (for AR � 1) to an integrated VIV-galloping response
(for AR > 1) for an assembly with LSP/D = 0.75. Moreover, a larger AR significantly
decreases the onset velocity of galloping for an assembly with LSP/D = 2.5. The AR
determines the nature and width of the synchronization branch in the amplitude response.
In general, a larger AR leads to the inception of higher-order synchronization branches
in the amplitude response and to the suppression of some branches (e.g., still and initial
galloping branches) for assemblies with long splitter plates. Finally, with respect to the
flow dynamics associated with an unlimited FIV, increasing AR promotes the shedding of
more complex vortices in the wake of the assembly (e.g., the emergence of a tail-shaped
vortex and a slender vortex)—despite this, the wake mode remains unaltered.

DOI: 10.1103/PhysRevFluids.9.054102

I. INTRODUCTION

The two-way fluid-structure interaction (FSI) problem of flow-induced vibration (FIV) of a bluff
body has received a great deal of attention. Indeed, FIV can be either desirable or undesirable
depending on the engineering structure it affects (e.g., marine risers, cables, bridges, energy
harvesters). Moreover, FIV has a huge amount of potential for fluid (e.g., wind, water) energy
harvesting, such as the vortex-induced vibration aquatic clean energy (VIVACE) harvester proposed
by Bernitsas et al. [1]. Vortex-induced vibration (VIV) and galloping are the two most extreme types
of FIV—the first is a forced resonance caused by alternating vortex shedding and is characterized
by a large-amplitude vibration that occurs within a narrow range of velocity (i.e., lock-in), while
the second is a self-excited instability that occurs over an unlimited range of velocity [2]. Due to
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its wider effective velocity range (with structural oscillation) and greater vibration amplitude, the
galloping-dominated response often outperforms VIV in the context of energy harvesting based on
the oscillatory motions.

An appropriate configuration of the flow incidence angle [3,4], the mass-damping parameter
[5,6], and the Reynolds number [7] can cause a square cylinder to gallop—this is a classic
example used in the investigation of an unlimited FIV response. In this case, when the reduced
velocity exceeds a critical value required for the onset of FIV, the oscillatory response exhibits a
monotonically increasing amplitude with increasing reduced velocity [4]. It should be noted that an
unlimited FIV response can also be generated on an isolated cylinder with various noncircular (e.g.,
rectangular, triangular, or elliptical) cross-sections or on a passive turbulence control (PTC) cylinder
(e.g., a cylinder-plate assembly). The geometrical shape of the structure essentially determines its
dynamic response.

A number of experimental and numerical studies has investigated how the cross-sectional side
ratio defined as SR = b/d (where b and d are the side lengths of the body in the transverse and
streamwise flow directions, respectively) affects the FIV response of a rectangular prism (viz.,
generalization of a square cylinder) [8–10]. In a numerical study, Zhang et al. [8] revealed that a high
SR had a positive impact on the FIV of an elastically mounted rectangular cylinder, with SR = 0.5–
6.0 in the Reynolds number range of 7500–187 500. More specifically, for the smallest value of
SR = 0.5 investigated, no VIV or galloping was reported. However, for SR = 0.67, an unlimited
galloping with a large onset velocity was observed. Moreover, for SR = 0.83–4, an unlimited FIV
associated with a one-third lower onset velocity occurred, which was a strong interference between
VIV and galloping. The oscillations for SR = 0.67–4 displayed an increasing vibration amplitude
with velocity. For SR = 6, the FIV still occurred over an unlimited velocity range, but the vibration
amplitude remained unchanged after the galloping onset. Zhao et al. [9] conducted experimental
tests on a variety of rectangular cylinders with SR = 2–5 for a Reynolds number between 940 and
8200. In contrast with the previous examples which exhibited an integrated VIV-galloping regime
with an unconstrained amplitude response as a function of the reduced velocity, a maximum SR of 5
was associated with a limited FIV response. Moreover, it was reported that a change in SR from 2 to
4 led to an increase in the local peak amplitude. In accordance with these two studies, a rectangular
prism with a SR of roughly 0.67–4 is most likely to provoke an unlimited FIV response—within
this range, a greater SR will induce an unlimited FIV through an increase in the vibration amplitude
and a decrease in the onset velocity.

An elliptical cylinder, a triangular prism, and a trapezoidal cylinder are also susceptible to an
unlimited FIV response. A number of investigations involving an elastically mounted elliptical
cylinder [11,12] have demonstrated that a larger aspect ratio AR = b/a (where b and a are the
lengths of the ellipsoidal cylinder in the transverse and streamwise flow directions, respectively)
provokes a larger vibration amplitude and a wider reduced-velocity range for the FIV of the struc-
ture. Moreover, the rotary motion of an elliptical cylinder can promote its translational oscillation.
According to Zhu et al. [13], the transition from a restricted VIV to an unlimited galloping occurred
in a freely rotatable elliptical cylinder with b/a = 0.5 and with a moderate torsional friction. The
transverse vibration of a low-AR elliptical cylinder with b/a = 0.5–1 was also amplified by the
addition of a rotating degree of freedom (DOF) [14,15]. For an isosceles triangular prism, the AR
is a three-dimensional concept, viz., AR = H/D, where H and D are the prism height and prism
projection width, respectively. The influence of AR of a triangular prism on its FIV was studied by
Shao et al. [16]. These investigators reported that, whereas an unrestricted VIV-galloping response
was induced in the triangular prism with H/D = 1 and 1.5, only a limited VIV was provoked in
the prism with H/D = 0.5 and 0.85. The vibration amplitude of an unlimited FIV was, however,
reduced with an increase in the prism AR. Both square and triangular cylinders can be considered
specific examples of a trapezoidal cylinder characterized by the AR = d/D (where d and D are the
lengths of the shorter and longer sides of a trapezoidal cylinder). In the experimental investigations
by Zhu et al. [17], an unlimited galloping response was reported for a trapezoidal cylinder with
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FIG. 1. Definition of the aspect ratio for various cross-sectional body shapes.

d/D = 0.3, 0.5, and 0.7. Figure 1 compares the definition of the AR for different cross-sectional
body shapes.

A cylinder with a splitter-plate attachment can also experience an unlimited FIV response. Most
investigations of a cylinder-plate assembly focus on the effect of plate length on the dynamic
response of the assembly or report the types of oscillations that can occur in this structure (e.g., VIV,
galloping, integrated or separated VIV and galloping) [18–22]. Wu et al. [23] conducted a series of
numerical simulations to study the free vibrations of an elliptical cylinder with a fixed-length splitter
plate (LSP/D = 0.5) and investigated the influence of AR = 0.5–2 on the FIV of the assembly.
These investigators reported that a larger AR led generally to an increase in the resulting vibration
amplitude in the assembly, but the effective reduced-velocity range for the largest AR investigated
in this paper (viz., AR = 2) was paradoxically narrower.

The review above shows that, in addition to changing the strength of the structural oscillation
and triggering the transition between the different FIV modes, the AR of a cylinder can have
a significant influence on many other aspects of the FIV response of an elliptical cylinder-plate
assembly. Nevertheless, to date, little research has been conducted on the impact of AR on the
dynamic response of this PTC cylinder. To this purpose, Wu et al. [23] conducted some seminal
work on the FIV response over a restricted reduced-velocity range of an elastically mounted
elliptical cylinder-plate assembly with ARs in the span 0.5 � AR � 2 and a fixed splitter-plate
length LSP/D = 0.5. However, their investigation was restricted only to oscillations that occur over
a limited range of reduced velocity (viz., to self-limited FIV). In such a context, the objective of
this paper involves the extension (generalization) of this previous effort to study the synergy effect
of the AR = 0.5–2 and the splitter-plate length (LSP/D = 0.75 and 2.5) on the FIV of an elliptical
cylinder-plate assembly and, more particularly, to investigate the dynamics of an unlimited FIV
response of this assembly over a wide reduced-velocity range.

This paper is organized as follows. Numerical modeling of the two-way FSI of an elastically
mounted elliptical cylinder-plate assembly is described in Sec. II. The numerical results of the un-
limited FIV response of the assembly and its dynamical characteristics are presented and discussed
in Sec. III. The key takeaways and main conclusions are summarized in Sec. IV.
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FIG. 2. An elastically mounted elliptical cylinder-plate assembly. The computational domain is partitioned
into three regions, and the boundary conditions imposed in our numerical simulations are exhibited. The
assembly is supported on a mass-spring-damper system that is constrained to oscillate only in the transverse
(or y) direction.

II. NUMERICAL METHODOLOGY

As shown in Fig. 2, an elliptical cylinder-plate assembly is elastically supported by a mass-
spring-damper system and is constrained to oscillate only in the transverse (or y) direction to give a
single-DOF (SDOF) dynamical system. The incident velocity is along the streamwise (x) direction
with a constant value of U . It should be stressed that, in this paper, we focus on the low-Reynolds
number FIV of a SDOF system without any rotation. The reason for this is twofold: (1) the
transverse DOF is associated with the dominant dynamic effects of the assembly—in comparison,
the streamwise and/or rotational DOF in the assembly correspond to secondary (weaker) effects,
and (2) the limited computational resources only allow for a large number of simulations required
in this paper to be conducted for a low-Reynolds number laminar flow.

A number of numerical simulations are conducted of the flow past the elastically mounted
elliptical cylinder-plate assembly for AR = 0.5, 0.67, 0.75, 1, 1.5, and 2 and for LSP/D = 0.75
and 2.5—the splitter-plate width is fixed at WSP/D = 0.06. As shown in Fig. 1, the AR of an
elliptical cylinder is AR ≡ b/a. Following Wu et al. [23], D used in the normalization of the
splitter-plate size is defined as the diameter of the equivalent circular cylinder whose cross-sectional
area is equal to that of the elliptical cylinder [viz., D = 2(ab)1/2], which has a fixed value of
D = 1 m in our numerical simulations. The two splitter-plate lengths of LSP/D = 0.75 and 2.5
are specifically chosen because a circular cylinder-plate assembly with these lengths are associated
with an integrated VIV-galloping and a separated VIV and galloping response, respectively [22,24].
Furthermore, these oscillations correspond to unlimited FIV responses, with the vibration amplitude
increasing monotonically with the reduced velocity Ur .

The computational domain and the boundary conditions applied in the numerical simulation are
also shown in Fig. 2. The domain size (60D × 40D) is chosen based on a comprehensive sensitivity
analysis conducted by Wu et al. [24]. Our simulations make use of a dynamic meshing methodology
that can accommodate a changing shape as a result of the oscillatory motion of the assembly. To
achieve this, the entire computational domain is split into three distinct regions, namely, (1) a
rigid region that moves with the assembly without any deformation, (2) a mesh-morphing region
that is deformed and updated with each time step, and (3) a static mesh region that is stationary
(viz., the mesh here does not change in time). A structured grid is generated in the domain—the
grid consists of ∼35 000 nodes. Finally, we employ a time step of �t = 0.01 s in our numerical
simulations.
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The dynamics corresponding to the two-way FSI between the flow and the elliptical cylinder-
plate assembly is simulated using the two-dimensional unsteady incompressible Navier-Stokes (NS)
equations for fluid flow given by

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂ p

∂xi
+ ν

∂2ui

∂x j∂x j
, (2)

and an equation of motion for the assembly given by the following ordinary differential equation for
a mass-spring-damper system:

mÿ(t ) + cẏ(t ) + ky(t ) = Fy(t ). (3)

Here, the position vector is x = (x1, x2) = (x, y), the velocity vector is u = (u1, u2) = (u, v), and
the subscript i = 1, 2 on a quantity refers to a Cartesian component of a vector in the x and y
directions, respectively. Furthermore, p, ρ, and ν are the pressure, fluid density, and fluid kinematic
viscosity; t is time; y, ẏ, and ÿ represent the displacement, velocity, and acceleration of the oscillating
assembly in the transverse direction; m is the mass of the oscillating assembly; c is the structural
damping coefficient; k is the spring stiffness; and Fy(t ) is the transverse fluid force acting on the
assembly. Note that, for a two-dimensional problem, m, c, k, and Fy are defined per unit length.

The above governing equations are discretized using a finite-volume method, and the numerical
calculations are carried out using the open-source computational fluid dynamics (CFD) package
OpenFOAM version 4.1. Reformulated NS equations in the arbitrary Lagrangian Eulerian (ALE)
framework are solved to simulate the flow dynamics affected by the oscillation of the assembly. To
this purpose, the pimpleDyMFoam solver and the PIMPLE algorithm are employed which are charac-
terized by second-order numerical discretization schemes [2]. Moreover, Eq. (3) is solved using the
Newmark-β methodology (with γ = 0.5 and β = 0.25) to provide the transverse oscillatory motion
of assembly at every time step.

For reference, we define a number of nondimensional parameters in the subsequent analysis.
The Reynolds number is defined as Re ≡ UD/ν; the reduced velocity is defined as Ur ≡ U/( fnD),
where fn ≡ (k/m)1/2/(2π ) is the structural natural frequency; the lift and drag coefficients are
given by CL ≡ 2Fy/(ρU 2D) and CD ≡ 2Fx/(ρU 2D), where Fx and Fy are the components of
fluid force in the x and y directions, respectively. The numerical simulations are conducted for a
laminar flow (Re = 100) past an elliptical cylinder-plate assembly with a reduced mass m∗ = 10
(viz., ratio of the assembly mass to the displaced fluid mass) and a zero structural damping (viz.,
ζ ≡ c/[2π (km)1/2] = 0). It should be noted that the spring constant k is varied to obtain the range
of values of the reduced velocity (viz., Ur = 2 to 30) used in this paper. Additional dimension-
less quantities employed in this investigation include the dimensionless transverse displacement
Y ≡ y/D and the dimensionless time τ ≡ tU/D. Note that the dimensional time t has the same
numerical value as τ because D = 1 m and U = 1 m s−1 in our numerical simulations.

III. RESULTS AND DISCUSSIONS

The FIV of various elliptical cylinder-plate assemblies with 0.5 � AR � 2 and LSP/D = 0.75
is analyzed in detail—the analysis here includes the vibration response in terms of amplitude,
frequency and fluid forces, the branching behavior, as well as the dynamical characteristics of the
vibrations in the synchronization and nonsynchronization branches. Furthermore, we investigate the
transverse FIV of an elliptical cylinder-plate assembly with a longer splitter-plate length, namely,
LSP/D = 2.5.
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FIG. 3. Effect of the aspect ratio (0.5 � AR � 2.5) on the flow-induced vibration (FIV) of an elliptical
cylinder-plate assembly with two different splitter-plate lengths (LSP/D = 0.75 and 2.5). The following
quantities of interest are shown: (a) the maximal transverse displacement Ymax, (b) the normalized dominant
frequency f ∗

Y / fn of the transverse displacement, (c) the root-mean-square lift coefficient CL,rms, and (d) the
mean drag coefficient CD,mean as a function of the reduced velocity Ur .
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A. Vibration response

Figure 3 compares the free oscillation induced on an elliptical cylinder-plate assembly for various
ARs (AR = 0.5–2) and for two splitter-plate lengths (LSP/D = 0.75 and 2.5)—the quantities of
interest displayed here include the maximum transverse displacement Ymax, the frequency ratio
f ∗
Y / fn [where f ∗

Y is the dominant frequency in the power spectral density (PSD) of Y ], the root-
mean-square lift coefficient CL,rms, and the mean drag CD,mean coefficient exerted on the assembly
by the fluid. An examination of this figure shows that all the assemblies experience an unlimited FIV
in which Ymax generally increases with Ur . Wu et al. [23] showed that the FIV mode (viz., whether
self-limited or unlimited) was determined primarily by the splitter-plate length. Consequently, in
this section, we focus on the influence of AR on the FIV of the assembly, where the fixed plate
length is chosen to provoke an unlimited FIV.

For the assembly with LSP/D = 0.75, we have investigated six values of AR in the range from 0.5
to 2. For the two smallest ARs (viz., AR = 0.5 and 0.67), it is evident that no oscillation occurs in
the assembly—indeed, the amplitude response, the characteristic oscillation frequency, and the lift
coefficient have values near zero [see Figs. 3(a)–3(c)], and the drag force is constant with respect to
Ur [viz., CD,mean ≈ 0.83 and 0.92 for AR = 0.5 and 0.67, respectively, on examination of Fig. 3(d)].
Even so, the dynamical behavior of the assembly with AR = 0.5 slightly differs from that with
AR = 0.67—their frequency responses in Fig. 3(b) show that f ∗

Y / fn ≈ 0 for AR = 0.5 over the
entire reduced-velocity range Ur = 2–30, whereas that for AR = 0.67 exhibits a rapid increase to
f ∗
Y / fn ≈ 1 over Ur = 5–6.

For AR � 0.75, an unlimited oscillation can be induced in the elliptical cylinder-plate assembly.
An increasing AR provokes oscillations in two aspects, namely, the onset of FIV occurs at lower
values of Ur (e.g., the onset is Ur = 9, 6.5, 6, and 5 for AR = 0.75, 1, 1.5, and 2, respectively),
and the maximum transverse displacement increases with AR, as is evident on a careful perusal
of the amplitude responses in Fig. 3(a). In stark contrast, the influence of AR on the frequency
response appears to be less obvious—indeed, it can be seen that f ∗

Y / fn varies only over a small
range from 0.8 to 0.95 for AR varying from 0.75 to 2 [cf. Fig. 3(b)]. In Fig. 3(c), the lift force acting
on the assembly attains a maximum value around the onset velocity and gradually decreases with
Ur . Moreover, CL,rms is sensitive to the changes in the AR—the maximum lift coefficient increases
by approximately a factor of three (e.g., from 0.5 to 1.4) as AR increases from 0.75 to 1, while this
increase becomes slower (e.g., from 1.4 to 2.3) for AR increasing from 1 to 2. Unlike the lift force,
the maximum drag force increases proportionally with AR, namely, the maximum value of CD,mean

is 1, 1.3, 2, and 2.6 for AR = 0.75, 1, 1.5, and 2, respectively [cf. Fig. 3(d)]. Finally, it is noted that
CD,mean is basically constant over Ur = 2–30.

The unlimited FIV response of an elliptical cylinder-plate assembly with a larger splitter-plate
length of LSP/D = 2.5 is also exhibited in Fig. 3 for AR = 1 and 1.5. The effect of AR on the
vibration response of the assembly is like that for LSP/D = 0.75. The major difference for the case
LSP/D = 2.5 is the higher onset of FIV (viz., Ur = 12 and 9 for AR = 1 and 1.5, respectively) and
the lower dominant oscillation frequency ( f ∗

Y / fn = 0.43 and 0.45 for AR = 1 and 1.5, respectively).
The analysis conducted here implies that increasing AR leads to a slight increase in the f ∗

Y / fn,
whereas increasing LSP/D has precisely the opposite effect, namely, that of significantly reducing
f ∗
Y / fn.

Following from this analysis and some results reported by Wu et al. [23], the influence of AR
on the self-limited and unlimited FIV of an elliptical cylinder-plate assembly can be summarized as
follows. A self-limited FIV in the assembly is strengthened as AR increases at least over the range
of AR = 0.75–1.5. However, the effective Ur range is reduced for AR = 2 owing to the absence
of a nonsynchronization branch in the amplitude response. In contrast, for the unlimited FIV in the
assembly, both the oscillation amplitude and the effective Ur range increase monotonically with
AR—this effect is independent of the splitter-plate length provided, of course, that the length can
provoke an unlimited FIV response in the assembly.
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FIG. 4. Branching behavior of an unlimited flow-induced vibration (FIV) response provoked on an ellip-
tical cylinder-plate assembly with various aspect ratios (ARs) and a fixed splitter-plate length LSP/D = 0.75.
The maximal transverse displacement Ymax (left vertical axis) and the root-mean-square lift coefficient CL,rms

(right vertical axis) are plotted as a function of the reduced velocity Ur for ARs of (a) 0.75, (b) 1, (c) 1.5, and
(d) 2. The synchronization branches are shaded in different colors. The kinks (discontinuity of the slope) in the
amplitude response are delineated by the red boxes.

B. Branching behavior

The branching behavior of the unlimited FIV provoked on an elliptical cylinder-plate assembly
with LSP/D = 0.75 and ARs ranging from 0.75 to 2 are exhibited in Fig. 4. The corresponding PSD
isopleths of Y and CL as a function of Ur and the normalized frequency—either fY / fn associated
with Y or fCL / fn associated with CL—are displayed in Figs. 5 and 6, respectively. The individual
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FIG. 5. (a) The maximum transverse displacement Ymax as a function of the reduced velocity Ur for an
elliptical cylinder-plate assembly with aspect ratios (ARs) of 0.75–2 and a splitter-plate length LSP/D = 0.75.
The normalized power spectral density isopleths (logarithmic scale) of Y exhibited as a function of fY / fn

and Ur for ARs of (b) 0.75, (c) 1, (d) 1.5, and (e) 2. The vertical dashed lines delineate the boundaries
of synchronization regimes; the horizontal dashed line corresponds to fY / fn = 1; the diagonal dashed lines
represent the vortex-shedding frequency of the stationary assembly; and the solid lines with squares correspond
to the phase difference φ (◦) between Y and CL .

054102-9



WU, LIEN, YEE, AND CHEN

FIG. 6. (a) The maximum transverse displacement Ymax and the normalized power spectral density isopleths
of CL for an elliptical cylinder-plate assembly with a constant splitter-plate length of LSP/D = 0.75 and various
aspect ratios (ARs) of (b) 0.5, (c) 1, (d) 1.5, and (e) 2. Other notations used here are the same as those described
in the caption of Fig. 5.
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power spectra of the time series Y (t ) or CL(t ) at each value of Ur are calculated, and these results
are composed into a single plot to create the PSD isopleths that are shown here [4,12].

For the oblate (AR < 1) elliptical cylinder-plate assembly with AR = 0.75, it is seen that
only one odd-multiple synchronization is present within the unlimited oscillation range—more
specifically, f ∗

Y / f ∗
CL

= 1:3 at Ur = 15–16.5 whose onset is signalled by a kink in the amplitude
response [delineated by the red box in Fig. 4(a)]. As a consequence, this assembly experiences a
pure galloping response. The PSD isopleths of Y and CL exhibit a simple form. More precisely,
the dominant frequency of Y (t ) occurs at f ∗

Y / fn = 0.8 in the galloping regime [see Fig. 5(b)],
whereas CL exhibits an evident third-harmonic at fCL / fn = 2.4 to give a 1:3 synchronization branch.
Moreover, the harmonic frequencies in the oscillations of CL gradually increase to higher order
thereafter with Ur , as is evident from a perusal of Fig. 6(b). From this behavior, it is reasonable to
suggest that a 1:5 synchronization branch may be present in the galloping regime at larger values of
the reduced velocity than considered herein.

In comparison with an oblate elliptical cylinder-plate assembly, a circular cylinder-plate assem-
bly exhibits more synchronization branches in the amplitude response that occur over a wider
reduced-velocity range. More precisely, these regimes correspond to f ∗

Y / f ∗
CL

= 1:2, 1:3, and 1:5
at Ur = 11–11.5, 15–20, and 29–30, respectively. The onset of each branch is signalled by a kink
in the amplitude response, as is evident from an examination of Fig. 4(b). Note that there are small
oscillations with Y/D ≈ 0.05 at about Ur = 6—this corresponds to the initial stage of a VIV that
has not attained lock-in [22]. Consequently, the unlimited FIV response of a circular cylinder-plate
assembly still consists primarily of galloping. In addition to the fundamental frequency of f ∗

Y / fn ≈
0.85, a third harmonic gradually emerges at Ur � 16 in the power spectrum of Y , as is evident in
Fig. 5(c). In contrast, the CL power spectrum exhibits a more complex harmonic structure—only
odd harmonics are present in the odd (1:3 and 1:5) synchronization branches, whereas both odd and
even harmonics are present in the even (1:2) synchronization branch.

For a prolate (AR > 1) elliptical cylinder-plate assembly with AR = 1.5 and 2, the most striking
branching characteristic is that a 1:1 synchronization branch (i.e., lock-in) corresponding to the
VIV regime is present at a lower value of Ur . This branch is succeeded at larger Ur by several
high-order synchronization branches with f ∗

Y / f ∗
CL

= 1:2, 1:3, 1:4, and 1:5 in the galloping regime.
Consequently, these assemblies experience an integrated VIV and galloping response. As is evident
from Fig. 4(c), the five synchronization branches are separated from each other. Furthermore, the
onset of the 1:2, 1:3, and 1:4 synchronization branches is signalled by a kink in the amplitude
response. We note that the occurrence of the kink here depends not only on a sudden change in the
slope of the amplitude plot but also on the appearance of a synchronization branch. A further and
more detailed discussion of the kink in the amplitude response of a cylinder-plate assembly can be
found in a previous study [22].

For the assembly with AR = 2 shown in Fig. 4(d), the first three synchronization branches are
integrated with one another without any clear-cut boundaries between them (viz., f ∗

Y / f ∗
CL

= 1:1,
1:2, and 1:3 at Ur = 6–7, 10–13, and 14–21, respectively). Consequently, two transition regions
are present, namely, Ur = 7–10 between the 1:1 and 1:2 synchronizations and Ur = 13–14 between
the 1:2 and 1:3 synchronizations. These transition regimes are identified by their distinctive vortex-
shedding patterns which will be discussed in greater detail in Sec. III C 2.

Another interesting feature of the branching behavior for a prolate elliptical cylinder-plate
assembly is that the 1:3 synchronization branch appears to be further split into two parts. The
first subbranch—Ur = 15–17 for AR = 1.5 and Ur = 14–17 for AR = 2—is characterized by three
properties, namely, a near constant Ymax as a function of Ur , the presence of a single frequency in the
Y power spectrum, and the existence of a number of weaker and lower-order harmonic components
in the CL power spectrum. In marked contrast, the second subbranch (viz., Ur = 17–22 for AR = 1.5
and Ur = 17–21 for AR = 2) is characterized by an increase in the Ymax as a function of Ur , the
presence of a third harmonic in the Y power spectrum, and the existence of stronger and higher-order
harmonic components in the CL power spectrum. The subdivision of the 1:3 synchronization branch
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is closely associated with the transition in the vortex-shedding patterns in this regime—this will be
investigated in greater detail in Sec. III C 2.

C. Synchronization characteristics

The influence of AR on the dynamical characteristics and the vortex-shedding modes within
the synchronization branches in the amplitude response of an elliptical cylinder-plate assembly is
investigated in this section. To this purpose, we analyze the behavior of the oscillatory time series
of Y and CL.

1. Lock-in regime

Figure 7 compares the dynamic characteristics and vortex-shedding patterns in the 1:1 synchro-
nization branch for an elliptical cylinder-plate assembly with AR = 1.5 and 2 at Ur = 6 as well as
in the transition regime that occurs between the 1:1 and 1:2 synchronizations for the assembly with
AR = 2 at Ur = 7–8.

As shown in Figs. 7(a)–7(c), Y (t ) consists of a periodic sinusoidal variation with one fundamental
frequency—this is reflected in the presence of a circular limit cycle in the Y -Y ′ phase plane.
Increasing AR results in a nonsinusoidal waveform for CL(t ), and this manifestation is associated
with the more complex shapes of the phase portraits of CL(t ) [red curve in Fig. 7(bii)]. Moreover,
the increasing number of harmonic components present in the PSD of CL(t ) with increasing
AR and/or Ur [cf. Figs. 7(aiv), 7(biv), and 7(civ)] are reflected in the increasing complexity of
the corresponding Lissajous figures with AR and/or Ur [cf. Figs. 7(aiii), 7(biii), and 7(ciii)]. In
the transition regime between the 1:1 and 1:2 synchronization branches for AR = 2 at Ur = 8, the
temporal waveform of CL(t ) is noticeably nonsinusoidal owing to the presence of a larger number
of stronger harmonics in the corresponding power spectrum.

A careful inspection of Figs. 7(d) and 7(e) shows that the vortex-shedding pattern associated with
the 1:1 synchronization branch is a 2S wake mode consisting of two counterrotating vortices (one
with positive vorticity SI and the other with negative vorticity −SI) that are shed alternately from
one side to the other of the assembly during one oscillation cycle to form the so-called Kármán
vortex street. Furthermore, the vortex shape is strongly dependent on the AR, namely, elliptically
shaped vortices are evident at AR = 1.5, whereas vortices consisting of a vortex core with a trailing
tail [marked using black circles in Fig. 7(e)] are present at AR = 2.

In the transition regime between the 1:1 and 1:2 synchronization branches for AR = 2, the vortex
shedding exhibits some new characteristic features. In Fig. 7(f), it is evident that a large positive
vortex SI is first shed at t = 0 (beginning of an oscillation cycle of period T ), followed by the
shedding of a small slender vortex with the same sign (designated here as TI) at t = T/4—this
vortex appears to be the tail of the next positive vortex. A similar vortex-shedding pattern occurs in
the next half-oscillation cycle, except that the shed vortices have a negative sign (−SI and −TI).
The wake flow dynamics exhibited in Fig. 7(g) is different—the vortex-shedding pattern here
involves a large vortex and a small tail vortex with an opposite sign that are shed together as a
pair—more precisely, (−SI, TI) and (SI, −TI) are shed in one oscillation cycle. Moreover, the large
vortices −SI and SI are not elliptically shaped as those in Fig. 7(f) but instead have a long tail.
This dramatic change in the vortex-shedding pattern is only due to the marginally greater value of
Ur = 8 in Fig. 7(g). It is evident that, in the transition regime, four vortices are shed in total in each
oscillation cycle—these vortices have the characteristic vortex-tail pattern where the tail is smaller
and possesses a weaker vorticity than that of the primary vortex. In view of this, we identify the
wake mode in the transition regime as a quasi-2S mode.

2. Odd-multiple synchronization in the galloping regime

Figures 8 and 9 display the dynamical characteristics and wake modes associated with the odd-
multiple (1:3) synchronization branch for elliptical cylinder-plate assemblies with AR = 0.75–2.

054102-12



EFFECT OF ASPECT RATIO ON THE UNLIMITED …

FIG. 7. Dynamical characteristics of the 1:1 synchronization branch (viz., lock-in) for an elliptical cylinder-
plate assembly with aspect ratios (ARs) of (a) AR = 1.5 and (b) AR = 2 at Ur = 6 and of the transition regime
between the 1:1 and 1:2 synchronization branches for (c) AR = 2 at Ur = 8. The four columns of panels in
(a)–(c) exhibit the time series Y (t ) and CL (t ), the phase portraits of Y -Y ′ and CL-C′

L , the Lissajous figures Y –CL ,
and the power spectra of Y and CL . In these plots, the results for Y and CL are shown as the black and red
curves, respectively. The evolution of the instantaneous vorticity field during one oscillation cycle with period
T is displayed for (d) AR = 1.5 at Ur = 6, (e) AR = 2 at Ur = 6, (f) AR = 2 at Ur = 7, and (g) AR = 2 at
Ur = 8. The 2S mode is identified in the 1:1 synchronization branch and the quasi-2S mode in the transition
regime.

Two representative values of the reduced velocity (i.e., Ur = 16 and 20) are selected for AR = 1.5
and 2, which correspond to the two subbranches of the 1:3 synchronization branch.

To begin, we study the influence of AR on the 1:3 synchronization branch at Ur = 16. As evident
from an inspection of Figs. 8(a)–8(c) and 8(e), increasing AR from 0.75 to 2 results in a more
complex CL(t ), a more irregular phase portrait of CL-C′

L, and in the presence of a stronger third
harmonic in the CL power spectrum. In marked contrast, increasing AR has little influence on the
comparable characteristics for Y (t ). The corresponding vortex-shedding patterns are displayed in

054102-13



WU, LIEN, YEE, AND CHEN

FIG. 8. Dynamical characteristics of the 1:3 synchronization branch for an elliptical cylinder-plate assem-
bly with aspect ratios (ARs) of (a) 0.75, (b) 1, (c) and (d) 1.5, and (e) and (f) 2 at Ur = 16 and 20. The notation
used here is the same as that described in the caption of Fig. 7.

Figs. 9(a)–9(d). A perusal of these figures shows that, for all values of AR studied herein, the
vortex-shedding corresponds to a 2S mode that is shed three times over one oscillation cycle—so
the 1:3 synchronization branch is associated with the 3 × 2S wake mode. However, we note that
some vortices that are shed from the assembly transition from an oblong shape (for AR � 1) to a
more elongated shape (for AR > 1). More precisely, the vortices SII and −SIII [marked by the black
box in Figs. 9(c) and 9(d)] shed from the assembly for AR = 1.5 and 2 become more slender and
sinuous with increasing AR.

Next, we investigate the influence of Ur on the elliptical cylinder-plate assembly with AR = 1.5
and 2. As is evident on examination of Figs. 8(d)–8(f), increasing Ur from 16 to 20 results in the
emergence of a strong third harmonic (with an amplitude comparable to that of the fundamental
frequency) in the CL spectrum. As a result, the corresponding CL(t ) is characterized by multiple
peaks of various amplitudes, and the associated phase portrait CL-C′

L exhibits a complex loop
structure with the various loops intersecting with one another. A careful inspection of Fig. 9(e)
shows that the vortex-shedding pattern adheres to a 3 × (2S) mode—however, the vortices here are
more strongly oriented in the vertical direction and consist of larger and more slender vortices (SII,
−SIII) owing to the larger value of Ur .
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FIG. 9. The temporal evolution of instantaneous vorticity field over one oscillation cycle with period T in
the 1:3 synchronization branch for an elliptical cylinder-plate assembly with aspect ratios (ARs) of (a) 0.75,
(b) 1, (c) 1.5 and (d) and (e) 2 for Ur = 16 and 20. The 1:3 synchronization is associated with a 3 × (2S) mode.

The vortex-shedding pattern associated with an elliptical cylinder-plate assembly reflects the na-
ture of the oscillatory response of the assembly. To this point, the maximum transverse displacement
increases significantly with AR for a given fixed reduced velocity (e.g., Ymax/D = 0.6, 1, 1.6, and 2
for AR = 0.75, 1, 1.5, and 2, respectively, at Ur = 16). This is probably due to the shedding of more
slender vortices at larger ARs—these vortices are shed when near the maximum and minimum of
the transverse displacement in each oscillation cycle [viz., the vortices SII and SIII are respectively
shed at t = 3T/8 and t = 7T/8 in the oscillation cycle, just before the occurrence of positive and
negative peaks in Fig. 9(e)]. Furthermore, the value of Ymax is almost constant in the first subbranch
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of the 1:3 synchronization, whereas Ymax increases with Ur in the second subbranch. This is true
for an elliptical cylinder-plate assembly with AR = 1.5 and 2. This can be explained as follows.
For these two ARs, the orientation of the slender vortices transitions from an oblique orientation to
an almost vertical orientation (viz., parallel to the transverse direction) as Ur increases. The nearly
constant Ymax (in the first subbranch) will accordingly begin to increase with Ur after a critical Ur

has been exceeded. This occurs at Ur = 17 for AR = 1.5 and 2. As a result, the 1:3 synchronization
branch is divided into two characteristic subbranches as noted previously.

Figure 10 exhibits the dynamical characteristics of the 1:5 synchronization branch for the
elliptical cylinder-plate assembly with various ARs. For the CL power spectrum, the fifth harmonic
is significant, and the seventh harmonic is evident—this complex power spectrum is associated with
the more irregular temporal variations in CL(t ) and the loop system in the phase portrait CL-C′

L. An
increase in AR has a similar effect on the 1:5 synchronization to that on the 1:3 synchronization
described above. Correspondingly, the wake mode is identified as 5 × (2S) (viz., the 2S mode is
shed five times over one oscillation cycle).

3. Even-multiple synchronization in the galloping

Figures 11 and 12 present the 1:2 and 1:4 synchronization branches for an elliptical cylinder-plate
assembly with AR = 1, 1.5, and 2 at Ur = 11 and 24. These figures also exhibit the transition
regime between the 1:2 and 1:3 synchronizations for AR = 2 at Ur = 13–14. The most remarkable
aspect of an even-multiple synchronization is that, in contrast with the antisymmetric odd-multiple
synchronizations described in Sec. III C 2, the characteristic plots of the lift coefficient and flow
patterns are asymmetric. This is evident from the asymmetric CL(t ) about the CL = 0 line, the
asymmetric phase-plane portraits CL-C′

L, and the asymmetric Lissajous figures Y –CL about the
origin. Other aspects of the even-multiple synchronizations are like those described in Secs. III C 1
and III C 2. For example, increasing AR produces higher and stronger harmonic frequencies in the
CL(t ) spectrum but has a negligible effect in that of Y (t ). In addition, the vortex-shedding modes
for the 1:2 and 1:4 synchronization branches are 2 × (2S) [see Figs. 11(e)–11(g)] and 4 × (2S) [see
Figs. 12(c) and 12(d)], respectively.

The transition regime between the 1:2 and 1:3 synchronizations for an elliptical cylinder-plate
assembly with AR = 2 occurs over Ur = 13–14—this is determined following a careful analysis of
the shape and number of vortices shed over one oscillation cycle. More precisely, at Ur = 13, a 2S
mode (vortices SI and −SI) is observed in the first part of T . In the second part, an unusual flow
pattern occurs, namely, the negative vortex −SII is followed by a same-signed tail vortex (−TI),
and subsequently, this is accompanied by the shedding of a positive vortex SII [see Fig. 11(h)].
Consequently, five vortices are shed during one oscillation cycle at Ur = 13. This number is midway
between the four vortices [i.e., 2 × (2S)] shed in the 1:2 synchronization and the six vortices [i.e.,
3 × (2S)] shed in the 1:3 synchronization. At Ur = 14, the 2S mode is shed twice in the first part of
T , which is followed in the second part by the shedding of a positive elliptically shaped vortex SIII

and a negative tail vortex −TI [see Fig. 11(i)]. Although the total number of vortices shed during
one oscillation cycle here is six, the vorticity associated with the last vortex is smaller than that in
the 1:3 synchronization branch—so the transition branch occurs at Ur = 14.

In summary, the synchronization branch between the structural oscillation and the vor-
tex shedding from the elliptical cylinder-plate assembly exhibits highly periodic dynamical
characteristics—these can be either antisymmetric (odd-multiple) or asymmetric (even-multiple).
For an unlimited FIV of the assembly, the vortex shedding in a synchronization branch generally
conforms to an n × (2S) wake mode, where n is the ratio of the vortex-shedding frequency to
the vibration frequency. The vortices in this wake mode are alternately shed from one side to
the other. However, it is noted that tail vortices can occur in the transition regime between two
synchronization branches. In marked contrast, the wake modes observed in the synchronization
branch of a self-limited FIV are generally more complex (e.g., T+S, P+S) [23].
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FIG. 10. Dynamical characteristics of the 1:5 synchronization branch for an elliptical cylinder-plate as-
sembly with (a)–(c) aspect ratios AR = 1, 1.5 and 2 at Ur = 29 and 30. The notation used here is the same as
that described in the caption of Fig. 7. The vortex-shedding pattern over one oscillation cycle with period T
is exhibited in (d) and (e) where a 5 × (2S) wake mode is seen to be associated with the 1:5 synchronization
branch.
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FIG. 11. Dynamical characteristics of the 1:2 synchronization branch for an elliptical cylinder-plate as-
sembly with (a)–(c) aspect ratios AR = 1, 1.5, and 2 at Ur = 11. The transition regime between the 1:2 and
1:3 synchronizations for the assembly with (d) AR = 2 at Ur = 14. The notations used in (a)–(d) follow that
given in the caption of Fig. 7. Temporal evolution of instantaneous vorticity field during one oscillation cycle
for an assembly with (e)–(g) AR = 1, 1.5, and 2 at Ur = 11 and (h)–(i) AR = 2 at Ur = 13 and 14. The 1:2
synchronization branch supports a 2 × (2S) wake mode and the transition regime supports a quasi-2 × (2S)
wake mode.

D. Nonsynchronization characteristics

In Fig. 4, it is evident that there exist regions between the synchronization branches in the
amplitude response of an elliptical cylinder-plate assembly. These regions correspond to the non-
synchronization branches in the galloping regime. For AR � 1.5, the nonsynchronization regimes
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FIG. 12. Dynamical characteristics of the 1:4 synchronization branch for an elliptical cylinder-plate assem-
bly with (a) aspect ratio AR = 1.5 and (b) 2 at Ur = 24. The notations used in (a) and (b) follow that given
in the caption of Fig. 7. (c) and (d) Temporal evolution of instantaneous vorticity field during one oscillation
cycle with a period T . The 1:4 synchronization branch supports a 4 × (2S) wake mode.

account for a considerable proportion in the amplitude response—the Ur range associated with these
branches is comparable with or even greater than that for the synchronization branches.

Figure 13 displays the power spectra of CL for 6 � Ur � 30 for an elliptical cylinder-plate
assembly with AR = 0.75–2. These power spectra provide a comparison of the frequency content
of the CL power spectra associated with the synchronization (colored lines) and nonsynchronization
(black lines) in the galloping regime. First, the assembly with larger AR is associated with a
more complex frequency structure—this observation applies in both synchronization and non-
synchronization branches. Second, the frequency content is composed of a fundamental frequency
and a number of odd (e.g., third and fifth) harmonics in the odd-synchronization branches (e.g.,
1:1, 1:3, and 1:5). In contrast, both even and odd (e.g., second, third, fourth, and fifth) harmonics
of the fundamental frequency are present in the even-synchronization branches (e.g., 1:2, 1:4).
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FIG. 13. The normalized power spectra of CL at reduced velocities in the range from 6 to 30 for an elliptical
cylinder-plate assembly with (a)–(d) aspect ratios AR = 0.75, 1, 1.5, and 2.

Additionally, the CL spectra of the synchronization branch are essentially invariant (unchanged) as
a function of Ur . In stark contrast, the CL spectra vary with Ur in the nonsynchronization branch—
ever higher-order harmonics emerge with increasing Ur , as is evident on a careful perusal of
Figs. 13(a) and 13(b).

The harmonics in the CL power spectra in two successive synchronization branches are seen
to evolve in the nonsynchronization branch lying between these two branches (viz., a particular
harmonic in the CL power spectrum for the lower-order synchronization transitions to an associated
harmonic in that for the next higher-order synchronization in the intervening non-synchronization
branch). For example, in an elliptical cylinder-plate assembly with AR = 1.5 shown in Fig. 13(c),
the fundamental frequency in the CL power spectrum of the 1:1 synchronization branch evolves
smoothly in the CL power spectra through the nonsynchronization branch at Ur = 9–10 (see the
single gray dashed line) to give the associated second harmonic in the CL power spectrum of the 1:2
synchronization branch. Furthermore, the second and third harmonics in the CL power spectrum of
the 1:3 synchronization branch appear to both contribute to an associated harmonic in that of the
1:4 and 1:5 synchronization branches as it undergoes a smooth transition in the frequency content
of the power spectra associated with the intervening nonsynchronization branches [see the pair of
dashed gray lines in Fig. 13(c)]. In marked contrast, for an elliptical cylinder-plate assembly with
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AR = 2 displayed in Fig. 13(d), there is no nonsynchronization branch between the 1:1, 1:2, and
1:3 synchronization branches.

The preceding analysis demonstrates that the frequencies in the CL power spectrum cor-
responding to a nonsynchronization branch are not necessarily harmonics of a fundamental
frequency—these frequencies are a signature of the underlying aperiodic dynamics in the branch.
The typical phenomenon associated with the aperiodic dynamics is the presence of an amplitude
modulation (or beating) in the CL(t ) time series. Figure 14 provides an example of the aperiodic
characteristics in the nonsynchronization branch—the signature is evident in the CL(t ) time series,
the phase portrait CL-C′

L, and the Poincaré section for elliptical cylinder-plate assembly with various
ARs and at a number of representative reduced velocities. Indeed, the CL(t ) time series exhibits
complex variations over a number of scales, the phase-plane portrait CL-C′

L consists of multiple
overlapping and intersecting loops, and the Poincaré section is composed of a complex point set
(rather than simply a single point)—these characteristics are indicative of the highly aperiodic nature
of the dynamics in the nonsynchronization branch.

A few cases shown in Fig. 14 exhibit a quasiperiodic dynamical behavior (e.g., a period-doubling
oscillation). For example, the dynamics in Fig. 14(c) corresponds to a period-3 beating for the
amplitude of CL, as is evident on inspection of the trajectory in the phase-space portrait CL-C′

L (like
that seen in the periodic oscillations in the synchronization branch) and of the presence of three
clusters of points in the corresponding Poincaré section. The dynamics displayed in Fig. 14(d) is
also a period-3 oscillation, as evidenced by the fact that the CL(t ) time series repeats every three
oscillation cycles. In comparison with the CL(t ) time series in Fig. 14(c), the corresponding time
series in Fig. 14(d) is substantially more complex—indeed, the dynamics here corresponds to a
larger AR = 1.5 at Ur = 23. The greater complexity in the time series for this case is reflected also
in the greater complexity in the associated phase-plane portrait CL-C′

L and in a greater number of
point clusters in the associated Poincaré section. The example shown in Fig. 14(f) is a period-5
oscillation. The CL(t ) time series here exhibits temporal variations on multiple time scales. The
remaining examples in Fig. 14 are associated with an aperiodic dynamics which can manifest a
symmetric beating [e.g., Figs. 14(ai) and 14(bi)], a nonsymmetric beating [e.g., Fig. 14(ei)], or a
completely irregular beating without a clear-cut (discernible) amplitude envelope [e.g., Fig. 14(gi)].
An increasing AR and/or reduced velocity is associated with a more nonlinear dynamics in the
nonsynchronization branch.

Figure 15 displays the flow pattern over a number of consecutive oscillation cycles for an
elliptical cylinder-plate assembly with LSP/D = 0.75 and AR = 1.5 at Ur = 28. This flow pattern
corresponds to a period-5 oscillation. An inspection of this pattern shows that the vortex shedding
corresponds an n × (2S) wake mode. At Ur = 28, which is located in the nonsynchronization branch
between the 1:4 and 1:5 synchronization branches, n can have a value of either four (cycles 2
and 4) or five (cycles 1, 3, and 5). A few nonelliptically shaped vortices are present during the
vortex-shedding process (e.g., the elongated vortices delineated within the black box). The wake
mode in cycle 6 (not shown here) is identical to that of cycle 1—this implies that a period-5
oscillation is associated with this vortex-shedding pattern.

E. Assembly with a longer splitter-plate

Sections III A–III D focus on how the AR of an elliptical cylinder-plate assembly affects the
dynamical characteristics of the unlimited FIV response of the assembly. In accordance with Wu
et al. [22,24,25], a longer splitter-plate can provoke VIV and galloping responses on a circular
cylinder-plate assembly at small and large values of the reduced velocity, respectively. In this
section, we investigate the dynamic characteristics associated with an elliptical cylinder-plate
assembly with AR = 1 and 1.5 but with a longer splitter-plate of LSP/D = 2.5.

Figure 16 shows a comparison of the branching behavior of an elliptical cylinder-plate assembly
with LSP/D = 2.5 for AR = 1 and 1.5. As shown in Fig. 16(a), a lock-in regime and three con-
secutive odd-multiple (i.e., 1:3, 1:5, and 1:7) synchronization branches that abut one another in the
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FIG. 14. Dynamical characteristics in the nonsynchronization branches of an elliptical cylinder-plate
assembly with LSP/D = 0.75 experiencing an unlimited flow-induced vibration (FIV). Each row of panels
exhibits the results for the assembly for a given aspect ratio at a representative reduced velocity. The dynamical
characteristics consist of (i) the time series Y (t ) (gray lines) and CL (t ) (blue lines), (ii) phase portrait CL-C′

L ,
and (iii) Poincaré section. The red dashed lines delineate the amplitude envelope of CL .

054102-22



EFFECT OF ASPECT RATIO ON THE UNLIMITED …

FIG. 15. The instantaneous vorticity field over five consecutive oscillation cycles for an elliptical cylinder-
plate assembly with LSP/D = 0.75 and aspect ratio AR = 1.5 at Ur = 28. This is an example of a period-5
oscillation.

galloping regime are observed for AR = 1. In addition, two special branches—the still branch (gray)
and initial galloping branch (pink)—are identified based on their unique dynamical characteristics
(viz., the steady-state dynamics of structure and flow for the former and the wake meandering for the
latter). The corresponding PSD contours of fY / fn and fCL / fn exhibit a simple frequency structure.
More details for this case are provided by Wu et al. [22]. When AR is increased from 1 to 1.5,
the assembly still exhibits a clear-cut separation in the VIV and galloping responses. However,
the branching behavior is significantly different, as is evident from an examination of Fig. 16(b).
First, two even-multiple (i.e., 1:4 and 1:6) synchronization branches, with narrow Ur ranges, are
present in the amplitude response at about Ur = 14 and 24, while the 1:3 synchronization branch is
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FIG. 16. The unlimited flow-induced vibration (FIV) response of an elliptical cylinder-plate assembly with
LSP/D = 2.5 for (a) and (b) aspect ratios AR = 1 and 1.5. The dynamical characteristics are expressed in terms
of the branching behavior and the power spectral density (PSD) of Y and CL . Other notations used here are the
same as those described in the captions of Figs. 4–6.

absent. Furthermore, the synchronization branches are separated from each other. Second, the still
and initial galloping branches that are specific to a circular cylinder-plate assembly with a longer
splitter plate are absent. The corresponding PSDs of fY / fn and fCL / fn are more complex than those
for AR = 1, including stronger and higher-order harmonic components in the spectrum.

The vortex shedding in the synchronization branch is influenced by the AR. For AR = 1, Wu
et al. [22] showed that the vortex-shedding patterns consist of a 2S mode in the lock-in, a 2×(P+S)
mode in the 1:3 synchronization branch, no clear-cut identifiable mode in the 1:5 synchronization
branch, and a 7 × (2S) mode in the 1:7 synchronization branch. The vortices are elongated and
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FIG. 17. The branching behavior and wake mode for an elliptical cylinder-plate assembly with LSP/D =
0.5 in the [aspect ratio (AR), Ur] plane. The flow-induced vibration (FIV) response occurs over a limited
reduced-velocity range.

connected. In marked contrast, for an elliptical cylinder-plate assembly with AR = 1.5, a much
simpler vortex-shedding pattern is observed in the synchronization branches, namely, a n × (2S)
wake mode with elliptically shaped vortices is associated with a 1:n synchronization branch.

It is concluded that a larger AR does not alter the nature of the dynamic response induced on an
elliptical cylinder-plate assembly, which is primarily determined by the splitter-plate length (e.g.,
a self-limited FIV is provoked for an assembly with LSP/D = 0.5 [23], an unlimited integrated
VIV-galloping response appears for LSP/D = 0.75, and a separated VIV and galloping response is
provoked for LSP/D = 2.5). However, larger AR affects the branching behavior of the amplitude
response and the corresponding vortex-shedding pattern due to the significant increase in the
complexity of the frequency content in the power spectrum of CL. In some sense, a simultaneous
increase in both AR and Ur can achieve the same effect with respect to the FIV response of an
elliptical cylinder-plate assembly.

F. Maps of branching behavior and wake mode

Figures 17 and 18 compare the branching behavior and wake modes for an elliptical cylinder-
plate assembly of various ARs experiencing vibration in a limited (LSP/D = 0.5) and an unlimited
(LSP/D = 0.75) range of reduced velocity. The black solid lines delineate the effective range for the
FIV response of the assembly. The region outside the black solid lines corresponds to the conditions
in the (AR, Ur) plane where the assembly does not vibrate. The synchronization branches in the
amplitude response are distinguished using different colors, and the nonsynchronization branches
are shown in white. Except for the differences mentioned previously, more complex wake modes
are observed in the synchronization branch for a limited FIV response, while more regular vortex-
shedding patterns are observed in the synchronization branches for an unlimited FIV response.
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FIG. 18. The branching behavior and wake mode of an elliptical cylinder-plate assembly with LSP/D =
0.75 in the [aspect ratio (AR), Ur] plane. The flow-induced vibration (FIV) response occurs over an unlimited
reduced-velocity range.

IV. CONCLUSIONS

The effect of AR on the unlimited FIV response of an elliptical cylinder-plate assembly is
investigated numerically at Re = 100, m∗ = 10, and ζ = 0.

The AR and the splitter-plate length stress on different aspects in influencing the FIV of the
assembly. First, AR determines whether an oscillation can be triggered in the assembly—a critical
value of 0.67 < ARcri < 0.75 is required for this to occur because the flow separation point on
the windward surface of a horizontal ellipse is too far back to provoke an oscillatory motion
[23]. Second, LSP determines primarily the fundamental FIV mode to be limited or unlimited.
Furthermore, a larger AR always provokes a stronger unlimited FIV through a reduction in the
reduced-velocity associated with the onset of FIV and a concomitant increase in the vibration
amplitude.

For an unlimited FIV response, increasing AR results in the generation of more synchronization
branches in the amplitude response (e.g., 1:3 synchronization for AR = 0.75; 1:2, 1:3, and 1:5
synchronizations for AR = 1; and 1:1, 1:2, 1:3, 1:4, and 1:5 synchronizations for AR = 1.5 and 2).
Accordingly, an unlimited FIV can transition from a pure galloping to an integrated VIV-galloping
response. Transition regimes are present between the 1:1 and 1:2 and between the 1:2 and 1:3
synchronization branches in the amplitude response for the assembly with AR = 2.

A regular alternating vortex-shedding pattern is observed in the various synchronization
branches—the pattern is associated with an n × (2S) wake mode for a 1:n synchronization branch.
However, the vortex shapes are affected by the AR and the reduced velocity. For example, increasing
AR results in the shedding of slender vortices at times corresponding to the amplitude maxima
of the transverse displacement. Furthermore, increasing Ur results in a more vertical orientation
(viz., oriented more strongly in the y direction) in the vortices. This leads to a subdivision of the
1:3 synchronization branches for an assembly with AR = 1.5 and 2. In addition, quasi-(2S) and
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quasi-2 × (2S) modes are present in the transition regimes (viz., the regime between the 1:1 and 1:2
synchronizations and between the 1:2 and 1:3 synchronizations). The vortices shed in the transition
regime consist of a combination of a primary elliptically shaped vortex and a secondary weaker
tail-shaped vortex. The number of vortices shed in the transition regime is between those of the
two synchronization branches that bracket it on either side. By contrast, the nonsynchronization
branch is characterized by aperiodic oscillations [e.g., amplitude modulation of CL(t )] and the
period-doubling oscillation associated with the vortex-shedding pattern marking the transition from
a lower-order to a higher-order synchronization branch.
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