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Boundary-layer flows over deforming surfaces
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In this paper a formulation of the incompressible Navier-Stokes equations is introduced
which allows one to model boundary-layer flows induced by the motion of a deforming
surface. Such a formulation may be used to model flows relevant in a wide variety of
industries from polymer processing to glass manufacturing. We show that for particular
sheet geometries and velocities, similarity solutions may be obtained that account for sheet
thinning (or thickening) and roughness patterns observed in extrusion-type processes.
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I. INTRODUCTION

Extrusion-type processes are common and are used to produce thin sheets and fibers for a range
of different materials, two primary examples being polymer extrusion and glass drawing. In polymer
extrusion plastic resin is placed in a heated barrel known as an extruder where it is heated and melts.
The extruder contains a rotating screw that pumps the molten polymer through a wide (∼1-10 m),
narrow (∼1 mm) slit called a die which determines the shape of the final product. The molten
polymer rapidly cools on exiting the die where uniform cooling is required to prevent deformities.
This is achieved by winding the sheet around a series of cooled rollers. These rollers can also serve
to control the final dimensions of the polymer by adjusting their respective speeds. They can also
be used to apply a finish to the sheet since the polymer is often soft enough on exiting the die to
mirror the surface of the rollers. This finish can be aesthetic or functional. The roughness of the
surface can be controlled by having different grades and patterns of roughness on the rollers. The
ultimate use of the finished product depends on its gauge with thinner sheets being thermoformed
for use in packaging and thicker sheets often used as a protective layer or liner for the storage and
transportation of goods. In the analysis that follows we are interested in the boundary-layer flow
induced by these extrusion processes. However, we will briefly discuss sheet and fiber drawing to
highlight issues with many of the current studies focusing on these induced boundary-layer flows.

Extrusion flows were originally modelled experimentally by Trouton [1], who derived an empir-
ical relationship between the velocity and thickness of a viscous fiber stretching via a tensile force.
The empirical results of Trouton have been extended by numerous authors since, primarily using
asymptotic expansions predicated on the small thickness-to-length ratios of the sheet (Howell [2]) or
fibers (Pearson and Matovich [3]). At leading order, the streamwise velocity component u is found
to be independent of the radial (fibers) or wall-normal (sheets) coordinate and can be characterized
by the ratio of inlet to outlet velocities known as the draw ratio D, such that u = Dx, with x being
the streamwise spatial coordinate. Using simple conservation of mass arguments it can be deduced
that the sheet or fiber must have a thickness s defined as follows (using the notation of Fig. 1):

s(x) =
{

D−x (sheets),
D− x

2 (fibers).
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FIG. 1. Schematic diagrams of boundary-layer flows developing over (a) a stretching thinning sheet and
(b) a periodic rough surface. In both cases the profile of the surface is denoted by s(x), the surface has a
wall velocity denoted by Uw (x), and it is this nonconstant wall velocity that results in the development of a
boundary-layer profile denoted by u(x, y).

In spite of this analysis the majority of studies considering boundary-layer flows induced by
stretching surfaces neglect the dynamics of the sheet. Instead, it is often assumed that the sheet is
flat, and the stretching rate is imposed as a boundary condition, as, for example, in Crane [4], where
a linear stretching rate is stipulated. While mathematically convenient, this type of formulation may
have important consequences for identifying instabilities that may arise in industrial practices. For
instance, in Bhattacharyya and Gupta [5] a linear stability analysis on the flat, linear stretching sheet
was conducted where it was concluded that the flow was linearly stable to Görtler type disturbances.
However, this may not be the case in practice and such instabilities may be apparent should the
thinning deformation of the sheet be taken into account.

It should be noted that this is not the first study to attempt to account for the dynamics of a sheet.
In Al-Housseiny and Stone [6], the momentum equations for both viscous and elastic sheets are
coupled to the momentum equations for the ambient fluid above. In doing so similarity solutions are
obtained under a limiting set of constraints on the physics of both the sheet and the fluid. Similarly,
Rees and Pop [7] considered boundary-layer flows and heat transfer over a wavy surface moving
tangentially to itself with a constant velocity. In this article, a sinusoidal surface profile was assumed,
profiles such as these have been used by others to model small-amplitude periodic surface roughness
(see, for example, Yoon, Hyun, and Park [8], and Garrett et al. [9]). The resulting boundary-layer
equations were solved numerically and physical quantities such as the skin friction coefficient and
rate of heat transfer were reported.

This paper follows a similar formulation to that presented by Rees and Pop [7] and bridges the
gap between the analysis of flows induced by flat stretching surfaces and the coupled sheet fluid
system studied by Al-Housseiny and Stone [6]. To achieve this we effectively treat the sheet as a
solid object with both its shape and velocity being prescribed in a manner that permits the existence
of self-similar flow profiles. Using this formulation we also show that boundary-layer flows induced
by surface thickening processes, such as those observed during textile compaction, can also be
modelled. Such a process is essentially the converse of the sheet-thinning processes discussed
previously, whereby a material is fed into a compactor at a greater speed than it is extracted. These
types of processes exploit the fact that fibrous materials exhibit viscoelastic behavior [10]. Here
this is manifested as an increase in stress within the fiber after a compaction-relaxation cycle which
prevents the fiber from recovering to its initial volume. There is a wealth of literature attempting
to explain this phenomenon and an overview of different modeling approaches is provided in Kelly
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[11]. Furthermore, our formulation can also be used to model boundary-layer flows generated by the
extrusion of small-amplitude rough surfaces where here we consider a periodic roughness profile
similar to that discussed by Yoon, Hyun, and Park [8].

The remainder of the paper is structured as follows. In Sec. II the boundary-layer equations for
flows induced by deforming surfaces are derived. This is achieved by first performing a coordinate
system transformation to “flatten” the sheet before applying the usual large Reynolds number
boundary-layer scaling. In Sec. III we look at particular combinations of surface shapes and wall
velocities in order to model sheet thinning or thickening processes as well as boundary-layer flows
generated by the extrusion of rough surfaces. We show that under certain limiting assumptions, an-
alytical boundary-layer solutions may be derived. As one would expect, these results are dependent
on the physics of the system being considered, those being the exact profile of the deforming surface
and the wall velocity of said surface. The analysis that we present is generalized. However, all the
solutions can be tailored to model flows that are observed in practice given sufficient knowledge of
the above physical constraints. To conclude, in Sec. III, we present a numerical validation of our
analytical thinning sheet solutions using a finite-element approach. Lastly, in Sec. IV, we present a
discussion regarding both our findings and the potential for future work.

II. PROBLEM FORMULATION

Consider the steady flow of an incompressible, Newtonian fluid over an impermeable, semi-
infinite plate. The streamwise coordinate is x∗, and the wall-normal coordinate is y∗ (asterisks
denotes dimensional quantities). This flow is governed by the continuity and Navier-Stokes mo-
mentum equations,

∇∗ · u∗ = 0, (1a)

ρ∗(u∗ · ∇∗)u∗ = −∇∗ p∗ + μ∗�∗u∗. (1b)

The fluid density is ρ∗, the dynamic viscosity is μ∗, the pressure is p∗, and the velocity field is
u∗ = (u∗, v∗), where u∗, and v∗ are the velocity components in the streamwise and wall-normal
directions, respectively. In what follows we consider boundary-layer flows over nonflat surfaces for
x∗ ∈ [0,∞); as such, it proves useful to introduce a change in coordinate system with ξ ∗ = x∗, and
η∗ = y∗ − s∗, where s∗(x∗) is the function that describes the variation of the surface height of the
plate. The transformed governing equations are then

∂u∗

∂ξ ∗ + ∂ ṽ∗

∂η∗ = 0, (2a)

u∗ ∂u∗

∂ξ ∗ + ṽ∗ ∂u∗

∂η∗ = − 1

ρ∗
∂ p∗

∂ξ ∗ + ν∗L∗
1u∗ + 1

ρ∗
ds∗

dξ ∗
∂ p∗

∂η∗ , (2b)

u∗ ∂ ṽ∗

∂ξ ∗ + ṽ∗ ∂ ṽ∗

∂η∗ + d2s∗

dξ ∗2
u∗2 = −σ ∗2

ρ∗
∂ p∗

∂η∗ + ν∗L∗
1ṽ

∗ + 1

ρ∗
ds∗

dξ ∗
∂ p∗

∂ξ ∗ + ν∗L∗
2u∗, (2c)

where ν∗ = μ∗/ρ∗ is the kinematic viscosity, and the differential operators are

L∗
1 = ∂2

∂ξ ∗2
− d2s∗

dξ ∗2

∂

∂η∗ − 2
ds∗

dξ ∗
∂2

∂ξ ∗∂η∗ + σ ∗2 ∂2

∂η∗2
, (2d)

L∗
2 = 2

d2s∗

dξ ∗2

(
∂

∂ξ ∗ − ds∗

dξ ∗
∂

∂η∗

)
+ d3s∗

dξ ∗3
. (2e)

In the ξ -η coordinate system the wall-normal velocity is defined as

ṽ∗ = v∗ − ds∗

dξ ∗ u∗, (2f)
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and the function σ ∗ is expressed as

σ ∗ =
√

1 +
(

ds∗

dξ ∗

)2

. (2g)

We note that the function σ ∗ is related to the curvature of the surface κ∗ as follows:

κ∗(ξ ∗) = 1

σ ∗2

dσ ∗

dξ ∗

(
ds∗

dξ ∗

)−1

.

System (2) is solved subject to the wall conditions u∗ · t̂ = U ∗
w(ξ ∗) and u∗ · n̂ = 0, on η∗ = 0

where U ∗
w � 0 is the dimensional wall velocity. In this transformed coordinate system, in the absence

of any oncoming flow, the relevant boundary conditions for this problem are then

u∗(η∗ = 0) = U ∗
w(ξ ∗)/σ ∗(ξ ∗), ṽ∗(η∗ = 0) = 0, u∗(η∗ → ∞) → 0. (3)

These conditions ensure that there is always no flow normal to the surface (no penetration) and
that the surface moves tangentially to itself with velocity U ∗

w. We consider the development of a
boundary layer due to the nonconstant wall velocity [U ∗

w = U ∗
w(ξ ∗)] of the plate. For example, the

case when U ∗
w = C∗ξ ∗ corresponds to linear stretching of the surface with the constant C∗ having

units s−1. This problem, in the nondeformed frame of reference, has been well studied and was first
considered by Crane [4].

The problem is nondimensionalized as follows:

(ξ,Y, s) = (ξ ∗, η∗, s∗)

L∗ , (u, ṽ,Uw ) = (u∗, ṽ∗,U ∗
w )

U ∗ , p = p∗

ρ∗U ∗2
,

where U ∗ and L∗ are the reference velocity and length scales, respectively. In order to then arrive
at the relevant boundary-layer equations the following scalings are introduced η = Re1/2 Y and
v = Re1/2 ṽ, where Re = U ∗L∗/ν∗ is the Reynolds number. Therefore system (2) reduces to

∂u

∂ξ
+ ∂v

∂η
= 0, (4a)

u
∂u

∂ξ
+ v

∂u

∂η
= s′

ξ Re1/2 ∂ p

∂η
− ∂ p

∂ξ
+ σ 2 ∂2u

∂η2

− 1

Re1/2

(
s′′
ξξ

∂u

∂η
+ 2s′

ξ

∂2u

∂ξ∂η

)
+ 1

Re

∂2u

∂ξ 2
, (4b)

1

Re

(
u
∂v

∂ξ
+ v

∂v

∂η

)
+ s′′

ξξ u2

Re1/2 = s′
ξ

Re1/2

∂ p

∂ξ
− σ 2 ∂ p

∂η
+ σ 2

Re

∂2v

∂η2

− 1

Re3/2

(
s′′
ξξ

∂v

∂η
+ 2s′

ξ

∂2v

∂ξ∂η

)
+ 1

Re2

∂2v

∂ξ 2

+ 1

Re

[
2s′′

ξξ

(
1

Re1/2

∂u

∂ξ
− s′

ξ

∂u

∂η

)
+ s′′′

ξξξ u

Re1/2

]
, (4c)

where the primes with associated subscripts denote differentiation with respect to the subscript
variable and σ 2 = 1 + (s′

ξ )2. In order to determine the correct leading-order balance the following
expansions are introduced:

u(ξ, η) = u0(ξ, η) + Re−1/2 u1(ξ, η) + · · · ,

v(ξ, η) = v0(ξ, η) + Re−1/2 v1(ξ, η) + · · · ,

p(ξ, η) = p0(ξ ) + Re−1/2 p1(ξ, η) + · · · ,
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where, to leading order, the pressure is a function of ξ only [this can be directly inferred from (4c)].
Thus, the leading-order boundary-layer equations for these classes of problems are as follows:

∂u0

∂ξ
+ ∂v0

∂η
= 0, (5a)

u0
∂u0

∂ξ
+ v0

∂u0

∂η
+ σ−1σ ′

ξ u2
0 = −σ−2(p0)′ξ + σ 2 ∂2u0

∂η2
. (5b)

This system is the Newtonian equivalent of the non-Newtonian equations derived, for example, by
Pop and Nakamura [12]. In the case when the plate is flat, i.e., s is constant, the above reduces to
the familiar 2D boundary-layer equations. Outside the boundary layer the flow must match with the
far-field stationary flow, U∞ = 0. By considering the behavior of equation (5b) at a large distance
from the surface of the plate the pressure, to leading order, is determined to be constant. Thus,

∂u0

∂ξ
+ ∂v0

∂η
= 0, (6a)

u0
∂u0

∂ξ
+ v0

∂u0

∂η
+ σ−1σ ′

ξ u2
0 = σ 2 ∂2u0

∂η2
. (6b)

The above system is then closed subject to the following conditions:

u0(η = 0) = Uw(ξ )/σ (ξ ), v0(η = 0) = 0, u0(η → ∞) → 0. (6c)

This system of boundary-layer equations is general in the sense that one is not restricted by any of
the dynamics of the deforming surface. In what follows we seek to extend previous analyses and
wish to determine self-similar solutions of (6) without a priori knowledge of either the deforming
surface profile or the wall velocity.

III. SELF-SIMILAR FLOWS

Assuming that (6) admits self-similar solutions we introduce the similarity coordinate

ζ = η

g

√
Uw

ξσ
,

and the streamfunction ψ = g
√

Uwξ/σ f (ζ ), where g is a yet to be determined function of ξ . These
expressions for ζ and ψ are informed by standard boundary-layer scalings [13] and also the need
to ensure that u0 is proportional to both the wall velocity and the inverse of the function σ . We note
that in the case when the wall velocity is constant and the surface is flat the unknown quantity g can
be removed from these expressions and the analysis follows identically that of Tsou, Sparrow, and
Kurtz [13].

Given the preceding definitions it follows immediately that

u0 =∂ψ

∂η
= (Uw/σ ) f ′

ζ ,

v0 = − ∂ψ

∂ξ
= g

√
Uwξ/σ (ζ f ′

ζ X− − f X+),

where

X± = g′
ξ

g
+ 1

2ξ
± 1

2

[
(Uw )′ξ

Uw

− σ ′
ξ

σ

]
.

Therefore (6b) reduces to

ξg2
[ − X+ f f ′′

ζ ζ + U −1
w (Uw )′ξ ( f ′

ζ )2
] = σ 2 f ′′′

ζ ζ ζ .
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In order to be able to determine similarity solutions it must then be the case that

ξg2X+ = c1σ
2, (7a)

ξg2U −1
w (Uw )′ξ = c2σ

2, (7b)

where c1 and c2 are arbitrary constants that ensure self-similarity. The instances when one of
these constants is set equal to zero, with the other being nonzero, are considered in Appendix A.
Rearranging (7b) gives g2 = c2σ

2Uw[ξ (Uw )′ξ ]−1. Substituting this form for g2 into (7a) one then
removes the unknown function g from the problem and arrives at the following second-order ODE,

Uw

d2Uw

dξ 2
+ γ

(
dUw

dξ

)2

− SUw

dUw

dξ
= 0, (8)

where S = [ln(σ )]′ξ and γ = 2(c1 − c2)/c2. We note that the above equation is identically satisfied
when Uw = constant. However, (7b) would then imply that c2 = 0. This special case is considered
in Appendix A. Given the form of (8) there are two distinct cases to consider, when γ = −1 and
when γ 	= −1. In the first case, the substitution R = [ln(Uw )]′ξ , reduces the order of (8) such that

dR

dξ
− SR = 0.

Therefore R = Kσ , where K is a constant of integration, and it follows immediately that

(Uw )′ξ = KUwσ. (9)

In the second case, when γ 	= −1, the substitution R = (1 + γ )U 1+γ
w [ln(Uw )]′ξ , leads to the same

first-order ODE. Therefore, in these cases

(Uw )′ξ = Kσ

(1 + γ )U γ
w

. (10)

This ODE can be rewritten as such

W ′
ξ = Kσ, (11)

where W = U 1+γ
w . Thus, irrespective of the value of γ , in order to be able to determine similarity

solutions, one may choose either to specify the wall velocity, Uw, and calculate the variation of
the height of the plate, s, or specify s and determine the required form for Uw. With s fixed
the determination of Uw transpires to be a relatively simple procedure. Integrating (9) and (11),
respectively, we have that

Uw =
{

C eKI when γ = −1,

(C + KI )
1

1+γ when γ 	= −1,
(12)

where C is a constant of integration and I is simply the arc length of the surface,

I =
∫

σ (ξ ) dξ =
∫ √

1 + (s′
ξ )2 dξ . (13)

Therefore for any fixed s it is possible to determine Uw for any value of γ simply by integrating
the function σ . It is clear from the above analysis that the value of the constant γ dictates the form
of the wall velocity. In cases when γ � −1 the deforming surface will be accelerating while the
inverse is true when γ < −1. As an example, a deforming surface that is being thinned as it is being
stretched would, by mass conservation, have to be accelerating.

Now, by writing f̂ (Z ) = √
c1 f (ζ ), where Z = √

c1ζ , then f̂ ′
Z = f ′

ζ , and the ODE the governs the
base flow for c1 > 0 is then given by

f̂ ′′′
ZZZ + f̂ f̂ ′′

ZZ −
(

2

2 + γ

)
( f̂ ′

Z )2 = 0. (14a)
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The case when γ = −2 is considered separately in Appendix A. The preceding ODE must be solved
subject to

f̂ (Z = 0) = 0, f̂ ′
Z (Z = 0) = 1, f̂ ′

Z (Z → ∞) → 0. (14b)

It is worth noting that (14) admits exact analytical solutions for two specific γ values. In the case
when γ = 0, then f̂ = 1 − e−Z , while when γ = −4, then f̂ = √

2 tanh(Z/
√

2). A derivation of
these solutions using a similar approach to those employed in Ackroyd [14] and Sachdev, Bujurke,
and Pai [15] may be found in Appendix B. In what follows we will highlight three specific case
studies that make use of these exact solutions and a numerical solution of (14), although we note
that the choice of the value of the constant γ would, in practice, be informed by experimental
conditions.

In order to verify the previous analysis we consider Crane’s problem. Crane’s problem corre-
sponds to the linear stretching of a flat plate, as such, s is a constant and (11) reduces simply to
(Uw )′ξ = K . Thus when K = 1, and stipulating that Uw(ξ = 0) = 0Uw = 0, we recover the expected
linear stretching result; Uw = ξ . In order to be able to visualize the solutions for both u0 and v0 one
needs to recall the unknown function g such that the similarity coordinate Z , and streamfunction ψ ,
can be written in terms of known functions. Irrespective of the value of γ we have that

g =
√

2c1ασU 1+γ
w

Kξ
,

where

α =
{

1 when γ = −1,

(1 + γ )(2 + γ )−1 when γ 	= −1.

In order to ensure that g is solely real then, given that c1 > 0, the constant K would have to be
negative in the cases when −2 < γ < −1. Given the form of (12), with γ in this range and K
being less than zero, one would then determine complex solutions for the wall velocity. Therefore,
physical solutions are derived only in the cases when γ < −2 and γ � −1. For convenience we
now fix K equal to unity but note that the following analysis holds for any K > 0. Having done so
we determine that ψ = ςUw f̂ (Z ), where Z = η/(ςσ ) and ς =

√
2αU γ

w . Thus

u0 = ∂ψ

∂η
=

(
Uw

σ

)
f̂ ′
Z ,

v0 = −∂ψ

∂ξ
= ς

2

{[
2Uwσ ′

ξ

σ
+ γ (Uw )′ξ

]
Z f̂ ′

Z − (2 + γ )(Uw )′ξ f̂

}
.

There is clearly a special case to consider when Uw is directly proportional to σ . In this case then
both u0 and v0/ς are functions of Z only. In addition to this, setting γ = 2 and fixing Uw = σ

ensures that u0 = f̂ ′
Z and v0 = √

2/3(Z f̂ ′
Z − f̂ ), i.e., the wall-normal velocity is then identically

independent of the streamwise coordinate ξ (see Fig. 2). Recalling (11) it must then transpire
that (Uw )′ξ = 1/(3Uw ). Thus, imposing the condition that the initial wall velocity is equal to

0Uw, then Uw = √
0U 2

w + 2ξ/3 = σ . Given this form for σ , and stipulating that s(ξ = 0) = s0, it
must therefore be the case that s(ξ ) = s0 − (0U 2

w − 1)3/2 + (0U 2
w − 1 + 2ξ/3)3/2. Practically, it is

perhaps unphysical to consider a case whereby the variation of the surface height of the plate is
increasing in such a manner. However, given the preceding analysis we are now in a position to
consider a number of cases that closely resemble physical boundary-layer flows.
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1

FIG. 2. Plots of the streamwise and wall-normal velocity components for the case when γ = 2 and Uw =√
0U 2

w + 2ξ/3 = σ . In this case both u0 and v0 are independent of ξ . Given that no exact analytical solution for
f̂ exists in the case when γ = 2, a shooting method that makes use of a fourth-order Runge-Kutta integrator,
twinned with a secant root finding scheme, was employed to solve (14). As part of this solution process we
determine that f̂ ′′

ZZ (Z = 0) ≈ 0.8300 and that f̂ (Z → ∞) = f̂∞ ≈ 1.0625. In the limit as Z → ∞, then v0 →
−√

2/3 f̂∞.

A. Surface thinning

In order to capture the realistic thinning nature of a sheet that is being extruded from a cast die
we fix the dimensional surface height of the plate such that

s∗(ξ ∗) = a∗
1 e−(ξ∗/a∗

2 ).

Given this form for s∗, we define our nondimensionalizing length scale L∗ as the inlet sheet height
a∗

1, so that s(ξ ) = e−aξ , where a = a∗
1/a∗

2 and σ = √
1 + a2e−2aξ . Therefore we have that

I = arcsinh(a−1eaξ ) − σ

a
.

Thus an analytical expression for Uw can be determined directly from (12). In practice one would
choose the free constants (a, γ ) such that the wall velocity profile matched closely with physical
observations. In the absence of experimental data we are free to choose mathematically convenient
values for these constants. If we set a = γ + 1 = 1 and stipulate that Uw(ξ = 0) = 0Uw = 0, then
it follows that

Uw = ξ + ln

(
1 + σ

1 + σ0

)
+ σ0 − σ,

where, in this case, σ0 = σ (ξ = 0) = √
2. This expression for Uw is reasonably close to the result

owing from Crane’s linear stretching problem (Uw = ξ ). Aside from the region close to ξ = 0, we
find that Uw can be approximated in the following fashion:

U approx
w = ξ + ln

(
2

1 + σ0

)
+ σ0 − 1 ≈ ξ + 0.2260.

This result, presented graphically in Fig. 3, is perhaps not surprising given that the sheet is thinning
exponentially. As such, we would expect to recover a result for the wall velocity similar to that
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1
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4

5

6
(a) (b)

FIG. 3. In (a) the wall velocity Uw , the approximate wall velocity, U approx
w = ξ + 0.2260, and the expo-

nentially thinning sheet profile, s(ξ ) = e−ξ , are plotted against ξ . In (b) the wall velocity, given an identical
thinning sheet profile, is plotted for a range of γ values. In both plots the dashed black line corresponds to the
wall velocity result for a sheet undergoing linear stretching.

of Crane [4] in all regions where the plate is locally flat. However, we note that the analysis
presented here is general enough that one could consider a plethora of different thinning sheet
profiles dependent on the value of the constant a or the rate of sheet acceleration depending on the
value of γ .

The results presented in Fig. 4 show the discrepancy between the solutions obtained under
the assumption of a flat stretching sheet when compared to those obtained under the correct
assumption that the sheet will thin as it is accelerated and stretched. We observe that the streamwise
velocity component is always underpredicted by Crane’s model. Furthermore, near to the point
where the sheet is being extruded, when ξ = 0, we observe that the gradient of the wall-normal
velocity component is significantly shallower under the assumption that the surface does not deform
as it stretches. The disparity of these results at the surface of the sheet leads to a significant
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10
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FIG. 4. Plots of the streamwise (a) and wall-normal (b) velocity components for a range of ξ values. In this
case the sheet is thinning exponentially: s(ξ ) = e−ξ . Crane’s flat plate solutions are given by the dashed black
curves.
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underprediction of the magnitude of the flow that, via mass conservation, is directed towards the
stretching surface. We note that these effects are exacerbated when the constant a decreases in value.
Irrespective of the value of this constant, at a sufficiently large-enough distance downstream, the
wall-normal velocity profile will, however, always tend towards Crane’s solution since the plate is
locally flat as ξ → ∞. Similar qualitative results are obtained if one assumes that the sheet deforms
in either a polynomial or a logarithmic manner.

B. Surface thickening

Theoretical studies of textile compaction processes [11] have sought to model the stress within
a fiber over a compaction relaxation cycle. Here our aim is to propose a shape which captures the
resulting reduction in volume fraction and hence determine a sheet velocity profile which facilitates
a self-similar boundary-layer solution for the ambient fluid. While this approach represents a
simplification of the underlying physics governing such processes, it is warranted by the observed
tendency of compaction-induced defects to manifest in textile manufacturing. These defects are
commonly ascribed to micromechanical phenomena arising from the closure of interstitial gaps
between individual fibers in a composite sheet, as described in Thompson et al. [16]. However, an
examination of the stability characteristics of the induced boundary layer may provide insights into
the potential mitigation of such defects.

If we consider a deforming surface with a profile defined as such, s∗(ξ ∗) = b∗
1 ln(e + ξ ∗/b∗

2),
where e is the exponential constant chosen such that s∗(ξ ∗ = 0) = b∗

1, then such a profile can be used
to model a thickening, decelerating surface such as those observed in compaction processes. We
again set L∗ = b∗

1, the initial sheet thickness, so that s(ξ ) = ln(e + bξ ) with b = b∗
1/b∗

2. Irrespective
of the value of b, in order to determine similarity solutions we first compute

I = (e + bξ )

b
σ − arcsinh(s′

ξ ).

Here we choose the convenient parameter value b = 1, such that via (12) we have, for γ 	= −1, that

Uw = [C + (e + ξ )σ − arcsinh(s′
ξ )]

1
1+γ .

Setting γ = −4, to ensure that the sheet is decelerating, and fixing the value of C such that 0Uw = 1,
we have that

Uw =
[
ξσ + ln

(
1 + e σ0

s′
ξ + σ

)
+ e (σ − σ0)

]− 1
3

,

where, in this case, σ0 = σ (ξ = 0) = √
1 + e−2. At first inspection, this expression for the wall

velocity appears to be reasonably intricate. However, away from the region of the sheet inlet, this
expression can be well approximated as follows:

U approx
w = [ξ + ln(1 + e σ0) + e (1 − σ0)]−

1
3 ≈ (ξ + 1.1819)−

1
3 .

Given that, in the case when γ = −4, we have an analytical solution for (14), with Uw calculated
as above, we are then able to use our stream function definitions for u0 and v0 to visualize the flow
in terms of the unscaled boundary-layer coordinate, ςσZ + s = η + s. These results are depicted in
Fig. 5 where we observe that both the streamwise and wall-normal fluid velocities are at a maximum
in the vicinity of the inlet (ξ = 0). As one would expect, as both the curvature of the sheet and the
velocity of the sheet decrease, the magnitude of these velocities also decreases.

C. Surface roughness

Given our generic problem formulation we are also able to consider the development of
boundary-layer flows over small-amplitude rough surfaces. Taking inspiration from Yoon, Hyun,
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FIG. 5. In (a) the wall velocity Uw , the approximate wall velocity, U approx
w = (ξ + 1.1819)−

1
3 , and the

logarithmically thickening sheet profile, s(ξ ) = ln(e + ξ ), are plotted against ξ . In (b) and (c), respectively,
solutions for the streamwise velocity u0 and wall-normal velocity v0 + s′

ξ u0 are mapped back to the unscaled
boundary-layer coordinate system (ξ, η + s). The solid black line indicates the surface of the thickening
decelerating sheet.

and Park [8], if we assume a surface roughness profile of the form

s∗(ξ ∗) = A∗[1 − cos(2πξ ∗/λ∗)],

then s0 = 0. Here A∗ and λ∗ are the amplitude and wavelength of the surface roughness, respectively.
Consistent with the analysis of Yoon, Hyun, and Park [8] we set L∗ = λ∗ so that s(ξ ) = ε[1 −
cos(2πξ )], where ε = A∗/λ∗.

In what follows we will consider the case when ε � 1. Although the analysis itself is not
necessarily restricted by the value of ε, we find that our solutions are fully parameterized by the
constant ε, i.e., our boundary-layer flow profiles are invariant on changing A∗ and λ∗, given that
their ratio, ε, is itself fixed.

Given the sinusoidal form for s(ξ ) it follows that σ = [1 + (2επ )2 sin2(2πξ )]1/2. Thus

I = 1

2π
E [2πξ | − (2πε)2],
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FIG. 6. In (a) the wall velocity Uw , the approximate wall velocity, U approx
w = (0U γ

w + Mξ )
1

1+γ , and the
small-amplitude rough profile, s(ξ ) = ε[1 − cos(2πξ )], are plotted against ξ . In (b) the cyclical velocities
U0 and V0 are plotted against the boundary-layer coordinate Z . The solid curves correspond to the solutions
at 2ξ = (n − 1), the dotted curves are the solutions at 2ξ = (n − 1

2 ), for n = 1, 2, 3, . . . . In both instances
ε = 1/5, 0Uw = 2, and γ = 2.

where E (φ | k) is the incomplete elliptic integral of the second kind (see Abramowitz and Stegun
[17]). In the cases when ε � 1, this integral can be very well approximated in the following manner:

I ≈ max(σ ) + min(σ )

2
ξ =

√
1 + (2επ )2 + 1

2
ξ = Mξ,

where M is the midrange of the function σ . In fact, for flows generated by small-amplitude rough
surfaces, the difference between the exact form of Uw determined via (12) and the form based on
the approximate value of I is graphically indistinguishable. This fact is evidenced in Fig. 6 for the
case when ε = 1/5, 0Uw = 2, and γ = 2. Having set γ = 2 we observe that the sheet undergoes
only very moderate acceleration. Indeed, as γ → ∞, irrespective of the form of the surface profile,
the wall velocity tends to a constant value.

By appropriately scaling the streamwise and wall-normal velocity components one finds that the
velocity profiles are cyclical in nature and have the following properties:

(U0,V0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
f̂ ′
Z ,

√
1

2α

[
γ

(2 + γ )
Z f̂ ′

Z − f̂

]}
, when ξ = (n − 1)

2
,

{
f̂ ′
Z√

1 + (2επ )2
,

√
1 + (2επ )2

2α

[
γ

(2 + γ )
Z f̂ ′

Z − f̂

]}
, when ξ =

(
n − 1

2

)
2

,

for n = 1, 2, 3, . . . , with U0 = u0/Uw and V0 = U γ /2
w v0. These self-similar flow profiles are depicted

in Fig. 6 where we observe that at the points where |s′
ξ | is at a maximum, i.e., when 2ξ = (n − 1

2 ),
the value of the streamwise velocity at the wall decreases to a minimum. In order to compensate for
this, the magnitude of the vertical velocity component at the far-field attains a maximum value at
these points. Given that no exact analytical solution for f̂ exists in the case when γ = 2, a shooting
method that makes use of a fourth-order Runge-Kutta integrator, twinned with a secant root finding
scheme, was employed to solve (14).

In order to better visualize the downstream development of the streamwise velocity component,
u0, we plot in Fig. 7 the flow in both the scaled (ξ, Z ) and unscaled (ξ, η + s) coordinates systems.
The sinusoidal nature of the surface roughness profile is evidenced in the development of the
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FIG. 7. In (a) a 3D-plot of the streamwise velocity u0 against ξ and Z . In (b) the solution for u0 has
been mapped back to the unscaled boundary-layer coordinate system (ξ, η + s). In both plots the roughness
parameter, ε, has been set equal to one-fifth; the initial wall velocity, 0Uw , is set equal to 1; and the surface is
moderately accelerating with γ = 2. In (b) the solid black line indicates the surface of the rough sheet.

streamwise flow where we observe that the velocity attains local maximums at the respective
locations of maximum roughness amplitude.

The solutions presented within this subsection serve to highlight how our formulation can be
used to model flows developing over small amplitude rough surfaces. Indeed, this analysis could
readily be extended to incorporate a random surface roughness model whereby the function s(ξ )
is defined, for example, via a Fourier series composed of a randomized phase spectrum as per the
work of Lu et al. [18].

D. Numerical validation

The primary motivation for this study is the determination of boundary-layer flows induced by
stretching surfaces, as presented in Sec. III A. As such, we chose to validate the analytical solutions
presented in Fig. 4 for the case of an exponentially thinning sheet against a suitable numerical
scheme. To solve the governing system of PDEs numerically we use the finite-element software
FEniCS [19]. It is convenient to rewrite our equations in terms of the divergence of the stress tensor
τ∗, such that

∇∗ · u∗ = 0, (15a)

ρ∗(u∗ · ∇∗)u∗ = ∇∗ · τ∗. (15b)

We apply the same coordinate system transformation and nondimensionalisation as before, with the
exception that we scale the pressure by a factor of Re1/2. This difference in the pressure scale can
be attained by referring to (4c), where it is seen that the pressure term is O(Re1/2) larger than the
next largest term in the η-momentum equation. This fact, twinned with the free stream boundary
condition, U∞ = 0, allowed us to deduce that pressure in the boundary layer was constant to leading
order. However, rescaling our pressure as p ∼ Re−1/2 allows the pressure to vary and results in us
being able to numerically determine the nonconstant pressure correction. Note that this is in contrast
to the corresponding flat stretching sheet analysis of Crane [4] where p ∼ Re−1, which would be
the case in (4c) if s′

ξ = 0. Thus, we have that

∂u

∂ξ
+ ∂v

∂η
= 0, (16a)

u
∂u

∂ξ
+ v

∂u

∂η
=

{
∂

∂ξ
− Re1/2 s′

ξ

∂

∂η

}
τξξ + Re1/2 ∂

∂η
τξη, (16b)
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FIG. 8. In (a) we plot the absolute value of the difference between the numerical solutions for the
streamwise velocity component at ξ = 2.5, with the corresponding boundary-layer solution at the same point,
for a range of values of the small parameter Re−1/2. In (b) we plot an identical comparison for the wall-normal
velocity component.

Re−1/2

(
u
∂v

∂ξ
+ v

∂v

∂η

)
= −s′

ξ

(
u
∂u

∂ξ
+ v

∂u

∂η

)
− s′′

ξξ u2

+ Re−1

{
∂

∂ξ
− Re1/2 s′

ξ

∂

∂η

}
τξη + Re1/2 ∂

∂η
τηη, (16c)

where the components of the stress tensor are given by

τξξ = − Re−1/2 p + 2 Re−1

(
∂u

∂ξ
− Re1/2 s′

ξ

∂u

∂η

)
, (16d)

τξη = + Re−1

{
Re1/2[1 − (s′

ξ )2]
∂u

∂η
+ Re−1/2 ∂v

∂ξ
+ s′

ξ

(
∂u

∂ξ
− ∂v

∂η

)
+ s′′

ξξ u

}
, (16e)

τηη = − Re−1/2 p + 2 Re−1

(
∂v

∂η
+ Re1/2 s′

ξ

∂u

∂η

)
. (16f)

System (16) is then solved subject to the following boundary conditions:

u = u0, v = v0, at ξ = 0 and ξ = ξ∞, (17a)

u = Uw/σ, v = 0, at η = 0, (17b)

u = 0, τ · n = 0, at η = η∞. (17c)

We apply our normal and tangential velocity conditions at the wall and the condition that the
streamwise velocity component decays in the far field, as per the solution of our boundary-layer
equations (6). In solving the full Navier-Stokes equations we need to impose additional constraints
on the system. Here we use our boundary-layer solutions as inlet and outlet conditions. We also
impose a no stress condition at the outlet. This choice of free stream condition allows us to measure
convergence by means of evaluation of the wall-normal velocity component at the far field, v0|η=η∞ ,
for any fixed ξ , since we have not explicitly forced this value. Indeed, this can be seen in Fig. 8,
where the difference in the absolute value between the boundary-layer and numerical wall-normal
velocity solutions decrease as the Reynolds number grows larger. In the transformed coordinates
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FIG. 9. Comparison between the finite-element and boundary-layer solutions across the computational
domain for (a) Re−1/2 = 0.05 and (b) Re−1/2 = 0.04. The same colorbar scale is used in both instances so
that the reduction in error may be easily observed.

our boundary-layer solutions are given by

u0 = Uw

σ
e−η/σ ,

v0 = Uwσ ′
ξ

σ 2
η e−η/σ − (Uw )′ξ (1 − e−η/σ ).

It is these solutions that we compare, respectively, to the numerical results for u and v. The domain
[ξ, η] ∈ [0, 5] × [0, 10] was triangulated using a 200 × 200 mesh with the originally uniformly
spaced mesh mapped via

ηnew = η
exp (η/η∞) − 1

exp(1) − 1
,

to accurately resolve the boundary layer near the surface of the sheet. To ensure the mesh was
properly resolved the problem was also solved on a 100 × 100 and 50 × 50 mesh, with |v − v0|η=η∞ ,
at ξ = 2.5, being used to measure the errors for a range of different mesh densities and Reynolds
numbers. The errors were determined to be a function of the size of the Reynolds number with the
mesh density playing almost no role at all, giving us confidence that our mesh is sufficiently refined.

The choice of η∞ was further validated by solving the problem on incrementally larger domains,
where it was found that η∞ = 10 was appropriate provided the Reynolds number was sufficiently
large. Plots comparing the difference between our self-similar and finite-element solutions are
presented in Fig. 8 for a range of Reynolds numbers. Given that our boundary-layer analysis hinges
on an asymptotic expansion with small parameter Re−1/2, it is logical for us to present results for
a range of values of this small quantity. As expected we observe that the difference between the
large Reynolds number analytical solutions and the numerical solutions decreases as the Reynolds
number increases.

In Fig. 9 we present a comparison of the boundary-layer and finite-element solution for the
streamwise velocity component across the entire (ξ, η + s) domain. It is clear that our analytical
boundary-layer solutions provide an excellent approximation to the full numerical solutions. Indeed,
on decreasing our small parameter Re−1/2, one observes a notable decrease in the absolute difference
between the two sets of solutions.

IV. DISCUSSION AND CONCLUSIONS

We have shown that it is possible to obtain self-similar boundary-layer solutions over deforming
surfaces and have investigated a number of specific case studies. Our analysis is primarily focused on
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flows that are generated from extrusion-type processes, whereby surfaces accelerate and thin as they
are extruded. The vast majority of studies in the literature fail to account for this surface curvature
and instead assume that the sheet is flat, following the analysis of Crane [4]. We show that in order
to accurately describe boundary-layer flows over stretching surfaces one needs to account for the
curvature of the surface. Failing to do so results in incorrect predictions for both the streamwise
and wall-normal velocity components. Most notably, near to the extrusion inlet, we find that the
magnitude of the wall-normal velocity at the far-field is significantly increased when compared
to the corresponding flat-plate results. Our analytical results have been verified numerically using
an appropriate finite-element scheme and we observe excellent agreement between the two sets of
solutions.

Our formulation has been shown to be general enough that it can be extended to consider both
flows over thickening, decelerating surfaces and also the development of boundary-layer flows over
periodic rough surfaces. Our analysis stipulates that the exact form of the wall velocity is dictated
by the shape of the deforming surface. However, we have shown that, at least for the case studies
considered here, these expressions for the wall velocity can be very well approximated by simple
expressions involving only the streamwise coordinate ξ . In practice, one would measure the velocity
of the deforming sheet and stipulate the value of the constant γ to ensure that the predicted wall
velocity closely matched experimental observations, and, indeed, our analysis allows for exactly
this procedure. Our analysis could easily be extended to consider other types of flows generated
from extrusion processes including those over bounded domains. In these cases, one would replace
the analytical calculation of the arc length of the surface, I, with a numerical integration scheme
with the limits of integration dictated by the bounds of the domain.

In a sense the current study is somewhat related to that of Crane [20], where similarity solutions
for the boundary-layer flow induced by a stretching cylinder were derived. However, these solutions
are only valid when the ratio of cross-sectional areas of the boundary layer to the cylinder is
large. Both the velocity and shape of the cylinder are prescribed in a manner that ensures that
mass is conserved within the cylinder, i.e., the density is constant. In much the same way as the
corresponding flat plate study [4] the cylinder wall is not treated as a deformable quantity. The
approach we have presented here would be capable of describing more general boundary-layer
solutions in other such non-Cartesian geometries, and, as such, could remove the limitations of the
studies relating to flows induced by stretching cylinders.

Recent research has shown that Crane’s flow is linearly stable to Görtler-type disturbances
[21] but is linearly unstable to Tollmien-Schlichting– (TS) type disturbances [22]. However, both
analyses center on the fact that the sheet is not deformed as it is stretched. Given that we have shown
that the basic flow solutions are significantly altered when surface deformation is accounted for, it
would seem natural to repose questions regarding the linear stability of these types of flows to either
nonpropagating (Görtler) or propagating (TS) disturbances. Indeed, we are currently pursuing this
avenue of investigation and hope to report on this in due course.

The data that support the findings of this study are available from the corresponding author on
reasonable request.
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APPENDIX A: SELF-SIMILAR SOLUTIONS IN THE LIMIT AS ci → 0

In the first instance we consider the case when c1 = 0. This is directly equivalent to the case
when γ = −2. From (7a) it is immediately apparent that if c1 = 0, then it must be the case that
X+ = 0. Solving this resulting ODE we determine that g = k

√
(ξUw )−1σ , where k is a constant of
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integration. Thus from (7b) it follows that Uw = −c−1
2 k2I−1. Given that we consider only cases

where the wall velocity is positive we fix c2 = −k2. Now, by writing f̂ (Z ) = k f (ζ ) = ψ , where
Z = kζ = σ−1ηUw, we have that u0 = σ−1Uw f̂ ′

Z and v0 = Z f̂ ′
Z [σ−1σ ′

ξ − U −1
w (Uw )′ξ ]. The ODE that

governs the flow is then

f̂ ′′′
ZZZ + ( f̂ ′

Z )2 = 0,

which must be solved subject to

f̂ (0) = 0, f̂ ′
Z (0) = 1, f̂ ′

Z (∞) = 0.

The ODE in question can be integrated to give
1
2 ( f̂ ′′

ZZ )2 + 1
3 ( f̂ ′

Z )3 = 0.

The right-hand side of the above must be equal to zero to ensure that the far-field condition is
satisfied. In the limit as Z → 0 it then follows that

1
2

[
f̂ ′′
ZZ (0)

]2 = − 1
3 .

Clearly, this cannot be true and, as such, we determine that no real solutions exist in the case when
γ = −2 (c1 = 0). This result is analogous to that associated with the Falkner-Skan problem in the
limit as m → −1. In that case one is unable to determine the flow in a diverging channel due to the
very rapid deceleration of the free-stream velocity. We interpret our result in much the same way,
given that Uw is inversely proportional to I. We conclude that the rapid change of the wall velocity
to zero is such that a boundary layer cannot be accommodated by this analysis.

In the second instance we consider the case when c2 = 0. This is directly equivalent to the
case when γ → ∞. From (7b) it is immediately apparent that if c2 = 0, then it must be the case
that Uw = constant. Given this result we determine, from (7a), that g = k

√
ξ−1J σ , where k is a

constant of integration fixed such that 2c1 = k2 and J = C + I. Now, by writing f̂ (Z ) = k f (ζ ) =
ψ/

√
JUw, where Z = kζ = σ−1η

√
J −1Uw, we have that u0 = σ−1Uw f̂ ′

Z and

v0 = σ

2

√
Uw

J

{[
2J σ ′

ξ

σ 2
+ 1

]
Z f̂ ′

Z − f̂

}
.

The ODE that governs the flow is then

f̂ ′′′
ZZZ + f̂ f̂ ′′

ZZ

2
= 0,

which must be solved subject to

f̂ (0) = 0, f̂ ′
Z (0) = 1, f̂ ′

Z (∞) = 0.

The above ODE and boundary conditions are identical to those presented by Tsou, Sparrow, and
Kurtz [13], who considered solely the case when s(ξ ) = 0. Thus, in all cases when the wall velocity
is constant, the boundary-layer flow over nonflat surfaces can be determined from the solutions
associated with the flow over a flat smooth boundary.

There is a special case to consider when σ/
√

J = d1 = constant. In this case v0 is a function of
Z only. It follows that

σ = d1

2
(d2 + d1ξ ),

where C = d2
2 /4. Stipulating that s0 = 0, and fixing d1/2 = d2 = 1, gives

s(ξ ) = σ
√
I

2
− 1

2
ln

(√
σ − 1

2
+

√
σ + 1

2

)
.

Then σu0/Uw = f̂ ′
Z and v0/

√
Uw = (2Z f̂ ′

Z − f̂ ).
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APPENDIX B: DERIVATION OF THE EXACT SOLUTIONS

Consider Eq. (14). For convenience we define q = 2/(2 + γ ) so that now we seek solutions to

f̂ ′′′
ZZZ + f̂ f̂ ′′

ZZ − q( f̂ ′
Z )2 = 0,

subject to

f̂ (0) = 0, f̂ ′
Z (0) = 1, f̂ ′

Z (∞) = 0.

Following the same approach as Sachdev, Bujurke, and Pai [15] we suppose that

f̂ (Z ) = b + b
∞∑

n=1

Anân e−bnZ where A = a1

b
and â1 = 1. (B1)

The constants a1, ân, and b need to be determined. Note f̂ ′
Z (∞) = 0 is already satisfied. Substituting

this expression for f̂ into the ODE gives

∞∑
n=2

Ane−bnZ

⎧⎨
⎩−ânn2(n − 1) +

n−1∑
j=1

â j ân− j (n − j)[n − (q + 1) j]

⎫⎬
⎭ = 0.

To satisfy this we require that

ân = 1

n2(n − 1)

n−1∑
j=1

â j ân− j (n − j)[n − (q + 1) j] for n � 2. (B2)

The first few values are given by

â2 = 1 − q

4
, â3 = 1 − q

72
(5 − 4q), â4 = 1 − q

1728
(34 − 53q + 21q2),

â5 = 1 − q

172800
(968 − 2235q + 1741q2 − 456q3), . . . .

Using f̂ (0) = 0 we obtain

∞∑
n=1

Anân = −1, (B3)

which is a polynomial in the unknown A. By truncating this to a finite series we can numerically
obtain the value of A. The condition f̂ ′

Z (0) = 1 yields

b = 1√√√√−
∞∑

n=1

nânAn

. (B4)

With A and b known, we can determine a1 using a1 = Ab.

1. Special case: q = 1

If q = 1, then ân = 0 for n � 2 and therefore

f̂ (Z ) = b + a1 e−bZ .

Applying our boundary conditions yields a1 = b = 1. Hence

f̂ (Z ) = 1 + e−Z .
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2. Special case: q = −1

If q = −1, then equation (B2) reduces to

ân = 1

n(n − 1)

n−1∑
j=1

â j ân− j (n − j) for n � 2.

With â1 = 1, the solution is given by ân = 21−n. Thus one finds that

f̂ (Z ) = b + 2b
∞∑

n=1

(
A

2
e−bZ

)n

= b
2 + Ae−bZ

2 − Ae−bZ
.

Substituting this solution into f̂ (0) = 0 gives A = −2. Further f̂ ′
Z (0) = 1 gives b2 = 2, and hence

f̂ (Z ) =
√

2
1 − e−√

2Z

1 + e−√
2Z

=
√

2 tanh

(
Z√
2

)
.
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